Fabrication of Waterproof Artificial Compound Eyes with Variable Field of View Based on the Bioinspiration from Natural Hierarchical Micro–Nanostructures
Corresponding Author: Lianqing Liu
Nano-Micro Letters,
Vol. 12 (2020), Article Number: 166
Abstract
Planar and curved microlens arrays (MLAs) are the key components of miniaturized microoptical systems. In order to meet the requirements for advanced and multipurpose applications in microoptical field, a simple manufacturing method is urgently required for fabricating MLAs with unique properties, such as waterproofness and variable field-of-view (FOV) imaging. Such properties are beneficial for the production of advanced artificial compound eyes for the significant applications in complex microcavity environments with high humidity, for instance, miniature medical endoscopy. However, the simple and effective fabrication of advanced artificial compound eyes still presents significant challenges. In this paper, bioinspired by the natural superhydrophobic surface of lotus leaf, we propose a novel method for the fabrication of waterproof artificial compound eyes. Electrohydrodynamic jet printing was used to fabricate hierarchical MLAs and nanolens arrays (NLAs) on polydimethylsiloxane film. The flexible film of MLAs hybridized with NLAs exhibited excellent superhydrophobic property with a water contact angle of 158°. The MLAs film was deformed using a microfluidics chip to create artificial compound eyes with variable FOV, which ranged from 0° to 160°.
Highlights:
1 Bioinspired by natural superhydrophobic surface with hierarchical micro–nanostructures, waterproof artificial compound eyes with variable field of view (FOV) were fabricated by a simple and effective manufacturing method.
2 The fabricated artificial compound eyes exhibited excellent waterproof property, tunability of the FOV and optical performance.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- E. Wrzesniewski, S.H. Eom, W. Cao, W.T. Hammond, S. Lee, E.P. Douglas, J. Xue, Enhancing light extraction in top-emitting organic light-emitting devices using molded transparent polymer microlens arrays. Small 8(17), 2647–2651 (2012). https://doi.org/10.1002/smll.201102662
- J.J. Schwartz, S. Stavrakis, S.R. Quake, Colloidal lenses allow high-temperature single-molecule imaging and improve fluorophore photostability. Nat. Nanotechnol. 5(2), 127–132 (2010). https://doi.org/10.1038/nnano.2009.452
- P. Fan, U.K. Chettiar, L. Cao, F. Afshinmanesh, N. Engheta, M.L. Brongersma, An invisible metal-semiconductor photodetector. Nat. Photonics 6(6), 380–385 (2012). https://doi.org/10.1038/nphoton.2012.108
- K.-H. Jeong, J. Kim, L.P. Lee, Biologically inspired artificial compound eyes. Science 312(5773), 557–561 (2006). https://doi.org/10.1126/science.1123053
- H.C. Ko, M.P. Stoykovich, J. Song, V. Malyarchuk, W.M. Choi et al., A hemispherical electronic eye camera based on compressible silicon optoelectronics. Nature 454(7205), 748–753 (2008). https://doi.org/10.1038/nature07113
- O. Cogal, Y. Leblebici, An insect eye inspired miniaturized multi-camera system for endoscopic imaging. IEEE Trans. Biomed. Circuits Syst. 11(1), 212–224 (2017). https://doi.org/10.1109/tbcas.2016.2547388
