Artificial Intelligence-Enhanced Wearable Blood Pressure Monitoring in Resource-Limited Settings: A Co-Design of Sensors, Model, and Deployment
Corresponding Author: Yuan‑Ting Zhang
Nano-Micro Letters,
Vol. 18 (2026), Article Number: 164
Abstract
Accurate blood pressure (BP) monitoring is essential for preventing and managing cardiovascular disease. Advancements in materials science, medicine, flexible electronic, and artificial intelligence (AI) have enabled cuffless, unobtrusive BP monitoring systems, offering an alternative to traditional sphygmomanometers. However, extending these advances to real-world cardiovascular care particularly in resource-limited settings remains challenging due to constraints in computational resources, power efficiency, and deployment scalability. This review presents a comprehensive synthesis of AI-enhanced wearable BP monitoring, emphasizing its potential for personalized, scalable, and accessible healthcare. We systematically analyze the end-to-end system architecture, from mechano-electric sensing principles and AI-based estimation models to edge-aware deployment strategies tailored for low-resource environments. We further discuss clinical validation metrics and implementation barriers and prospective strategies. To bridge lab-to-field translation, we propose an innovative "sensor-model-deployment-assessment" co-design framework. This roadmap highlights how AI-enhanced BP technologies can support proactive hypertension control and promote cardiovascular health equity on a global scale.
Highlights:
1 Integrative Co-Design Framework: We synthesize current advances in sensing, models, accuracy/reliability assessment, and hardware into a sensor–model–deployment–assessment framework that organizes evidence and design trade-offs for cuffless blood pressure monitoring. The framework seeks to balance precision and efficiency by jointly considering low-power edge AI, streamlined sensor architectures, and adaptive computational models, providing a structured basis for reproducible and clinically meaningful wearable solutions.
2 Pathways to Clinical Translation: We critically assess barriers to real-world deployment, offering actionable strategies to bridge the translational gap between laboratory innovations and scalable implementation in low-resource regions with minimal healthcare infrastructure.
3 Interdisciplinary Synthesis: By integrating cutting-edge advances in materials science, digital health, and embedded AI, we provide evidence-based recommendations to empower biomedical researchers, engineers, and data scientists in advancing equitable diagnostic solutions.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- R.N. Haldar, Global brief on hypertension: silent killer, global public health crisis. Indian J. Phys. Med. Rehabil. 24(1), 2 (2013). https://doi.org/10.5005/ijopmr-24-1-2
- T. Ohkubo, Y. Imai, I. Tsuji, K. Nagai, J. Kato, N. Kikuchi, A. Nishiyama, A. Aihara, M. Sekino, M. Kikuya, S. Ito, H. Satoh, S. Hisamichi, Home blood pressure measurement has a stronger predictive power for mortality than does screening blood pressure measurement: a population-based observation in Ohasama, Japan. J. Hypertens. 16(7), 971–975 (1998). https://doi.org/10.1097/00004872-199816070-00010
- D. Levy, The progression from hypertension to congestive heart failure. JAMA 275(20), 1557 (1996). https://doi.org/10.1001/jama.1996.03530440037034
- X.-R. Ding, N. Zhao, G.-Z. Yang, R.I. Pettigrew, B. Lo et al., Continuous blood pressure measurement from invasive to unobtrusive: celebration of 200th birth anniversary of Carl Ludwig. IEEE J. Biomed. Health Inform. 20(6), 1455–1465 (2016). https://doi.org/10.1109/JBHI.2016.2620995
- G. Chan, R. Cooper, M. Hosanee, K. Welykholowa, P.A. Kyriacou, D. Zheng, J. Allen, D. Abbott, N.H. Lovell, R. Fletcher, M. Elgendi, Multi-site photoplethysmography technology for blood pressure assessment: challenges and recommendations. J. Clin. Med. 8(11), 1827 (2019). https://doi.org/10.3390/jcm8111827
- T. Ciecierski-Holmes, R. Singh, M. Axt, S. Brenner, S. Barteit, Artificial intelligence for strengthening healthcare systems in low- and middle-income countries: a systematic scoping review. NPJ Digit. Med. 5(1), 162 (2022). https://doi.org/10.1038/s41746-022-00700-y
- S. Min, J. An, J.H. Lee, J.H. Kim, D.J. Joe et al., Wearable blood pressure sensors for cardiovascular monitoring and machine learning algorithms for blood pressure estimation. Nat. Rev. Cardiol. 22(9), 629–648 (2025). https://doi.org/10.1038/s41569-025-01127-0
- J. Li, H. Chu, Z. Chen, C.K. Yiu, Q. Qu et al., Recent advances in materials, devices and algorithms toward wearable continuous blood pressure monitoring. ACS Nano 18(27), 17407–17438 (2024). https://doi.org/10.1021/acsnano.4c04291
- L. Zhao, C. Liang, Y. Huang, G. Zhou, Y. Xiao et al., Emerging sensing and modeling technologies for wearable and cuffless blood pressure monitoring. NPJ Digit. Med. 6(1), 93 (2023). https://doi.org/10.1038/s41746-023-00835-6
- R.C. Zhao, X. Yuan, AI in healthcare for resource limited settings: an exploration and ethical evaluation. in Companion Proceedings of the ACM on Web Conference 2025. (ACM, Sydney, 2025), pp. 1953–1960. https://doi.org/10.1145/3701716.3717747
- R.R. Dangi, A. Sharma, V. Vageriya, Transforming healthcare in low-resource settings with artificial intelligence: recent developments and outcomes. Public Health Nurs. 42(2), 1017–1030 (2025). https://doi.org/10.1111/phn.13500
- Z. Liu, C. Chen, J. Cao, M. Pan, J. Liu et al., Large language models for cuffless blood pressure measurement from wearable biosignals. in Proceedings of the 15th ACM International Conference on Bioinformatics, Computational Biology and Health Informatics. (ACM, Shenzhen, 2024), pp. 1–11. https://doi.org/10.1145/3698587.3701447
- C. Ma, P. Zhang, F. Song, Y. Sun, G. Fan et al., KD-informer: a cuff-less continuous blood pressure waveform estimation approach based on single photoplethysmography. IEEE J. Biomed. Health Inform. 27(5), 2219–2230 (2023). https://doi.org/10.1109/JBHI.2022.3181328
- L. Hamamoto, O. Meyer, P. Natarajan, M. Young, A. John et al., Reimagining wearables to bolster sustainable development in low-resource settings. in 2024 IEEE Global Humanitarian Technology Conference (GHTC). (IEEE, 2024), pp. 9–16. https://doi.org/10.1109/GHTC62424.2024.10771560
- D. Ryu, D.H. Kim, J.T. Price, J.Y. Lee, H.U. Chung et al., Comprehensive pregnancy monitoring with a network of wireless, soft, and flexible sensors in high- and low-resource health settings. Proc. Natl. Acad. Sci. U. S. A. 118(20), e2100466118 (2021). https://doi.org/10.1073/pnas.2100466118
- J. Chan, N. Ali, A. Najafi, A. Meehan, L.R. Mancl et al., An off-the-shelf otoacoustic-emission probe for hearing screening via a smartphone. Nat. Biomed. Eng. 6(11), 1203–1213 (2022). https://doi.org/10.1038/s41551-022-00947-6
- Z. Zhou, X. Chen, E. Li, L. Zeng, K. Luo et al., Edge intelligence: paving the last mile of artificial intelligence with edge computing. Proc. IEEE 107(8), 1738–1762 (2019). https://doi.org/10.1109/JPROC.2019.2918951
- A.E. Schutte, A. Kollias, G.S. Stergiou, Blood pressure and its variability: classic and novel measurement techniques. Nat. Rev. Cardiol. 19(10), 643–654 (2022). https://doi.org/10.1038/s41569-022-00690-0
- J. Allen, Photoplethysmography and its application in clinical physiological measurement. Physiol. Meas. 28(3), R1–R39 (2007). https://doi.org/10.1088/0967-3334/28/3/R01
- J. Homsy, P.J. Podrid, P.J. Podrid, P.J. Podrid, Electrocardiography. in MGH Cardiology Board Review, Springer London (2013), pp, 580–622. https://doi.org/10.1007/978-1-4471-4483-0_36
- Y. Ao, L. Jin, S. Wang, B. Lan, G. Tian et al., Dual structure reinforces interfacial polarized MXene/PVDF-TrFE piezoelectric nanocomposite for pressure monitoring. Nano-Micro Lett. 17(1), 320 (2025). https://doi.org/10.1007/s40820-025-01839-5
- W. Lin, S. Jia, Y. Chen, H. Shi, J. Zhao, Z. Li, Y. Wu, H. Jiang, Qi. Zhang, W. Wang, C. Feng, S. Xia, Korotkoff sounds dynamically reflect changes in cardiac function based on deep learning methods. Front. Cardiovasc. Med. 9, 940615 (2022). https://doi.org/10.3389/fcvm.2022.940615
- F. Geng, Z. Bai, H. Zhang, Y. Yao, C. Liu, P. Wang, X. Chen, L. Du, X. Li, B. Han, Z. Fang, Contactless and continuous blood pressure measurement according to caPTT obtained from millimeter wave radar. Measurement 218, 113151 (2023). https://doi.org/10.1016/j.measurement.2023.113151
- X. Ding, W. Dai, N. Luo, J. Liu, N. Zhao et al., A flexible tonoarteriography-based body sensor network for cuffless measurement of arterial blood pressure. in 2015 IEEE 12th International Conference on Wearable and Implantable Body Sensor Networks (BSN). (IEEE, 2015), pp. 1–4. https://doi.org/10.1109/BSN.2015.7299405
- A.N. Bashkatov, E.A. Genina, V.I. Kochubey, V.V. Tuchin, Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm. J. Phys. D Appl. Phys. 38(15), 2543–2555 (2005). https://doi.org/10.1088/0022-3727/38/15/004
- C.M. Lochner, Y. Khan, A. Pierre, A.C. Arias, All-organic optoelectronic sensor for pulse oximetry. Nat. Commun. 5, 5745 (2014). https://doi.org/10.1038/ncomms6745
- T. Yokota, P. Zalar, M. Kaltenbrunner, H. Jinno, N. Matsuhisa, H. Kitanosako, Y. Tachibana, W. Yukita, M. Koizumi, T. Someya, Ultraflexible organic photonic skin. Sci. Adv. 2(4), e1501856 (2016). https://doi.org/10.1126/sciadv.1501856
- H. Xu, J. Liu, J. Zhang, G. Zhou, N. Luo et al., Flexible organic/inorganic hybrid near-infrared photoplethysmogram sensor for cardiovascular monitoring. Adv. Mater. 29(31), 1700975 (2017). https://doi.org/10.1002/adma.201700975
- Y. Zhao, Y. Sun, C. Pei, X. Yin, X. Li, Yi. Hao, M. Zhang, M. Yuan, J. Zhou, Yu. Chen, Y. Song, Low-temperature fabrication of stable black-phase CsPbI(3) perovskite flexible photodetectors toward wearable health monitoring. Nano-Micro Lett. 17(1), 63 (2024). https://doi.org/10.1007/s40820-024-01565-4
- I.C. Jeong, H. Yoon, H. Kang, H. Yeom, Effects of skin surface temperature on photoplethysmograph. J. Healthcare Eng. 5(4), 463534 (2014). https://doi.org/10.1260/2040-2295.5.4.429
- J. Fine, K.L. Branan, A.J. Rodriguez, T. Boonya-Ananta, S. Ajmal et al., Sources of inaccuracy in photoplethysmography for continuous cardiovascular monitoring. Biosensors 11(4), 126 (2021). https://doi.org/10.3390/bios11040126
- D. Kireev, K. Sel, B. Ibrahim, N. Kumar, A. Akbari et al., Continuous cuffless monitoring of arterial blood pressure via graphene bioimpedance tattoos. Nat. Nanotechnol. 17(8), 864–870 (2022). https://doi.org/10.1038/s41565-022-01145-w
- H.P. Schwan, Electrical properties of tissue and cell suspensions. in Advances in Biological and Medical Physics. (Elsevier, 1957), pp. 147–209. https://doi.org/10.1016/b978-1-4832-3111-2.50008-0
- K. Zheng, C. Zheng, L. Zhu, B. Yang, X. Jin et al., Machine learning enabled reusable adhesion, entangled network-based hydrogel for long-term, high-fidelity EEG recording and attention assessment. Nano-Micro Lett. 17(1), 281 (2025). https://doi.org/10.1007/s40820-025-01780-7
- C. Lim, Y.J. Hong, J. Jung, Y. Shin, S.-H. Sunwoo et al., Tissue-like skin-device interface for wearable bioelectronics by using ultrasoft, mass-permeable, and low-impedance hydrogels. Sci. Adv. 7(19), eabd3716 (2021). https://doi.org/10.1126/sciadv.abd3716
- W. Gao, H. Ota, D. Kiriya, K. Takei, A. Javey, Flexible electronics toward wearable sensing. Acc. Chem. Res. 52(3), 523–533 (2019). https://doi.org/10.1021/acs.accounts.8b00500
- X. Chen, X. Gao, A. Nomoto, K. Shi, M. Lin et al., Fabric-substrated capacitive biopotential sensors enhanced by dielectric nanops. Nano Res. 14(9), 3248–3252 (2021). https://doi.org/10.1007/s12274-021-3458-0
