SnS2@C Hollow Nanospheres with Robust Structural Stability as High-Performance Anodes for Sodium Ion Batteries
Corresponding Author: Dan Li
Nano-Micro Letters,
Vol. 11 (2019), Article Number: 14
Abstract
Constructing unique and highly stable structures with plenty of electroactive sites in sodium storage materials is a key factor for achieving improved electrochemical properties through favorable sodium ion diffusion kinetics. An SnS2@carbon hollow nanospheres (SnS2@C) has been designed and fabricated via a facile solvothermal route, followed by an annealing treatment. The SnS2@C hybrid possesses an ideal hollow structure, rich active sites, a large electrode/electrolyte interface, a shortened ion transport pathway, and, importantly, a buffer space for volume change, generated from the repeated insertion/extraction of sodium ions. These merits lead to the significant reinforcement of structural integrity during electrochemical reactions and the improvement in sodium storage properties, with a high specific reversible capacity of 626.8 mAh g−1 after 200 cycles at a current density of 0.2 A g−1 and superior high-rate performance (304.4 mAh g−1 at 5 A g−1).
Highlights:
1 Core–shell structured SnS2@C hollow nanospheres were synthesized.
2 The uniform carbon coating and hollow structure can alleviate the mechanical strain and therefore electrochemical performance.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- C.X. Zu, H. Li, Thermodynamic analysis on energy densities of batteries. Energy Environ. Sci. 4(8), 2614–2624 (2011). https://doi.org/10.1039/c0ee00777c
- D. Li, H. Wang, T. Zhou, W. Zhang, H.K. Liu, Z. Guo, Unique structural design and strategies for germanium-based anode materials toward enhanced lithium storage. Adv. Energy Mater. 7(23), 1700488 (2017). https://doi.org/10.1002/aenm.201700488
- S. Zhao, Z. Wang, Y. He, B. Jiang, Y. Harn et al., Interconnected Ni(HCO3)2 hollow spheres enabled by self-sacrificial templating with enhanced lithium storage properties. ACS Energy Lett. 2(1), 111–116 (2017). https://doi.org/10.1021/acsenergylett.6b00582
- B. Jiang, C. Han, B. Li, Y. He, Z. Lin, In-situ crafting of ZnFe2O4 nanoparticles impregnated within continuous carbon network as advanced anode materials. ACS Nano 10(2), 2728–2735 (2016). https://doi.org/10.1021/acsnano.5b07806
- Y. Liu, N. Zhang, L. Jiao, J. Chen, Tin nanodots encapsulated in porous nitrogen-doped carbon nanofibers as a free-standing anode for advanced sodium-ion batteries. Adv. Mater. 27(42), 6702–6707 (2015). https://doi.org/10.1002/adma.201503015
- B. Jiang, Y. He, B. Li, S. Zhao, S. Wang, Y.B. He, Z. Lin, Polymer-templated formation of polydopamine-coated SnO2 nanocrystals: anodes for cyclable lithium-ion batteries. Angew. Chem. Int. Ed. 56(7), 1869–1872 (2017). https://doi.org/10.1002/anie.201611160
- E. de la Llave, V. Borgel, K.J. Park, J.Y. Hwang, Y.K. Sun et al., Comparison between Na-ion and Li-ion cells: understanding the critical role of the cathodes stability and the anodes pretreatment on the cells behavior. ACS Appl. Mater. Interfaces 8(3), 1867–1875 (2016). https://doi.org/10.1021/acsami.5b09835
- M.D. Slater, D. Kim, E. Lee, C.S. Johnson, Sodium-ion batteries. Adv. Funct. Mater. 23(8), 947–958 (2013). https://doi.org/10.1002/adfm.201200691
- V. Palomares, P. Serras, I. Villaluenga, K.B. Hueso, J. Carretero-Gonzalez, T. Rojo, Na-ion batteries, recent advances and present challenges to become low cost energy storage systems. Energy Environ. Sci. 5(3), 5884–5901 (2012). https://doi.org/10.1039/c2ee02781j
