A Floatable Piezo-Photocatalytic Platform Based on Semi-Embedded ZnO Nanowire Array for High-Performance Water Decontamination
Corresponding Author: Junghoon Yeom
Nano-Micro Letters,
Vol. 11 (2019), Article Number: 11
Abstract
Photocatalytic degradation attracts considerable attention because it is a promising strategy to treat pollutants from industrial and agricultural wastes. In recent years, other than the development of efficient photocatalysts, much effort has been devoted to the design of reliable and inexpensive photocatalytic platforms that work in various environment conditions. Here, we describe a novel photocatalytic platform that is able to float and freely move atop water while performing photodegradation. Compared to common platforms, such as slurry reactors and immobilized photoreactors, the proposed platform is advantageous in terms of easy recycling and energy saving. Furthermore, the special configuration resulting from a two-step synthesis route, semi-embedded photocatalysts, addresses some of the remaining challenges, for instance, the contamination from the loose photocatalysts themselves. For the probe pollutant, methylene blue (MB), a reproducible and remarkable degradation activity of the platform, is observed and the effect of two primary factors, including surface area of the catalyst and mass transfer rate, is investigated. Besides, the piezo-photocatalysis effect, serving as an additional functionality, is confirmed to further improve the degradability of the platform, which offers an additional 20% of degraded MB. At last, the promising result of the degradation toward crude oil reveals the possibility of the platform to be used in gasoline pollution treatment.
Highlights:
1 ZnO nanowires were securely immobilized onto a floatable photocatalytic platform, which had a uniform diameter (55 ± 5 nm) and length (1.5 ± 0.3 μm).
2 An additional 20% of the probe pollutant (methylene blue) was degraded by piezocatalysis-assisted photocatalytic degradation.
3 The crude oil pollutant was decomposed up to 20% within 6 h.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M.A. Johar, R.A. Afzal, A.A. Alazba, U. Manzoor, M.A. Johar, R.A. Afzal, A.A. Alazba, U. Manzoor, Photocatalysis and bandgap engineering using ZnO nanocomposites, photocatalysis and bandgap engineering using ZnO nanocomposites. Adv. Mater. Sci. Eng. (2015). https://doi.org/10.1155/2015/934587
- M.A. Mohd, N.M. Julkapli, H.S. Bee, Review on ZnO hybrid photocatalyst: impact on photocatalytic activities of water pollutant degradation. Rev. Inorg. Chem. 36(2), 77–104 (2016). https://doi.org/10.1515/revic-2015-0015
- F. Haque, T. Daeneke, K. Kalantar-zadeh, J.-Z. Ou, Two-dimensional transition metal oxide and chalcogenide-based photocatalysts. Nano-Micro Lett. 10, 23 (2018). https://doi.org/10.1007/s40820-017-0176-y
- J. Rashid, M.A. Barakat, N. Salah, S.S. Habib, ZnO-nanoparticles thin films synthesized by RF sputtering for photocatalytic degradation of 2-chlorophenol in synthetic wastewater. J. Ind. Eng. Chem. 23, 134 (2015). https://doi.org/10.1016/j.jiec.2014.08.006
- E.J.C. Tinacba, J.A. Nuñez, R.B. Tumlos, H.J. Ramos, ZnO/Zn and ZnO film deposited via microwave atmospheric plasma jet as photo-catalyst for rhodamine 6G dye degradation. Thin Solid Films 624, 197–200 (2017). https://doi.org/10.1016/j.tsf.2016.07.018
