Metal–Oleate Complex-Derived Bimetallic Oxides Nanoparticles Encapsulated in 3D Graphene Networks as Anodes for Efficient Lithium Storage with Pseudocapacitance
Corresponding Author: Hongwei Gu
Nano-Micro Letters,
Vol. 11 (2019), Article Number: 15
Abstract
In this manuscript, we have demonstrated the delicate design and synthesis of bimetallic oxides nanoparticles derived from metal–oleate complex embedded in 3D graphene networks (MnO/CoMn2O4 ⊂ GN), as an anode material for lithium ion batteries. The novel synthesis of the MnO/CoMn2O4 ⊂ GN consists of thermal decomposition of metal–oleate complex containing cobalt and manganese metals and oleate ligand, forming bimetallic oxides nanoparticles, followed by a self-assembly route with reduced graphene oxides. The MnO/CoMn2O4 ⊂ GN composite, with a unique architecture of bimetallic oxides nanoparticles encapsulated in 3D graphene networks, rationally integrates several benefits including shortening the diffusion path of Li+ ions, improving electrical conductivity and mitigating volume variation during cycling. Studies show that the electrochemical reaction processes of MnO/CoMn2O4 ⊂ GN electrodes are dominated by the pseudocapacitive behavior, leading to fast Li+ charge/discharge reactions. As a result, the MnO/CoMn2O4 ⊂ GN manifests high initial specific capacity, stable cycling performance, and excellent rate capability.
Highlights:
1 Bimetallic oxides nanoparticles derived from metal–oleate complexes embedded in 3D graphene networks were fabricated by a facile and rational design approach.
2 The unique porous architecture promotes charge transfer so as to enhance the reversible capacity.
3 The synergetic effect between the 0D nanoparticles and 3D graphene networks plays an essential role in the superb electrochemical performance.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- K. Kang, Y.S. Meng, J. Bréger, C.P. Grey, G. Ceder, Electrodes with high power and high capacity for rechargeable lithium batteries. Science 311(5763), 977–980 (2006). https://doi.org/10.1126/science.1122152
- J. Wang, N. Yang, H. Tang, Z. Dong, Q. Jin et al., Accurate control of multishelled Co3O4 hollow microspheres as high-performance anode materials in lithium-ion batteries. Angew. Chem. Int. Ed. 52(25), 6417–6420 (2013). https://doi.org/10.1002/anie.201301622
- B. Li, N. Jiang, W. Huang, H. Yan, Y. Zuo, D. Xia, Thermodynamic activation of charge transfer in anionic redox process for Li-ion batteries. Adv. Funct. Mater. 28(4), 1704864 (2018). https://doi.org/10.1002/adfm.201704864
- L. Zhou, D. Zhao, X. Lou, LiNi0.5Mn1.5O4 hollow structures as high-performance cathodes for lithium-ion batteries. Angew. Chem. Int. Ed. 51, 239–241 (2012). https://doi.org/10.1002/anie.201106998
- Z. Liu, L. Feng, X. Su, C. Qin, K. Zhao, F. Hu, M. Zhou, Y. Xia, Micro-sized organometallic compound of ferrocene as high-performance anode material for advanced lithium-ion batteries. J. Power Sources 375, 102–105 (2018). https://doi.org/10.1016/j.jpowsour.2017.11.064
- X. Zhou, L.J. Wan, Y.G. Guo, Binding SnO2 nanocrystals in nitrogen-doped graphene sheets as anode materials for lithium-ion batteries. Adv. Mater. 25(15), 2152–2157 (2013). https://doi.org/10.1002/adma.201300071
- H. Liu, W. Zhao, R. Li, X. Huang, Y. Tang, D. Li, F. Huang, Facile synthesis of reduced graphene oxide in situ wrapped MnTiO3 nanoparticles for excellent lithium storage. J. Inorg. Mater. 33(9), 1022–1028 (2018). https://doi.org/10.15541/jim20180143
- Z. Luo, J.C. Xu, B. Yuan, H. Li, R.Z. Hu, L.C. Yang, Y. Gao, M. Zhu, A novel 3D bimodal porous current collector with large interconnected spherical channels for improved capacity and cycling stability of Sn anode in Li-ion batteries. Mater. Lett. 213, 189–192 (2018). https://doi.org/10.1016/j.matlet.2017.11.089