- H. Pan, Y.S. Hu, L. Chen, Room-temperature stationary sodium-ion batteries for large-scale electric energy storage. Energy Environ. Sci. 6(8), 2338–2360 (2013). https://doi.org/10.1039/c3ee40847g
- P.V. Prikhodchenko, D.Y.W. Yu, S.K. Batabyal, V. Uvarov, J. Gun et al., Nanocrystalline tin disulfide coating of reduced graphene oxide produced by the peroxostannate deposition route for sodium ion battery anodes. J. Mater. Chem. A 2(22), 8431–8437 (2014). https://doi.org/10.1039/c3ta15248k
- T. Jin, Q. Han, Y. Wang, L. Jiao, 1D nanomaterials: design, synthesis, and applications in sodium–ion batteries. Small 14(2), 1703086 (2018). https://doi.org/10.1002/smll.201703086
- Y. Liu, H. Kang, L. Jiao, C. Chen, K. Cao, Y. Wang, H. Yuan, Exfoliated-SnS2 restacked on graphene as a high-capacity, high-rate, and long-cycle life anode for sodium ion batteries. Nanoscale 7(4), 1325–1332 (2015). https://doi.org/10.1039/C4NR05106H
- L. Wu, X. Hu, J. Qian, F. Pei, F. Wu et al., A Sn–SnS–C nanocomposite as anode host materials for Na-ion batteries. J. Mater. Chem. A 1(24), 7181–7184 (2013). https://doi.org/10.1039/c3ta10920h
- T. Zhou, W.K. Pang, C. Zhang, J. Yang, Z. Chen, H.K. Liu, Z. Guo, Enhanced sodium-ion battery performance by structural phase transition from two-dimensional hexagonal-SnS2 to orthorhombic-SnS. ACS Nano 8(8), 8323–8333 (2014). https://doi.org/10.1021/nn503582c
- Y. Zheng, T. Zhou, C. Zhang, J. Mao, H. Liu, Z. Guo, Boosted charge transfer in SnS/SnO2 heterostructures: toward high rate capability for sodium-ion batteries. Angew. Chem. Int. Ed. 55(10), 3408–3413 (2016). https://doi.org/10.1002/anie.201510978
- Y. Jiang, Y. Guo, W. Lu, Z. Feng, B. Xi et al., Rationally incorporated MoS2/SnS2 nanoparticles on graphene sheets for lithium-ion and sodium-ion batteries. ACS Appl. Mater. Interfaces 9(33), 27697–27706 (2017). https://doi.org/10.1021/acsami.7b06572
- D. Ma, Y. Li, H. Mi, S. Luo, P. Zhang, Z. Lin, J. Li, H. Zhang, Robust SnO2−x nanoparticle-impregnated carbon nanofibers with outstanding electrochemical performance for advanced sodium-ion batteries. Angew. Chem. Int. Ed. 57(29), 8901–8905 (2018). https://doi.org/10.1002/anie.201802672
- X. Wang, X. Li, Q. Li, H. Li, J. Xu et al., Improved electrochemical performance based on nanostructured SnS2@CoS2–rGO composite anode for sodium-ion batteries. Nano-Micro Lett. 10, 46 (2018). https://doi.org/10.1007/s40820-018-0200-x
- W. Sun, X. Rui, D. Yang, Z. Sun, B. Li et al., Two-dimensional tin disulfide nanosheets for enhanced sodium storage. ACS Nano 9(11), 11371–11381 (2015). https://doi.org/10.1021/acsnano.5b05229
- B. Qu, C. Ma, G. Ji, C. Xu, J. Xu et al., Layered SnS2-reduced graphene oxide composite—a high-capacity, high-rate, and long-cycle life sodium-ion battery anode material. Adv. Mater. 26(23), 3854–3859 (2014). https://doi.org/10.1002/adma.201306314
- D. Chao, P. Liang, Z. Chen, L. Bai, H. Shen et al., Pseudocapacitive Na-ion storage boosts high rate and areal capacity of self-branched 2D layered metal chalcogenide nanoarrays. ACS Nano 10(11), 10211–10219 (2016). https://doi.org/10.1021/acsnano.6b05566
- R. Thangavel, A. Samuthira Pandian, H.V. Ramasamy, Y.S. Lee, Rapidly synthesized, few-layered pseudocapacitive SnS2 anode for high-power sodium ion batteries. ACS Appl. Mater. Interfaces 9(46), 40187–40196 (2017). https://doi.org/10.1021/acsami.7b11040