- A. Ghosh, A. Mondal, Fabrication of Stable, Efficient and recyclable P-CuO/N-ZnO thin film heterojunction for visible light driven photocatalytic degradation of organic dyes. Mater. Lett. 164, 221–224 (2016). https://doi.org/10.1016/j.matlet.2015.10.148
- T.-J. Kuo, C.-N. Lin, C.-L. Kuo, M.H. Huang, Growth of ultralong ZnO nanowires on silicon substrates by vapor transport and their use as recyclable photocatalysts. Chem. Mater. 19, 5143–5147 (2007). https://doi.org/10.1021/cm071568a
- F.-H. Chu, C.-W. Huang, C.-L. Hsin, C.-W. Wang, S.-Y. Yu, P.-H. Yeh, W.-W. Wu, Well-aligned ZnO nanowires with excellent field emission and photocatalytic properties. Nanoscale 4, 1471–1475 (2012). https://doi.org/10.1039/C1NR10796H
- O. Akhavan, Graphene nanomesh by ZnO nanorod photocatalysts. ACS Nano 4, 4174–4180 (2010). https://doi.org/10.1021/nn1007429
- S. Adhikari, D. Sarkar, G. Madras, Highly efficient WO3–ZnO mixed oxides for photocatalysis. RSC Adv. 5, 11895 (2015). https://doi.org/10.1039/C4RA13210F
- Q. Wan, T.H. Wang, J.C. Zhao, Enhanced photocatalytic activity of ZnO nanotetrapods. Appl. Phys. Lett. 87, 083105 (2005). https://doi.org/10.1063/1.2034092
- S. Ma, R. Li, C. Lv, W. Xu, X. Gou, Facile synthesis of ZnO nanorod arrays and hierarchical nanostructures for photocatalysis and gas sensor applications. J. Hazard. Mater. 192, 730–740 (2011). https://doi.org/10.1016/j.jhazmat.2011.05.082
- Y. Ma, X. Zhu, S. Xu, G. He, L. Yao, Gold nanobipyramid@cuprous oxide jujube-like nanostructures for plasmon-enhanced photocatalytic performance. Appl. Catal. B Environ. 234, 26–36 (2018). https://doi.org/10.1016/j.apcatb.2018.04.014
- Y. Ma, X. Li, Z. Yang, S. Xu, W. Zhang, Morphology control and photocatalysis enhancement by in situ hybridization of cuprous oxide with nitrogen-doped carbon quantum dots. Langmuir 32, 9418–9427 (2016). https://doi.org/10.1021/acs.langmuir.6b02011
- I. Udom, Y. Zhang, M.K. Ram, E.K. Stefanakos, A.F. Hepp, R. Elzein, R. Schlaf, D.Y. Goswami, A simple photolytic reactor employing Ag-doped ZnO nanowires for water purification. Thin Solid Films 564, 258–263 (2014). https://doi.org/10.1016/j.tsf.2014.05.057
- K.M. McPeak, J.B. Baxter, ZnO nanowires grown by chemical bath deposition in a continuous flow microreactor. Cryst. Growth Des. 9, 4538–4545 (2009). https://doi.org/10.1021/cg900551f
- R. Molinari, C. Grande, E. Drioli, L. Palmisano, M. Schiavello, Photocatalytic membrane reactors for degradation of organic pollutants in water. Catal. Today 67, 273–279 (2001). https://doi.org/10.1016/S0920-5861(01)00314-5
- S. Mozia, Photocatalytic membrane reactors (PMRs) in water and wastewater treatment. A review. Sep. Purif. Technol. 73, 71–91 (2010). https://doi.org/10.1016/j.seppur.2010.03.021
- Z. He, Y. Li, Q. Zhang, H. Wang, Capillary microchannel-based microreactors with highly durable ZnO/TiO2 nanorod arrays for rapid, high efficiency and continuous-flow photocatalysis. Appl. Catal. B Environ. 93, 376–382 (2010). https://doi.org/10.1016/j.apcatb.2009.10.011
- Q. Zhang, Q. Zhang, H. Wang, Y. Li, A high efficiency microreactor with Pt/ZnO nanorod arrays on the inner wall for photodegradation of phenol. J. Hazard. Mater. 254–255, 318–324 (2013). https://doi.org/10.1016/j.jhazmat.2013.04.012
- W. Tu, Y.-P. Lin, R. Bai, Removal of phenol in aqueous solutions by novel buoyant composite photocatalysts and the kinetics. Sep. Purif. Technol. 115, 180–189 (2013). https://doi.org/10.1016/j.seppur.2013.05.009