- H. Shang, Z. Zuo, L. Li, F. Wang, H. Liu, Y. Li, Y. Li, Ultrathin graphdiyne nanosheets grown in situ on copper nanowires and their performance as lithium-ion battery anodes. Angew. Chem. Int. Ed. 57(3), 774–778 (2018). https://doi.org/10.1002/anie.201711366
- L. Qie, W.M. Chen, Z.H. Wang, Q.G. Shao, X. Li et al., Nitrogen-doped porous carbon nanofiber webs as anodes for lithium ion batteries with a superhigh capacity and rate capability. Adv. Mater. 24(15), 2047–2050 (2012). https://doi.org/10.1002/adma.201104634
- P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, J.M. Tarascon, Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature 407, 496–499 (2000). https://doi.org/10.1038/35035045
- Y. Jiang, Z.-J. Jiang, L. Yang, S. Cheng, M. Liu, A high-performance anode for lithium ion batteries: Fe3O4 microspheres encapsulated in hollow graphene shells. J. Mater. Chem. A 3(22), 11847–11856 (2015). https://doi.org/10.1039/c5ta01848j
- D. Xu, C. Mu, J. Xiang, F. Wen, C. Su, C. Hao, W. Hu, Y. Tang, Z. Liu, Carbon-encapsulated Co3O4@CoO@Co nanocomposites for multifunctional applications in enhanced long-life lithium storage, supercapacitor and oxygen evolution reaction. Electrochim. Acta 220, 322–330 (2016). https://doi.org/10.1016/j.electacta.2016.10.116
- L. Wang, Y. Fu, Y. Chen, Y. Li, R. Zhou, S. Chen, Y. Song, Ultralight flower ball-like Co3O4/melamine-derived carbon foam as anode materials for lithium-ion batteries. J. Alloys Compd. 724, 1117–1123 (2017). https://doi.org/10.1016/j.jallcom.2017.07.130
- J. Mujtaba, H. Sun, Y. Zhao, G. Xiang, S. Xu, J. Zhu, High-performance lithium storage based on the synergy of atomic-thickness nanosheets of TiO2 (B) and ultrafine Co3O4 nanoparticles. J. Power Sources 363, 110–116 (2017). https://doi.org/10.1016/j.jpowsour.2017.07.076
- L. Wang, Y. Zheng, X. Wang, S. Chen, F. Xu et al., Nitrogen-doped porous carbon/Co3O4 nanocomposites as anode materials for lithium-ion batteries. ACS Appl. Mater. Interfaces 6(10), 7117–7125 (2014). https://doi.org/10.1021/am406053s
- H. Sun, Y. Liu, Y. Yu, M. Ahmad, D. Nan, J. Zhu, Mesoporous Co3O4 nanosheets-3D graphene networks hybrid materials for high-performance lithium ion batteries. Electrochim. Acta 118, 1–9 (2014). https://doi.org/10.1016/j.electacta.2013.11.181
- Z. Cui, S. Wang, Y. Zhang, M. Cao, High-performance lithium storage of Co3O4 achieved by constructing porous nanotube structure. Electrochim. Acta 182, 507–515 (2015). https://doi.org/10.1016/j.electacta.2015.09.120
- G.Y. Huang, S.M. Xu, Y. Yang, Y.B. Cheng, J. Li, Preparation of cobalt-based Bi-metal-oxides and the application in the field of electrochemical energy storage. Chin. J. Inorg. Chem. 32(10), 1693–1703 (2016). https://doi.org/10.11862/CJIC.2016.244
- F. Zheng, G. Xia, Y. Yang, Q. Chen, MOF-derived ultrafine MnO nanocrystals embedded in a porous carbon matrix as high-performance anodes for lithium-ion batteries. Nanoscale 7(21), 9637–9645 (2015). https://doi.org/10.1039/c5nr00528k
- P. Rosaiah, J. Zhu, O.M. Hussain, Y. Qiu, Graphenothermal reduction synthesis of MnO/RGO composite with excellent anodic behaviour in lithium ion batteries. Ceram. Int. 44(3), 3077–3084 (2018). https://doi.org/10.1016/j.ceramint.2017.11.070
- Y. Deng, L. Wan, Y. Xie, X. Qin, G. Chen, Recent advances in Mn-based oxides as anode materials for lithium ion batteries. RSC Adv. 4(45), 23914–23935 (2014). https://doi.org/10.1039/c4ra02686a
- H. Jiang, Y. Hu, S. Guo, C. Yan, P.S. Lee, C. Li, Rational design of MnO/carbon nanopeapods with internal void space for high-rate and long-life Li-ion batteries. ACS Nano 8(6), 6038–6046 (2014). https://doi.org/10.1021/nn501310n