- R.W. Gill, Measurement of blood flow by ultrasound: accuracy and sources of error. Ultrasound Med. Biol. 11(4), 625–641 (1985). https://doi.org/10.1016/0301-5629(85)90035-3
- C. Wang, X. Li, H. Hu, L. Zhang, Z. Huang et al., Monitoring of the central blood pressure waveform via a conformal ultrasonic device. Nat. Biomed. Eng. 2(9), 687–695 (2018). https://doi.org/10.1038/s41551-018-0287-x
- T. Tamura, Y. Maeda, M. Sekine, M. Yoshida, Wearable photoplethysmographic sensors: past and present. Electronics 3(2), 282–302 (2014). https://doi.org/10.3390/electronics3020282
- G.-H. Lee, H. Moon, H. Kim, G.H. Lee, W. Kwon et al., Multifunctional materials for implantable and wearable photonic healthcare devices. Nat. Rev. Mater. 5(2), 149–165 (2020). https://doi.org/10.1038/s41578-019-0167-3
- Y. Zang, F. Zhang, C.-A. Di, D. Zhu, Advances of flexible pressure sensors toward artificial intelligence and health care applications. Mater. Horiz. 2(2), 140–156 (2015). https://doi.org/10.1039/C4MH00147H
- Y. Pang, H. Tian, L. Tao, Y. Li, X. Wang et al., Flexible, highly sensitive, and wearable pressure and strain sensors with graphene porous network structure. ACS Appl. Mater. Interfaces 8(40), 26458–26462 (2016). https://doi.org/10.1021/acsami.6b08172
- G. Yu, J. Hu, J. Tan, Y. Gao, Y. Lu, F. Xuan, A wearable pressure sensor based on ultra-violet/ozone microstructured carbon nanotube/polydimethylsiloxane arrays for electronic skins. Nanotechnology 29(11), 115502 (2018). https://doi.org/10.1088/1361-6528/aaa855
- C.-L. Choong, M.-B. Shim, B.-S. Lee, S. Jeon, D.-S. Ko, C.-L. Choong, M.-B. Shim, B.-S. Lee, D.-S. Ko, T.-H. Kang, J. Bae, S.H. Lee, K.-E. Byun, J. Im, Y.J. Jeong, C.E. Park, J.-J. Park, U.-I. Chung, Highly stretchable resistive pressure sensors using a conductive elastomeric composite on a micropyramid array. Adv. Mater. 26(21), 3451–3458 (2014). https://doi.org/10.1002/adma.201305182
- G. Schwartz, B.C. Tee, J. Mei, A.L. Appleton, D.H. Kim et al., Flexible polymer transistors with high pressure sensitivity for application in electronic skin and health monitoring. Nat. Commun. 4, 1859 (2013). https://doi.org/10.1038/ncomms2832
- X. Tang, C. Wu, L. Gan, T. Zhang, T. Zhou et al., Multilevel microstructured flexible pressure sensors with ultrahigh sensitivity and ultrawide pressure range for versatile electronic skins. Small 15(10), 1804559 (2019). https://doi.org/10.1002/smll.201804559
- C. Pang, J.H. Koo, A. Nguyen, J.M. Caves, M.-G. Kim, A. Chortos, K. Kim, P.J. Wang, J.B. Tok, Z. Bao, Highly skin-conformal microhairy sensor for pulse signal amplification. Adv. Mater. 27(4), 634–640 (2015). https://doi.org/10.1002/adma.201403807
- H. Wang, Z. Li, Z. Liu, J. Fu, T. Shan et al., Flexible capacitive pressure sensors for wearable electronics. J. Mater. Chem. C 10(5), 1594–1605 (2022). https://doi.org/10.1039/D1TC05304C
- Z. Wang, S. Wang, B. Lan, Y. Sun, L. Huang et al., Piezotronic sensor for bimodal monitoring of Achilles tendon behavior. Nano-Micro Lett. 17(1), 241 (2025). https://doi.org/10.1007/s40820-025-01757-6
- Z. Nie, J.W. Kwak, M. Han, J.A. Rogers, Mechanically active materials and devices for bio-interfaced pressure sensors-a review. Adv. Mater. 36(43), e2205609 (2024). https://doi.org/10.1002/adma.202205609
- J. Chang, J. Li, J. Ye, B. Zhang, J. Chen et al., AI-enabled piezoelectric wearable for joint torque monitoring. Nano-Micro Lett. 17(1), 247 (2025). https://doi.org/10.1007/s40820-025-01753-w
- Y. Kim, J. Lee, H. Hong, S. Park, W. Ryu, Self-powered wearable micropyramid piezoelectric film sensor for real-time monitoring of blood pressure. Adv. Eng. Mater. 25(2), 2200873 (2023). https://doi.org/10.1002/adem.202200873
- A. Petritz, E. Karner-Petritz, T. Uemura, P. Schäffner, T. Araki et al., Imperceptible energy harvesting device and biomedical sensor based on ultraflexible ferroelectric transducers and organic diodes. Nat. Commun. 12(1), 2399 (2021). https://doi.org/10.1038/s41467-021-22663-6
- H. Yin, Y. Li, Z. Tian, Q. Li, C. Jiang, E. Liang, Y. Guo, Ultra-high sensitivity anisotropic piezoelectric sensors for structural health monitoring and robotic perception. Nano-Micro Lett. 17(1), 42 (2024). https://doi.org/10.1007/s40820-024-01539-6
- Z. Yi, Z. Liu, W. Li, T. Ruan, X. Chen, J. Liu, B. Yang, W. Zhang, Piezoelectric dynamics of arterial pulse for wearable continuous blood pressure monitoring. Adv. Mater. 34(16), e2110291 (2022). https://doi.org/10.1002/adma.202110291
- B.-Y. Lee, S.-U. Kim, S. Kang, S.-D. Lee, Transparent and flexible high power triboelectric nanogenerator with metallic nanowire-embedded tribonegative conducting polymer. Nano Energy 53, 152–159 (2018). https://doi.org/10.1016/j.nanoen.2018.08.048
- D. Kim, I.-W. Tcho, I.K. Jin, S.-J. Park, S.-B. Jeon et al., Direct-laser-patterned friction layer for the output enhancement of a triboelectric nanogenerator. Nano Energy 35, 379–386 (2017). https://doi.org/10.1016/j.nanoen.2017.04.013
- Z. Xu, C. Zhang, F. Wang, J. Yu, G. Yang et al., Smart textiles for personalized sports and healthcare. Nano-Micro Lett. 17(1), 232 (2025). https://doi.org/10.1007/s40820-025-01749-6
- K. Dong, Z. Wu, J. Deng, A.C. Wang, H. Zou, C. Chen, D. Hu, B. Gu, B. Sun, Z.L. Wang, A stretchable yarn embedded triboelectric nanogenerator as electronic skin for biomechanical energy harvesting and multifunctional pressure sensing. Adv. Mater. 30(43), 1804944 (2018). https://doi.org/10.1002/adma.201804944
- H. Lei, H. Ji, X. Liu, B. Lu, L. Xie et al., Self-assembled porous-reinforcement microstructure-based flexible triboelectric patch for remote healthcare. Nano-Micro Lett. 15(1), 109 (2023). https://doi.org/10.1007/s40820-023-01081-x
- J. Li, H. Jia, J. Zhou, X. Huang, L. Xu et al., Thin, soft, wearable system for continuous wireless monitoring of artery blood pressure. Nat. Commun. 14(1), 5009 (2023). https://doi.org/10.1038/s41467-023-40763-3
- L. Kong, W. Li, T. Zhang, H. Ma, Y. Cao, K. Wang, Y. Zhou, A. Shamim, Lu. Zheng, X. Wang, W. Huang, Wireless technologies in flexible and wearable sensing: from materials design, system integration to applications. Adv. Mater. 36(27), 2400333 (2024). https://doi.org/10.1002/adma.202400333
- Y. Ran, D. Zhang, J. Chen, Y. Hu, Y. Chen, Contactless blood pressure monitoring with mmWave radar. in GLOBECOM 2022—2022 IEEE Global Communications Conference. (IEEE, 2023), pp. 541–546. https://doi.org/10.1109/GLOBECOM48099.2022.10001592
- D. Franklin, A. Tzavelis, J.Y. Lee, H.U. Chung, J. Trueb et al., Synchronized wearables for the detection of haemodynamic states via electrocardiography and multispectral photoplethysmography. Nat. Biomed. Eng. 7(10), 1229–1241 (2023). https://doi.org/10.1038/s41551-023-01098-y
- I. Tan, S.R. Gnanenthiran, J. Chan, K.G. Kyriakoulis, M.P. Schlaich, A. Rodgers, G.S. Stergiou, A.E. Schutte, Evaluation of the ability of a commercially available cuffless wearable device to track blood pressure changes. J. Hypertens. 41(6), 1003–1010 (2023). https://doi.org/10.1097/HJH.0000000000003428
- R. Mukkamala, S.G. Shroff, C. Landry, K.G. Kyriakoulis, A.P. Avolio et al., The microsoft research aurora project: important findings on cuffless blood pressure measurement. Hypertension 80(3), 534–540 (2023). https://doi.org/10.1161/HYPERTENSIONAHA.122.20410
- R. Mukkamala, S.G. Shroff, K.G. Kyriakoulis, A.P. Avolio, G.S. Stergiou, Cuffless blood pressure measurement: where do we actually stand? Hypertension 82(6), 957–970 (2025). https://doi.org/10.1161/HYPERTENSIONAHA.125.24822
- R. Mukkamala, J.-O. Hahn, O.T. Inan, L.K. Mestha, C.-S. Kim et al., Toward ubiquitous blood pressure monitoring via pulse transit time: theory and practice. IEEE Trans. Biomed. Eng. 62(8), 1879–1901 (2015). https://doi.org/10.1109/TBME.2015.2441951
- W. Chen, T. Kobayashi, S. Ichikawa, Y. Takeuchi, T. Togawa, Continuous estimation of systolic blood pressure using the pulse arrival time and intermittent calibration. Med. Biol. Eng. Comput. 38(5), 569–574 (2000). https://doi.org/10.1007/BF02345755
- C.C.Y. Poon, Y.T. Zhang, Cuff-less and noninvasive measurements of arterial blood pressure by pulse transit time. in 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference. (IEEE, 2006), pp. 5877–5880.
- X.-R. Ding, Y.-T. Zhang, J. Liu, W.-X. Dai, H.K. Tsang, Continuous cuffless blood pressure estimation using pulse transit time and photoplethysmogram intensity ratio. IEEE Trans. Biomed. Eng. 63(5), 964–972 (2016). https://doi.org/10.1109/TBME.2015.2480679
- N. Pilz, D.S. Picone, A. Patzak, O.S. Opatz, T. Lindner, L. Fesseler, V. Heinz, T.L. Bothe, Cuff-based blood pressure measurement: challenges and solutions. Blood Press. 33(1), 2402368 (2024). https://doi.org/10.1080/08037051.2024.2402368
- P. Salvi, Pulse waves: How vascular hemodynamics affects blood pressure 2012. Epub ahead of print. (2012). https://doi.org/10.1007/978-88-470-2439-7
- J. Liu, B.P. Yan, Y.-T. Zhang, X.-R. Ding, P. Su et al., Multi-wavelength photoplethysmography enabling continuous blood pressure measurement with compact wearable electronics. IEEE Trans. Biomed. Eng. 66(6), 1514–1525 (2019). https://doi.org/10.1109/TBME.2018.2874957
- S. Qiu, Y.-T. Zhang, S.-K. Lau, N. Zhao, Scenario adaptive cuffless blood pressure estimation by integrating cardiovascular coupling effects. IEEE J. Biomed. Health Inform. 27(3), 1375–1385 (2023). https://doi.org/10.1109/JBHI.2022.3227235
- S. Qiu, B.P.Y. Yan, N. Zhao, Stroke-volume-allocation model enabling wearable sensors for vascular age and cardiovascular disease assessment. NPJ Flex. Electron. 8, 24 (2024). https://doi.org/10.1038/s41528-024-00307-1
- S.J. Forrester, G.W. Booz, C.D. Sigmund, T.M. Coffman, T. Kawai, V. Rizzo, R. Scalia, S. Eguchi, Angiotensin II signal transduction: an update on mechanisms of physiology and pathophysiology. Physiol. Rev. 98(3), 1627–1738 (2018). https://doi.org/10.1152/physrev.00038.2017
- T. Xiang, Y. Zhang, Y. Zhang, A novel multimodal physiological model for the noninvasive and continuous measurements of arterial blood pressure. in 2024 46th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). (IEEE, 2024), pp. 1–6. https://doi.org/10.1109/EMBC53108.2024.10782499
- S.H. Song, J.H. Kim, J.H. Lee, Y.-M. Yun, D.-H. Choi et al., Elevated blood viscosity is associated with cerebral small vessel disease in patients with acute ischemic stroke. BMC Neurol. 17(1), 20 (2017). https://doi.org/10.1186/s12883-017-0808-3
- W. Shi, C. Zhou, Y. Zhang, K. Li, X. Ren et al., Hybrid modeling on reconstitution of continuous arterial blood pressure using finger photoplethysmography. Biomed. Signal Process. Control 85, 104972 (2023). https://doi.org/10.1016/j.bspc.2023.104972
- J. Joseph, P.M. Nabeel, M.I. Shah, M. Sivaprakasam, Arterial compliance probe for calibration free pulse pressure measurement. in 2016 IEEE International Symposium on Medical Measurements and Applications (MeMeA). (IEEE, 2016), pp. 1–6. https://doi.org/10.1109/MeMeA.2016.7533810
- Y. Ma, J. Choi, A. Hourlier-Fargette, Y. Xue, H.U. Chung et al., Relation between blood pressure and pulse wave velocity for human arteries. Proc. Natl. Acad. Sci. U.S.A. 115(44), 11144–11149 (2018). https://doi.org/10.1073/pnas.1814392115
- R. Jimenez, D. Yurk, S. Dell, A.C. Rutledge, M.K. Fu et al., Resonance sonomanometry for noninvasive, continuous monitoring of blood pressure. PNAS Nexus 3(7), pgae252 (2024). https://doi.org/10.1093/pnasnexus/pgae252
- Y.-c Fung, Biomechanics: Circulation (Springer, 2013)
- J. Solà, M. Proença, D. Ferrario, J.-A. Porchet, A. Falhi et al., Noninvasive and nonocclusive blood pressure estimation via a chest sensor. IEEE Trans. Biomed. Eng. 60(12), 3505–3513 (2013). https://doi.org/10.1109/TBME.2013.2272699
