Harnessing the Power from Ambient Moisture with Hygroscopic Materials
Corresponding Author: Yanjie Su
Nano-Micro Letters,
Vol. 18 (2026), Article Number: 133
Abstract
Moisture electricity generation (MEG) has emerged as a sustainable and versatile energy-harvesting technology capable of converting ubiquitous environmental moisture into electrical energy, which holds great promise for renewable energy and constructing self-powered electronics. In this review, we begin by outlining the fundamental mechanisms—ion diffusion, electric double layer formation, and streaming potential—that govern charge transport for MEG in moist environments. A comprehensive survey of material innovations follows, highlighting breakthroughs in carbon-based materials, conductive polymers, hydrogels, and bio-inspired systems that enhance MEG performance, scalability, and biocompatibility. We then explore a range of device architectures, from planar and layered systems to flexible, miniaturized, and textile-integrated designs, engineered for both energy conversion and sensor integration. Key challenges are analyzed, along with strategies for overcoming them. We conclude with a forward-looking perspective on future directions, including hybrid energy systems, AI-assisted material design, and real-world deployment. This review presents a timely and comprehensive overview of MEG technologies and their trajectory toward practical and sustainable energy solutions.
Highlights:
1 Typical structures/working mechanisms of moisture electricity generation (MEG) devices are comprehensively reviewed.
2 An extensive comparison of the power generation between various materials and architectures are summarized.
3 Applications, challenges, and future development directions of MEG technology, especially the artificial intelligence-assisted material discovery, are discussed.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S. Bai, X. Yao, M.Y. Wong, Q. Xu, H. Li et al., Enhancement of water productivity and energy efficiency in sorption-based atmospheric water harvesting systems: from material, component to system level. ACS Nano 18(46), 31597–31631 (2024). https://doi.org/10.1021/acsnano.4c09582
- S. Zang, J. Chen, Y. Yamauchi, S.W. Sharshir, H. Huang et al., Moisture power generation: from material selection to device structure optimization. ACS Nano 18(31), 19912–19930 (2024). https://doi.org/10.1021/acsnano.4c01416
- A. Entezari, O.C. Esan, X. Yan, R. Wang, L. An, Sorption-based atmospheric water harvesting: materials, components, systems, and applications. Adv. Mater. 35(40), 2210957 (2023). https://doi.org/10.1002/adma.202210957
- L. Wang, W. Zhang, Y. Deng, Advances and challenges for hydrovoltaic intelligence. ACS Nano 17(15), 14229–14252 (2023). https://doi.org/10.1021/acsnano.3c02043
- J. Tan, X. Wang, W. Chu, S. Fang, C. Zheng et al., Harvesting energy from atmospheric water: grand challenges in continuous electricity generation. Adv. Mater. 36(12), 2211165 (2024). https://doi.org/10.1002/adma.202211165
- Z. Feng, T. Yin, C. Liu, X. Yin, T. Wan et al., Atmospheric water sorption–desorption as a pathway for green energy generation. Adv. Mater. 37(36), 2506046 (2025). https://doi.org/10.1002/adma.202506046
- T. Xu, X. Ding, H. Cheng, G. Han, L. Qu, Moisture-enabled electricity from hygroscopic materials: a new type of clean energy. Adv. Mater. 36(12), 2209661 (2024). https://doi.org/10.1002/adma.202209661
- D. Shen, W.W. Duley, P. Peng, M. Xiao, J. Feng et al., Moisture-enabled electricity generation: from physics and materials to self-powered applications. Adv. Mater. 32(52), 2003722 (2020). https://doi.org/10.1002/adma.202003722
- X. Wang, F. Lin, X. Wang, S. Fang, J. Tan et al., Hydrovoltaic technology: from mechanism to applications. Chem. Soc. Rev. 51(12), 4902–4927 (2022). https://doi.org/10.1039/D1CS00778E
- X. Zhao, D. Shen, W.W. Duley, C. Tan, Y.N. Zhou, Water-enabled electricity generation: a perspective. Adv. Energy Sustain. Res. 3(4), 2100196 (2022). https://doi.org/10.1002/aesr.202100196
- Z. Zhang, X. Li, J. Yin, Y. Xu, W. Fei et al., Emerging hydrovoltaic technology. Nat. Nanotechnol. 13(12), 1109–1119 (2018). https://doi.org/10.1038/s41565-018-0228-6
- D. Shen, F. Li, J. Zhao, R. Wang, B. Li et al., Ionic hydrogel-based moisture electric generators for underwater electronics. Adv. Sci. 11(43), 2408954 (2024). https://doi.org/10.1002/advs.202408954
- G. Zhao, F. Li, L. Guo, D. Zhang, H. Luo et al., Cellulose/ionic hydrogel moisture electric generators with enhanced output and stability. Chem. Eng. J. 518, 164788 (2025). https://doi.org/10.1016/j.cej.2025.164788
- F. Li, J. Zhao, B. Li, Z. Han, L. Guo et al., Water-triboelectrification-complemented moisture electric generator. ACS Nano 18(44), 30658–30667 (2024). https://doi.org/10.1021/acsnano.4c09581