- X. Liu, C. Chen, Y. Zhao, B. Jia, A review on the synthesis of manganese oxide nanomaterials and their applications on lithium-ion batteries. J. Nanomater. 2013, 1–7 (2013). https://doi.org/10.1155/2013/736375
- J. Zhou, S. Cheng, Y. Jiang, F. Zheng, X. Ou et al., Fabrication of TiO2 coated porous CoMn2O4 submicrospheres for advanced lithium-ion anodes. RSC Adv. 7(34), 21214–21220 (2017). https://doi.org/10.1039/c7ra02789c
- Y. Zhang, X. Wang, Q. Zhao, Y. Fu, H. Wang, H. Shu, Facile preparation and performance of hierarchical self-assembly MnCo2O4 nanoflakes as anode active material for lithium ion batteries. Electrochim. Acta 180, 866–872 (2015). https://doi.org/10.1016/j.electacta.2015.09.037
- J. Bai, X. Li, G. Liu, Y. Qian, S. Xiong, Unusual formation of ZnCo2O4 3D hierarchical twin microspheres as a high-rate and ultralong-life lithium-ion battery anode material. Adv. Funct. Mater. 24(20), 3012–3020 (2014). https://doi.org/10.1002/adfm.201303442
- L. Yao, X. Hou, S. Hu, J. Wang, M. Li et al., Green synthesis of mesoporous ZnFe2O4/C composite microspheres as superior anode materials for lithium-ion batteries. J. Power Sources 258, 305–313 (2014). https://doi.org/10.1016/j.jpowsour.2014.02.055
- M. Khan, M.N. Tahir, S.F. Adil, H.U. Khan, M.R.H. Siddiqui, A.A. Al-warthan, W. Tremel, Graphene based metal and metal oxide nanocomposites: synthesis, properties and their applications. J. Mater. Chem. A 3(37), 18753–18808 (2015). https://doi.org/10.1039/c5ta02240a
- S. Park, R.S. Ruoff, Chemical methods for the production of graphenes. Nat. Nanotechnol. 4(4), 217–224 (2009). https://doi.org/10.1038/nnano.2009.58
- G. Gao, S. Lu, Y. Xiang, B. Dong, W. Yan, S. Ding, Free-standing ultrathin CoMn2O4 nanosheets anchored on reduced graphene oxide for high-performance supercapacitors. Dalton Trans. 44(43), 18737–18742 (2015). https://doi.org/10.1039/c5dt03696h
- X. Yang, K. Fan, Y. Zhu, J. Shen, X. Jiang, P. Zhao, S. Luan, C. Li, Electric papers of graphene-coated Co3O4 fibers for high-performance lithium-ion batteries. ACS Appl. Mater. Interfaces 5(3), 997–1002 (2013). https://doi.org/10.1021/am302685t
- H. Wang, L.-F. Cui, Y. Yang, H. Sanchez Casalongue, J.T. Robinson, Y. Liang, Y. Cui, H. Dai, Mn3O4-graphene hybrid as a high-capacity anode material for lithium ion batteries. J. Am. Chem. Soc. 132(40), 13978–13980 (2010). https://doi.org/10.1021/ja105296a
- P. Jie, G. Hongbo, A. Huixiang, Z. Lingling, W. Huaixin, C. Xueqin, Z. Junwei, G. Hongwei, Three-dimensional nitrogen and sulfur Co-doped holey-reduced graphene oxide frameworks anchored with MoO2 nanodots for advanced rechargeable lithium-ion batteries. Nanotechnology 29(29), 295404 (2018). https://doi.org/10.1088/1361-6528/aac02c
- C. Chen, J. Xi, E. Zhou, L. Peng, Z. Chen, C. Gao, Porous graphene microflowers for high-performance microwave absorption. Nano-Micro Lett. 10(2), 26 (2018). https://doi.org/10.1007/s40820-017-0179-8
- D. Gu, Y. Zhou, R. Ma, F. Wang, Q. Liu, J. Wang, Facile synthesis of N-doped graphene-like carbon nanoflakes as efficient and stable electrocatalysts for the oxygen reduction reaction. Nano-Micro Lett. 10(2), 29 (2018). https://doi.org/10.1007/s40820-017-0181-1
- L. Zhou, D. Zhao, X.W. Lou, Double-shelled CoMn2O4 hollow microcubes as high-capacity anodes for lithium-ion batteries. Adv. Mater. 24(6), 745–748 (2012). https://doi.org/10.1002/adma.201104407
- A. Jha, D. Mhamane, A. Suryawanshi, S.M. Joshi, P. Shaikh, N. Biradar, S. Ogale, C.V. Rode, Triple nanocomposites of CoMn2O4, Co3O4 and reduced graphene oxide for oxidation of aromatic alcohols. Catal. Sci. Technol. 4(6), 1771–1778 (2014). https://doi.org/10.1039/c3cy01025b