- T.H. Huynh, R. Jafari, W.-Y. Chung, Noninvasive cuffless blood pressure estimation using pulse transit time and impedance plethysmography. IEEE Trans. Biomed. Eng. 66(4), 967–976 (2019). https://doi.org/10.1109/TBME.2018.2865751
- H. Truong, A. Montanari, F. Kawsar, Non-invasive blood pressure monitoring with multi-modal in-ear sensing. in ICASSP 2022—2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). (IEEE, 2022), pp. 6–10. https://doi.org/10.1109/ICASSP43922.2022.9747661
- J. Liu, Y.-T. Zhang, X.-R. Ding, W.-X. Dai, N. Zhao, A preliminary study on multi-wavelength PPG based pulse transit time detection for cuffless blood pressure measurement. in 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). (IEEE, 2016), pp. 615–618. https://doi.org/10.1109/EMBC.2016.7590777
- Y. Chen, S. Shi, Y.-K. Liu, S.-L. Huang, T. Ma, Cuffless blood-pressure estimation method using a heart-rate variability-derived parameter. Physiol. Meas. 39(9), 095002 (2018). https://doi.org/10.1088/1361-6579/aad902
- Y. Zhang, C. Zhou, Z. Huang, X. Ye, Study of cuffless blood pressure estimation method based on multiple physiological parameters. Physiol. Meas. 42(5), 055004 (2021). https://doi.org/10.1088/1361-6579/abf889
- T. Xiang, Y. Jin, Z. Liu, L. Clifton, D.A. Clifton et al., Dynamic beat-to-beat measurements of blood pressure using multimodal physiological signals and a hybrid CNN-LSTM model. IEEE J. Biomed. Health Inform. 29(8), 5438–5451 (2025). https://doi.org/10.1109/JBHI.2025.3548771
- J. Penaz, Photoelectric measurement of blood pressure, volume and flow in the finger. in Digest of the 10th International Conference on Medical and Biological Engineering-Dresden, 1973, vol. 104 (1973)
- J. Fortin, D.E. Rogge, C. Fellner, D. Flotzinger, J. Grond et al., A novel art of continuous noninvasive blood pressure measurement. Nat. Commun. 12, 1387 (2021). https://doi.org/10.1038/s41467-021-21271-8
- S. Cai, Z. Mao, Z. Wang, M. Yin, G.E. Karniadakis, Physics-informed neural networks (PINNs) for fluid mechanics: a review. Acta Mech. Sin. 37(12), 1727–1738 (2021). https://doi.org/10.1007/s10409-021-01148-1
- L. Zhang, G. Wang, G.B. Giannakis, Real-time power system state estimation and forecasting via deep unrolled neural networks. IEEE Trans. Signal Process. 67(15), 4069–4077 (2019). https://doi.org/10.1109/TSP.2019.2926023
- K. Sel, A. Mohammadi, R.I. Pettigrew, R. Jafari, Physics-informed neural networks for modeling physiological time series: a case study with continuous blood pressure. Res. Sq. 3, 2423200 (2023). https://doi.org/10.21203/rs.3.rs-2423200/v1
- R. Wang, M. Qi, Y. Shao, A. Zhou, H. Ma, Adversarial contrastive learning based physics-informed temporal networks for cuffless blood pressure estimation (2024). arXiv preprint arXiv:240808488
- L. Li, X.-C. Tai, R. Chan, BP-DeepONet: a new method for cuffless blood pressure estimation using the physcis-informed DeepONet (2024). arXiv E Prints, arXiv: 2402.18886. https://doi.org/10.48550/arXiv.2402.18886
- H. Sun, J. Ma, B. Li, Y. Liu, J. Liu et al., Estimation of central aortic pressure waveforms by combination of a meta-learning neural network and a physics-driven method. Int. J. Numer. Meth. Biomed. Eng. 41(1), e3905 (2025). https://doi.org/10.1002/cnm.3905
- Z. Chen, Y. Liu, H. Sun, Physics-informed learning of governing equations from scarce data. Nat. Commun. 12(1), 6136 (2021). https://doi.org/10.1038/s41467-021-26434-1
- X. Ting, A Novel Multimodal Physiological-Informed Model (mpim) for the Unobtrusive Estimation of Dynamic Beat-to-Beat Arterial Blood Pressure (City University of Hong Kong, 2025)
- G.S. Stergiou, A.P. Avolio, P. Palatini, K.G. Kyriakoulis, A.E. Schutte et al., European Society of Hypertension recommendations for the validation of cuffless blood pressure measuring devices: European Society of Hypertension Working Group on Blood Pressure Monitoring and Cardiovascular Variability. J. Hypertens. 41(12), 2074–2087 (2023). https://doi.org/10.1097/HJH.0000000000003483
- M.H. Chowdhury, M.N.I. Shuzan, M.E.H. Chowdhury, Z.B. Mahbub, M.M. Uddin et al., Estimating blood pressure from the photoplethysmogram signal and demographic features using machine learning techniques. Sensors 20(11), 3127 (2020). https://doi.org/10.3390/s20113127
- M. Elgendi, On the analysis of fingertip photoplethysmogram signals. Curr. Cardiol. Rev. 8(1), 14–25 (2012). https://doi.org/10.2174/157340312801215782
- S. Haddad, A. Boukhayma, A. Caizzone, Continuous PPG-based blood pressure monitoring using multi-linear regression. IEEE J. Biomed. Health Inform. 26(5), 2096–2105 (2022). https://doi.org/10.1109/JBHI.2021.3128229
- F. Miao, Z.-D. Liu, J.-K. Liu, B. Wen, Q.-Y. He et al., Multi-sensor fusion approach for cuff-less blood pressure measurement. IEEE J. Biomed. Health Inform. 24(1), 79–91 (2020). https://doi.org/10.1109/JBHI.2019.2901724
- N. Hasanzadeh, M.M. Ahmadi, H. Mohammadzade, Blood pressure estimation using photoplethysmogram signal and its morphological features. IEEE Sens. J. 20(8), 4300–4310 (2020). https://doi.org/10.1109/JSEN.2019.2961411
- O. Schlesinger, N. Vigderhouse, D. Eytan, Y. Moshe, Blood pressure estimation from PPG signals using convolutional neural networks and Siamese network. in ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). May 4–8, 2020. (IEEE, Barcelona, 2020), pp. 1135–1139. https://doi.org/10.1109/icassp40776.2020.9053446
- W. Wang, P. Mohseni, K.L. Kilgore, L. Najafizadeh, Cuff-less blood pressure estimation from photoplethysmography via visibility graph and transfer learning. IEEE J. Biomed. Health Inform. 26(5), 2075–2085 (2022). https://doi.org/10.1109/JBHI.2021.3128383
- S. Yang, J. Sohn, S. Lee, J. Lee, H.C. Kim, Estimation and validation of arterial blood pressure using photoplethysmogram morphology features in conjunction with pulse arrival time in large open databases. IEEE J. Biomed. Health Inform. 25(4), 1018–1030 (2021). https://doi.org/10.1109/JBHI.2020.3009658
- P. Su, X.-R. Ding, Y.-T. Zhang, J. Liu, F. Miao et al., Long-term blood pressure prediction with deep recurrent neural networks. in 2018 IEEE EMBS International Conference on Biomedical & Health Informatics (BHI). (IEEE, 2018), pp. 323–328. https://doi.org/10.1109/BHI.2018.8333434
- Z. Liu, Y. Zhang, C. Zhou, BiGRU-attention for Continuous blood pressure trends estimation through single channel PPG. Comput. Biol. Med. 168, 107795 (2024). https://doi.org/10.1016/j.compbiomed.2023.107795
- F. Miao, B. Wen, Z. Hu, G. Fortino, X.-P. Wang, Z.-D. Liu, M. Tang, Ye. Li, Continuous blood pressure measurement from one-channel electrocardiogram signal using deep-learning techniques. Artif. Intell. Med. 108, 101919 (2020). https://doi.org/10.1016/j.artmed.2020.101919
- D.-K. Kim, Y.-T. Kim, H. Kim, D.-J. Kim, DeepCNAP: a deep learning approach for continuous noninvasive arterial blood pressure monitoring using photoplethysmography. IEEE J. Biomed. Health Inform. 26(8), 3697–3707 (2022). https://doi.org/10.1109/JBHI.2022.3172514
- Y. Zhang, X. Ren, X. Liang, X. Ye, C. Zhou, A refined blood pressure estimation model based on single channel photoplethysmography. IEEE J. Biomed. Health Inform. 26(12), 5907–5917 (2022). https://doi.org/10.1109/JBHI.2022.3206477
- X. Fan, H. Wang, F. Xu, Y. Zhao, K.-L. Tsui, Homecare-oriented intelligent long-term monitoring of blood pressure using electrocardiogram signals. IEEE Trans. Ind. Inform. 16(11), 7150–7158 (2020). https://doi.org/10.1109/TII.2019.2962546
- Z.-D. Liu, Y. Li, Y.-T. Zhang, J. Zeng, Z.-X. Chen et al., HGCTNet: handcrafted feature-guided CNN and transformer network for wearable cuffless blood pressure measurement. IEEE J. Biomed. Health Inform. 28(7), 3882–3894 (2024). https://doi.org/10.1109/JBHI.2024.3395445
- Y. Zhang, C. Zhou, X. Ren, Q. Wang, H. Wang et al., Personalized continuous blood pressure tracking through single channel PPG in wearable scenarios. IEEE J. Biomed. Health Inform. 29(6), 4109–4120 (2025). https://doi.org/10.1109/JBHI.2025.3535788
- C. Ding, Z. Guo, Z. Chen, R.J. Lee, C. Rudin et al., SiamQuality: a ConvNet-based foundation model for photoplethysmography signals. Physiol. Meas. 45(8), 085004 (2024). https://doi.org/10.1088/1361-6579/ad6747
- A. Pillai, D. Spathis, F. Kawsar, M. Malekzadeh, PaPaGei: open foundation models for optical physiological signals (2024). arXiv: 2410.20542. https://doi.org/10.48550/arXiv.2410.20542
- K. Qin, W. Huang, T. Zhang, S. Tang, Machine learning and deep learning for blood pressure prediction: a methodological review from multiple perspectives. Artif. Intell. Rev. 56(8), 8095–8196 (2022). https://doi.org/10.1007/s10462-022-10353-8
- M.Y. Cheung, A. Sabharwal, G.L. Coté, A. Veeraraghavan, Wearable blood pressure monitoring devices: understanding heterogeneity in design and evaluation. IEEE Trans. Biomed. Eng. 71(12), 3569–3592 (2024). https://doi.org/10.1109/TBME.2024.3434344
- N.N. Alajlan, D.M. Ibrahim, TinyML: enabling of inference deep learning models on ultra-low-power IoT edge devices for AI applications. Micromachines 13(6), 851 (2022). https://doi.org/10.3390/mi13060851
- X. Wang, Y. Han, V.C.M. Leung, D. Niyato, X. Yan, Xu. Chen, Convergence of edge computing and deep learning: a comprehensive survey. IEEE Commun. Surv. Tutor. 22(2), 869–904 (2020). https://doi.org/10.1109/COMST.2020.2970550
- W. Su, L. Li, F. Liu, M. He, X. Liang, AI on the edge: a comprehensive review. Artif. Intell. Rev. 55(8), 6125–6183 (2022). https://doi.org/10.1007/s10462-022-10141-4
- O. Durmaz Incel, S.Ö. Bursa, On-device deep learning for mobile and wearable sensing applications: a review. IEEE Sens. J. 23(6), 5501–5512 (2023). https://doi.org/10.1109/JSEN.2023.3240854
- W. Goossens, D. Mustefa, D. Scholle, H. Fotouhi, J. Denil, Evaluating edge computing and compression for remote cuff-less blood pressure monitoring. J. Sens. Actuator Netw. 12(1), 2 (2023). https://doi.org/10.3390/jsan12010002
- Y.-H. Gao, J. Li, C.-H. Fan, K.N. Leung, Y.-T. Zhang et al., A 9.84-μW 148.9-dB total DR light-to-digital converter with current-integration SAR quantizer for multi-wavelength PPG applications. IEEE Trans. Circuits Syst. I Regul. Pap. 72(11), 6886–6899 (2025). https://doi.org/10.1109/TCSI.2025.3564384
- T. Sipola, J. Alatalo, T. Kokkonen, M. Rantonen, Artificial intelligence in the IoT era: a review of edge AI hardware and software. in 2022 31st Conference of Open Innovations Association (FRUCT). (IEEE, 2022), pp. 320–331. https://doi.org/10.23919/FRUCT54823.2022.9770931
- S. Liu, Y. Lin, Z. Zhou, K. Nan, H. Liu et al., On-demand deep model compression for mobile devices: a usage-driven model selection framework. in Proceedings of the 16th Annual International Conference on Mobile Systems, Applications, and Services. (ACM, Munich, 2018), pp. 389–400. https://doi.org/10.1145/3210240.3210337
- Z.-D. Liu, Y. Li, Y.-T. Zhang, J. Zeng, Z.-X. Chen et al., Cuffless blood pressure measurement using smartwatches: a large-scale validation study. IEEE J. Biomed. Health Inform. 27(9), 4216–4227 (2023). https://doi.org/10.1109/JBHI.2023.3278168
- R. He, Z.-P. Huang, L.-Y. Ji, J.-K. Wu, H. Li et al., Beat-to-beat ambulatory blood pressure estimation based on random forest. in 2016 IEEE 13th International Conference on Wearable and Implantable Body Sensor Networks (BSN). (IEEE, 2016), pp. 194–198. https://doi.org/10.1109/BSN.2016.7516258
- R. Mieloszyk, H. Twede, J. Lester, J. Wander, S. Basu et al., A comparison of wearable tonometry, photoplethysmography, and electrocardiography for cuffless measurement of blood pressure in an ambulatory setting. IEEE J. Biomed. Health Inform. 26(7), 2864–2875 (2022). https://doi.org/10.1109/JBHI.2022.3153259