- H. Wang, Y. Sun, T. He, Y. Huang, H. Cheng et al., Bilayer of polyelectrolyte films for spontaneous power generation in air up to an integrated 1000 V output. Nat. Nanotechnol. 16(7), 811–819 (2021). https://doi.org/10.1038/s41565-021-00903-6
- S. Yang, X. Tao, W. Chen, J. Mao, H. Luo et al., Ionic hydrogel for efficient and scalable moisture-electric generation. Adv. Mater. 34(21), 2200693 (2022). https://doi.org/10.1002/adma.202200693
- R. Zhu, T. Liu, A. Balilonda, Y. Luo, K. Ma et al., Green, safe, durable, printed fabric hygroelectric generators for wearable systems. Adv. Mater. 2502091 (2025). https://doi.org/10.1002/adma.202502091
- Z. Feng, T. Wan, T. Yin, C. Liu, S. Zhang et al., Constructing water-retaining/ion-regulating bi-layers for highly durable, all-climate, efficient moisture electric generators. Adv. Mater. 37(27), 2416008 (2025). https://doi.org/10.1002/adma.202416008
- D. Shen, X. Zhang, L. Zhu, Laser processing for electricity generators: physics, methods and applications. Nano Energy 120, 109182 (2024). https://doi.org/10.1016/j.nanoen.2023.109182
- F. Zhao, H. Cheng, Z. Zhang, L. Jiang, L. Qu, Direct power generation from a graphene oxide film under moisture. Adv. Mater. 27(29), 4351–4357 (2015). https://doi.org/10.1002/adma.201501867
- K. Hu, R. Xiong, H. Guo, R. Ma, S. Zhang et al., Self-powered electronic skin with biotactile selectivity. Adv. Mater. 28(18), 3549–3556 (2016). https://doi.org/10.1002/adma.201506187
- T. Xu, X. Ding, C. Shao, L. Song, T. Lin et al., Electric power generation through the direct interaction of pristine graphene-oxide with water molecules. Small 14(14), 1704473 (2018). https://doi.org/10.1002/smll.201704473
- T. Zhong, H. Guan, Y. Dai, H. He, L. Xing et al., A self-powered flexibly-arranged gas monitoring system with evaporating rainwater as fuel for building atmosphere big data. Nano Energy 60, 52–60 (2019). https://doi.org/10.1016/j.nanoen.2019.03.041
- F. Zhao, Y. Liang, H. Cheng, L. Jiang, L. Qu, Highly efficient moisture-enabled electricity generation from graphene oxide frameworks. Energy Environ. Sci. 9(3), 912–916 (2016). https://doi.org/10.1039/C5EE03701H
- Y. Huang, H. Cheng, C. Yang, P. Zhang, Q. Liao et al., Interface-mediated hygroelectric generator with an output voltage approaching 1.5 volts. Nat. Commun. 9(1), 4166 (2018). https://doi.org/10.1038/s41467-018-06633-z
- G. Xue, Y. Xu, T. Ding, J. Li, J. Yin et al., Water-evaporation-induced electricity with nanostructured carbon materials. Nat. Nanotechnol. 12(4), 317–321 (2017). https://doi.org/10.1038/nnano.2016.300
- X. Liu, H. Gao, J.E. Ward, X. Liu, B. Yin et al., Power generation from ambient humidity using protein nanowires. Nature 578(7796), 550–554 (2020). https://doi.org/10.1038/s41586-020-2010-9
- S. Guo, Y. Zhang, Z. Yu, M. Dai, X. Liu et al., Leaf-based energy harvesting and storage utilizing hygroscopic iron hydrogel for continuous power generation. Nat. Commun. 16(1), 5267 (2025). https://doi.org/10.1038/s41467-025-60341-z
- P. Duan, C. Wang, Y. Huang, C. Fu, X. Lu et al., Moisture-based green energy harvesting over 600 hours via photocatalysis-enhanced hydrovoltaic effect. Nat. Commun. 16(1), 239 (2025). https://doi.org/10.1038/s41467-024-55516-z
- J. Xu, P. Wang, Z. Bai, H. Cheng, R. Wang et al., Sustainable moisture energy. Nat. Rev. Mater. 9(10), 722–737 (2024). https://doi.org/10.1038/s41578-023-00643-0
- R. Li, P. Wang, Sorbents, processes and applications beyond water production in sorption-based atmospheric water harvesting. Nat. Water. 1(7), 573–586 (2023). https://doi.org/10.1038/s44221-023-00099-0
- H. Xia, W. Zhou, X. Qu, W. Wang, X. Wang et al., Electricity generated by upstream proton diffusion in two-dimensional nanochannels. Nat. Nanotechnol. 19(9), 1316–1322 (2024). https://doi.org/10.1038/s41565-024-01691-5
- H. Cheng, Y. Huang, F. Zhao, C. Yang, P. Zhang et al., Spontaneous power source in ambient air of a well-directionally reduced graphene oxide bulk. Energy Environ. Sci. 11(10), 2839–2845 (2018). https://doi.org/10.1039/C8EE01502C
- H. Zhang, N. He, B. Wang, B. Ding, B. Jiang et al., High-performance, highly stretchable, flexible moist-electric generators via molecular engineering of hydrogels. Adv. Mater. 35(20), e2300398 (2023). https://doi.org/10.1002/adma.202300398
- Y. Zhang, S. Guo, Z.G. Yu, H. Qu, W. Sun et al., An asymmetric hygroscopic structure for moisture-driven hygro-ionic electricity generation and storage. Adv. Mater. 34(21), 2201228 (2022). https://doi.org/10.1002/adma.202201228
- H. He, J. Zhang, J. Pan, Z. Wang, M. Deng et al., Moisture-enabled electric generators based on electrospinning silk fibroin/poly(ethylene oxide) film impregnated with gradient-structured sericin. ACS Appl. Energy Mater. 7(7), 2980–2988 (2024). https://doi.org/10.1021/acsaem.4c00368
- R. Zhu, Y. Zhu, L. Hu, P. Guan, D. Su et al., Lab free protein-based moisture electric generators with a high electric output. Energy Environ. Sci. 16(5), 2338–2345 (2023). https://doi.org/10.1039/D3EE00770G