- T. Nakamura, R. Horisaki, J. Tanida, Computational superposition compound eye imaging for extended depth-of-field and field-of-view. Opt. Express 20(25), 27482–27495 (2012). https://doi.org/10.1364/oe.20.027482
- Y. Yang, X. Huang, X. Zhang, F. Jiang, X. Zhang, Y. Wang, Supercritical fluid-driven polymer phase separation for microlens with tunable dimension and curvature. ACS Appl. Mater. Interfaces. 8(13), 8849–8858 (2016). https://doi.org/10.1021/acsami.6b01951
- C. Florian, S. Piazza, A. Diaspro, P. Serra, M. Duocastella, Direct laser printing of tailored polymeric microlenses. ACS Appl. Mater. Interfaces. 8(27), 17028–17032 (2016). https://doi.org/10.1021/acsami.6b05385
- S. Surdo, R. Carzino, A. Diaspro, M. Duocastella, Single-shot laser additive manufacturing of high fill-factor microlens arrays. Adv. Opt. Mater. 6(5), 1701190 (2018). https://doi.org/10.1002/adom.201701190
- X. Zhang, N. Gao, Y. He, S. Liao, S. Zhang, Y. Wang, Control of polymer phase separation by roughness transfer printing for 2D microlens arrays. Small 12(28), 3788–3793 (2016). https://doi.org/10.1002/smll.201601350
- S. Surdo, A. Diaspro, M. Duocastella, Microlens fabrication by replica molding of frozen laser-printed droplets. Appl. Surf. Sci. 418, 554–558 (2017). https://doi.org/10.1016/j.apsusc.2016.11.077
- J.Y. Kim, K. Pfeiffer, A. Voigt, G. Gruetzner, J. Brugger, Directly fabricated multi-scale microlens arrays on a hydrophobic flat surface by a simple ink-jet printing technique. J. Mater. Chem. 22(7), 3053–3058 (2012). https://doi.org/10.1039/c2jm15576a
- D. Radtke, J. Duparré, U.D. Zeitner, A. Tünnermann, Laser lithographic fabrication and characterization of a spherical artificial compound eye. Opt. Express 15(6), 3067–3077 (2007). https://doi.org/10.1364/oe.15.003067
- J. Li, W. Wang, X. Mei, A. Pan, X. Sun, B. Li, J. Cui, Artificial compound eyes prepared by a combination of air-assisted deformation, modified laser swelling, and controlled crystal growth. ACS Nano 13(1), 114–124 (2019). https://doi.org/10.1021/acsnano.8b04047
- W. Wang, J. Li, R. Li, B. Li, X. Mei, X. Sun, Fabrication of hierarchical micro/nano compound eyes. ACS Appl. Mater. Interfaces. 11(37), 34507–34516 (2019). https://doi.org/10.1021/acsami.9b13355
- P. Qu, F. Chen, H. Liu, Q. Yang, J. Lu, J. Si, Y. Wang, X. Hou, A simple route to fabricate artificial compound eye structures. Opt. Express 20(5), 5775–5782 (2012). https://doi.org/10.1364/oe.20.005775
- B. Stoklasa, L. Motka, J. Rehacek, Z. Hradil, L.L. Sánchez-Soto, Wavefront sensing reveals optical coherence. Nat. Commun. 5, 3275 (2014). https://doi.org/10.1038/ncomms4275
- T. Gissibl, S. Thiele, A. Herkommer, H. Giessen, Two-photon direct laser writing of ultracompact multi-lens objectives. Nat. Photonics 10(8), 554–560 (2016). https://doi.org/10.1038/nphoton.2016.121
- K.S. Liu, M.L. Zhang, J. Zhai, J. Wang, L. Jiang, Bioinspired construction of Mg-Li alloys surfaces with stable superhydrophobicity and improved corrosion resistance. Appl. Phys. Lett. 92(18), 183103 (2008). https://doi.org/10.1063/1.2917463
- D. Liang, A.K. Agarwal, D.J. Beebe, H. Jiang, Adaptive liquid microlenses activated by stimuli-responsive hydrogels. Nature 442(7102), 551–554 (2006). https://doi.org/10.1038/nature05024