- J. Leitner, P.-H. Chiang, S. Dey, Personalized blood pressure estimation using photoplethysmography: a transfer learning approach. IEEE J. Biomed. Health Inform. 26(1), 218–228 (2022). https://doi.org/10.1109/JBHI.2021.3085526
- K. Ahmed, M. Hassan, tinyCare: a tinyML-based low-cost continuous blood pressure estimation on the extreme edge. in 2022 IEEE 10th International Conference on Healthcare Informatics (ICHI). (IEEE, 2022), pp. 264–275. https://doi.org/10.1109/ICHI54592.2022.00047
- M. Jia, Y. Qin, C. Song, Z. Yue, S. Ding, CEBPM: a cloud-edge collaborative noncontact blood pressure estimation model. IEEE Trans. Instrum. Meas. 71, 5022712 (2022). https://doi.org/10.1109/TIM.2022.3205679
- J.A. González-Nóvoa, L. Busto, S. Campanioni, C. Martínez, J. Fariña, J.J. Rodríguez-Andina, P. Juan-Salvadores, V. Jiménez, A. Íñiguez, C. Veiga, Advancing cuffless arterial blood pressure estimation: a patient-specific optimized approach reducing computational requirements. Future Gener. Comput. Syst. 166, 107689 (2025). https://doi.org/10.1016/j.future.2024.107689
- A. Burrello, F. Carlucci, G. Pollo, X. Wang, M. Poncino et al., Optimization and deployment of deep neural networks for PPG-based blood pressure estimation targeting low-power wearables. In 2024 IEEE Biomedical Circuits and Systems Conference (BioCAS). (IEEE, 2024), pp. 1–5. https://doi.org/10.1109/BioCAS61083.2024.10798404
- W. Lin, B.U. Demirel, M.A. Al Faruque, G.P. Li, Energy-efficient blood pressure monitoring based on single-site photoplethysmogram on wearable devices. in 2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC). November 1–5, 2021. (IEEE, Mexico, 2021), pp. 504–507. https://doi.org/10.1109/embc46164.2021.9630488
- K. Rishi Vardhan, S. Vedanth, G. Poojah, K. Abhishek, M. Nitish Kumar et al., BP-net: efficient deep learning for continuous arterial blood pressure estimation using photoplethysmogram. in 2021 20th IEEE International Conference on Machine Learning and Applications (ICMLA). December 13–16, 2021. (IEEE, Pasadena, 2021), pp. 1495–1500. https://doi.org/10.1109/icmla52953.2021.00241
- S. Banerjee, B. Kumar, A.P. James, J.N. Tripathi, Blood pressure estimation from ECG data using XGBoost and ANN for wearable devices. in 2022 29th IEEE International Conference on Electronics, Circuits and Systems (ICECS). (IEEE, 2022), pp. 1–4. https://doi.org/10.1109/ICECS202256217.2022.9970924
- D. Bernard, C. Msigwa, J. Yun, Toward IoT-based medical edge devices: PPG-based blood pressure estimation application. IEEE Internet Things J. 10(6), 5240–5255 (2023). https://doi.org/10.1109/JIOT.2022.3222477
- S.-H. Liu, B.-Y. Wu, X. Zhu, C.-L. Chin, Using a bodily weight-fat scale for cuffless blood pressure measurement based on the edge computing system. Sensors 24(23), 7830 (2024). https://doi.org/10.3390/s24237830
- B. Sun, S. Bayes, A.M. Abotaleb, M. Hassan, The case for tinyML in healthcare: CNNs for real-time on-edge blood pressure estimation. in Proceedings of the 38th ACM/SIGAPP Symposium on Applied Computing. (ACM, Tallinn Estonia, 2023), pp. 629–638. https://doi.org/10.1145/3555776.3577747
- M.S. Roy, R. Gupta, K. Das Sharma, Bepcon: a photoplethysmography-based quality-aware continuous beat-to-beat blood pressure measurement technique using deep learning. IEEE Trans. Instrum. Meas. 71, 2519709 (2022). https://doi.org/10.1109/TIM.2022.3212750
- N.F. Ali, M. Hussein, F. Awwad, M. Atef, Convolutional autoencoder for real-time PPG based blood pressure monitoring using TinyML. in 2023 International Conference on Microelectronics (ICM). (IEEE, 2024), pp. 41–45. https://doi.org/10.1109/ICM60448.2023.10378901
- B.C. Casadei, A. Gumiero, G. Tantillo, L. Della Torre, G. Olmo, Systolic blood pressure estimation from PPG signal using ANN. Electronics 11(18), 2909 (2022). https://doi.org/10.3390/electronics11182909
- T. Joseph, Real-time blood pressure prediction on wearables with edge-based DNNs: a co-design approach. ACM Trans. Des. Autom. Electron. Syst. 30(1), 1–24 (2025). https://doi.org/10.1145/3699512
- M. Sheng, R. Xing, Y. Xin, B. Zhang, Z. Guo et al., A 4.4 μW cuffless blood pressure measurement processor based on event-driven and module-level asynchronous scheme. in 2024 IEEE Biomedical Circuits and Systems Conference (BioCAS). (IEEE, 2024), pp. 1–5. https://doi.org/10.1109/BioCAS61083.2024.10798356
- J. Zhang, J. Li, Y. Jiang, K. Wang, R. Guo et al., A hardware-based lightweight ANN for real-time wearable blood pressure estimation. in 2022 44th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC). (IEEE, 2022), pp. 4295–4298. https://doi.org/10.1109/EMBC48229.2022.9871215
- T.P. Almeida, M. Cortés, D. Perruchoud, J. Alexandre, P. Vermare et al., Aktiia cuffless blood pressure monitor yields equivalent daytime blood pressure measurements compared to a 24-h ambulatory blood pressure monitor: preliminary results from a prospective single-center study. Hypertens. Res. 46(6), 1456–1461 (2023). https://doi.org/10.1038/s41440-023-01258-2
- M. Vaseekaran, S. Kaese, D. Görlich, M. Wiemer, A. Samol, WATCH-BPM: comparison of a WATCH-type blood pressure monitor with a conventional ambulatory blood pressure monitor and auscultatory sphygmomanometry. Sensors 23(21), 8877 (2023). https://doi.org/10.3390/s23218877
- Valencell. Valencell unveils calibration free cuffless blood pressure monitoring solution targeting over the counter use (2023)
- D. Nachman, Y. Gepner, N. Goldstein, E. Kabakov, A. Ben Ishay et al., Comparing blood pressure measurements between a photoplethysmography-based and a standard cuff-based manometry device. Sci. Rep. 10(1), 16116 (2020). https://doi.org/10.1038/s41598-020-73172-3
- G. Sayer, G. Piper, E. Vorovich, J. Raikhelkar, G.H. Kim et al., Continuous monitoring of blood pressure using a wrist-worn cuffless device. Am. J. Hypertens. 35(5), 407–413 (2022). https://doi.org/10.1093/ajh/hpac020
- P.S. Kumar, P. Rai, M. Ramasamy, V.K. Varadan, V.K. Varadan, Multiparametric cloth-based wearable, simplesense, estimates blood pressure. Sci. Rep. 12(1), 13059 (2022). https://doi.org/10.1038/s41598-022-17223-x
- Food, A. Drug. Nanowear inc. 510(k) submission summary (k232053) (2025)
- A. Food, Drug (Food and Drug Administration: Pyrames Inc, 2025)
- C. Festo, V. Vannevel, H. Ali, T. Tamrat, G.J. Mollel et al., Accuracy of a smartphone application for blood pressure estimation in Bangladesh, South Africa, and Tanzania. npj Digit. Med. 6(1), 69 (2023). https://doi.org/10.1038/s41746-023-00804-z
- M. Falter, M. Scherrenberg, K. Driesen, Z. Pieters, T. Kaihara, L. Xu, E.G. Caiani, P. Castiglioni, A. Faini, G. Parati, P. Dendale, Smartwatch-based blood pressure measurement demonstrates insufficient accuracy. Front. Cardiovasc. Med. 9, 958212 (2022). https://doi.org/10.3389/fcvm.2022.958212
- H. Lee, S. Park, H. Kwon, B. Cho, J.H. Park, H.-Y. Lee, Feasibility and effectiveness of a ring-type blood pressure measurement device compared with 24-hour ambulatory blood pressure monitoring device. Korean Circ. J. 54(2), 93–104 (2024). https://doi.org/10.4070/kcj.2023.0303
- H. Benmeziane, K. El Maghraoui, H. Ouarnoughi, S. Niar, M. Wistuba et al., Hardware-aware neural architecture search: survey and taxonomy. in Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence. August 19–27, 2021. Montreal, Canada. International Joint Conferences on Artificial Intelligence Organization (2021), pp. 4322–4329. https://doi.org/10.24963/ijcai.2021/592
- Y. He, X. Zhang, J. Sun, Channel pruning for accelerating very deep neural networks. in 2017 IEEE International Conference on Computer Vision (ICCV). (IEEE, 2017), pp. 1398–1406. https://doi.org/10.1109/ICCV.2017.155
- T.-J. Yang, Y.-H. Chen, V. Sze, Designing energy-efficient convolutional neural networks using energy-aware pruning. in 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). (IEEE, 2017), pp. 6071–6079
- J. Gou, B. Yu, S.J. Maybank, D. Tao, Knowledge distillation: a survey. Int. J. Comput. Vis. 129(6), 1789–1819 (2021). https://doi.org/10.1007/s11263-021-01453-z
- X. Zhang, J. Zou, K. He, J. Sun, Accelerating very deep convolutional networks for classification and detection. IEEE Trans. Pattern Anal. Mach. Intell. 38(10), 1943–1955 (2016). https://doi.org/10.1109/TPAMI.2015.2502579
- V. Lebedev, Y. Ganin, M. Rakhuba, I. Oseledets, V. Lempitsky, Speeding-up convolutional neural networks using fine-tuned cp-decomposition (2014). arXiv preprint arXiv:14126553
- D. Gupta, A. Bhatti, S. Parmar, C. Dan, Y. Liu et al., Low-rank adaptation of time series foundational models for out-of-domain modality forecasting. in International Conference on Multimodel Interaction. (ACM, San Jose Costa Rica, 2024), pp. 382–386. https://doi.org/10.1145/3678957.3685724
- Y.D. Kwon, J. Chauhan, A. Kumar, P.H. Hkust, C. Mascolo, Exploring system performance of continual learning for mobile and embedded sensing applications. in 2021 IEEE/ACM Symposium on Edge Computing (SEC) (2021), pp. 319–332
- Y. Chen, X. Qin, J. Wang, C. Yu, W. Gao, Fedhealth: a federated transfer learning framework for wearable healthcare. IEEE Intell. Syst. 35(4), 83–93 (2020). https://doi.org/10.1109/MIS.2020.2988604
- W. Ni, H. Ao, H. Tian, Y.C. Eldar, D. Niyato, Fedsl: federated split learning for collaborative healthcare analytics on resource-constrained wearable iomt devices. IEEE Internet Things J. (2024). https://doi.org/10.1109/JIOT.2024.3370985
- T. Chen, T. Moreau, Z. Jiang, L. Zheng, E. Yan et al., Tvm: an automated end-to-end optimizing compiler for deep learning. in 13th USENIX Symposium on Operating Systems Design and Implementation (OSDI 18). (2018), pp. 578–594
- M. Sponner, B. Waschneck, A. Kumar, Compiler toolchains for deep learning workloads on embedded platforms. arXiv preprint arXiv:210404576 (2021)
- H. Cai, J. Lin, Y. Lin, Z. Liu, H. Tang et al., Enable deep learning on mobile devices: methods, systems, and applications. ACM Trans. Des. Autom. Electron. Syst. 27(3), 1–50 (2022). https://doi.org/10.1145/3486618
- M.M.H. Shuvo, S.K. Islam, J. Cheng, B.I. Morshed, Efficient acceleration of deep learning inference on resource-constrained edge devices: a review. Proc. IEEE 111(1), 42–91 (2023). https://doi.org/10.1109/JPROC.2022.3226481
- B. Liang, K. Duan, Q. Xie, M. Atef, Z. Qian et al., Live demonstration: a support vector machine based hardware platform for blood pressure prediction. in 2016 IEEE Biomedical Circuits and Systems Conference (BioCAS). (IEEE, 2017), pp. 130–130. https://doi.org/10.1109/BioCAS.2016.7833744
- A. Mahajan, K. Heydari, D. Powell, Wearable AI to enhance patient safety and clinical decision-making. NPJ Digit. Med. 8(1), 176 (2025). https://doi.org/10.1038/s41746-025-01554-w
- K. Shah, A. Wang, Y. Chen, J. Munjal, S. Chhabra, A. Stange, E. Wei, T. Phan, T. Giest, B. Hawkins, D. Puppala, E. Silver, L. Cai, S. Rajagopalan, E. Shi, Y.-L. Lee, M. Wimmer, P. Rudrapatna, T. Rea, S. Yuen, A. Pathak, S. Patel, M. Malhotra, M. Stogaitis, J. Phan, B. Patel, A. Vasquez, C. Fox, A. Connell, J. Taylor, J. Shreibati, D. Miller, D. McDuff, P. Kohli, T. Gadh, J. Sunshine, Automated loss of pulse detection on a consumer smartwatch. Nature 642(8066), 174–181 (2025). https://doi.org/10.1038/s41586-025-08810-9
- C. Mennella, U. Maniscalco, G. De Pietro, M. Esposito, Ethical and regulatory challenges of AI technologies in healthcare: a narrative review. Heliyon 10(4), e26297 (2024). https://doi.org/10.1016/j.heliyon.2024.e26297
- K. Wołos, L. Pstras, M. Debowska, W. Dabrowski, D. Siwicka-Gieroba, J. Poleszczuk, Non-invasive assessment of stroke volume and cardiovascular parameters based on peripheral pressure waveform. PLoS Comput. Biol. 20(4), e1012013 (2024). https://doi.org/10.1371/journal.pcbi.1012013