- B. Shao, Z. Song, X. Chen, Y. Wu, Y. Li et al., Bioinspired hierarchical nanofabric electrode for silicon hydrovoltaic device with record power output. ACS Nano 15(4), 7472–7481 (2021). https://doi.org/10.1021/acsnano.1c00891
- Q. Hu, X. Lin, G. Ren, J. Lü, W. Wang et al., Hydrovoltaic electricity generation induced by living leaf transpiration. Nat. Water. 2(10), 988–998 (2024). https://doi.org/10.1038/s44221-024-00311-9
- H. Wang, T. He, X. Hao, Y. Huang, H. Yao et al., Moisture adsorption-desorption full cycle power generation. Nat. Commun. 13, 2524 (2022). https://doi.org/10.1038/s41467-022-30156-3
- Y. Huang, C. Wang, C. Shao, B. Wang, N. Chen et al., Graphene oxide assemblies for sustainable clean-water harvesting and green-electricity generation. Acc. Mater. Res. 2(2), 97–107 (2021). https://doi.org/10.1021/accountsmr.0c00073
- Z. Huang, T. Zhang, H. Cao, Z. Xu, A. Ju et al., Flexible moisture-driven electricity generators based on heterogeneous gels and carbon nanotubes. ACS Appl. Mater. Interfaces 17(5), 7916–7928 (2025). https://doi.org/10.1021/acsami.4c21266
- R. Zhang, R. Zheng, Z. Zheng, Q. Chen, N. Jiang et al., Bacterial cellulose/multi-walled carbon nanotube composite films for moist-electric energy harvesting. Int. J. Biol. Macromol. 263(Pt 1), 130022 (2024). https://doi.org/10.1016/j.ijbiomac.2024.130022
- W. Duan, Z. Sun, X. Jiang, S. Tang, X. Wang, Carbon materials for evaporation- and moisture-induced power generation. Nano Energy 134, 110516 (2025). https://doi.org/10.1016/j.nanoen.2024.110516
- L. Li, Z. Chen, M. Hao, S. Wang, F. Sun et al., Moisture-driven power generation for multifunctional flexible sensing systems. Nano Lett. 19(8), 5544–5552 (2019). https://doi.org/10.1021/acs.nanolett.9b02081
- H. Wang, H. Cheng, Y. Huang, C. Yang, D. Wang et al., Transparent, self-healing, arbitrary tailorable moist-electric film generator. Nano Energy 67, 104238 (2020). https://doi.org/10.1016/j.nanoen.2019.104238
- T. Xu, X. Ding, Y. Huang, C. Shao, L. Song et al., An efficient polymer moist-electric generator. Energy Environ. Sci. 12(3), 972–978 (2019). https://doi.org/10.1039/C9EE00252A
- N. Chen, Q. Liu, C. Liu, G. Zhang, J. Jing et al., MEG actualized by high-valent metal carrier transport. Nano Energy 65, 104047 (2019). https://doi.org/10.1016/j.nanoen.2019.104047
- S. Yang, L. Zhang, J. Mao, J. Guo, Y. Chai et al., Green moisture-electric generator based on supramolecular hydrogel with tens of milliamp electricity toward practical applications. Nat. Commun. 15(1), 3329 (2024). https://doi.org/10.1038/s41467-024-47652-3
- T. Guang, Y. Huang, H. Wang, T. He, K. Zhu et al., DNA-based recyclable moist-electric generator. Friction 13(2), 9440927 (2025). https://doi.org/10.26599/frict.2025.9440927
- T. He, H. Wang, B. Lu, T. Guang, C. Yang et al., Fully printed planar moisture-enabled electric generator arrays for scalable function integration. Joule 7(5), 935–951 (2023). https://doi.org/10.1016/j.joule.2023.04.007
- L. Yi, Q. Wei, Y. Hou, J. Shi, S. Niu et al., Self-sustained electricity generation from ambient moisture enabled by step-gradient polysaccharide films. Adv. Funct. Mater. e10258 (2025). https://doi.org/10.1002/adfm.202510258
- W. Lu, T. Ding, X. Wang, C. Zhang, T. Li et al., Anion-cation heterostructured hydrogels for all-weather responsive electricity and water harvesting from atmospheric air. Nano Energy 104, 107892 (2022). https://doi.org/10.1016/j.nanoen.2022.107892
- P. Wang, J. Xu, R. Wang, T. Li, Emerging self-sustained electricity generation enabled by moisture. Cell Rep. Phys. Sci. 4(8), 101517 (2023). https://doi.org/10.1016/j.xcrp.2023.101517
- J. Tan, S. Fang, Z. Zhang, J. Yin, L. Li et al., Self-sustained electricity generator driven by the compatible integration of ambient moisture adsorption and evaporation. Nat. Commun. 13(1), 3643 (2022). https://doi.org/10.1038/s41467-022-31221-7
- Y. Chen, C. Ye, J. He, R. Guo, L. Qu et al., Achieving persistent and ultra-high voltage output through an arid-adapted plant-inspired high-performance moisture-electric generator. Energy Environ. Sci. 18(12), 6063–6075 (2025). https://doi.org/10.1039/D5EE01194A
- K. Zhao, J.W. Lee, Z.G. Yu, W. Jiang, J.W. Oh et al., Humidity-tolerant moisture-driven energy generator with MXene aerogel–organohydrogel bilayer. ACS Nano 17(6), 5472–5485 (2023). https://doi.org/10.1021/acsnano.2c10747
- K. Zhao, S. Li, G. Zan, G. Kim, W. Jiang et al., Moisture-driven energy generation by vertically structured polymer aerogel on water-collecting gel. Nano Energy 126, 109645 (2024). https://doi.org/10.1016/j.nanoen.2024.109645
- X. Zhang, J. Liang, K. Ahmad, Z. Almutairi, C. Wan, Moisture-driven fabric-based generator for powering wearable electronics. Device 2(4), 100316 (2024). https://doi.org/10.1016/j.device.2024.100316