- Y. Zhang, P. Zhu, L. Huang, J. Xie, S. Zhang, G. Cao, X. Zhao, Few-layered SnS2 on few-layered reduced graphene oxide as Na-ion battery anode with ultralong cycle life and superior rate capability. Adv. Funct. Mater. 25(3), 481–489 (2015). https://doi.org/10.1002/adfm.201402833
- X. Xie, D. Su, S. Chen, J. Zhang, S. Dou, G. Wang, SnS2 nanoplatelet@graphene nanocomposites as high-capacity anode materials for sodium-ion batteries. Chem-Asian J. 9(6), 1611–1617 (2014). https://doi.org/10.1002/asia.201400018
- P. Zhou, X. Wang, W. Guan, D. Zhang, L. Fang, Y. Jiang, SnS2 nanowall arrays toward high-performance sodium storage. ACS Appl. Mater. Interfaces 9(8), 6979–6987 (2017). https://doi.org/10.1021/acsami.6b13613
- Y. Wang, J. Zhou, J. Wu, F. Chen, P. Li et al., Engineering SnS2 nanosheet assemblies for enhanced electrochemical lithium and sodium ion storage. J. Mater. Chem. A 5(48), 25618–25624 (2017). https://doi.org/10.1039/C7TA08056E
- F. Tu, X. Xu, P. Wang, L. Si, X. Zhou, J. Bao, A few-layer SnS2/reduced graphene oxide sandwich hybrid for efficient sodium storage. J. Phys. Chem. C 121(6), 3261–3269 (2017). https://doi.org/10.1021/acs.jpcc.6b12692
- P. Zheng, Z. Dai, Y. Zhang, K.N. Dinh, Y. Zheng et al., Scalable synthesis of SnS2/S-doped graphene composites for superior Li/Na-ion batteries. Nanoscale 9(39), 14820–14825 (2017). https://doi.org/10.1039/C7NR06044K
- X.W. Lou, Y. Wang, C. Yuan, J.Y. Lee, L.A. Archer, Template-free synthesis of SnO2 hollow nanostructures with high lithium storage capacity. Adv. Mater. 18(17), 2325–2329 (2006). https://doi.org/10.1002/adma.200600733
- Y. Lei, S. Song, W. Fan, Y. Xing, H. Zhang, Facile synthesis and assemblies of flowerlike SnS2 and In3+-doped SnS2: hierarchical structures and their enhanced photocatalytic property. J. Phys. Chem. C 113(4), 1280–1285 (2009). https://doi.org/10.1021/jp8079974
- L. Fan, X. Li, X. Song, N. Hu, D. Xiong, A. Koo, X. Sun, Promising dual-doped graphene aerogel/SnS2 nanocrystal building high performance sodium ion batteries. ACS Appl. Mater. Interfaces 10(3), 2637–2648 (2018). https://doi.org/10.1021/acsami.7b18195
- Z. Chen, R. Wu, M. Liu, H. Wang, H. Xu et al., General synthesis of dual carbon-confined metal sulfides quantum dots toward high-performance anodes for sodium-ion batteries. Adv. Funct. Mater. 27(38), 1702046 (2017). https://doi.org/10.1002/adfm.201702046
- J. Wang, C. Luo, J. Mao, Y. Zhu, X. Fan, T. Gao, A.C. Mignerey, C. Wang, Solid-state fabrication of SnS2/C nanospheres for high-performance sodium ion battery anode. ACS Appl. Mater. Interfaces 7(21), 11476–11481 (2015). https://doi.org/10.1021/acsami.5b02413
References
C.X. Zu, H. Li, Thermodynamic analysis on energy densities of batteries. Energy Environ. Sci. 4(8), 2614–2624 (2011). https://doi.org/10.1039/c0ee00777c
D. Li, H. Wang, T. Zhou, W. Zhang, H.K. Liu, Z. Guo, Unique structural design and strategies for germanium-based anode materials toward enhanced lithium storage. Adv. Energy Mater. 7(23), 1700488 (2017). https://doi.org/10.1002/aenm.201700488
S. Zhao, Z. Wang, Y. He, B. Jiang, Y. Harn et al., Interconnected Ni(HCO3)2 hollow spheres enabled by self-sacrificial templating with enhanced lithium storage properties. ACS Energy Lett. 2(1), 111–116 (2017). https://doi.org/10.1021/acsenergylett.6b00582
B. Jiang, C. Han, B. Li, Y. He, Z. Lin, In-situ crafting of ZnFe2O4 nanoparticles impregnated within continuous carbon network as advanced anode materials. ACS Nano 10(2), 2728–2735 (2016). https://doi.org/10.1021/acsnano.5b07806
Y. Liu, N. Zhang, L. Jiao, J. Chen, Tin nanodots encapsulated in porous nitrogen-doped carbon nanofibers as a free-standing anode for advanced sodium-ion batteries. Adv. Mater. 27(42), 6702–6707 (2015). https://doi.org/10.1002/adma.201503015