- R. Mukkamala, M. Yavarimanesh, K. Natarajan, J.-O. Hahn, K.G. Kyriakoulis et al., Evaluation of the accuracy of cuffless blood pressure measurement devices: challenges and proposals. Hypertension 78(5), 1161–1167 (2021). https://doi.org/10.1161/HYPERTENSIONAHA.121.17747
- A. Burrello, M. Risso, N. Tomasello, Y. Chen, L. Benini et al., Energy-efficient wearable-to-mobile offload of ML inference for PPG-based heart-rate estimation. in 2023 Design, Automation & Test in Europe Conference & Exhibition (DATE). (IEEE, 2023), pp: 1–6. https://doi.org/10.23919/DATE56975.2023.10137129
- G.S. Stergiou, B. Alpert, S. Mieke, R. Asmar, N. Atkins et al., A universal standard for the validation of blood pressure measuring devices: Association for the Advancement of Medical Instrumentation/European Society of Hypertension/International Organization for Standardization (AAMI/ESH/ISO) collaboration statement. J. Hypertens. 36(3), 472–478 (2018). https://doi.org/10.1097/HJH.0000000000001634
- E. O’Brien, J. Petrie, W. Littler, M. de Swiet, P.L. Padfield et al., An outline of the revised British Hypertension Society protocol for the evaluation of blood pressure measuring devices. J. Hypertens. 11(6), 677–679 (1993). https://doi.org/10.1097/00004872-199306000-00013
- Iso 81060-3:2022. Non-invasive sphygmomanometers—part 3: clinical investigation of continuous automated measurement type (2022)
References
R.N. Haldar, Global brief on hypertension: silent killer, global public health crisis. Indian J. Phys. Med. Rehabil. 24(1), 2 (2013). https://doi.org/10.5005/ijopmr-24-1-2
T. Ohkubo, Y. Imai, I. Tsuji, K. Nagai, J. Kato, N. Kikuchi, A. Nishiyama, A. Aihara, M. Sekino, M. Kikuya, S. Ito, H. Satoh, S. Hisamichi, Home blood pressure measurement has a stronger predictive power for mortality than does screening blood pressure measurement: a population-based observation in Ohasama, Japan. J. Hypertens. 16(7), 971–975 (1998). https://doi.org/10.1097/00004872-199816070-00010
D. Levy, The progression from hypertension to congestive heart failure. JAMA 275(20), 1557 (1996). https://doi.org/10.1001/jama.1996.03530440037034
X.-R. Ding, N. Zhao, G.-Z. Yang, R.I. Pettigrew, B. Lo et al., Continuous blood pressure measurement from invasive to unobtrusive: celebration of 200th birth anniversary of Carl Ludwig. IEEE J. Biomed. Health Inform. 20(6), 1455–1465 (2016). https://doi.org/10.1109/JBHI.2016.2620995
G. Chan, R. Cooper, M. Hosanee, K. Welykholowa, P.A. Kyriacou, D. Zheng, J. Allen, D. Abbott, N.H. Lovell, R. Fletcher, M. Elgendi, Multi-site photoplethysmography technology for blood pressure assessment: challenges and recommendations. J. Clin. Med. 8(11), 1827 (2019). https://doi.org/10.3390/jcm8111827
T. Ciecierski-Holmes, R. Singh, M. Axt, S. Brenner, S. Barteit, Artificial intelligence for strengthening healthcare systems in low- and middle-income countries: a systematic scoping review. NPJ Digit. Med. 5(1), 162 (2022). https://doi.org/10.1038/s41746-022-00700-y
S. Min, J. An, J.H. Lee, J.H. Kim, D.J. Joe et al., Wearable blood pressure sensors for cardiovascular monitoring and machine learning algorithms for blood pressure estimation. Nat. Rev. Cardiol. 22(9), 629–648 (2025). https://doi.org/10.1038/s41569-025-01127-0
J. Li, H. Chu, Z. Chen, C.K. Yiu, Q. Qu et al., Recent advances in materials, devices and algorithms toward wearable continuous blood pressure monitoring. ACS Nano 18(27), 17407–17438 (2024). https://doi.org/10.1021/acsnano.4c04291
L. Zhao, C. Liang, Y. Huang, G. Zhou, Y. Xiao et al., Emerging sensing and modeling technologies for wearable and cuffless blood pressure monitoring. NPJ Digit. Med. 6(1), 93 (2023). https://doi.org/10.1038/s41746-023-00835-6
R.C. Zhao, X. Yuan, AI in healthcare for resource limited settings: an exploration and ethical evaluation. in Companion Proceedings of the ACM on Web Conference 2025. (ACM, Sydney, 2025), pp. 1953–1960. https://doi.org/10.1145/3701716.3717747
R.R. Dangi, A. Sharma, V. Vageriya, Transforming healthcare in low-resource settings with artificial intelligence: recent developments and outcomes. Public Health Nurs. 42(2), 1017–1030 (2025). https://doi.org/10.1111/phn.13500
Z. Liu, C. Chen, J. Cao, M. Pan, J. Liu et al., Large language models for cuffless blood pressure measurement from wearable biosignals. in Proceedings of the 15th ACM International Conference on Bioinformatics, Computational Biology and Health Informatics. (ACM, Shenzhen, 2024), pp. 1–11. https://doi.org/10.1145/3698587.3701447
C. Ma, P. Zhang, F. Song, Y. Sun, G. Fan et al., KD-informer: a cuff-less continuous blood pressure waveform estimation approach based on single photoplethysmography. IEEE J. Biomed. Health Inform. 27(5), 2219–2230 (2023). https://doi.org/10.1109/JBHI.2022.3181328
L. Hamamoto, O. Meyer, P. Natarajan, M. Young, A. John et al., Reimagining wearables to bolster sustainable development in low-resource settings. in 2024 IEEE Global Humanitarian Technology Conference (GHTC). (IEEE, 2024), pp. 9–16. https://doi.org/10.1109/GHTC62424.2024.10771560
D. Ryu, D.H. Kim, J.T. Price, J.Y. Lee, H.U. Chung et al., Comprehensive pregnancy monitoring with a network of wireless, soft, and flexible sensors in high- and low-resource health settings. Proc. Natl. Acad. Sci. U. S. A. 118(20), e2100466118 (2021). https://doi.org/10.1073/pnas.2100466118
J. Chan, N. Ali, A. Najafi, A. Meehan, L.R. Mancl et al., An off-the-shelf otoacoustic-emission probe for hearing screening via a smartphone. Nat. Biomed. Eng. 6(11), 1203–1213 (2022). https://doi.org/10.1038/s41551-022-00947-6
Z. Zhou, X. Chen, E. Li, L. Zeng, K. Luo et al., Edge intelligence: paving the last mile of artificial intelligence with edge computing. Proc. IEEE 107(8), 1738–1762 (2019). https://doi.org/10.1109/JPROC.2019.2918951
A.E. Schutte, A. Kollias, G.S. Stergiou, Blood pressure and its variability: classic and novel measurement techniques. Nat. Rev. Cardiol. 19(10), 643–654 (2022). https://doi.org/10.1038/s41569-022-00690-0
J. Allen, Photoplethysmography and its application in clinical physiological measurement. Physiol. Meas. 28(3), R1–R39 (2007). https://doi.org/10.1088/0967-3334/28/3/R01
J. Homsy, P.J. Podrid, P.J. Podrid, P.J. Podrid, Electrocardiography. in MGH Cardiology Board Review, Springer London (2013), pp, 580–622. https://doi.org/10.1007/978-1-4471-4483-0_36
Y. Ao, L. Jin, S. Wang, B. Lan, G. Tian et al., Dual structure reinforces interfacial polarized MXene/PVDF-TrFE piezoelectric nanocomposite for pressure monitoring. Nano-Micro Lett. 17(1), 320 (2025). https://doi.org/10.1007/s40820-025-01839-5
W. Lin, S. Jia, Y. Chen, H. Shi, J. Zhao, Z. Li, Y. Wu, H. Jiang, Qi. Zhang, W. Wang, C. Feng, S. Xia, Korotkoff sounds dynamically reflect changes in cardiac function based on deep learning methods. Front. Cardiovasc. Med. 9, 940615 (2022). https://doi.org/10.3389/fcvm.2022.940615
F. Geng, Z. Bai, H. Zhang, Y. Yao, C. Liu, P. Wang, X. Chen, L. Du, X. Li, B. Han, Z. Fang, Contactless and continuous blood pressure measurement according to caPTT obtained from millimeter wave radar. Measurement 218, 113151 (2023). https://doi.org/10.1016/j.measurement.2023.113151
X. Ding, W. Dai, N. Luo, J. Liu, N. Zhao et al., A flexible tonoarteriography-based body sensor network for cuffless measurement of arterial blood pressure. in 2015 IEEE 12th International Conference on Wearable and Implantable Body Sensor Networks (BSN). (IEEE, 2015), pp. 1–4. https://doi.org/10.1109/BSN.2015.7299405
A.N. Bashkatov, E.A. Genina, V.I. Kochubey, V.V. Tuchin, Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm. J. Phys. D Appl. Phys. 38(15), 2543–2555 (2005). https://doi.org/10.1088/0022-3727/38/15/004
C.M. Lochner, Y. Khan, A. Pierre, A.C. Arias, All-organic optoelectronic sensor for pulse oximetry. Nat. Commun. 5, 5745 (2014). https://doi.org/10.1038/ncomms6745
T. Yokota, P. Zalar, M. Kaltenbrunner, H. Jinno, N. Matsuhisa, H. Kitanosako, Y. Tachibana, W. Yukita, M. Koizumi, T. Someya, Ultraflexible organic photonic skin. Sci. Adv. 2(4), e1501856 (2016). https://doi.org/10.1126/sciadv.1501856
H. Xu, J. Liu, J. Zhang, G. Zhou, N. Luo et al., Flexible organic/inorganic hybrid near-infrared photoplethysmogram sensor for cardiovascular monitoring. Adv. Mater. 29(31), 1700975 (2017). https://doi.org/10.1002/adma.201700975
Y. Zhao, Y. Sun, C. Pei, X. Yin, X. Li, Yi. Hao, M. Zhang, M. Yuan, J. Zhou, Yu. Chen, Y. Song, Low-temperature fabrication of stable black-phase CsPbI(3) perovskite flexible photodetectors toward wearable health monitoring. Nano-Micro Lett. 17(1), 63 (2024). https://doi.org/10.1007/s40820-024-01565-4
I.C. Jeong, H. Yoon, H. Kang, H. Yeom, Effects of skin surface temperature on photoplethysmograph. J. Healthcare Eng. 5(4), 463534 (2014). https://doi.org/10.1260/2040-2295.5.4.429
J. Fine, K.L. Branan, A.J. Rodriguez, T. Boonya-Ananta, S. Ajmal et al., Sources of inaccuracy in photoplethysmography for continuous cardiovascular monitoring. Biosensors 11(4), 126 (2021). https://doi.org/10.3390/bios11040126
D. Kireev, K. Sel, B. Ibrahim, N. Kumar, A. Akbari et al., Continuous cuffless monitoring of arterial blood pressure via graphene bioimpedance tattoos. Nat. Nanotechnol. 17(8), 864–870 (2022). https://doi.org/10.1038/s41565-022-01145-w
H.P. Schwan, Electrical properties of tissue and cell suspensions. in Advances in Biological and Medical Physics. (Elsevier, 1957), pp. 147–209. https://doi.org/10.1016/b978-1-4832-3111-2.50008-0
K. Zheng, C. Zheng, L. Zhu, B. Yang, X. Jin et al., Machine learning enabled reusable adhesion, entangled network-based hydrogel for long-term, high-fidelity EEG recording and attention assessment. Nano-Micro Lett. 17(1), 281 (2025). https://doi.org/10.1007/s40820-025-01780-7
C. Lim, Y.J. Hong, J. Jung, Y. Shin, S.-H. Sunwoo et al., Tissue-like skin-device interface for wearable bioelectronics by using ultrasoft, mass-permeable, and low-impedance hydrogels. Sci. Adv. 7(19), eabd3716 (2021). https://doi.org/10.1126/sciadv.abd3716
W. Gao, H. Ota, D. Kiriya, K. Takei, A. Javey, Flexible electronics toward wearable sensing. Acc. Chem. Res. 52(3), 523–533 (2019). https://doi.org/10.1021/acs.accounts.8b00500
X. Chen, X. Gao, A. Nomoto, K. Shi, M. Lin et al., Fabric-substrated capacitive biopotential sensors enhanced by dielectric nanops. Nano Res. 14(9), 3248–3252 (2021). https://doi.org/10.1007/s12274-021-3458-0
R.W. Gill, Measurement of blood flow by ultrasound: accuracy and sources of error. Ultrasound Med. Biol. 11(4), 625–641 (1985). https://doi.org/10.1016/0301-5629(85)90035-3
C. Wang, X. Li, H. Hu, L. Zhang, Z. Huang et al., Monitoring of the central blood pressure waveform via a conformal ultrasonic device. Nat. Biomed. Eng. 2(9), 687–695 (2018). https://doi.org/10.1038/s41551-018-0287-x
T. Tamura, Y. Maeda, M. Sekine, M. Yoshida, Wearable photoplethysmographic sensors: past and present. Electronics 3(2), 282–302 (2014). https://doi.org/10.3390/electronics3020282
G.-H. Lee, H. Moon, H. Kim, G.H. Lee, W. Kwon et al., Multifunctional materials for implantable and wearable photonic healthcare devices. Nat. Rev. Mater. 5(2), 149–165 (2020). https://doi.org/10.1038/s41578-019-0167-3
Y. Zang, F. Zhang, C.-A. Di, D. Zhu, Advances of flexible pressure sensors toward artificial intelligence and health care applications. Mater. Horiz. 2(2), 140–156 (2015). https://doi.org/10.1039/C4MH00147H
Y. Pang, H. Tian, L. Tao, Y. Li, X. Wang et al., Flexible, highly sensitive, and wearable pressure and strain sensors with graphene porous network structure. ACS Appl. Mater. Interfaces 8(40), 26458–26462 (2016). https://doi.org/10.1021/acsami.6b08172