- Y. Yao, X. Lu, C. Fu, Y. Zhang, J. Fang et al., Patterned coating of ionic diode arrays toward flexible moist-electric generators to power wireless sensor nodes. Adv. Funct. Mater. 34(9), 2311465 (2024). https://doi.org/10.1002/adfm.202311465
- C. Guo, H. Tang, P. Wang, Q. Xu, H. Pan et al., Radiative cooling assisted self-sustaining and highly efficient moisture energy harvesting. Nat. Commun. 15(1), 6100 (2024). https://doi.org/10.1038/s41467-024-50396-9
- H. Yan, Z. Liu, R. Qi, A review of humidity gradient-based power generator: devices, materials and mechanisms. Nano Energy 101, 107591 (2022). https://doi.org/10.1016/j.nanoen.2022.107591
- W. Lu, W.L. Ong, G.W. Ho, Advances in harvesting water and energy from ubiquitous atmospheric moisture. J. Mater. Chem. A 11(24), 12456–12481 (2023). https://doi.org/10.1039/D2TA09552A
- C. Zhang, M.O.G. Nayeem, Z. Wang, X. Pu, C. Dagdeviren et al., Conductive hydrogels for bioenergy harvesting and self-powered application. Prog. Mater. Sci. 138, 101156 (2023). https://doi.org/10.1016/j.pmatsci.2023.101156
- D. Shen, M. Xiao, G. Zou, L. Liu, W.W. Duley et al., Self-powered wearable electronics based on moisture enabled electricity generation. Adv. Mater. 30(18), 1705925 (2018). https://doi.org/10.1002/adma.201705925
- C. Gu, Y. Luo, H. Ji, S. Wang, B. Huang et al., Insight into hydrovoltaic technology: from mechanism to applications. Adv. Sustain. Syst. 9(2), 2400805 (2025). https://doi.org/10.1002/adsu.202400805
- C. Fu, X. Lu, T. Yang, Characterization methods on moisture-enabled power generator: mechanism, parameters and applications. J. Phys. D Appl. Phys. 57(37), 373003 (2024). https://doi.org/10.1088/1361-6463/ad572d
- K. Ni, Q. Ren, S. Liu, B. Sun, Y.-C. Lai et al., Advances in asymmetric moist-electric generators with innovative heterogeneous structures. Energy Environ. Sci. 17(24), 9406–9424 (2024). https://doi.org/10.1039/D4EE02252A
- Y. Wang, J. Ju, W. Zhu, Y. Liu, Y. Zhang et al., Water evaporation systems for the simultaneous generation of electricity and water desalination: a review. J. Mater. Chem. A 12(37), 24761–24801 (2024). https://doi.org/10.1039/D4TA04084H
- Z. Li, T. Yang, J.-H. Zhang, T. Meng, S. Melhi et al., New paradigms of water-enabled electrical energy generation. SusMat 4(3), e206 (2024). https://doi.org/10.1002/sus2.206
- H. Lim, M.S. Kim, Y. Cho, J. Ahn, S. Ahn et al., Hydrovoltaic electricity generator with hygroscopic materials: a review and new perspective. Adv. Mater. 36(12), 2301080 (2024). https://doi.org/10.1002/adma.202301080
- H. Su, A. Nilghaz, D. Liu, L. Dai, J. Tian et al., Harnessing the power of water: a review of hydroelectric nanogenerators. Nano Energy 116, 108819 (2023). https://doi.org/10.1016/j.nanoen.2023.108819
- J. Liang, Y. Wang, X. Ma, X. Song, H. Wang et al., Directional oxygen defect engineering in black phosphorus aerogel for flexible and stable moisture-electric generators. Adv. Funct. Mater. 35(15), 2418834 (2025). https://doi.org/10.1002/adfm.202418834
- Y. Diao, Q. Hu, Y. Liu, R.J. Zeng, S. Zhou et al., Natural electricity production from soil-air water exchange: a wide and untapped energy. Nano Energy 135, 110619 (2025). https://doi.org/10.1016/j.nanoen.2024.110619
- J. Bai, Y. Huang, H. Wang, T. Guang, Q. Liao et al., Sunlight-coordinated high-performance moisture power in natural conditions. Adv. Mater. 34(10), 2103897 (2022). https://doi.org/10.1002/adma.202103897
- Y. Huang, H. Cheng, C. Yang, H. Yao, C. Li et al., All-region-applicable, continuous power supply of graphene oxide composite. Energy Environ. Sci. 12(6), 1848–1856 (2019). https://doi.org/10.1039/c9ee00838a
- V. Kedambaimoole, N. Kumar, V. Shirhatti, S. Nuthalapati, M.M. Nayak et al., Electric spark induced instantaneous and selective reduction of graphene oxide on textile for wearable electronics. ACS Appl. Mater. Interfaces 12(13), 15527–15537 (2020). https://doi.org/10.1021/acsami.9b22497
- Y. Tao, Z. Wang, H. Xu, W. Ding, X. Zhao et al., Moisture-powered memristor with interfacial oxygen migration for power-free reading of multiple memory states. Nano Energy 71, 104628 (2020). https://doi.org/10.1016/j.nanoen.2020.104628
- C. Ge, Y. Wang, M. Wang, Z. Zheng, S. Wang et al., Silk fibroin-regulated nanochannels for flexible hydrovoltaic ion sensing. Adv. Mater. 36(15), 2310260 (2024). https://doi.org/10.1002/adma.202310260
- L. Li, Z. Zheng, C. Ge, Y. Wang, H. Dai et al., A flexible tough hydrovoltaic coating for wearable sensing electronics. Adv. Mater. 35(40), 2304099 (2023). https://doi.org/10.1002/adma.202304099
- Y. Wang, X. Yuan, K. Ni, Y. Song, X. Li et al., 3D dendritic hierarchically gradient nanoflowers in situ grown on conductive substrates for efficient hydrovoltaic power generation. Energy Environ. Sci. 17(13), 4780–4793 (2024). https://doi.org/10.1039/D4EE00828F