- G. Yang, X. Xu, W. Yan, H. Yang, S. Ding, Single-spinneret electrospinning fabrication of CoMn2O4 hollow nanofibers with excellent performance in lithium-ion batteries. Electrochim. Acta 137, 462–469 (2014). https://doi.org/10.1016/j.electacta.2014.05.167
- Y. Xu, X. Wang, C. An, Y. Wang, L. Jiao, H. Yuan, Facile synthesis route of porous MnCo2O4 and CoMn2O4 nanowires and their excellent electrochemical properties in supercapacitors. J. Mater. Chem. A 2(39), 16480–16488 (2014). https://doi.org/10.1039/c4ta03123g
- G. Qu, H. Geng, D. Ge, J. Zheng, H. Gu, Graphene-coated mesoporous Co3O4 fibers as an efficient anode material for Li-ion batteries. RSC Adv. 6(75), 71006–71011 (2016). https://doi.org/10.1039/c6ra15404b
- Y. Li, X. Hou, Y. Li, Q. Ru, S. Wang, S. Hu, K.-H. Lam, Facile synthesis of hierarchical CoMn2O4 microspheres with porous and micro-/nanostructural morphology as anode electrodes for lithium-ion batteries. Electron. Mater. Lett. 13(5), 427–433 (2017). https://doi.org/10.1007/s13391-017-6258-7
- M. Bijelić, X. Liu, Q. Sun, A.B. Djurišić, M.H. Xie et al., Long cycle life of CoMn2O4 lithium ion battery anodes with high crystallinity. J. Mater. Chem. A 3(28), 14759–14767 (2015). https://doi.org/10.1039/c5ta03570h
- M.H. Kim, Y.J. Hong, Y.C. Kang, Electrochemical properties of yolk-shell and hollow CoMn2O4 powders directly prepared by continuous spray pyrolysis as negative electrode materials for lithium ion batteries. RSC Adv. 3(32), 13110–13114 (2013). https://doi.org/10.1039/c3ra41314d
- J. Li, S. Xiong, X. Li, Y. Qian, A facile route to synthesize multiporous MnCo2O4 and CoMn2O4 spinel quasi-hollow spheres with improved lithium storage properties. Nanoscale 5(5), 2045–2054 (2013). https://doi.org/10.1039/c2nr33576j
- Y. Sharma, N. Sharma, G.V.S. Rao, B.V.R. Chowdari, Li-storage and cyclability of urea combustion derived ZnFe2O4 as anode for Li-ion batteries. Electrochim. Acta 53(5), 2380–2385 (2008). https://doi.org/10.1016/j.electacta.2007.09.059
- G. Li, L. Xu, Y. Zhai, Y. Hou, Fabrication of hierarchical porous MnCo2O4 and CoMn2O4 microspheres composed of polyhedral nanoparticles as promising anodes for long-life LIBs. J. Mater. Chem. A 3(27), 14298–14306 (2015). https://doi.org/10.1039/c5ta03145a
- D. Ge, J. Wu, G. Qu, Y. Deng, H. Geng, J. Zheng, Y. Pan, H. Gu, Rapid and large-scale synthesis of bare Co3O4 porous nanostructures from an oleate precursor as superior Li-ion anodes with long-cycle lives. Dalton Trans. 45(34), 13509–13513 (2016). https://doi.org/10.1039/c6dt02136k
- D. Cai, B. Qu, Q. Li, H. Zhan, T. Wang, Reduced graphene oxide uniformly anchored with ultrafine CoMn2O4 nanoparticles as advance anode materials for lithium and sodium storage. J. Alloys Compd. 716, 30–36 (2017). https://doi.org/10.1016/j.jallcom.2017.05.023
- C. Yang, Y. Zhang, F. Lv, C. Lin, Y. Liu et al., Porous ZrNb24O62 nanowires with pseudocapacitive behavior achieve high-performance lithium-ion storage. J. Mater. Chem. A 5(42), 22297–22304 (2017). https://doi.org/10.1039/C7TA07347J
- B.H. Hou, Y.Y. Wang, J.Z. Guo, Q.L. Ning, X.T. Xi et al., Pseudocapacitance-boosted ultrafast Na storage in a pie-like FeS@C nanohybrid as an advanced anode material for sodium-ion full batteries. Nanoscale 10(19), 9218–9225 (2018). https://doi.org/10.1039/c7nr09674g
- X. Deng, Z. Wei, C. Cui, Q. Liu, C. Wang, J. Ma, Oxygen-deficient anatase TiO2@C nanospindles with pseudocapacitive contribution for enhancing lithium storage. J. Mater. Chem. A 6(9), 4013–4022 (2018). https://doi.org/10.1039/C7TA11301C
- L. Zhang, G. He, S. Lei, G. Qi, H. Jiu, J. Wang, Hierarchical hollow microflowers constructed from mesoporous single crystalline CoMn2O4 nanosheets for high performance anode of lithium ion battery. J. Power Sources 326, 505–513 (2016). https://doi.org/10.1016/j.jpowsour.2016.07.021