- S. Singh, P.K. Singh, H. Mahalingam, Novel floating Ag+-doped TiO2/polystyrene photocatalysts for the treatment of dye wastewater. Ind. Eng. Chem. Res. 53, 16332–16340 (2014). https://doi.org/10.1021/ie502911a
- L. Ni, Y. Li, C. Zhang, L. Li, W. Zhang, D. Wang, Novel floating photocatalysts based on polyurethane composite foams modified with silver/titanium dioxide/graphene ternary nanoparticles for the visible-light-mediated remediation of diesel-polluted surface water. J. Appl. Polym. Sci. 133, 43400 (2016). https://doi.org/10.1002/app.43400
- K.M. Lee, C.W. Lai, K.S. Ngai, J.C. Juan, Recent developments of zinc oxide based photocatalyst in water treatment technology: a review. Water Res. 88, 428–448 (2016). https://doi.org/10.1016/j.watres.2015.09.045
- A. Mirzaei, Z. Chen, F. Haghighat, L. Yerushalmi, Removal of pharmaceuticals and endocrine disrupting compounds from water by zinc oxide-based photocatalytic degradation: a review. Sustain. Cities Soc. 27, 407–418 (2016). https://doi.org/10.1016/j.scs.2016.08.004
- S.-M. Lam, J.-C. Sin, A.Z. Abdullah, A.R. Mohamed, Degradation of wastewaters containing organic dyes photocatalysed by zinc oxide: a review. Desalination Water Treat. 41, 131–169 (2012). https://doi.org/10.1080/19443994.2012.664698
- F. Liu, Y.H. Leung, A.B. Djurišić, A.M.C. Ng, W.K. Chan, Native defects in ZnO: effect on dye adsorption and photocatalytic degradation. J. Phys. Chem. C 117, 12218–12228 (2013). https://doi.org/10.1021/jp403478q
- F.-H. Ko, W.-J. Lo, Y.-C. Chang, J.-Y. Guo, C.-M. Chen, ZnO nanowires coated stainless steel meshes as hierarchical photocatalysts for catalytic photodegradation of four kinds of organic pollutants. J. Alloys Compd. 678, 137–146 (2016). https://doi.org/10.1016/j.jallcom.2016.04.033
- S. Xu, Z.L. Wang, One-dimensional ZnO nanostructures: solution growth and functional properties. Nano Res. 4, 1013–1098 (2011). https://doi.org/10.1007/s12274-011-0160-7
- J. Cui, Zinc oxide nanowires. Mater. Charact. 64, 43–52 (2012). https://doi.org/10.1016/j.matchar.2011.11.017
- T. Kołodziejczak-Radzimska, Jesionowski, Zinc oxide—from synthesis to application: a review. Materials 7, 2833–2881 (2014). https://doi.org/10.3390/ma7042833
- Y. Zhang, M.K. Ram, E.K. Stefanakos, D.Y. Goswami, Y. Zhang, M.K. Ram, E.K. Stefanakos, D.Y. Goswami, Synthesis, characterization, and applications of ZnO nanowires, synthesis, characterization, and applications of ZnO nanowires. J. Nanomater. (2012). https://doi.org/10.1155/2012/624520
- X. Zou, H. Fan, Y. Tian, S. Yan, Synthesis of Cu2O/ZnO hetero-nanorod arrays with enhanced visible light-driven photocatalytic activity. CrystEngComm 16, 1149–1156 (2014). https://doi.org/10.1039/C3CE42144A
- L. Wang, X. Zhang, S. Zhao, G. Zhou, Y. Zhou, J. Qi, Synthesis of well-aligned ZnO nanowires by simple physical vapor deposition on c-oriented ZnO thin films without catalysts or additives. Appl. Phys. Lett. 86, 024108 (2005). https://doi.org/10.1063/1.1851607
- M. Naseri, N.M. Samadi, A. Mahmoodi, H. Pourjavadi, A.Z. Mehdipour, Moshfegh, Tuning composition of electrospun ZnO/CuO nanofibers: toward controllable and efficient solar photocatalytic degradation of organic pollutants. J. Phys. Chem. C 121, 3327–3338 (2017). https://doi.org/10.1021/acs.jpcc.6b10414
- H. Sutanto, S. Wibowo, I. Nurhasanah, E. Hidayanto, H. Hadiyanto, Ag doped ZnO thin films synthesized by spray coating technique for methylene blue photodegradation under UV irradiation. Int. J. Chem. Eng. (2016). https://doi.org/10.1155/2016/6195326