- Y. Song, Z. Song, C. Jiang, C. Xing, X. Zeng et al., Ferroelectric layer-assisted asymmetric heterojunction boosts power output in silicon hydrovoltaic device. Adv. Energy Mater. 13(48), 2302765 (2023). https://doi.org/10.1002/aenm.202302765
- B. Shao, C. Xing, Y. Song, C. Jiang, G. Bai et al., Boosting electrical output of nanostructured silicon hydrovoltaic device via cobalt oxide enabled electrode surface contact. Nano Energy 106, 108081 (2023). https://doi.org/10.1016/j.nanoen.2022.108081
- X. Chen, C. Jiang, Y. Song, B. Shao, Y. Wu et al., Integrating hydrovoltaic device with triboelectric nanogenerator to achieve simultaneous energy harvesting from water droplet and vapor. Nano Energy 100, 107495 (2022). https://doi.org/10.1016/j.nanoen.2022.107495
- S.-H. Sohn, G.-J. Choi, B.-D. On, I.-K. Park, Synergistic coupling of tribovoltaic and moisture-enabled electricity generation in layered-double hydroxides. Adv. Energy Mater. 14(10), 2304206 (2024). https://doi.org/10.1002/aenm.202304206
- K. Jiao, H. Yan, F. Qian, W. Zhang, H. Li et al., Energy harvesting based on water evaporation-induced electrokinetic streaming potential/current in porous carbonized carrots. J. Power. Sources 569, 233007 (2023). https://doi.org/10.1016/j.jpowsour.2023.233007
- A. Mansouri, L.W. Kostiuk, Giant streaming currents measured in a gold sputtered glass microchannel array. Chem. Phys. Lett. 646, 81–86 (2016). https://doi.org/10.1016/j.cplett.2016.01.012
- M. Sadeghi, M.H. Saidi, M. Kröger, M. Tagliazucchi, Stimuli-responsive polyelectrolyte brushes for regulating streaming current magnetic field and energy conversion efficiency in soft nanopores. Phys. Fluids 34(8), 082022 (2022). https://doi.org/10.1063/5.0101738
- D. Jougnot, A. Mendieta, P. Leroy, A. Maineult, Exploring the effect of the pore size distribution on the streaming potential generation in saturated porous media, insight from pore network simulations. J. Geophys. Res. Solid Earth 124(6), 5315–5335 (2019). https://doi.org/10.1029/2018JB017240
- J. Xu, C. Xu, X. Xie, W. Chen, Y. Liu, Optimized nano-heterojunction and hydrophilic carbon cloth for efficient solar driven dual-mode desalination and hydroelectricity co-generation. Chem. Eng. J. 498, 155763 (2024). https://doi.org/10.1016/j.cej.2024.155763
- H. Su, K.A.S. Usman, A. Nilghaz, Y. Bu, K. Tang et al., Efficient energy generation from a sweat-powered, wearable, MXene-based hydroelectric nanogenerator. Device 2(5), 100356 (2024). https://doi.org/10.1016/j.device.2024.100356
- M. Li, L. Zong, W. Yang, X. Li, J. You et al., Biological nanofibrous generator for electricity harvest from moist air flow. Adv. Funct. Mater. 29(32), 1901798 (2019). https://doi.org/10.1002/adfm.201901798
- J. Bae, T.G. Yun, B.L. Suh, J. Kim, I.-D. Kim, Self-operating transpiration-driven electrokinetic power generator with an artificial hydrological cycle. Energy Environ. Sci. 13(2), 527–534 (2020). https://doi.org/10.1039/C9EE02616A
- Y. Liu, F. Yu, Y. Jiang, L. Wang, M. Zhang et al., High performance hydrovoltaic devices based on asymmetrical electrode design. J. Power. Sources 613, 234874 (2024). https://doi.org/10.1016/j.jpowsour.2024.234874
- Y. Liu, Z. Li, Wang, X. Yang, Y. Yang et al., Surface functional modification for boosting power density of hydrovoltaic devices. Adv. Funct. Mater. 34(14), 2312666 (2024). https://doi.org/10.1002/adfm.202312666
- Z. Liu, C. Liu, Z. Chen, H. Huang, Y. Liu et al., Recent advances in two-dimensional materials for hydrovoltaic energy technology. Exploration 3(2), 20220061 (2023). https://doi.org/10.1002/EXP.20220061
- C. Fu, J. Zhou, X. Lu, H. Feng, Y. Zhang et al., A long life moisture-enabled electric generator based on ionic diode rectification and electrode chemistry regulation. Adv. Sci. 11(15), 2305530 (2024). https://doi.org/10.1002/advs.202305530
- Y. Huang, H. Cheng, L. Qu, Emerging materials for water-enabled electricity generation. ACS Mater. Lett. 3(2), 193–209 (2021). https://doi.org/10.1021/acsmaterialslett.0c00474
- Y. Liang, F. Zhao, Z. Cheng, Y. Deng, Y. Xiao et al., Electric power generation via asymmetric moisturizing of graphene oxide for flexible, printable and portable electronics. Energy Environ. Sci. 11(7), 1730–1735 (2018). https://doi.org/10.1039/C8EE00671G
- M. Wang, C. Ge, F. Wen, X. Luo, Y. Wang et al., A flexible hydrovoltaic device with strain-induced ion selectivity. Adv. Funct. Mater., 2508734 (2025). https://doi.org/10.1002/adfm.202508734
- X. Zhang, X. Zhang, H.-T. Ren, T.-T. Li, C.-W. Lou, Highly hydrovoltaic fabrics based on water evaporation drive for self-powered wearable. Chem. Eng. J. 519, 165215 (2025). https://doi.org/10.1016/j.cej.2025.165215
- Y. Wang, C. Ge, M. Wang, J. Ma, Y. Zhou et al., Multidimensional nanochannel regulation for high-performance flexible hydrovoltaic sensing devices. Adv. Funct. Mater. 35(31), 2425225 (2025). https://doi.org/10.1002/adfm.202425225