- H. Schmidt, A.R. Hawkins, The photonic integration of non-solid media using optofluidics. Nat. Photonics 5(10), 598–604 (2011). https://doi.org/10.1038/nphoton.2011.163
- Z.-C. Ma, X.-Y. Hu, Y.-L. Zhang, X.-Q. Liu, Z.-S. Hou et al., Smart compound eyes enable tunable imaging. Adv. Funct. Mater. 29(38), 1903340 (2019). https://doi.org/10.1002/adfm.201903340
- Y. Hu, S. Rao, S. Wu, P. Wei, W. Qiu et al., All-glass 3D optofluidic microchip with built-in tunable microlens fabricated by femtosecond laser-assisted etching. Adv. Opt. Mater. 6(9), 1701299 (2018). https://doi.org/10.1002/adom.201701299
- J.U. Park, M. Hardy, S.J. Kang, K. Barton, K. Adair et al., High-resolution electrohydrodynamic jet printing. Nat. Mater. 6(10), 782–789 (2007). https://doi.org/10.1038/nmat1974
- P. Zhou, H. Yu, W. Zou, Z. Wang, L. Liu, High-resolution and controllable nanodeposition pattern of Ag nanoparticles by electrohydrodynamic jet printing combined with coffee ring effect. Adv. Mater. Interfaces 6(20), 1900912 (2019). https://doi.org/10.1002/admi.201900912
- B.W. An, K. Kim, H. Lee, S.Y. Kim, Y. Shim, D.Y. Lee, J.Y. Song, J.U. Park, High-resolution printing of 3D structures using an electrohydrodynamic inkjet with multiple functional inks. Adv. Mater. 27(29), 4322–4328 (2015). https://doi.org/10.1002/adma.201502092
- V. Vespini, S. Coppola, M. Todino, M. Paturzo, V. Bianco, S. Grillia, P. Ferraro, Forward electrohydrodynamic inkjet printing of optical microlenses on microfluidic devices. Lab Chip 16(2), 326–333 (2016). https://doi.org/10.1039/c5lc01386k
- W. Xu, S.Y. Min, H. Hwang, T.W. Lee, Organic core-sheath nanowire artificial synapses with femtojoule energy consumption. Sci. Adv. 2(6), e1501326 (2016). https://doi.org/10.1126/sciadv.1501326
- P. Zhou, H. Yu, W. Zou, Y. Zhong, X. Wang, Z. Wang, L. Liu, Cross-scale additive direct-writing fabrication of micro/nano lens arrays by electrohydrodynamic jet printing. Opt. Express 28(5), 6336–6349 (2020). https://doi.org/10.1364/oe.383863
- A. Lee, H. Jin, H.W. Dang, K.H. Choi, K.H. Ahn, Optimization of experimental parameters to determine the jetting regimes in electrohydrodynamic printing. Langmuir 29(44), 13630–13639 (2013). https://doi.org/10.1021/la403111m
- R.T. Collins, M.T. Harris, O.A. Basaran, Breakup of electrified jets. J. Fluid Mech. 588, 75–129 (2007). https://doi.org/10.1017/S0022112007007409
- J. Shao, Y. Ding, W. Wang, X. Mei, H. Zhai, H. Tian, X. Li, B. Liu, Generation of fully-covering hierarchical micro-/nano- structures by nanoimprinting and modified laser swelling. Small 10(13), 2595–2601 (2014). https://doi.org/10.1002/smll.201303656
- S. Wang, K. Liu, X. Yao, L. Jiang, Bioinspired surfaces with superwettability: new insight on theory, design, and applications. Chem. Rev. 115(16), 8230–8293 (2015). https://doi.org/10.1021/cr400083y
- Y. Si, Z. Dong, L. Jiang, Bioinspired designs of superhydrophobic and superhydrophilic materials. ACS Central Sci. 4(9), 1102–1112 (2018). https://doi.org/10.1021/acscentsci.8b00504
- C. Wang, J. Shao, D. Lai, H. Tian, X. Li, Suspended-template electric-assisted nanoimprinting for hierarchical micro-nanostructures on a fragile substrate. ACS Nano 13(9), 10333–10342 (2019). https://doi.org/10.1021/acsnano.9b04031