B. Jiang, Y. He, B. Li, S. Zhao, S. Wang, Y.B. He, Z. Lin, Polymer-templated formation of polydopamine-coated SnO2 nanocrystals: anodes for cyclable lithium-ion batteries. Angew. Chem. Int. Ed. 56(7), 1869–1872 (2017). https://doi.org/10.1002/anie.201611160
E. de la Llave, V. Borgel, K.J. Park, J.Y. Hwang, Y.K. Sun et al., Comparison between Na-ion and Li-ion cells: understanding the critical role of the cathodes stability and the anodes pretreatment on the cells behavior. ACS Appl. Mater. Interfaces 8(3), 1867–1875 (2016). https://doi.org/10.1021/acsami.5b09835
M.D. Slater, D. Kim, E. Lee, C.S. Johnson, Sodium-ion batteries. Adv. Funct. Mater. 23(8), 947–958 (2013). https://doi.org/10.1002/adfm.201200691
V. Palomares, P. Serras, I. Villaluenga, K.B. Hueso, J. Carretero-Gonzalez, T. Rojo, Na-ion batteries, recent advances and present challenges to become low cost energy storage systems. Energy Environ. Sci. 5(3), 5884–5901 (2012). https://doi.org/10.1039/c2ee02781j
H. Pan, Y.S. Hu, L. Chen, Room-temperature stationary sodium-ion batteries for large-scale electric energy storage. Energy Environ. Sci. 6(8), 2338–2360 (2013). https://doi.org/10.1039/c3ee40847g
P.V. Prikhodchenko, D.Y.W. Yu, S.K. Batabyal, V. Uvarov, J. Gun et al., Nanocrystalline tin disulfide coating of reduced graphene oxide produced by the peroxostannate deposition route for sodium ion battery anodes. J. Mater. Chem. A 2(22), 8431–8437 (2014). https://doi.org/10.1039/c3ta15248k
T. Jin, Q. Han, Y. Wang, L. Jiao, 1D nanomaterials: design, synthesis, and applications in sodium–ion batteries. Small 14(2), 1703086 (2018). https://doi.org/10.1002/smll.201703086
Y. Liu, H. Kang, L. Jiao, C. Chen, K. Cao, Y. Wang, H. Yuan, Exfoliated-SnS2 restacked on graphene as a high-capacity, high-rate, and long-cycle life anode for sodium ion batteries. Nanoscale 7(4), 1325–1332 (2015). https://doi.org/10.1039/C4NR05106H
L. Wu, X. Hu, J. Qian, F. Pei, F. Wu et al., A Sn–SnS–C nanocomposite as anode host materials for Na-ion batteries. J. Mater. Chem. A 1(24), 7181–7184 (2013). https://doi.org/10.1039/c3ta10920h
T. Zhou, W.K. Pang, C. Zhang, J. Yang, Z. Chen, H.K. Liu, Z. Guo, Enhanced sodium-ion battery performance by structural phase transition from two-dimensional hexagonal-SnS2 to orthorhombic-SnS. ACS Nano 8(8), 8323–8333 (2014). https://doi.org/10.1021/nn503582c
Y. Zheng, T. Zhou, C. Zhang, J. Mao, H. Liu, Z. Guo, Boosted charge transfer in SnS/SnO2 heterostructures: toward high rate capability for sodium-ion batteries. Angew. Chem. Int. Ed. 55(10), 3408–3413 (2016). https://doi.org/10.1002/anie.201510978
Y. Jiang, Y. Guo, W. Lu, Z. Feng, B. Xi et al., Rationally incorporated MoS2/SnS2 nanoparticles on graphene sheets for lithium-ion and sodium-ion batteries. ACS Appl. Mater. Interfaces 9(33), 27697–27706 (2017). https://doi.org/10.1021/acsami.7b06572
D. Ma, Y. Li, H. Mi, S. Luo, P. Zhang, Z. Lin, J. Li, H. Zhang, Robust SnO2−x nanoparticle-impregnated carbon nanofibers with outstanding electrochemical performance for advanced sodium-ion batteries. Angew. Chem. Int. Ed. 57(29), 8901–8905 (2018). https://doi.org/10.1002/anie.201802672
X. Wang, X. Li, Q. Li, H. Li, J. Xu et al., Improved electrochemical performance based on nanostructured SnS2@CoS2–rGO composite anode for sodium-ion batteries. Nano-Micro Lett. 10, 46 (2018). https://doi.org/10.1007/s40820-018-0200-x