- J. Li, R. Wang, C. Wang, Y. Xu, W. Cheng et al., Three-dimensional synergistic strategy for enhancing voltage output of ZnO hydrovoltaic devices. Adv. Funct. Mater. 35(34), 2421130 (2025). https://doi.org/10.1002/adfm.202421130
- T. Cai, L. Lan, B. Peng, C. Zhang, S. Dai et al., Bilayer wood membrane with aligned ion nanochannels for spontaneous moist-electric generation. Nano Lett. 22(16), 6476–6483 (2022). https://doi.org/10.1021/acs.nanolett.2c00919
- Y. Huang, H. Cheng, G. Shi, L. Qu, Highly efficient moisture-triggered nanogenerator based on graphene quantum dots. ACS Appl. Mater. Interfaces 9(44), 38170–38175 (2017). https://doi.org/10.1021/acsami.7b12542
- H. Cheng, Y. Huang, L. Qu, Q. Cheng, G. Shi et al., Flexible in-plane graphene oxide moisture-electric converter for touchless interactive panel. Nano Energy 45, 37–43 (2018). https://doi.org/10.1016/j.nanoen.2017.12.033
- X. Wei, D. He, Y.-N. Yang, Z. Geng, M. Shi et al., Enhancing the performance of fluorinated graphdiyne moisture cells via hard acid-base coordination of aluminum ions. Adv. Mater. 37(14), 2419706 (2025). https://doi.org/10.1002/adma.202419706
- A. Awati, S. Zhou, T. Shi, J. Zeng, R. Yang et al., Interfacial super-assembly of intertwined nanofibers toward hybrid nanochannels for synergistic salinity gradient power conversion. ACS Appl. Mater. Interfaces 15(22), 27075–27088 (2023). https://doi.org/10.1021/acsami.3c03464
- Y.-N. Yang, J. Wang, Z. Wang, C. Shao, Y. Han et al., Moisture-electric-moisture-sensitive heterostructure triggered proton hopping for quality-enhancing moist-electric generator. Nano-Micro Lett. 16(1), 56 (2023). https://doi.org/10.1007/s40820-023-01260-w
- C. Liu, S. Wang, X. Wang, J. Mao, Y. Chen et al., Hydrovoltaic energy harvesting from moisture flow using an ionic polymer–hydrogel–carbon composite. Energy Environ. Sci. 15(6), 2489–2498 (2022). https://doi.org/10.1039/D2EE00030J
- C. Yang, Y. Huang, H. Cheng, L. Jiang, L. Qu, Rollable, stretchable, and reconfigurable graphene hygroelectric generators. Adv. Mater. 31(2), e1805705 (2019). https://doi.org/10.1002/adma.201805705
- J. Eun, S. Jeon, Direct fabrication of high performance moisture-driven power generators using laser induced graphitization of sodium chloride-impregnated cellulose nanofiber films. Nano Energy 92, 106772 (2022). https://doi.org/10.1016/j.nanoen.2021.106772
- S. Lee, H. Jang, H. Lee, D. Yoon, S. Jeon, Direct fabrication of a moisture-driven power generator by laser-induced graphitization with a gradual defocusing method. ACS Appl. Mater. Interfaces 11(30), 26970–26975 (2019). https://doi.org/10.1021/acsami.9b08056
- J. Chen, X. Zhang, M. Cheng, Q. Li, S. Zhao et al., A self-sustained moist-electric generator with enhanced energy density and longevity through a bilayer approach. Mater. Horiz. 12(7), 2309–2318 (2025). https://doi.org/10.1039/D4MH01642D
- H. Liu, X. Ji, Z. Guo, X. Wei, J. Fan et al., A high-current hydrogel generator with engineered mechanoionic asymmetry. Nat. Commun. 15, 1494 (2024). https://doi.org/10.1038/s41467-024-45931-7
- L. Yang, F. Yang, X. Liu, K. Li, Y. Zhou et al., A moisture-enabled fully printable power source inspired by electric eels. Proc. Natl. Acad. Sci. U. S. A. 118(16), e2023164118 (2021). https://doi.org/10.1073/pnas.2023164118
- G. Ma, W. Li, X. Zhou, X. Wang, M. Cao et al., PVA–PNIPAM hydrogel-based moisture-electric generators with tunable pore structures for enhanced power generation. ACS Appl. Polym. Mater. 6(12), 7066–7076 (2024). https://doi.org/10.1021/acsapm.4c00849
- J. Mo, X. Wang, X. Lin, X. Feng, C. Qiu et al., Sulfated cellulose nanofibrils-based hydrogel moist-electric generator for energy harvesting. Chem. Eng. J. 491, 152055 (2024). https://doi.org/10.1016/j.cej.2024.152055
- Y. Cheng, C. Yang, T. Zhu, C. Wu, J. Huang et al., Light-assisted polyproton dissociated PAAm-PA hydrogel-based moisture-driven electricity generator with a broad operating range. Adv. Funct. Mater. 35(8), 2415533 (2025). https://doi.org/10.1002/adfm.202415533
- J. Xue, F. Zhao, C. Hu, Y. Zhao, H. Luo et al., Vapor-activated power generation on conductive polymer. Adv. Funct. Mater. 26(47), 8784–8792 (2016). https://doi.org/10.1002/adfm.201604188
- F. Ni, P. Xiao, C. Zhang, T. Chen, Hygroscopic polymer gels toward atmospheric moisture exploitations for energy management and freshwater generation. Matter 5(9), 2624–2658 (2022). https://doi.org/10.1016/j.matt.2022.06.010
- Z. Sun, X. Wen, L. Wang, D. Ji, X. Qin et al., Emerging design principles, materials, and applications for moisture-enabled electric generation. eScience 2(1), 32–46 (2022). https://doi.org/10.1016/j.esci.2021.12.009
- Y. Cheng, T. Zhu, Q. He, F. Wen, Y. Cheng et al., Hydrogel-based moisture electric generator with high output performance induced by proton hopping. Adv. Funct. Mater. 35(27), 2500186 (2025). https://doi.org/10.1002/adfm.202500186