- Z. Huang, M. Su, Q. Yang, Z. Li, S. Chen et al., A general patterning approach by manipulating the evolution of two-dimensional liquid foams. Nat. Commun. 8, 14110 (2017). https://doi.org/10.1038/ncomms14110
- P. Richner, S.J.P. Kress, D.J. Norris, D. Poulikakos, Charge effects and nanoparticle pattern formation in electrohydrodynamic nanodrip printing of colloids. Nanoscale 8(11), 6028–6034 (2016). https://doi.org/10.1038/ncomms14110
- Z. Deng, F. Chen, Q. Yang, H. Bian, G. Du, J. Yong, C. Shan, X. Hou, Dragonfly-eye-inspired artificial compound eyes with sophisticated imaging. Adv. Funct. Mater. 26(12), 1995–2001 (2016). https://doi.org/10.1002/adfm.201670072
- X.-Q. Liu, S.-N. Yang, L. Yu, Q.-D. Chen, Y.-L. Zhang, H.-B. Sun, Rapid engraving of artificial compound eyes from curved sapphire substrate. Adv. Funct. Mater. 29(18), 1900037 (2019). https://doi.org/10.1002/adfm.201900037
References
E. Wrzesniewski, S.H. Eom, W. Cao, W.T. Hammond, S. Lee, E.P. Douglas, J. Xue, Enhancing light extraction in top-emitting organic light-emitting devices using molded transparent polymer microlens arrays. Small 8(17), 2647–2651 (2012). https://doi.org/10.1002/smll.201102662
J.J. Schwartz, S. Stavrakis, S.R. Quake, Colloidal lenses allow high-temperature single-molecule imaging and improve fluorophore photostability. Nat. Nanotechnol. 5(2), 127–132 (2010). https://doi.org/10.1038/nnano.2009.452
P. Fan, U.K. Chettiar, L. Cao, F. Afshinmanesh, N. Engheta, M.L. Brongersma, An invisible metal-semiconductor photodetector. Nat. Photonics 6(6), 380–385 (2012). https://doi.org/10.1038/nphoton.2012.108
K.-H. Jeong, J. Kim, L.P. Lee, Biologically inspired artificial compound eyes. Science 312(5773), 557–561 (2006). https://doi.org/10.1126/science.1123053
H.C. Ko, M.P. Stoykovich, J. Song, V. Malyarchuk, W.M. Choi et al., A hemispherical electronic eye camera based on compressible silicon optoelectronics. Nature 454(7205), 748–753 (2008). https://doi.org/10.1038/nature07113
O. Cogal, Y. Leblebici, An insect eye inspired miniaturized multi-camera system for endoscopic imaging. IEEE Trans. Biomed. Circuits Syst. 11(1), 212–224 (2017). https://doi.org/10.1109/tbcas.2016.2547388
T. Nakamura, R. Horisaki, J. Tanida, Computational superposition compound eye imaging for extended depth-of-field and field-of-view. Opt. Express 20(25), 27482–27495 (2012). https://doi.org/10.1364/oe.20.027482
Y. Yang, X. Huang, X. Zhang, F. Jiang, X. Zhang, Y. Wang, Supercritical fluid-driven polymer phase separation for microlens with tunable dimension and curvature. ACS Appl. Mater. Interfaces. 8(13), 8849–8858 (2016). https://doi.org/10.1021/acsami.6b01951
C. Florian, S. Piazza, A. Diaspro, P. Serra, M. Duocastella, Direct laser printing of tailored polymeric microlenses. ACS Appl. Mater. Interfaces. 8(27), 17028–17032 (2016). https://doi.org/10.1021/acsami.6b05385
S. Surdo, R. Carzino, A. Diaspro, M. Duocastella, Single-shot laser additive manufacturing of high fill-factor microlens arrays. Adv. Opt. Mater. 6(5), 1701190 (2018). https://doi.org/10.1002/adom.201701190