G. Yu, J. Hu, J. Tan, Y. Gao, Y. Lu, F. Xuan, A wearable pressure sensor based on ultra-violet/ozone microstructured carbon nanotube/polydimethylsiloxane arrays for electronic skins. Nanotechnology 29(11), 115502 (2018). https://doi.org/10.1088/1361-6528/aaa855
C.-L. Choong, M.-B. Shim, B.-S. Lee, S. Jeon, D.-S. Ko, C.-L. Choong, M.-B. Shim, B.-S. Lee, D.-S. Ko, T.-H. Kang, J. Bae, S.H. Lee, K.-E. Byun, J. Im, Y.J. Jeong, C.E. Park, J.-J. Park, U.-I. Chung, Highly stretchable resistive pressure sensors using a conductive elastomeric composite on a micropyramid array. Adv. Mater. 26(21), 3451–3458 (2014). https://doi.org/10.1002/adma.201305182
G. Schwartz, B.C. Tee, J. Mei, A.L. Appleton, D.H. Kim et al., Flexible polymer transistors with high pressure sensitivity for application in electronic skin and health monitoring. Nat. Commun. 4, 1859 (2013). https://doi.org/10.1038/ncomms2832
X. Tang, C. Wu, L. Gan, T. Zhang, T. Zhou et al., Multilevel microstructured flexible pressure sensors with ultrahigh sensitivity and ultrawide pressure range for versatile electronic skins. Small 15(10), 1804559 (2019). https://doi.org/10.1002/smll.201804559
C. Pang, J.H. Koo, A. Nguyen, J.M. Caves, M.-G. Kim, A. Chortos, K. Kim, P.J. Wang, J.B. Tok, Z. Bao, Highly skin-conformal microhairy sensor for pulse signal amplification. Adv. Mater. 27(4), 634–640 (2015). https://doi.org/10.1002/adma.201403807
H. Wang, Z. Li, Z. Liu, J. Fu, T. Shan et al., Flexible capacitive pressure sensors for wearable electronics. J. Mater. Chem. C 10(5), 1594–1605 (2022). https://doi.org/10.1039/D1TC05304C
Z. Wang, S. Wang, B. Lan, Y. Sun, L. Huang et al., Piezotronic sensor for bimodal monitoring of Achilles tendon behavior. Nano-Micro Lett. 17(1), 241 (2025). https://doi.org/10.1007/s40820-025-01757-6
Z. Nie, J.W. Kwak, M. Han, J.A. Rogers, Mechanically active materials and devices for bio-interfaced pressure sensors-a review. Adv. Mater. 36(43), e2205609 (2024). https://doi.org/10.1002/adma.202205609
J. Chang, J. Li, J. Ye, B. Zhang, J. Chen et al., AI-enabled piezoelectric wearable for joint torque monitoring. Nano-Micro Lett. 17(1), 247 (2025). https://doi.org/10.1007/s40820-025-01753-w
Y. Kim, J. Lee, H. Hong, S. Park, W. Ryu, Self-powered wearable micropyramid piezoelectric film sensor for real-time monitoring of blood pressure. Adv. Eng. Mater. 25(2), 2200873 (2023). https://doi.org/10.1002/adem.202200873
A. Petritz, E. Karner-Petritz, T. Uemura, P. Schäffner, T. Araki et al., Imperceptible energy harvesting device and biomedical sensor based on ultraflexible ferroelectric transducers and organic diodes. Nat. Commun. 12(1), 2399 (2021). https://doi.org/10.1038/s41467-021-22663-6
H. Yin, Y. Li, Z. Tian, Q. Li, C. Jiang, E. Liang, Y. Guo, Ultra-high sensitivity anisotropic piezoelectric sensors for structural health monitoring and robotic perception. Nano-Micro Lett. 17(1), 42 (2024). https://doi.org/10.1007/s40820-024-01539-6
Z. Yi, Z. Liu, W. Li, T. Ruan, X. Chen, J. Liu, B. Yang, W. Zhang, Piezoelectric dynamics of arterial pulse for wearable continuous blood pressure monitoring. Adv. Mater. 34(16), e2110291 (2022). https://doi.org/10.1002/adma.202110291
B.-Y. Lee, S.-U. Kim, S. Kang, S.-D. Lee, Transparent and flexible high power triboelectric nanogenerator with metallic nanowire-embedded tribonegative conducting polymer. Nano Energy 53, 152–159 (2018). https://doi.org/10.1016/j.nanoen.2018.08.048
D. Kim, I.-W. Tcho, I.K. Jin, S.-J. Park, S.-B. Jeon et al., Direct-laser-patterned friction layer for the output enhancement of a triboelectric nanogenerator. Nano Energy 35, 379–386 (2017). https://doi.org/10.1016/j.nanoen.2017.04.013
Z. Xu, C. Zhang, F. Wang, J. Yu, G. Yang et al., Smart textiles for personalized sports and healthcare. Nano-Micro Lett. 17(1), 232 (2025). https://doi.org/10.1007/s40820-025-01749-6
K. Dong, Z. Wu, J. Deng, A.C. Wang, H. Zou, C. Chen, D. Hu, B. Gu, B. Sun, Z.L. Wang, A stretchable yarn embedded triboelectric nanogenerator as electronic skin for biomechanical energy harvesting and multifunctional pressure sensing. Adv. Mater. 30(43), 1804944 (2018). https://doi.org/10.1002/adma.201804944
H. Lei, H. Ji, X. Liu, B. Lu, L. Xie et al., Self-assembled porous-reinforcement microstructure-based flexible triboelectric patch for remote healthcare. Nano-Micro Lett. 15(1), 109 (2023). https://doi.org/10.1007/s40820-023-01081-x
J. Li, H. Jia, J. Zhou, X. Huang, L. Xu et al., Thin, soft, wearable system for continuous wireless monitoring of artery blood pressure. Nat. Commun. 14(1), 5009 (2023). https://doi.org/10.1038/s41467-023-40763-3
L. Kong, W. Li, T. Zhang, H. Ma, Y. Cao, K. Wang, Y. Zhou, A. Shamim, Lu. Zheng, X. Wang, W. Huang, Wireless technologies in flexible and wearable sensing: from materials design, system integration to applications. Adv. Mater. 36(27), 2400333 (2024). https://doi.org/10.1002/adma.202400333
Y. Ran, D. Zhang, J. Chen, Y. Hu, Y. Chen, Contactless blood pressure monitoring with mmWave radar. in GLOBECOM 2022—2022 IEEE Global Communications Conference. (IEEE, 2023), pp. 541–546. https://doi.org/10.1109/GLOBECOM48099.2022.10001592
D. Franklin, A. Tzavelis, J.Y. Lee, H.U. Chung, J. Trueb et al., Synchronized wearables for the detection of haemodynamic states via electrocardiography and multispectral photoplethysmography. Nat. Biomed. Eng. 7(10), 1229–1241 (2023). https://doi.org/10.1038/s41551-023-01098-y
I. Tan, S.R. Gnanenthiran, J. Chan, K.G. Kyriakoulis, M.P. Schlaich, A. Rodgers, G.S. Stergiou, A.E. Schutte, Evaluation of the ability of a commercially available cuffless wearable device to track blood pressure changes. J. Hypertens. 41(6), 1003–1010 (2023). https://doi.org/10.1097/HJH.0000000000003428
R. Mukkamala, S.G. Shroff, C. Landry, K.G. Kyriakoulis, A.P. Avolio et al., The microsoft research aurora project: important findings on cuffless blood pressure measurement. Hypertension 80(3), 534–540 (2023). https://doi.org/10.1161/HYPERTENSIONAHA.122.20410
R. Mukkamala, S.G. Shroff, K.G. Kyriakoulis, A.P. Avolio, G.S. Stergiou, Cuffless blood pressure measurement: where do we actually stand? Hypertension 82(6), 957–970 (2025). https://doi.org/10.1161/HYPERTENSIONAHA.125.24822
R. Mukkamala, J.-O. Hahn, O.T. Inan, L.K. Mestha, C.-S. Kim et al., Toward ubiquitous blood pressure monitoring via pulse transit time: theory and practice. IEEE Trans. Biomed. Eng. 62(8), 1879–1901 (2015). https://doi.org/10.1109/TBME.2015.2441951
W. Chen, T. Kobayashi, S. Ichikawa, Y. Takeuchi, T. Togawa, Continuous estimation of systolic blood pressure using the pulse arrival time and intermittent calibration. Med. Biol. Eng. Comput. 38(5), 569–574 (2000). https://doi.org/10.1007/BF02345755
C.C.Y. Poon, Y.T. Zhang, Cuff-less and noninvasive measurements of arterial blood pressure by pulse transit time. in 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference. (IEEE, 2006), pp. 5877–5880.
X.-R. Ding, Y.-T. Zhang, J. Liu, W.-X. Dai, H.K. Tsang, Continuous cuffless blood pressure estimation using pulse transit time and photoplethysmogram intensity ratio. IEEE Trans. Biomed. Eng. 63(5), 964–972 (2016). https://doi.org/10.1109/TBME.2015.2480679
N. Pilz, D.S. Picone, A. Patzak, O.S. Opatz, T. Lindner, L. Fesseler, V. Heinz, T.L. Bothe, Cuff-based blood pressure measurement: challenges and solutions. Blood Press. 33(1), 2402368 (2024). https://doi.org/10.1080/08037051.2024.2402368
P. Salvi, Pulse waves: How vascular hemodynamics affects blood pressure 2012. Epub ahead of print. (2012). https://doi.org/10.1007/978-88-470-2439-7
J. Liu, B.P. Yan, Y.-T. Zhang, X.-R. Ding, P. Su et al., Multi-wavelength photoplethysmography enabling continuous blood pressure measurement with compact wearable electronics. IEEE Trans. Biomed. Eng. 66(6), 1514–1525 (2019). https://doi.org/10.1109/TBME.2018.2874957
S. Qiu, Y.-T. Zhang, S.-K. Lau, N. Zhao, Scenario adaptive cuffless blood pressure estimation by integrating cardiovascular coupling effects. IEEE J. Biomed. Health Inform. 27(3), 1375–1385 (2023). https://doi.org/10.1109/JBHI.2022.3227235
S. Qiu, B.P.Y. Yan, N. Zhao, Stroke-volume-allocation model enabling wearable sensors for vascular age and cardiovascular disease assessment. NPJ Flex. Electron. 8, 24 (2024). https://doi.org/10.1038/s41528-024-00307-1
S.J. Forrester, G.W. Booz, C.D. Sigmund, T.M. Coffman, T. Kawai, V. Rizzo, R. Scalia, S. Eguchi, Angiotensin II signal transduction: an update on mechanisms of physiology and pathophysiology. Physiol. Rev. 98(3), 1627–1738 (2018). https://doi.org/10.1152/physrev.00038.2017
T. Xiang, Y. Zhang, Y. Zhang, A novel multimodal physiological model for the noninvasive and continuous measurements of arterial blood pressure. in 2024 46th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). (IEEE, 2024), pp. 1–6. https://doi.org/10.1109/EMBC53108.2024.10782499
S.H. Song, J.H. Kim, J.H. Lee, Y.-M. Yun, D.-H. Choi et al., Elevated blood viscosity is associated with cerebral small vessel disease in patients with acute ischemic stroke. BMC Neurol. 17(1), 20 (2017). https://doi.org/10.1186/s12883-017-0808-3
W. Shi, C. Zhou, Y. Zhang, K. Li, X. Ren et al., Hybrid modeling on reconstitution of continuous arterial blood pressure using finger photoplethysmography. Biomed. Signal Process. Control 85, 104972 (2023). https://doi.org/10.1016/j.bspc.2023.104972
J. Joseph, P.M. Nabeel, M.I. Shah, M. Sivaprakasam, Arterial compliance probe for calibration free pulse pressure measurement. in 2016 IEEE International Symposium on Medical Measurements and Applications (MeMeA). (IEEE, 2016), pp. 1–6. https://doi.org/10.1109/MeMeA.2016.7533810
Y. Ma, J. Choi, A. Hourlier-Fargette, Y. Xue, H.U. Chung et al., Relation between blood pressure and pulse wave velocity for human arteries. Proc. Natl. Acad. Sci. U.S.A. 115(44), 11144–11149 (2018). https://doi.org/10.1073/pnas.1814392115
R. Jimenez, D. Yurk, S. Dell, A.C. Rutledge, M.K. Fu et al., Resonance sonomanometry for noninvasive, continuous monitoring of blood pressure. PNAS Nexus 3(7), pgae252 (2024). https://doi.org/10.1093/pnasnexus/pgae252
Y.-c Fung, Biomechanics: Circulation (Springer, 2013)
J. Solà, M. Proença, D. Ferrario, J.-A. Porchet, A. Falhi et al., Noninvasive and nonocclusive blood pressure estimation via a chest sensor. IEEE Trans. Biomed. Eng. 60(12), 3505–3513 (2013). https://doi.org/10.1109/TBME.2013.2272699
T.H. Huynh, R. Jafari, W.-Y. Chung, Noninvasive cuffless blood pressure estimation using pulse transit time and impedance plethysmography. IEEE Trans. Biomed. Eng. 66(4), 967–976 (2019). https://doi.org/10.1109/TBME.2018.2865751
H. Truong, A. Montanari, F. Kawsar, Non-invasive blood pressure monitoring with multi-modal in-ear sensing. in ICASSP 2022—2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). (IEEE, 2022), pp. 6–10. https://doi.org/10.1109/ICASSP43922.2022.9747661
J. Liu, Y.-T. Zhang, X.-R. Ding, W.-X. Dai, N. Zhao, A preliminary study on multi-wavelength PPG based pulse transit time detection for cuffless blood pressure measurement. in 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). (IEEE, 2016), pp. 615–618. https://doi.org/10.1109/EMBC.2016.7590777
Y. Chen, S. Shi, Y.-K. Liu, S.-L. Huang, T. Ma, Cuffless blood-pressure estimation method using a heart-rate variability-derived parameter. Physiol. Meas. 39(9), 095002 (2018). https://doi.org/10.1088/1361-6579/aad902
Y. Zhang, C. Zhou, Z. Huang, X. Ye, Study of cuffless blood pressure estimation method based on multiple physiological parameters. Physiol. Meas. 42(5), 055004 (2021). https://doi.org/10.1088/1361-6579/abf889