- J. Bai, Q. Liao, H. Yao, T. Guang, T. He et al., Self-induced interface enhanced moisture-harvesting and light-trapping toward high performance electric power generation. Energy Environ. Sci. 16(7), 3088–3097 (2023). https://doi.org/10.1039/D3EE00843F
- J. Liu, Y. Wang, L. Zhou, Z. Yu, Y. Yuan, Hydrogel-integrated waste activated sludge for reliable moisture-driven electrical power generation under low and fluctuating humidity conditions. Chem. Eng. J. 513, 162880 (2025). https://doi.org/10.1016/j.cej.2025.162880
- J. Fang, X. Zhang, P. Duan, Z. Jiang, X. Lu et al., Efficient and cold-tolerant moisture-enabled power generator combining ionic diode and ionic hydrogel. Mater. Horiz. 11(5), 1261–1271 (2024). https://doi.org/10.1039/D3MH01496G
- Z. Sun, X. Wen, L. Wang, J. Yu, X. Qin, Capacitor-inspired high-performance and durable moist-electric generator. Energy Environ. Sci. 15(11), 4584–4591 (2022). https://doi.org/10.1039/D2EE02046G
- D. Lv, S. Zheng, C. Cao, K. Li, L. Ai et al., Defect-enhanced selective ion transport in an ionic nanocomposite for efficient energy harvesting from moisture. Energy Environ. Sci. 15(6), 2601–2609 (2022). https://doi.org/10.1039/D2EE00432A
- R. Zhu, Q. Yu, M. Li, A. Li, D. Zhan et al., Green synthesis of natural nanocomposite with synergistically tunable sorption/desorption for solar-driven all-weather moisture harvesting. Nano Energy 124, 109471 (2024). https://doi.org/10.1016/j.nanoen.2024.109471
- Y. Huang, K. Zhou, H. Cheng, T. He, H. Wang et al., Three-dimensional printing of high-performance moisture power generators. Adv. Funct. Mater. 34(2), 2308620 (2024). https://doi.org/10.1002/adfm.202308620
- Q. Hu, G. Ren, J. Ye, B. Zhang, C. Rensing et al., Hygroelectric-photovoltaic coupling generator using self-assembled bio-nano hybrids. Chem. Eng. J. 452, 139169 (2023). https://doi.org/10.1016/j.cej.2022.139169
- X. Liu, H. Gao, L. Sun, J. Yao, Generic air-gen effect in nanoporous materials for sustainable energy harvesting from air humidity. Adv. Mater. 36(12), 2300748 (2024). https://doi.org/10.1002/adma.202300748
- S. Li, A. Liu, W. Qiu, Y. Wang, G. Liu et al., An all-protein multisensory highly bionic skin. ACS Nano 18(5), 4579–4589 (2024). https://doi.org/10.1021/acsnano.3c12525
- S. Li, G. Liu, H. Wen, G. Liu, H. Wang et al., A skin-like pressure- and vibration-sensitive tactile sensor based on polyacrylamide/silk fibroin elastomer. Adv. Funct. Mater. 32(19), 2111747 (2022). https://doi.org/10.1002/adfm.202111747
- Z. Wang, J. Li, C. Shao, X. Lin, Y.-N. Yang et al., Moisture power in natural polymeric silk fibroin flexible membrane triggers efficient antibacterial activity of silver nanops. Nano Energy 90, 106529 (2021). https://doi.org/10.1016/j.nanoen.2021.106529
- W. Yang, L. Lv, X. Li, X. Han, M. Li et al., Quaternized silk nanofibrils for electricity generation from moisture and ion rectification. ACS Nano 14(8), 10600–10607 (2020). https://doi.org/10.1021/acsnano.0c04686
- Z. Lin, Z. Meng, H. Miao, R. Wu, W. Qiu et al., Biomimetic salinity power generation based on silk fibroin ion-exchange membranes. ACS Nano 15(3), 5649–5660 (2021). https://doi.org/10.1021/acsnano.1c00820
- L. Li, F. Dong, P. Miao, N. He, B. Wang et al., High-efficiency moisture energy harvesting at –30°C via hybrid solute engineering. Energy Environ. Sci. 18(6), 2985–2994 (2025). https://doi.org/10.1039/d4ee05936k
- Z. Sun, L. Feng, C. Xiong, X. He, L. Wang et al., Electrospun nanofiber fabric: an efficient, breathable and wearable moist-electric generator. J. Mater. Chem. A 9(11), 7085–7093 (2021). https://doi.org/10.1039/D0TA11974A
- K. Liu, P. Yang, S. Li, J. Li, T. Ding et al., Induced potential in porous carbon films through water vapor absorption. Angew. Chem. Int. Ed. 55(28), 8003–8007 (2016). https://doi.org/10.1002/anie.201602708
- Q. Chen, J. Zhao, H. Cheng, Graphene-based assemblies for moist-electric generation. Front. Energy Res. 9, 738142 (2021). https://doi.org/10.3389/fenrg.2021.738142
- C. Shao, J. Gao, T. Xu, B. Ji, Y. Xiao et al., Wearable fiberform hygroelectric generator. Nano Energy 53, 698–705 (2018). https://doi.org/10.1016/j.nanoen.2018.09.043
- Y. Liang, F. Zhao, Z. Cheng, Q. Zhou, H. Shao et al., Self-powered wearable graphene fiber for information expression. Nano Energy 32, 329–335 (2017). https://doi.org/10.1016/j.nanoen.2016.12.062
- G. Zan, W. Jiang, H. Kim, K. Zhao, S. Li et al., A core–shell fiber moisture-driven electric generator enabled by synergetic complex coacervation and built-in potential. Nat. Commun. 15, 10056 (2024). https://doi.org/10.1038/s41467-024-54442-4
- Q. Zhang, Z. Ren, P. Jia, J. Shi, J. Yin et al., An ultra-miniaturized fiber humidity sensor based on near-parallel ion pathways induced efficient water−electricity conversion. Adv. Mater. 37(3), 2411558 (2025). https://doi.org/10.1002/adma.202411558