- L. Wang, B. Liu, S. Ran, L. Wang, L. Gao, F. Qu, D. Chen, G. Shen, Facile synthesis and electrochemical properties of CoMn2O4 anodes for high capacity lithium-ion batteries. J. Mater. Chem. A 1(6), 2139–2143 (2013). https://doi.org/10.1039/c2ta00125j
- S.L. Zhang, B.Y. Guan, H.B. Wu, X.W.D. Lou, Metal-organic framework-assisted synthesis of compact Fe2O3 nanotubes in Co3O4 host with enhanced lithium storage properties. Nano-Micro Lett. 10(3), 44 (2018). https://doi.org/10.1007/s40820-018-0197-1
- Y. Pan, W. Zeng, L. Li, Y. Zhang, Y. Dong, A facile synthesis of ZnCo2O4 nanocluster particles and the performance as anode materials for lithium ion batteries. Nano-Micro Lett. 9(2), 20 (2017). https://doi.org/10.1007/s40820-016-0122-4
- L. Yao, J. Wu, H. Deng, Q.-A. Huang, Q. Su, G. Du, MnCo2O4/graphene composites anchored on Ni foam as binder-free anode with enhanced lithium-storage performance. Mater. Lett. 180, 188–191 (2016). https://doi.org/10.1016/j.matlet.2016.05.177
References
K. Kang, Y.S. Meng, J. Bréger, C.P. Grey, G. Ceder, Electrodes with high power and high capacity for rechargeable lithium batteries. Science 311(5763), 977–980 (2006). https://doi.org/10.1126/science.1122152
J. Wang, N. Yang, H. Tang, Z. Dong, Q. Jin et al., Accurate control of multishelled Co3O4 hollow microspheres as high-performance anode materials in lithium-ion batteries. Angew. Chem. Int. Ed. 52(25), 6417–6420 (2013). https://doi.org/10.1002/anie.201301622
B. Li, N. Jiang, W. Huang, H. Yan, Y. Zuo, D. Xia, Thermodynamic activation of charge transfer in anionic redox process for Li-ion batteries. Adv. Funct. Mater. 28(4), 1704864 (2018). https://doi.org/10.1002/adfm.201704864
L. Zhou, D. Zhao, X. Lou, LiNi0.5Mn1.5O4 hollow structures as high-performance cathodes for lithium-ion batteries. Angew. Chem. Int. Ed. 51, 239–241 (2012). https://doi.org/10.1002/anie.201106998
Z. Liu, L. Feng, X. Su, C. Qin, K. Zhao, F. Hu, M. Zhou, Y. Xia, Micro-sized organometallic compound of ferrocene as high-performance anode material for advanced lithium-ion batteries. J. Power Sources 375, 102–105 (2018). https://doi.org/10.1016/j.jpowsour.2017.11.064
X. Zhou, L.J. Wan, Y.G. Guo, Binding SnO2 nanocrystals in nitrogen-doped graphene sheets as anode materials for lithium-ion batteries. Adv. Mater. 25(15), 2152–2157 (2013). https://doi.org/10.1002/adma.201300071
H. Liu, W. Zhao, R. Li, X. Huang, Y. Tang, D. Li, F. Huang, Facile synthesis of reduced graphene oxide in situ wrapped MnTiO3 nanoparticles for excellent lithium storage. J. Inorg. Mater. 33(9), 1022–1028 (2018). https://doi.org/10.15541/jim20180143
Z. Luo, J.C. Xu, B. Yuan, H. Li, R.Z. Hu, L.C. Yang, Y. Gao, M. Zhu, A novel 3D bimodal porous current collector with large interconnected spherical channels for improved capacity and cycling stability of Sn anode in Li-ion batteries. Mater. Lett. 213, 189–192 (2018). https://doi.org/10.1016/j.matlet.2017.11.089
H. Shang, Z. Zuo, L. Li, F. Wang, H. Liu, Y. Li, Y. Li, Ultrathin graphdiyne nanosheets grown in situ on copper nanowires and their performance as lithium-ion battery anodes. Angew. Chem. Int. Ed. 57(3), 774–778 (2018). https://doi.org/10.1002/anie.201711366
L. Qie, W.M. Chen, Z.H. Wang, Q.G. Shao, X. Li et al., Nitrogen-doped porous carbon nanofiber webs as anodes for lithium ion batteries with a superhigh capacity and rate capability. Adv. Mater. 24(15), 2047–2050 (2012). https://doi.org/10.1002/adma.201104634
P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, J.M. Tarascon, Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature 407, 496–499 (2000). https://doi.org/10.1038/35035045