- D. Ponnamma, K.K. Sadasivuni, J.-J. Cabibihan, W.J. Yoon, B. Kumar, Reduced graphene oxide filled poly(dimethyl siloxane) based transparent stretchable, and touch-responsive sensors. Appl. Phys. Lett. 108, 171906 (2016). https://doi.org/10.1063/1.4947595
- S. Martin, B. Bhushan, Transparent, Wear-resistant, superhydrophobic and superoleophobic poly(dimethylsiloxane) (PDMS) surfaces. J. Colloid Interface Sci. 488, 118–126 (2017). https://doi.org/10.1016/j.jcis.2016.10.094
- T. Cheng, Y.-Z. Zhang, W.-Y. Lai, Y. Chen, W.-J. Zeng, W. Huang, High-performance stretchable transparent electrodes based on silver nanowires synthesized via an eco-friendly halogen-free method. J. Mater. Chem. C 2, 10369–10376 (2014). https://doi.org/10.1039/C4TC01959H
- J.D. Ingle Jr., S.R. Crouch, Spectrochemical Analysis (Prentice Hall, Upper Saddle River, 1988)
- A. Di Paola, E. García-López, G. Marcì, L. Palmisano, A survey of photocatalytic materials for environmental remediation. J. Hazard. Mater. 211–212, 3–29 (2012). https://doi.org/10.1016/j.jhazmat.2011.11.050
- M. Krivec, K. Žagar, L. Suhadolnik, M. Čeh, G. Dražić, Highly efficient TiO2-based microreactor for photocatalytic applications. ACS Appl. Mater. Interfaces 5, 9088–9094 (2013). https://doi.org/10.1021/am402389t
- L. Lin, Y. Yang, L. Men, X. Wang, D. He, A highly efficient TiO2@ZnO N–p–n heterojunction nanorod photocatalyst. Nanoscale 5, 588–593 (2013). https://doi.org/10.1039/C2NR33109H
- X. Cheng, X. Deng, P. Wang, H. Liu, Coupling TiO2 nanotubes photoelectrode with Pd nano-particles and reduced graphene oxide for enhanced photocatalytic decomposition of diclofenac and mechanism insights. Sep. Purif. Technol. 154, 51–59 (2015). https://doi.org/10.1016/j.seppur.2015.09.032
- N. Moraleslores, U. Pal, R. Galeazzi, A. Sandoval, Effects of morphology, surface area, and defect content on the photocatalytic dye degradation performance of ZnO nanostructures. RSC Adv. 4, 41099–41110 (2014). https://doi.org/10.1039/C4RA04522J
- H. Lin, Z. Wu, Y. Jia, W. Li, R.-K. Zheng, H. Luo, Piezoelectrically induced mechano-catalytic effect for degradation of dye wastewater through vibrating Pb(Zr0.52Ti0.48)O3 Fibers. Appl. Phys. Lett. 104, 162907 (2014). https://doi.org/10.1063/1.4873522
- K.-S. Hong, H. Xu, H. Konishi, X. Li, Piezoelectrochemical effect: a new mechanism for azo dye decolorization in aqueous solution through vibrating piezoelectric microfibers. J. Phys. Chem. C 116, 13045–13051 (2012). https://doi.org/10.1021/jp211455z
- X. Xue, W. Zang, P. Deng, Q. Wang, L. Xing, Y. Zhang, Z.L. Wang, Piezo-potential enhanced photocatalytic degradation of organic dye using ZnO nanowires. Nano Energy 13, 414–422 (2015). https://doi.org/10.1016/j.nanoen.2015.02.029
References
M.A. Johar, R.A. Afzal, A.A. Alazba, U. Manzoor, M.A. Johar, R.A. Afzal, A.A. Alazba, U. Manzoor, Photocatalysis and bandgap engineering using ZnO nanocomposites, photocatalysis and bandgap engineering using ZnO nanocomposites. Adv. Mater. Sci. Eng. (2015). https://doi.org/10.1155/2015/934587
M.A. Mohd, N.M. Julkapli, H.S. Bee, Review on ZnO hybrid photocatalyst: impact on photocatalytic activities of water pollutant degradation. Rev. Inorg. Chem. 36(2), 77–104 (2016). https://doi.org/10.1515/revic-2015-0015