T. Xiang, Y. Jin, Z. Liu, L. Clifton, D.A. Clifton et al., Dynamic beat-to-beat measurements of blood pressure using multimodal physiological signals and a hybrid CNN-LSTM model. IEEE J. Biomed. Health Inform. 29(8), 5438–5451 (2025). https://doi.org/10.1109/JBHI.2025.3548771
J. Penaz, Photoelectric measurement of blood pressure, volume and flow in the finger. in Digest of the 10th International Conference on Medical and Biological Engineering-Dresden, 1973, vol. 104 (1973)
J. Fortin, D.E. Rogge, C. Fellner, D. Flotzinger, J. Grond et al., A novel art of continuous noninvasive blood pressure measurement. Nat. Commun. 12, 1387 (2021). https://doi.org/10.1038/s41467-021-21271-8
S. Cai, Z. Mao, Z. Wang, M. Yin, G.E. Karniadakis, Physics-informed neural networks (PINNs) for fluid mechanics: a review. Acta Mech. Sin. 37(12), 1727–1738 (2021). https://doi.org/10.1007/s10409-021-01148-1
L. Zhang, G. Wang, G.B. Giannakis, Real-time power system state estimation and forecasting via deep unrolled neural networks. IEEE Trans. Signal Process. 67(15), 4069–4077 (2019). https://doi.org/10.1109/TSP.2019.2926023
K. Sel, A. Mohammadi, R.I. Pettigrew, R. Jafari, Physics-informed neural networks for modeling physiological time series: a case study with continuous blood pressure. Res. Sq. 3, 2423200 (2023). https://doi.org/10.21203/rs.3.rs-2423200/v1
R. Wang, M. Qi, Y. Shao, A. Zhou, H. Ma, Adversarial contrastive learning based physics-informed temporal networks for cuffless blood pressure estimation (2024). arXiv preprint arXiv:240808488
L. Li, X.-C. Tai, R. Chan, BP-DeepONet: a new method for cuffless blood pressure estimation using the physcis-informed DeepONet (2024). arXiv E Prints, arXiv: 2402.18886. https://doi.org/10.48550/arXiv.2402.18886
H. Sun, J. Ma, B. Li, Y. Liu, J. Liu et al., Estimation of central aortic pressure waveforms by combination of a meta-learning neural network and a physics-driven method. Int. J. Numer. Meth. Biomed. Eng. 41(1), e3905 (2025). https://doi.org/10.1002/cnm.3905
Z. Chen, Y. Liu, H. Sun, Physics-informed learning of governing equations from scarce data. Nat. Commun. 12(1), 6136 (2021). https://doi.org/10.1038/s41467-021-26434-1
X. Ting, A Novel Multimodal Physiological-Informed Model (mpim) for the Unobtrusive Estimation of Dynamic Beat-to-Beat Arterial Blood Pressure (City University of Hong Kong, 2025)
G.S. Stergiou, A.P. Avolio, P. Palatini, K.G. Kyriakoulis, A.E. Schutte et al., European Society of Hypertension recommendations for the validation of cuffless blood pressure measuring devices: European Society of Hypertension Working Group on Blood Pressure Monitoring and Cardiovascular Variability. J. Hypertens. 41(12), 2074–2087 (2023). https://doi.org/10.1097/HJH.0000000000003483
M.H. Chowdhury, M.N.I. Shuzan, M.E.H. Chowdhury, Z.B. Mahbub, M.M. Uddin et al., Estimating blood pressure from the photoplethysmogram signal and demographic features using machine learning techniques. Sensors 20(11), 3127 (2020). https://doi.org/10.3390/s20113127
M. Elgendi, On the analysis of fingertip photoplethysmogram signals. Curr. Cardiol. Rev. 8(1), 14–25 (2012). https://doi.org/10.2174/157340312801215782
S. Haddad, A. Boukhayma, A. Caizzone, Continuous PPG-based blood pressure monitoring using multi-linear regression. IEEE J. Biomed. Health Inform. 26(5), 2096–2105 (2022). https://doi.org/10.1109/JBHI.2021.3128229
F. Miao, Z.-D. Liu, J.-K. Liu, B. Wen, Q.-Y. He et al., Multi-sensor fusion approach for cuff-less blood pressure measurement. IEEE J. Biomed. Health Inform. 24(1), 79–91 (2020). https://doi.org/10.1109/JBHI.2019.2901724
N. Hasanzadeh, M.M. Ahmadi, H. Mohammadzade, Blood pressure estimation using photoplethysmogram signal and its morphological features. IEEE Sens. J. 20(8), 4300–4310 (2020). https://doi.org/10.1109/JSEN.2019.2961411
O. Schlesinger, N. Vigderhouse, D. Eytan, Y. Moshe, Blood pressure estimation from PPG signals using convolutional neural networks and Siamese network. in ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). May 4–8, 2020. (IEEE, Barcelona, 2020), pp. 1135–1139. https://doi.org/10.1109/icassp40776.2020.9053446
W. Wang, P. Mohseni, K.L. Kilgore, L. Najafizadeh, Cuff-less blood pressure estimation from photoplethysmography via visibility graph and transfer learning. IEEE J. Biomed. Health Inform. 26(5), 2075–2085 (2022). https://doi.org/10.1109/JBHI.2021.3128383
S. Yang, J. Sohn, S. Lee, J. Lee, H.C. Kim, Estimation and validation of arterial blood pressure using photoplethysmogram morphology features in conjunction with pulse arrival time in large open databases. IEEE J. Biomed. Health Inform. 25(4), 1018–1030 (2021). https://doi.org/10.1109/JBHI.2020.3009658
P. Su, X.-R. Ding, Y.-T. Zhang, J. Liu, F. Miao et al., Long-term blood pressure prediction with deep recurrent neural networks. in 2018 IEEE EMBS International Conference on Biomedical & Health Informatics (BHI). (IEEE, 2018), pp. 323–328. https://doi.org/10.1109/BHI.2018.8333434
Z. Liu, Y. Zhang, C. Zhou, BiGRU-attention for Continuous blood pressure trends estimation through single channel PPG. Comput. Biol. Med. 168, 107795 (2024). https://doi.org/10.1016/j.compbiomed.2023.107795
F. Miao, B. Wen, Z. Hu, G. Fortino, X.-P. Wang, Z.-D. Liu, M. Tang, Ye. Li, Continuous blood pressure measurement from one-channel electrocardiogram signal using deep-learning techniques. Artif. Intell. Med. 108, 101919 (2020). https://doi.org/10.1016/j.artmed.2020.101919
D.-K. Kim, Y.-T. Kim, H. Kim, D.-J. Kim, DeepCNAP: a deep learning approach for continuous noninvasive arterial blood pressure monitoring using photoplethysmography. IEEE J. Biomed. Health Inform. 26(8), 3697–3707 (2022). https://doi.org/10.1109/JBHI.2022.3172514
Y. Zhang, X. Ren, X. Liang, X. Ye, C. Zhou, A refined blood pressure estimation model based on single channel photoplethysmography. IEEE J. Biomed. Health Inform. 26(12), 5907–5917 (2022). https://doi.org/10.1109/JBHI.2022.3206477
X. Fan, H. Wang, F. Xu, Y. Zhao, K.-L. Tsui, Homecare-oriented intelligent long-term monitoring of blood pressure using electrocardiogram signals. IEEE Trans. Ind. Inform. 16(11), 7150–7158 (2020). https://doi.org/10.1109/TII.2019.2962546
Z.-D. Liu, Y. Li, Y.-T. Zhang, J. Zeng, Z.-X. Chen et al., HGCTNet: handcrafted feature-guided CNN and transformer network for wearable cuffless blood pressure measurement. IEEE J. Biomed. Health Inform. 28(7), 3882–3894 (2024). https://doi.org/10.1109/JBHI.2024.3395445
Y. Zhang, C. Zhou, X. Ren, Q. Wang, H. Wang et al., Personalized continuous blood pressure tracking through single channel PPG in wearable scenarios. IEEE J. Biomed. Health Inform. 29(6), 4109–4120 (2025). https://doi.org/10.1109/JBHI.2025.3535788
C. Ding, Z. Guo, Z. Chen, R.J. Lee, C. Rudin et al., SiamQuality: a ConvNet-based foundation model for photoplethysmography signals. Physiol. Meas. 45(8), 085004 (2024). https://doi.org/10.1088/1361-6579/ad6747
A. Pillai, D. Spathis, F. Kawsar, M. Malekzadeh, PaPaGei: open foundation models for optical physiological signals (2024). arXiv: 2410.20542. https://doi.org/10.48550/arXiv.2410.20542
K. Qin, W. Huang, T. Zhang, S. Tang, Machine learning and deep learning for blood pressure prediction: a methodological review from multiple perspectives. Artif. Intell. Rev. 56(8), 8095–8196 (2022). https://doi.org/10.1007/s10462-022-10353-8
M.Y. Cheung, A. Sabharwal, G.L. Coté, A. Veeraraghavan, Wearable blood pressure monitoring devices: understanding heterogeneity in design and evaluation. IEEE Trans. Biomed. Eng. 71(12), 3569–3592 (2024). https://doi.org/10.1109/TBME.2024.3434344
N.N. Alajlan, D.M. Ibrahim, TinyML: enabling of inference deep learning models on ultra-low-power IoT edge devices for AI applications. Micromachines 13(6), 851 (2022). https://doi.org/10.3390/mi13060851
X. Wang, Y. Han, V.C.M. Leung, D. Niyato, X. Yan, Xu. Chen, Convergence of edge computing and deep learning: a comprehensive survey. IEEE Commun. Surv. Tutor. 22(2), 869–904 (2020). https://doi.org/10.1109/COMST.2020.2970550
W. Su, L. Li, F. Liu, M. He, X. Liang, AI on the edge: a comprehensive review. Artif. Intell. Rev. 55(8), 6125–6183 (2022). https://doi.org/10.1007/s10462-022-10141-4
O. Durmaz Incel, S.Ö. Bursa, On-device deep learning for mobile and wearable sensing applications: a review. IEEE Sens. J. 23(6), 5501–5512 (2023). https://doi.org/10.1109/JSEN.2023.3240854
W. Goossens, D. Mustefa, D. Scholle, H. Fotouhi, J. Denil, Evaluating edge computing and compression for remote cuff-less blood pressure monitoring. J. Sens. Actuator Netw. 12(1), 2 (2023). https://doi.org/10.3390/jsan12010002
Y.-H. Gao, J. Li, C.-H. Fan, K.N. Leung, Y.-T. Zhang et al., A 9.84-μW 148.9-dB total DR light-to-digital converter with current-integration SAR quantizer for multi-wavelength PPG applications. IEEE Trans. Circuits Syst. I Regul. Pap. 72(11), 6886–6899 (2025). https://doi.org/10.1109/TCSI.2025.3564384
T. Sipola, J. Alatalo, T. Kokkonen, M. Rantonen, Artificial intelligence in the IoT era: a review of edge AI hardware and software. in 2022 31st Conference of Open Innovations Association (FRUCT). (IEEE, 2022), pp. 320–331. https://doi.org/10.23919/FRUCT54823.2022.9770931
S. Liu, Y. Lin, Z. Zhou, K. Nan, H. Liu et al., On-demand deep model compression for mobile devices: a usage-driven model selection framework. in Proceedings of the 16th Annual International Conference on Mobile Systems, Applications, and Services. (ACM, Munich, 2018), pp. 389–400. https://doi.org/10.1145/3210240.3210337
Z.-D. Liu, Y. Li, Y.-T. Zhang, J. Zeng, Z.-X. Chen et al., Cuffless blood pressure measurement using smartwatches: a large-scale validation study. IEEE J. Biomed. Health Inform. 27(9), 4216–4227 (2023). https://doi.org/10.1109/JBHI.2023.3278168
R. He, Z.-P. Huang, L.-Y. Ji, J.-K. Wu, H. Li et al., Beat-to-beat ambulatory blood pressure estimation based on random forest. in 2016 IEEE 13th International Conference on Wearable and Implantable Body Sensor Networks (BSN). (IEEE, 2016), pp. 194–198. https://doi.org/10.1109/BSN.2016.7516258
R. Mieloszyk, H. Twede, J. Lester, J. Wander, S. Basu et al., A comparison of wearable tonometry, photoplethysmography, and electrocardiography for cuffless measurement of blood pressure in an ambulatory setting. IEEE J. Biomed. Health Inform. 26(7), 2864–2875 (2022). https://doi.org/10.1109/JBHI.2022.3153259
J. Leitner, P.-H. Chiang, S. Dey, Personalized blood pressure estimation using photoplethysmography: a transfer learning approach. IEEE J. Biomed. Health Inform. 26(1), 218–228 (2022). https://doi.org/10.1109/JBHI.2021.3085526
K. Ahmed, M. Hassan, tinyCare: a tinyML-based low-cost continuous blood pressure estimation on the extreme edge. in 2022 IEEE 10th International Conference on Healthcare Informatics (ICHI). (IEEE, 2022), pp. 264–275. https://doi.org/10.1109/ICHI54592.2022.00047
M. Jia, Y. Qin, C. Song, Z. Yue, S. Ding, CEBPM: a cloud-edge collaborative noncontact blood pressure estimation model. IEEE Trans. Instrum. Meas. 71, 5022712 (2022). https://doi.org/10.1109/TIM.2022.3205679
J.A. González-Nóvoa, L. Busto, S. Campanioni, C. Martínez, J. Fariña, J.J. Rodríguez-Andina, P. Juan-Salvadores, V. Jiménez, A. Íñiguez, C. Veiga, Advancing cuffless arterial blood pressure estimation: a patient-specific optimized approach reducing computational requirements. Future Gener. Comput. Syst. 166, 107689 (2025). https://doi.org/10.1016/j.future.2024.107689
A. Burrello, F. Carlucci, G. Pollo, X. Wang, M. Poncino et al., Optimization and deployment of deep neural networks for PPG-based blood pressure estimation targeting low-power wearables. In 2024 IEEE Biomedical Circuits and Systems Conference (BioCAS). (IEEE, 2024), pp. 1–5. https://doi.org/10.1109/BioCAS61083.2024.10798404