X. Zhang, N. Gao, Y. He, S. Liao, S. Zhang, Y. Wang, Control of polymer phase separation by roughness transfer printing for 2D microlens arrays. Small 12(28), 3788–3793 (2016). https://doi.org/10.1002/smll.201601350
S. Surdo, A. Diaspro, M. Duocastella, Microlens fabrication by replica molding of frozen laser-printed droplets. Appl. Surf. Sci. 418, 554–558 (2017). https://doi.org/10.1016/j.apsusc.2016.11.077
J.Y. Kim, K. Pfeiffer, A. Voigt, G. Gruetzner, J. Brugger, Directly fabricated multi-scale microlens arrays on a hydrophobic flat surface by a simple ink-jet printing technique. J. Mater. Chem. 22(7), 3053–3058 (2012). https://doi.org/10.1039/c2jm15576a
D. Radtke, J. Duparré, U.D. Zeitner, A. Tünnermann, Laser lithographic fabrication and characterization of a spherical artificial compound eye. Opt. Express 15(6), 3067–3077 (2007). https://doi.org/10.1364/oe.15.003067
J. Li, W. Wang, X. Mei, A. Pan, X. Sun, B. Li, J. Cui, Artificial compound eyes prepared by a combination of air-assisted deformation, modified laser swelling, and controlled crystal growth. ACS Nano 13(1), 114–124 (2019). https://doi.org/10.1021/acsnano.8b04047
W. Wang, J. Li, R. Li, B. Li, X. Mei, X. Sun, Fabrication of hierarchical micro/nano compound eyes. ACS Appl. Mater. Interfaces. 11(37), 34507–34516 (2019). https://doi.org/10.1021/acsami.9b13355
P. Qu, F. Chen, H. Liu, Q. Yang, J. Lu, J. Si, Y. Wang, X. Hou, A simple route to fabricate artificial compound eye structures. Opt. Express 20(5), 5775–5782 (2012). https://doi.org/10.1364/oe.20.005775
B. Stoklasa, L. Motka, J. Rehacek, Z. Hradil, L.L. Sánchez-Soto, Wavefront sensing reveals optical coherence. Nat. Commun. 5, 3275 (2014). https://doi.org/10.1038/ncomms4275
T. Gissibl, S. Thiele, A. Herkommer, H. Giessen, Two-photon direct laser writing of ultracompact multi-lens objectives. Nat. Photonics 10(8), 554–560 (2016). https://doi.org/10.1038/nphoton.2016.121
K.S. Liu, M.L. Zhang, J. Zhai, J. Wang, L. Jiang, Bioinspired construction of Mg-Li alloys surfaces with stable superhydrophobicity and improved corrosion resistance. Appl. Phys. Lett. 92(18), 183103 (2008). https://doi.org/10.1063/1.2917463
D. Liang, A.K. Agarwal, D.J. Beebe, H. Jiang, Adaptive liquid microlenses activated by stimuli-responsive hydrogels. Nature 442(7102), 551–554 (2006). https://doi.org/10.1038/nature05024
H. Schmidt, A.R. Hawkins, The photonic integration of non-solid media using optofluidics. Nat. Photonics 5(10), 598–604 (2011). https://doi.org/10.1038/nphoton.2011.163
Z.-C. Ma, X.-Y. Hu, Y.-L. Zhang, X.-Q. Liu, Z.-S. Hou et al., Smart compound eyes enable tunable imaging. Adv. Funct. Mater. 29(38), 1903340 (2019). https://doi.org/10.1002/adfm.201903340
Y. Hu, S. Rao, S. Wu, P. Wei, W. Qiu et al., All-glass 3D optofluidic microchip with built-in tunable microlens fabricated by femtosecond laser-assisted etching. Adv. Opt. Mater. 6(9), 1701299 (2018). https://doi.org/10.1002/adom.201701299
J.U. Park, M. Hardy, S.J. Kang, K. Barton, K. Adair et al., High-resolution electrohydrodynamic jet printing. Nat. Mater. 6(10), 782–789 (2007). https://doi.org/10.1038/nmat1974