F. Haque, T. Daeneke, K. Kalantar-zadeh, J.-Z. Ou, Two-dimensional transition metal oxide and chalcogenide-based photocatalysts. Nano-Micro Lett. 10, 23 (2018). https://doi.org/10.1007/s40820-017-0176-y
J. Rashid, M.A. Barakat, N. Salah, S.S. Habib, ZnO-nanoparticles thin films synthesized by RF sputtering for photocatalytic degradation of 2-chlorophenol in synthetic wastewater. J. Ind. Eng. Chem. 23, 134 (2015). https://doi.org/10.1016/j.jiec.2014.08.006
E.J.C. Tinacba, J.A. Nuñez, R.B. Tumlos, H.J. Ramos, ZnO/Zn and ZnO film deposited via microwave atmospheric plasma jet as photo-catalyst for rhodamine 6G dye degradation. Thin Solid Films 624, 197–200 (2017). https://doi.org/10.1016/j.tsf.2016.07.018
A. Ghosh, A. Mondal, Fabrication of Stable, Efficient and recyclable P-CuO/N-ZnO thin film heterojunction for visible light driven photocatalytic degradation of organic dyes. Mater. Lett. 164, 221–224 (2016). https://doi.org/10.1016/j.matlet.2015.10.148
T.-J. Kuo, C.-N. Lin, C.-L. Kuo, M.H. Huang, Growth of ultralong ZnO nanowires on silicon substrates by vapor transport and their use as recyclable photocatalysts. Chem. Mater. 19, 5143–5147 (2007). https://doi.org/10.1021/cm071568a
F.-H. Chu, C.-W. Huang, C.-L. Hsin, C.-W. Wang, S.-Y. Yu, P.-H. Yeh, W.-W. Wu, Well-aligned ZnO nanowires with excellent field emission and photocatalytic properties. Nanoscale 4, 1471–1475 (2012). https://doi.org/10.1039/C1NR10796H
O. Akhavan, Graphene nanomesh by ZnO nanorod photocatalysts. ACS Nano 4, 4174–4180 (2010). https://doi.org/10.1021/nn1007429
S. Adhikari, D. Sarkar, G. Madras, Highly efficient WO3–ZnO mixed oxides for photocatalysis. RSC Adv. 5, 11895 (2015). https://doi.org/10.1039/C4RA13210F
Q. Wan, T.H. Wang, J.C. Zhao, Enhanced photocatalytic activity of ZnO nanotetrapods. Appl. Phys. Lett. 87, 083105 (2005). https://doi.org/10.1063/1.2034092
S. Ma, R. Li, C. Lv, W. Xu, X. Gou, Facile synthesis of ZnO nanorod arrays and hierarchical nanostructures for photocatalysis and gas sensor applications. J. Hazard. Mater. 192, 730–740 (2011). https://doi.org/10.1016/j.jhazmat.2011.05.082
Y. Ma, X. Zhu, S. Xu, G. He, L. Yao, Gold nanobipyramid@cuprous oxide jujube-like nanostructures for plasmon-enhanced photocatalytic performance. Appl. Catal. B Environ. 234, 26–36 (2018). https://doi.org/10.1016/j.apcatb.2018.04.014
Y. Ma, X. Li, Z. Yang, S. Xu, W. Zhang, Morphology control and photocatalysis enhancement by in situ hybridization of cuprous oxide with nitrogen-doped carbon quantum dots. Langmuir 32, 9418–9427 (2016). https://doi.org/10.1021/acs.langmuir.6b02011
I. Udom, Y. Zhang, M.K. Ram, E.K. Stefanakos, A.F. Hepp, R. Elzein, R. Schlaf, D.Y. Goswami, A simple photolytic reactor employing Ag-doped ZnO nanowires for water purification. Thin Solid Films 564, 258–263 (2014). https://doi.org/10.1016/j.tsf.2014.05.057
K.M. McPeak, J.B. Baxter, ZnO nanowires grown by chemical bath deposition in a continuous flow microreactor. Cryst. Growth Des. 9, 4538–4545 (2009). https://doi.org/10.1021/cg900551f
R. Molinari, C. Grande, E. Drioli, L. Palmisano, M. Schiavello, Photocatalytic membrane reactors for degradation of organic pollutants in water. Catal. Today 67, 273–279 (2001). https://doi.org/10.1016/S0920-5861(01)00314-5
S. Mozia, Photocatalytic membrane reactors (PMRs) in water and wastewater treatment. A review. Sep. Purif. Technol. 73, 71–91 (2010). https://doi.org/10.1016/j.seppur.2010.03.021