Y. Jiang, Z.-J. Jiang, L. Yang, S. Cheng, M. Liu, A high-performance anode for lithium ion batteries: Fe3O4 microspheres encapsulated in hollow graphene shells. J. Mater. Chem. A 3(22), 11847–11856 (2015). https://doi.org/10.1039/c5ta01848j
D. Xu, C. Mu, J. Xiang, F. Wen, C. Su, C. Hao, W. Hu, Y. Tang, Z. Liu, Carbon-encapsulated Co3O4@CoO@Co nanocomposites for multifunctional applications in enhanced long-life lithium storage, supercapacitor and oxygen evolution reaction. Electrochim. Acta 220, 322–330 (2016). https://doi.org/10.1016/j.electacta.2016.10.116
L. Wang, Y. Fu, Y. Chen, Y. Li, R. Zhou, S. Chen, Y. Song, Ultralight flower ball-like Co3O4/melamine-derived carbon foam as anode materials for lithium-ion batteries. J. Alloys Compd. 724, 1117–1123 (2017). https://doi.org/10.1016/j.jallcom.2017.07.130
J. Mujtaba, H. Sun, Y. Zhao, G. Xiang, S. Xu, J. Zhu, High-performance lithium storage based on the synergy of atomic-thickness nanosheets of TiO2 (B) and ultrafine Co3O4 nanoparticles. J. Power Sources 363, 110–116 (2017). https://doi.org/10.1016/j.jpowsour.2017.07.076
L. Wang, Y. Zheng, X. Wang, S. Chen, F. Xu et al., Nitrogen-doped porous carbon/Co3O4 nanocomposites as anode materials for lithium-ion batteries. ACS Appl. Mater. Interfaces 6(10), 7117–7125 (2014). https://doi.org/10.1021/am406053s
H. Sun, Y. Liu, Y. Yu, M. Ahmad, D. Nan, J. Zhu, Mesoporous Co3O4 nanosheets-3D graphene networks hybrid materials for high-performance lithium ion batteries. Electrochim. Acta 118, 1–9 (2014). https://doi.org/10.1016/j.electacta.2013.11.181
Z. Cui, S. Wang, Y. Zhang, M. Cao, High-performance lithium storage of Co3O4 achieved by constructing porous nanotube structure. Electrochim. Acta 182, 507–515 (2015). https://doi.org/10.1016/j.electacta.2015.09.120
G.Y. Huang, S.M. Xu, Y. Yang, Y.B. Cheng, J. Li, Preparation of cobalt-based Bi-metal-oxides and the application in the field of electrochemical energy storage. Chin. J. Inorg. Chem. 32(10), 1693–1703 (2016). https://doi.org/10.11862/CJIC.2016.244
F. Zheng, G. Xia, Y. Yang, Q. Chen, MOF-derived ultrafine MnO nanocrystals embedded in a porous carbon matrix as high-performance anodes for lithium-ion batteries. Nanoscale 7(21), 9637–9645 (2015). https://doi.org/10.1039/c5nr00528k
P. Rosaiah, J. Zhu, O.M. Hussain, Y. Qiu, Graphenothermal reduction synthesis of MnO/RGO composite with excellent anodic behaviour in lithium ion batteries. Ceram. Int. 44(3), 3077–3084 (2018). https://doi.org/10.1016/j.ceramint.2017.11.070
Y. Deng, L. Wan, Y. Xie, X. Qin, G. Chen, Recent advances in Mn-based oxides as anode materials for lithium ion batteries. RSC Adv. 4(45), 23914–23935 (2014). https://doi.org/10.1039/c4ra02686a
H. Jiang, Y. Hu, S. Guo, C. Yan, P.S. Lee, C. Li, Rational design of MnO/carbon nanopeapods with internal void space for high-rate and long-life Li-ion batteries. ACS Nano 8(6), 6038–6046 (2014). https://doi.org/10.1021/nn501310n
X. Liu, C. Chen, Y. Zhao, B. Jia, A review on the synthesis of manganese oxide nanomaterials and their applications on lithium-ion batteries. J. Nanomater. 2013, 1–7 (2013). https://doi.org/10.1155/2013/736375
J. Zhou, S. Cheng, Y. Jiang, F. Zheng, X. Ou et al., Fabrication of TiO2 coated porous CoMn2O4 submicrospheres for advanced lithium-ion anodes. RSC Adv. 7(34), 21214–21220 (2017). https://doi.org/10.1039/c7ra02789c
Y. Zhang, X. Wang, Q. Zhao, Y. Fu, H. Wang, H. Shu, Facile preparation and performance of hierarchical self-assembly MnCo2O4 nanoflakes as anode active material for lithium ion batteries. Electrochim. Acta 180, 866–872 (2015). https://doi.org/10.1016/j.electacta.2015.09.037
J. Bai, X. Li, G. Liu, Y. Qian, S. Xiong, Unusual formation of ZnCo2O4 3D hierarchical twin microspheres as a high-rate and ultralong-life lithium-ion battery anode material. Adv. Funct. Mater. 24(20), 3012–3020 (2014). https://doi.org/10.1002/adfm.201303442