W. Lin, B.U. Demirel, M.A. Al Faruque, G.P. Li, Energy-efficient blood pressure monitoring based on single-site photoplethysmogram on wearable devices. in 2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC). November 1–5, 2021. (IEEE, Mexico, 2021), pp. 504–507. https://doi.org/10.1109/embc46164.2021.9630488
K. Rishi Vardhan, S. Vedanth, G. Poojah, K. Abhishek, M. Nitish Kumar et al., BP-net: efficient deep learning for continuous arterial blood pressure estimation using photoplethysmogram. in 2021 20th IEEE International Conference on Machine Learning and Applications (ICMLA). December 13–16, 2021. (IEEE, Pasadena, 2021), pp. 1495–1500. https://doi.org/10.1109/icmla52953.2021.00241
S. Banerjee, B. Kumar, A.P. James, J.N. Tripathi, Blood pressure estimation from ECG data using XGBoost and ANN for wearable devices. in 2022 29th IEEE International Conference on Electronics, Circuits and Systems (ICECS). (IEEE, 2022), pp. 1–4. https://doi.org/10.1109/ICECS202256217.2022.9970924
D. Bernard, C. Msigwa, J. Yun, Toward IoT-based medical edge devices: PPG-based blood pressure estimation application. IEEE Internet Things J. 10(6), 5240–5255 (2023). https://doi.org/10.1109/JIOT.2022.3222477
S.-H. Liu, B.-Y. Wu, X. Zhu, C.-L. Chin, Using a bodily weight-fat scale for cuffless blood pressure measurement based on the edge computing system. Sensors 24(23), 7830 (2024). https://doi.org/10.3390/s24237830
B. Sun, S. Bayes, A.M. Abotaleb, M. Hassan, The case for tinyML in healthcare: CNNs for real-time on-edge blood pressure estimation. in Proceedings of the 38th ACM/SIGAPP Symposium on Applied Computing. (ACM, Tallinn Estonia, 2023), pp. 629–638. https://doi.org/10.1145/3555776.3577747
M.S. Roy, R. Gupta, K. Das Sharma, Bepcon: a photoplethysmography-based quality-aware continuous beat-to-beat blood pressure measurement technique using deep learning. IEEE Trans. Instrum. Meas. 71, 2519709 (2022). https://doi.org/10.1109/TIM.2022.3212750
N.F. Ali, M. Hussein, F. Awwad, M. Atef, Convolutional autoencoder for real-time PPG based blood pressure monitoring using TinyML. in 2023 International Conference on Microelectronics (ICM). (IEEE, 2024), pp. 41–45. https://doi.org/10.1109/ICM60448.2023.10378901
B.C. Casadei, A. Gumiero, G. Tantillo, L. Della Torre, G. Olmo, Systolic blood pressure estimation from PPG signal using ANN. Electronics 11(18), 2909 (2022). https://doi.org/10.3390/electronics11182909
T. Joseph, Real-time blood pressure prediction on wearables with edge-based DNNs: a co-design approach. ACM Trans. Des. Autom. Electron. Syst. 30(1), 1–24 (2025). https://doi.org/10.1145/3699512
M. Sheng, R. Xing, Y. Xin, B. Zhang, Z. Guo et al., A 4.4 μW cuffless blood pressure measurement processor based on event-driven and module-level asynchronous scheme. in 2024 IEEE Biomedical Circuits and Systems Conference (BioCAS). (IEEE, 2024), pp. 1–5. https://doi.org/10.1109/BioCAS61083.2024.10798356
J. Zhang, J. Li, Y. Jiang, K. Wang, R. Guo et al., A hardware-based lightweight ANN for real-time wearable blood pressure estimation. in 2022 44th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC). (IEEE, 2022), pp. 4295–4298. https://doi.org/10.1109/EMBC48229.2022.9871215
T.P. Almeida, M. Cortés, D. Perruchoud, J. Alexandre, P. Vermare et al., Aktiia cuffless blood pressure monitor yields equivalent daytime blood pressure measurements compared to a 24-h ambulatory blood pressure monitor: preliminary results from a prospective single-center study. Hypertens. Res. 46(6), 1456–1461 (2023). https://doi.org/10.1038/s41440-023-01258-2
M. Vaseekaran, S. Kaese, D. Görlich, M. Wiemer, A. Samol, WATCH-BPM: comparison of a WATCH-type blood pressure monitor with a conventional ambulatory blood pressure monitor and auscultatory sphygmomanometry. Sensors 23(21), 8877 (2023). https://doi.org/10.3390/s23218877
Valencell. Valencell unveils calibration free cuffless blood pressure monitoring solution targeting over the counter use (2023)
D. Nachman, Y. Gepner, N. Goldstein, E. Kabakov, A. Ben Ishay et al., Comparing blood pressure measurements between a photoplethysmography-based and a standard cuff-based manometry device. Sci. Rep. 10(1), 16116 (2020). https://doi.org/10.1038/s41598-020-73172-3
G. Sayer, G. Piper, E. Vorovich, J. Raikhelkar, G.H. Kim et al., Continuous monitoring of blood pressure using a wrist-worn cuffless device. Am. J. Hypertens. 35(5), 407–413 (2022). https://doi.org/10.1093/ajh/hpac020
P.S. Kumar, P. Rai, M. Ramasamy, V.K. Varadan, V.K. Varadan, Multiparametric cloth-based wearable, simplesense, estimates blood pressure. Sci. Rep. 12(1), 13059 (2022). https://doi.org/10.1038/s41598-022-17223-x
Food, A. Drug. Nanowear inc. 510(k) submission summary (k232053) (2025)
A. Food, Drug (Food and Drug Administration: Pyrames Inc, 2025)
C. Festo, V. Vannevel, H. Ali, T. Tamrat, G.J. Mollel et al., Accuracy of a smartphone application for blood pressure estimation in Bangladesh, South Africa, and Tanzania. npj Digit. Med. 6(1), 69 (2023). https://doi.org/10.1038/s41746-023-00804-z
M. Falter, M. Scherrenberg, K. Driesen, Z. Pieters, T. Kaihara, L. Xu, E.G. Caiani, P. Castiglioni, A. Faini, G. Parati, P. Dendale, Smartwatch-based blood pressure measurement demonstrates insufficient accuracy. Front. Cardiovasc. Med. 9, 958212 (2022). https://doi.org/10.3389/fcvm.2022.958212
H. Lee, S. Park, H. Kwon, B. Cho, J.H. Park, H.-Y. Lee, Feasibility and effectiveness of a ring-type blood pressure measurement device compared with 24-hour ambulatory blood pressure monitoring device. Korean Circ. J. 54(2), 93–104 (2024). https://doi.org/10.4070/kcj.2023.0303
H. Benmeziane, K. El Maghraoui, H. Ouarnoughi, S. Niar, M. Wistuba et al., Hardware-aware neural architecture search: survey and taxonomy. in Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence. August 19–27, 2021. Montreal, Canada. International Joint Conferences on Artificial Intelligence Organization (2021), pp. 4322–4329. https://doi.org/10.24963/ijcai.2021/592
Y. He, X. Zhang, J. Sun, Channel pruning for accelerating very deep neural networks. in 2017 IEEE International Conference on Computer Vision (ICCV). (IEEE, 2017), pp. 1398–1406. https://doi.org/10.1109/ICCV.2017.155
T.-J. Yang, Y.-H. Chen, V. Sze, Designing energy-efficient convolutional neural networks using energy-aware pruning. in 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). (IEEE, 2017), pp. 6071–6079
J. Gou, B. Yu, S.J. Maybank, D. Tao, Knowledge distillation: a survey. Int. J. Comput. Vis. 129(6), 1789–1819 (2021). https://doi.org/10.1007/s11263-021-01453-z
X. Zhang, J. Zou, K. He, J. Sun, Accelerating very deep convolutional networks for classification and detection. IEEE Trans. Pattern Anal. Mach. Intell. 38(10), 1943–1955 (2016). https://doi.org/10.1109/TPAMI.2015.2502579
V. Lebedev, Y. Ganin, M. Rakhuba, I. Oseledets, V. Lempitsky, Speeding-up convolutional neural networks using fine-tuned cp-decomposition (2014). arXiv preprint arXiv:14126553
D. Gupta, A. Bhatti, S. Parmar, C. Dan, Y. Liu et al., Low-rank adaptation of time series foundational models for out-of-domain modality forecasting. in International Conference on Multimodel Interaction. (ACM, San Jose Costa Rica, 2024), pp. 382–386. https://doi.org/10.1145/3678957.3685724
Y.D. Kwon, J. Chauhan, A. Kumar, P.H. Hkust, C. Mascolo, Exploring system performance of continual learning for mobile and embedded sensing applications. in 2021 IEEE/ACM Symposium on Edge Computing (SEC) (2021), pp. 319–332
Y. Chen, X. Qin, J. Wang, C. Yu, W. Gao, Fedhealth: a federated transfer learning framework for wearable healthcare. IEEE Intell. Syst. 35(4), 83–93 (2020). https://doi.org/10.1109/MIS.2020.2988604
W. Ni, H. Ao, H. Tian, Y.C. Eldar, D. Niyato, Fedsl: federated split learning for collaborative healthcare analytics on resource-constrained wearable iomt devices. IEEE Internet Things J. (2024). https://doi.org/10.1109/JIOT.2024.3370985
T. Chen, T. Moreau, Z. Jiang, L. Zheng, E. Yan et al., Tvm: an automated end-to-end optimizing compiler for deep learning. in 13th USENIX Symposium on Operating Systems Design and Implementation (OSDI 18). (2018), pp. 578–594
M. Sponner, B. Waschneck, A. Kumar, Compiler toolchains for deep learning workloads on embedded platforms. arXiv preprint arXiv:210404576 (2021)
H. Cai, J. Lin, Y. Lin, Z. Liu, H. Tang et al., Enable deep learning on mobile devices: methods, systems, and applications. ACM Trans. Des. Autom. Electron. Syst. 27(3), 1–50 (2022). https://doi.org/10.1145/3486618
M.M.H. Shuvo, S.K. Islam, J. Cheng, B.I. Morshed, Efficient acceleration of deep learning inference on resource-constrained edge devices: a review. Proc. IEEE 111(1), 42–91 (2023). https://doi.org/10.1109/JPROC.2022.3226481
B. Liang, K. Duan, Q. Xie, M. Atef, Z. Qian et al., Live demonstration: a support vector machine based hardware platform for blood pressure prediction. in 2016 IEEE Biomedical Circuits and Systems Conference (BioCAS). (IEEE, 2017), pp. 130–130. https://doi.org/10.1109/BioCAS.2016.7833744
A. Mahajan, K. Heydari, D. Powell, Wearable AI to enhance patient safety and clinical decision-making. NPJ Digit. Med. 8(1), 176 (2025). https://doi.org/10.1038/s41746-025-01554-w
K. Shah, A. Wang, Y. Chen, J. Munjal, S. Chhabra, A. Stange, E. Wei, T. Phan, T. Giest, B. Hawkins, D. Puppala, E. Silver, L. Cai, S. Rajagopalan, E. Shi, Y.-L. Lee, M. Wimmer, P. Rudrapatna, T. Rea, S. Yuen, A. Pathak, S. Patel, M. Malhotra, M. Stogaitis, J. Phan, B. Patel, A. Vasquez, C. Fox, A. Connell, J. Taylor, J. Shreibati, D. Miller, D. McDuff, P. Kohli, T. Gadh, J. Sunshine, Automated loss of pulse detection on a consumer smartwatch. Nature 642(8066), 174–181 (2025). https://doi.org/10.1038/s41586-025-08810-9
C. Mennella, U. Maniscalco, G. De Pietro, M. Esposito, Ethical and regulatory challenges of AI technologies in healthcare: a narrative review. Heliyon 10(4), e26297 (2024). https://doi.org/10.1016/j.heliyon.2024.e26297
K. Wołos, L. Pstras, M. Debowska, W. Dabrowski, D. Siwicka-Gieroba, J. Poleszczuk, Non-invasive assessment of stroke volume and cardiovascular parameters based on peripheral pressure waveform. PLoS Comput. Biol. 20(4), e1012013 (2024). https://doi.org/10.1371/journal.pcbi.1012013
R. Mukkamala, M. Yavarimanesh, K. Natarajan, J.-O. Hahn, K.G. Kyriakoulis et al., Evaluation of the accuracy of cuffless blood pressure measurement devices: challenges and proposals. Hypertension 78(5), 1161–1167 (2021). https://doi.org/10.1161/HYPERTENSIONAHA.121.17747
A. Burrello, M. Risso, N. Tomasello, Y. Chen, L. Benini et al., Energy-efficient wearable-to-mobile offload of ML inference for PPG-based heart-rate estimation. in 2023 Design, Automation & Test in Europe Conference & Exhibition (DATE). (IEEE, 2023), pp: 1–6. https://doi.org/10.23919/DATE56975.2023.10137129
G.S. Stergiou, B. Alpert, S. Mieke, R. Asmar, N. Atkins et al., A universal standard for the validation of blood pressure measuring devices: Association for the Advancement of Medical Instrumentation/European Society of Hypertension/International Organization for Standardization (AAMI/ESH/ISO) collaboration statement. J. Hypertens. 36(3), 472–478 (2018). https://doi.org/10.1097/HJH.0000000000001634
E. O’Brien, J. Petrie, W. Littler, M. de Swiet, P.L. Padfield et al., An outline of the revised British Hypertension Society protocol for the evaluation of blood pressure measuring devices. J. Hypertens. 11(6), 677–679 (1993). https://doi.org/10.1097/00004872-199306000-00013
Iso 81060-3:2022. Non-invasive sphygmomanometers—part 3: clinical investigation of continuous automated measurement type (2022)