P. Zhou, H. Yu, W. Zou, Z. Wang, L. Liu, High-resolution and controllable nanodeposition pattern of Ag nanoparticles by electrohydrodynamic jet printing combined with coffee ring effect. Adv. Mater. Interfaces 6(20), 1900912 (2019). https://doi.org/10.1002/admi.201900912
B.W. An, K. Kim, H. Lee, S.Y. Kim, Y. Shim, D.Y. Lee, J.Y. Song, J.U. Park, High-resolution printing of 3D structures using an electrohydrodynamic inkjet with multiple functional inks. Adv. Mater. 27(29), 4322–4328 (2015). https://doi.org/10.1002/adma.201502092
V. Vespini, S. Coppola, M. Todino, M. Paturzo, V. Bianco, S. Grillia, P. Ferraro, Forward electrohydrodynamic inkjet printing of optical microlenses on microfluidic devices. Lab Chip 16(2), 326–333 (2016). https://doi.org/10.1039/c5lc01386k
W. Xu, S.Y. Min, H. Hwang, T.W. Lee, Organic core-sheath nanowire artificial synapses with femtojoule energy consumption. Sci. Adv. 2(6), e1501326 (2016). https://doi.org/10.1126/sciadv.1501326
P. Zhou, H. Yu, W. Zou, Y. Zhong, X. Wang, Z. Wang, L. Liu, Cross-scale additive direct-writing fabrication of micro/nano lens arrays by electrohydrodynamic jet printing. Opt. Express 28(5), 6336–6349 (2020). https://doi.org/10.1364/oe.383863
A. Lee, H. Jin, H.W. Dang, K.H. Choi, K.H. Ahn, Optimization of experimental parameters to determine the jetting regimes in electrohydrodynamic printing. Langmuir 29(44), 13630–13639 (2013). https://doi.org/10.1021/la403111m
R.T. Collins, M.T. Harris, O.A. Basaran, Breakup of electrified jets. J. Fluid Mech. 588, 75–129 (2007). https://doi.org/10.1017/S0022112007007409
J. Shao, Y. Ding, W. Wang, X. Mei, H. Zhai, H. Tian, X. Li, B. Liu, Generation of fully-covering hierarchical micro-/nano- structures by nanoimprinting and modified laser swelling. Small 10(13), 2595–2601 (2014). https://doi.org/10.1002/smll.201303656
S. Wang, K. Liu, X. Yao, L. Jiang, Bioinspired surfaces with superwettability: new insight on theory, design, and applications. Chem. Rev. 115(16), 8230–8293 (2015). https://doi.org/10.1021/cr400083y
Y. Si, Z. Dong, L. Jiang, Bioinspired designs of superhydrophobic and superhydrophilic materials. ACS Central Sci. 4(9), 1102–1112 (2018). https://doi.org/10.1021/acscentsci.8b00504
C. Wang, J. Shao, D. Lai, H. Tian, X. Li, Suspended-template electric-assisted nanoimprinting for hierarchical micro-nanostructures on a fragile substrate. ACS Nano 13(9), 10333–10342 (2019). https://doi.org/10.1021/acsnano.9b04031
Z. Huang, M. Su, Q. Yang, Z. Li, S. Chen et al., A general patterning approach by manipulating the evolution of two-dimensional liquid foams. Nat. Commun. 8, 14110 (2017). https://doi.org/10.1038/ncomms14110
P. Richner, S.J.P. Kress, D.J. Norris, D. Poulikakos, Charge effects and nanoparticle pattern formation in electrohydrodynamic nanodrip printing of colloids. Nanoscale 8(11), 6028–6034 (2016). https://doi.org/10.1038/ncomms14110
Z. Deng, F. Chen, Q. Yang, H. Bian, G. Du, J. Yong, C. Shan, X. Hou, Dragonfly-eye-inspired artificial compound eyes with sophisticated imaging. Adv. Funct. Mater. 26(12), 1995–2001 (2016). https://doi.org/10.1002/adfm.201670072
X.-Q. Liu, S.-N. Yang, L. Yu, Q.-D. Chen, Y.-L. Zhang, H.-B. Sun, Rapid engraving of artificial compound eyes from curved sapphire substrate. Adv. Funct. Mater. 29(18), 1900037 (2019). https://doi.org/10.1002/adfm.201900037