L. Yao, X. Hou, S. Hu, J. Wang, M. Li et al., Green synthesis of mesoporous ZnFe2O4/C composite microspheres as superior anode materials for lithium-ion batteries. J. Power Sources 258, 305–313 (2014). https://doi.org/10.1016/j.jpowsour.2014.02.055
M. Khan, M.N. Tahir, S.F. Adil, H.U. Khan, M.R.H. Siddiqui, A.A. Al-warthan, W. Tremel, Graphene based metal and metal oxide nanocomposites: synthesis, properties and their applications. J. Mater. Chem. A 3(37), 18753–18808 (2015). https://doi.org/10.1039/c5ta02240a
S. Park, R.S. Ruoff, Chemical methods for the production of graphenes. Nat. Nanotechnol. 4(4), 217–224 (2009). https://doi.org/10.1038/nnano.2009.58
G. Gao, S. Lu, Y. Xiang, B. Dong, W. Yan, S. Ding, Free-standing ultrathin CoMn2O4 nanosheets anchored on reduced graphene oxide for high-performance supercapacitors. Dalton Trans. 44(43), 18737–18742 (2015). https://doi.org/10.1039/c5dt03696h
X. Yang, K. Fan, Y. Zhu, J. Shen, X. Jiang, P. Zhao, S. Luan, C. Li, Electric papers of graphene-coated Co3O4 fibers for high-performance lithium-ion batteries. ACS Appl. Mater. Interfaces 5(3), 997–1002 (2013). https://doi.org/10.1021/am302685t
H. Wang, L.-F. Cui, Y. Yang, H. Sanchez Casalongue, J.T. Robinson, Y. Liang, Y. Cui, H. Dai, Mn3O4-graphene hybrid as a high-capacity anode material for lithium ion batteries. J. Am. Chem. Soc. 132(40), 13978–13980 (2010). https://doi.org/10.1021/ja105296a
P. Jie, G. Hongbo, A. Huixiang, Z. Lingling, W. Huaixin, C. Xueqin, Z. Junwei, G. Hongwei, Three-dimensional nitrogen and sulfur Co-doped holey-reduced graphene oxide frameworks anchored with MoO2 nanodots for advanced rechargeable lithium-ion batteries. Nanotechnology 29(29), 295404 (2018). https://doi.org/10.1088/1361-6528/aac02c
C. Chen, J. Xi, E. Zhou, L. Peng, Z. Chen, C. Gao, Porous graphene microflowers for high-performance microwave absorption. Nano-Micro Lett. 10(2), 26 (2018). https://doi.org/10.1007/s40820-017-0179-8
D. Gu, Y. Zhou, R. Ma, F. Wang, Q. Liu, J. Wang, Facile synthesis of N-doped graphene-like carbon nanoflakes as efficient and stable electrocatalysts for the oxygen reduction reaction. Nano-Micro Lett. 10(2), 29 (2018). https://doi.org/10.1007/s40820-017-0181-1
L. Zhou, D. Zhao, X.W. Lou, Double-shelled CoMn2O4 hollow microcubes as high-capacity anodes for lithium-ion batteries. Adv. Mater. 24(6), 745–748 (2012). https://doi.org/10.1002/adma.201104407
A. Jha, D. Mhamane, A. Suryawanshi, S.M. Joshi, P. Shaikh, N. Biradar, S. Ogale, C.V. Rode, Triple nanocomposites of CoMn2O4, Co3O4 and reduced graphene oxide for oxidation of aromatic alcohols. Catal. Sci. Technol. 4(6), 1771–1778 (2014). https://doi.org/10.1039/c3cy01025b
G. Yang, X. Xu, W. Yan, H. Yang, S. Ding, Single-spinneret electrospinning fabrication of CoMn2O4 hollow nanofibers with excellent performance in lithium-ion batteries. Electrochim. Acta 137, 462–469 (2014). https://doi.org/10.1016/j.electacta.2014.05.167
Y. Xu, X. Wang, C. An, Y. Wang, L. Jiao, H. Yuan, Facile synthesis route of porous MnCo2O4 and CoMn2O4 nanowires and their excellent electrochemical properties in supercapacitors. J. Mater. Chem. A 2(39), 16480–16488 (2014). https://doi.org/10.1039/c4ta03123g
G. Qu, H. Geng, D. Ge, J. Zheng, H. Gu, Graphene-coated mesoporous Co3O4 fibers as an efficient anode material for Li-ion batteries. RSC Adv. 6(75), 71006–71011 (2016). https://doi.org/10.1039/c6ra15404b
Y. Li, X. Hou, Y. Li, Q. Ru, S. Wang, S. Hu, K.-H. Lam, Facile synthesis of hierarchical CoMn2O4 microspheres with porous and micro-/nanostructural morphology as anode electrodes for lithium-ion batteries. Electron. Mater. Lett. 13(5), 427–433 (2017). https://doi.org/10.1007/s13391-017-6258-7