Z. He, Y. Li, Q. Zhang, H. Wang, Capillary microchannel-based microreactors with highly durable ZnO/TiO2 nanorod arrays for rapid, high efficiency and continuous-flow photocatalysis. Appl. Catal. B Environ. 93, 376–382 (2010). https://doi.org/10.1016/j.apcatb.2009.10.011
Q. Zhang, Q. Zhang, H. Wang, Y. Li, A high efficiency microreactor with Pt/ZnO nanorod arrays on the inner wall for photodegradation of phenol. J. Hazard. Mater. 254–255, 318–324 (2013). https://doi.org/10.1016/j.jhazmat.2013.04.012
W. Tu, Y.-P. Lin, R. Bai, Removal of phenol in aqueous solutions by novel buoyant composite photocatalysts and the kinetics. Sep. Purif. Technol. 115, 180–189 (2013). https://doi.org/10.1016/j.seppur.2013.05.009
S. Singh, P.K. Singh, H. Mahalingam, Novel floating Ag+-doped TiO2/polystyrene photocatalysts for the treatment of dye wastewater. Ind. Eng. Chem. Res. 53, 16332–16340 (2014). https://doi.org/10.1021/ie502911a
L. Ni, Y. Li, C. Zhang, L. Li, W. Zhang, D. Wang, Novel floating photocatalysts based on polyurethane composite foams modified with silver/titanium dioxide/graphene ternary nanoparticles for the visible-light-mediated remediation of diesel-polluted surface water. J. Appl. Polym. Sci. 133, 43400 (2016). https://doi.org/10.1002/app.43400
K.M. Lee, C.W. Lai, K.S. Ngai, J.C. Juan, Recent developments of zinc oxide based photocatalyst in water treatment technology: a review. Water Res. 88, 428–448 (2016). https://doi.org/10.1016/j.watres.2015.09.045
A. Mirzaei, Z. Chen, F. Haghighat, L. Yerushalmi, Removal of pharmaceuticals and endocrine disrupting compounds from water by zinc oxide-based photocatalytic degradation: a review. Sustain. Cities Soc. 27, 407–418 (2016). https://doi.org/10.1016/j.scs.2016.08.004
S.-M. Lam, J.-C. Sin, A.Z. Abdullah, A.R. Mohamed, Degradation of wastewaters containing organic dyes photocatalysed by zinc oxide: a review. Desalination Water Treat. 41, 131–169 (2012). https://doi.org/10.1080/19443994.2012.664698
F. Liu, Y.H. Leung, A.B. Djurišić, A.M.C. Ng, W.K. Chan, Native defects in ZnO: effect on dye adsorption and photocatalytic degradation. J. Phys. Chem. C 117, 12218–12228 (2013). https://doi.org/10.1021/jp403478q
F.-H. Ko, W.-J. Lo, Y.-C. Chang, J.-Y. Guo, C.-M. Chen, ZnO nanowires coated stainless steel meshes as hierarchical photocatalysts for catalytic photodegradation of four kinds of organic pollutants. J. Alloys Compd. 678, 137–146 (2016). https://doi.org/10.1016/j.jallcom.2016.04.033
S. Xu, Z.L. Wang, One-dimensional ZnO nanostructures: solution growth and functional properties. Nano Res. 4, 1013–1098 (2011). https://doi.org/10.1007/s12274-011-0160-7
J. Cui, Zinc oxide nanowires. Mater. Charact. 64, 43–52 (2012). https://doi.org/10.1016/j.matchar.2011.11.017
T. Kołodziejczak-Radzimska, Jesionowski, Zinc oxide—from synthesis to application: a review. Materials 7, 2833–2881 (2014). https://doi.org/10.3390/ma7042833
Y. Zhang, M.K. Ram, E.K. Stefanakos, D.Y. Goswami, Y. Zhang, M.K. Ram, E.K. Stefanakos, D.Y. Goswami, Synthesis, characterization, and applications of ZnO nanowires, synthesis, characterization, and applications of ZnO nanowires. J. Nanomater. (2012). https://doi.org/10.1155/2012/624520
X. Zou, H. Fan, Y. Tian, S. Yan, Synthesis of Cu2O/ZnO hetero-nanorod arrays with enhanced visible light-driven photocatalytic activity. CrystEngComm 16, 1149–1156 (2014). https://doi.org/10.1039/C3CE42144A