W. Sun, X. Rui, D. Yang, Z. Sun, B. Li et al., Two-dimensional tin disulfide nanosheets for enhanced sodium storage. ACS Nano 9(11), 11371–11381 (2015). https://doi.org/10.1021/acsnano.5b05229
B. Qu, C. Ma, G. Ji, C. Xu, J. Xu et al., Layered SnS2-reduced graphene oxide composite—a high-capacity, high-rate, and long-cycle life sodium-ion battery anode material. Adv. Mater. 26(23), 3854–3859 (2014). https://doi.org/10.1002/adma.201306314
D. Chao, P. Liang, Z. Chen, L. Bai, H. Shen et al., Pseudocapacitive Na-ion storage boosts high rate and areal capacity of self-branched 2D layered metal chalcogenide nanoarrays. ACS Nano 10(11), 10211–10219 (2016). https://doi.org/10.1021/acsnano.6b05566
R. Thangavel, A. Samuthira Pandian, H.V. Ramasamy, Y.S. Lee, Rapidly synthesized, few-layered pseudocapacitive SnS2 anode for high-power sodium ion batteries. ACS Appl. Mater. Interfaces 9(46), 40187–40196 (2017). https://doi.org/10.1021/acsami.7b11040
Y. Zhang, P. Zhu, L. Huang, J. Xie, S. Zhang, G. Cao, X. Zhao, Few-layered SnS2 on few-layered reduced graphene oxide as Na-ion battery anode with ultralong cycle life and superior rate capability. Adv. Funct. Mater. 25(3), 481–489 (2015). https://doi.org/10.1002/adfm.201402833
X. Xie, D. Su, S. Chen, J. Zhang, S. Dou, G. Wang, SnS2 nanoplatelet@graphene nanocomposites as high-capacity anode materials for sodium-ion batteries. Chem-Asian J. 9(6), 1611–1617 (2014). https://doi.org/10.1002/asia.201400018
P. Zhou, X. Wang, W. Guan, D. Zhang, L. Fang, Y. Jiang, SnS2 nanowall arrays toward high-performance sodium storage. ACS Appl. Mater. Interfaces 9(8), 6979–6987 (2017). https://doi.org/10.1021/acsami.6b13613
Y. Wang, J. Zhou, J. Wu, F. Chen, P. Li et al., Engineering SnS2 nanosheet assemblies for enhanced electrochemical lithium and sodium ion storage. J. Mater. Chem. A 5(48), 25618–25624 (2017). https://doi.org/10.1039/C7TA08056E
F. Tu, X. Xu, P. Wang, L. Si, X. Zhou, J. Bao, A few-layer SnS2/reduced graphene oxide sandwich hybrid for efficient sodium storage. J. Phys. Chem. C 121(6), 3261–3269 (2017). https://doi.org/10.1021/acs.jpcc.6b12692
P. Zheng, Z. Dai, Y. Zhang, K.N. Dinh, Y. Zheng et al., Scalable synthesis of SnS2/S-doped graphene composites for superior Li/Na-ion batteries. Nanoscale 9(39), 14820–14825 (2017). https://doi.org/10.1039/C7NR06044K
X.W. Lou, Y. Wang, C. Yuan, J.Y. Lee, L.A. Archer, Template-free synthesis of SnO2 hollow nanostructures with high lithium storage capacity. Adv. Mater. 18(17), 2325–2329 (2006). https://doi.org/10.1002/adma.200600733
Y. Lei, S. Song, W. Fan, Y. Xing, H. Zhang, Facile synthesis and assemblies of flowerlike SnS2 and In3+-doped SnS2: hierarchical structures and their enhanced photocatalytic property. J. Phys. Chem. C 113(4), 1280–1285 (2009). https://doi.org/10.1021/jp8079974
L. Fan, X. Li, X. Song, N. Hu, D. Xiong, A. Koo, X. Sun, Promising dual-doped graphene aerogel/SnS2 nanocrystal building high performance sodium ion batteries. ACS Appl. Mater. Interfaces 10(3), 2637–2648 (2018). https://doi.org/10.1021/acsami.7b18195
Z. Chen, R. Wu, M. Liu, H. Wang, H. Xu et al., General synthesis of dual carbon-confined metal sulfides quantum dots toward high-performance anodes for sodium-ion batteries. Adv. Funct. Mater. 27(38), 1702046 (2017). https://doi.org/10.1002/adfm.201702046
J. Wang, C. Luo, J. Mao, Y. Zhu, X. Fan, T. Gao, A.C. Mignerey, C. Wang, Solid-state fabrication of SnS2/C nanospheres for high-performance sodium ion battery anode. ACS Appl. Mater. Interfaces 7(21), 11476–11481 (2015). https://doi.org/10.1021/acsami.5b02413