M. Bijelić, X. Liu, Q. Sun, A.B. Djurišić, M.H. Xie et al., Long cycle life of CoMn2O4 lithium ion battery anodes with high crystallinity. J. Mater. Chem. A 3(28), 14759–14767 (2015). https://doi.org/10.1039/c5ta03570h
M.H. Kim, Y.J. Hong, Y.C. Kang, Electrochemical properties of yolk-shell and hollow CoMn2O4 powders directly prepared by continuous spray pyrolysis as negative electrode materials for lithium ion batteries. RSC Adv. 3(32), 13110–13114 (2013). https://doi.org/10.1039/c3ra41314d
J. Li, S. Xiong, X. Li, Y. Qian, A facile route to synthesize multiporous MnCo2O4 and CoMn2O4 spinel quasi-hollow spheres with improved lithium storage properties. Nanoscale 5(5), 2045–2054 (2013). https://doi.org/10.1039/c2nr33576j
Y. Sharma, N. Sharma, G.V.S. Rao, B.V.R. Chowdari, Li-storage and cyclability of urea combustion derived ZnFe2O4 as anode for Li-ion batteries. Electrochim. Acta 53(5), 2380–2385 (2008). https://doi.org/10.1016/j.electacta.2007.09.059
G. Li, L. Xu, Y. Zhai, Y. Hou, Fabrication of hierarchical porous MnCo2O4 and CoMn2O4 microspheres composed of polyhedral nanoparticles as promising anodes for long-life LIBs. J. Mater. Chem. A 3(27), 14298–14306 (2015). https://doi.org/10.1039/c5ta03145a
D. Ge, J. Wu, G. Qu, Y. Deng, H. Geng, J. Zheng, Y. Pan, H. Gu, Rapid and large-scale synthesis of bare Co3O4 porous nanostructures from an oleate precursor as superior Li-ion anodes with long-cycle lives. Dalton Trans. 45(34), 13509–13513 (2016). https://doi.org/10.1039/c6dt02136k
D. Cai, B. Qu, Q. Li, H. Zhan, T. Wang, Reduced graphene oxide uniformly anchored with ultrafine CoMn2O4 nanoparticles as advance anode materials for lithium and sodium storage. J. Alloys Compd. 716, 30–36 (2017). https://doi.org/10.1016/j.jallcom.2017.05.023
C. Yang, Y. Zhang, F. Lv, C. Lin, Y. Liu et al., Porous ZrNb24O62 nanowires with pseudocapacitive behavior achieve high-performance lithium-ion storage. J. Mater. Chem. A 5(42), 22297–22304 (2017). https://doi.org/10.1039/C7TA07347J
B.H. Hou, Y.Y. Wang, J.Z. Guo, Q.L. Ning, X.T. Xi et al., Pseudocapacitance-boosted ultrafast Na storage in a pie-like FeS@C nanohybrid as an advanced anode material for sodium-ion full batteries. Nanoscale 10(19), 9218–9225 (2018). https://doi.org/10.1039/c7nr09674g
X. Deng, Z. Wei, C. Cui, Q. Liu, C. Wang, J. Ma, Oxygen-deficient anatase TiO2@C nanospindles with pseudocapacitive contribution for enhancing lithium storage. J. Mater. Chem. A 6(9), 4013–4022 (2018). https://doi.org/10.1039/C7TA11301C
L. Zhang, G. He, S. Lei, G. Qi, H. Jiu, J. Wang, Hierarchical hollow microflowers constructed from mesoporous single crystalline CoMn2O4 nanosheets for high performance anode of lithium ion battery. J. Power Sources 326, 505–513 (2016). https://doi.org/10.1016/j.jpowsour.2016.07.021
L. Wang, B. Liu, S. Ran, L. Wang, L. Gao, F. Qu, D. Chen, G. Shen, Facile synthesis and electrochemical properties of CoMn2O4 anodes for high capacity lithium-ion batteries. J. Mater. Chem. A 1(6), 2139–2143 (2013). https://doi.org/10.1039/c2ta00125j
S.L. Zhang, B.Y. Guan, H.B. Wu, X.W.D. Lou, Metal-organic framework-assisted synthesis of compact Fe2O3 nanotubes in Co3O4 host with enhanced lithium storage properties. Nano-Micro Lett. 10(3), 44 (2018). https://doi.org/10.1007/s40820-018-0197-1
Y. Pan, W. Zeng, L. Li, Y. Zhang, Y. Dong, A facile synthesis of ZnCo2O4 nanocluster particles and the performance as anode materials for lithium ion batteries. Nano-Micro Lett. 9(2), 20 (2017). https://doi.org/10.1007/s40820-016-0122-4
L. Yao, J. Wu, H. Deng, Q.-A. Huang, Q. Su, G. Du, MnCo2O4/graphene composites anchored on Ni foam as binder-free anode with enhanced lithium-storage performance. Mater. Lett. 180, 188–191 (2016). https://doi.org/10.1016/j.matlet.2016.05.177