L. Wang, X. Zhang, S. Zhao, G. Zhou, Y. Zhou, J. Qi, Synthesis of well-aligned ZnO nanowires by simple physical vapor deposition on c-oriented ZnO thin films without catalysts or additives. Appl. Phys. Lett. 86, 024108 (2005). https://doi.org/10.1063/1.1851607
M. Naseri, N.M. Samadi, A. Mahmoodi, H. Pourjavadi, A.Z. Mehdipour, Moshfegh, Tuning composition of electrospun ZnO/CuO nanofibers: toward controllable and efficient solar photocatalytic degradation of organic pollutants. J. Phys. Chem. C 121, 3327–3338 (2017). https://doi.org/10.1021/acs.jpcc.6b10414
H. Sutanto, S. Wibowo, I. Nurhasanah, E. Hidayanto, H. Hadiyanto, Ag doped ZnO thin films synthesized by spray coating technique for methylene blue photodegradation under UV irradiation. Int. J. Chem. Eng. (2016). https://doi.org/10.1155/2016/6195326
D. Ponnamma, K.K. Sadasivuni, J.-J. Cabibihan, W.J. Yoon, B. Kumar, Reduced graphene oxide filled poly(dimethyl siloxane) based transparent stretchable, and touch-responsive sensors. Appl. Phys. Lett. 108, 171906 (2016). https://doi.org/10.1063/1.4947595
S. Martin, B. Bhushan, Transparent, Wear-resistant, superhydrophobic and superoleophobic poly(dimethylsiloxane) (PDMS) surfaces. J. Colloid Interface Sci. 488, 118–126 (2017). https://doi.org/10.1016/j.jcis.2016.10.094
T. Cheng, Y.-Z. Zhang, W.-Y. Lai, Y. Chen, W.-J. Zeng, W. Huang, High-performance stretchable transparent electrodes based on silver nanowires synthesized via an eco-friendly halogen-free method. J. Mater. Chem. C 2, 10369–10376 (2014). https://doi.org/10.1039/C4TC01959H
J.D. Ingle Jr., S.R. Crouch, Spectrochemical Analysis (Prentice Hall, Upper Saddle River, 1988)
A. Di Paola, E. García-López, G. Marcì, L. Palmisano, A survey of photocatalytic materials for environmental remediation. J. Hazard. Mater. 211–212, 3–29 (2012). https://doi.org/10.1016/j.jhazmat.2011.11.050
M. Krivec, K. Žagar, L. Suhadolnik, M. Čeh, G. Dražić, Highly efficient TiO2-based microreactor for photocatalytic applications. ACS Appl. Mater. Interfaces 5, 9088–9094 (2013). https://doi.org/10.1021/am402389t
L. Lin, Y. Yang, L. Men, X. Wang, D. He, A highly efficient TiO2@ZnO N–p–n heterojunction nanorod photocatalyst. Nanoscale 5, 588–593 (2013). https://doi.org/10.1039/C2NR33109H
X. Cheng, X. Deng, P. Wang, H. Liu, Coupling TiO2 nanotubes photoelectrode with Pd nano-particles and reduced graphene oxide for enhanced photocatalytic decomposition of diclofenac and mechanism insights. Sep. Purif. Technol. 154, 51–59 (2015). https://doi.org/10.1016/j.seppur.2015.09.032
N. Moraleslores, U. Pal, R. Galeazzi, A. Sandoval, Effects of morphology, surface area, and defect content on the photocatalytic dye degradation performance of ZnO nanostructures. RSC Adv. 4, 41099–41110 (2014). https://doi.org/10.1039/C4RA04522J
H. Lin, Z. Wu, Y. Jia, W. Li, R.-K. Zheng, H. Luo, Piezoelectrically induced mechano-catalytic effect for degradation of dye wastewater through vibrating Pb(Zr0.52Ti0.48)O3 Fibers. Appl. Phys. Lett. 104, 162907 (2014). https://doi.org/10.1063/1.4873522
K.-S. Hong, H. Xu, H. Konishi, X. Li, Piezoelectrochemical effect: a new mechanism for azo dye decolorization in aqueous solution through vibrating piezoelectric microfibers. J. Phys. Chem. C 116, 13045–13051 (2012). https://doi.org/10.1021/jp211455z
X. Xue, W. Zang, P. Deng, Q. Wang, L. Xing, Y. Zhang, Z.L. Wang, Piezo-potential enhanced photocatalytic degradation of organic dye using ZnO nanowires. Nano Energy 13, 414–422 (2015). https://doi.org/10.1016/j.nanoen.2015.02.029