- Y. Hu, W. Yang, W. Wei, Z. Sun, B. Wu et al., Phyto-inspired sustainable and high-performance fabric generators via moisture absorption-evaporation cycles. Sci. Adv. 10(2), eadk4620 (2024). https://doi.org/10.1126/sciadv.adk4620
- X. Li, D. Lv, L. Ai, X. Wang, X. Xu et al., Superstrong ionogel enabled by coacervation-induced nanofibril assembly for sustainable moisture energy harvesting. ACS Nano 18(20), 12970–12980 (2024). https://doi.org/10.1021/acsnano.4c01179
- R. Zhang, H. Wang, M. Qu, S. Li, Y. Ma et al., Sodium alginate based energy harvesting fibers: multiscale structure and moist-electrical properties. Chem. Eng. J. 473, 145325 (2023). https://doi.org/10.1016/j.cej.2023.145325
- R. Gogoi, P. Garg, P.P. Das, A.K. Rajak, N. Nath et al., Application of tandem heterojunction of metal oxides and hydroxides as robust and repairable moisture-electric generator. Nano Energy 131, 110187 (2024). https://doi.org/10.1016/j.nanoen.2024.110187
- Z. Sun, X. Wen, S. Guo, M. Zhou, L. Wang et al., Weavable yarn-shaped moisture-induced electric generator. Nano Energy 116, 108748 (2023). https://doi.org/10.1016/j.nanoen.2023.108748
- M. Song, D. Kim, H. Lee, H. Han, S. Jeon, Synergistic effect of a Berlin green framework for highly efficient moisture-electric energy transformation. Energy Environ. Sci. 17(15), 5421–5428 (2024). https://doi.org/10.1039/D4EE00777H
- L. Wang, H. Wang, C. Wu, J. Bai, T. He et al., Moisture-enabled self-charging and voltage stabilizing supercapacitor. Nat. Commun. 15, 4929 (2024). https://doi.org/10.1038/s41467-024-49393-9
- S.-H. Lee, J.-Y. Kim, J. Kim, J. Yun, J. Youm et al., Cost-effective moisture-induced electrical power generators for sustainable electrodialysis desalination. Nano Energy 126, 109683 (2024). https://doi.org/10.1016/j.nanoen.2024.109683
- G. Liu, Z. An, Y. Lu, Y. Wu, Z. Shi et al., High-output moisture-enabled electricity generator for fully self-powered wearable physical and biochemical monitoring. Nano Energy 119, 109098 (2024). https://doi.org/10.1016/j.nanoen.2023.109098
- J. Zhou, X. Zhang, Y. Yao, T. Yang, Screen printing of ionic diode arrays for large-area uniform moist-electric generators. IScience 28(3), 112026 (2025). https://doi.org/10.1016/j.isci.2025.112026
- X. Zhang, Z. Dai, J. Chen, X. Chen, X. Lin et al., Double-gradient-structured composite aerogels for ultra-high-performance moisture energy harvesting. Energy Environ. Sci. 16(8), 3600–3611 (2023). https://doi.org/10.1039/D3EE00981E
- H. Liu, L. Liu, Y. Du, Y. Zheng, S. Zhao et al., Self-sustained water and electricity generation from ambient humidity by using metal-ion controlled hygroscopic hydrogels. Adv. Funct. Mater. 2420936 (2025). https://doi.org/10.1002/adfm.202420936
- P. Li, Y. Hu, W. He, B. Lu, H. Wang et al., Multistage coupling water-enabled electric generator with customizable energy output. Nat. Commun. 14, 5702 (2023). https://doi.org/10.1038/s41467-023-41371-x
- Z. Gao, C. Fang, Y. Gao, X. Yin, S. Zhang et al., Hybrid electromagnetic and moisture energy harvesting enabled by ionic diode films. Nat. Commun. 16, 312 (2025). https://doi.org/10.1038/s41467-024-55030-2
- G. Ren, Q. Hu, J. Ye, A. Hu, J. Lü et al., All-biobased hydrovoltaic-photovoltaic electricity generators for all-weather energy harvesting. Research (2022). https://doi.org/10.34133/2022/9873203
- Q. Ni, Q. Lou, C. Shen, G. Zheng, R. Song et al., Sensitive humidity sensor based on moisture-driven energy generation. Nano Res. 17(6), 5578–5586 (2024). https://doi.org/10.1007/s12274-024-6499-3
- C. Yang, H. Wang, J. Yang, H. Yao, T. He et al., A machine-learning-enhanced simultaneous and multimodal sensor based on moist-electric powered graphene oxide. Adv. Mater. 34(41), 2205249 (2022). https://doi.org/10.1002/adma.202205249
- F. Yu, L. Wang, X. Yang, Y. Yang, X. Li et al., Moisture-electric generators working in subzero environments based on laser-engraved hygroscopic hydrogel arrays. ACS Nano 19(3), 3807–3817 (2025). https://doi.org/10.1021/acsnano.4c14996
- P. Dhakal, J.K. Shah, A generalized machine learning model for predicting ionic conductivity of ionic liquids. Mol. Syst. Des. Eng. 7(10), 1344–1353 (2022). https://doi.org/10.1039/D2ME00046F
- H. Lin, Y. Yang, Y.-C. Hsu, J. Zhang, C. Welton et al., Metal–organic frameworks for water harvesting and concurrent carbon capture: a review for hygroscopic materials. Adv. Mater. 36(12), 2209073 (2024). https://doi.org/10.1002/adma.202209073
- C. Yang, H. Wang, J. Bai, T. He, H. Cheng et al., Transfer learning enhanced water-enabled electricity generation in highly oriented graphene oxide nanochannels. Nat. Commun. 13(1), 6819 (2022). https://doi.org/10.1038/s41467-022-34496-y
References
S. Bai, X. Yao, M.Y. Wong, Q. Xu, H. Li et al., Enhancement of water productivity and energy efficiency in sorption-based atmospheric water harvesting systems: from material, component to system level. ACS Nano 18(46), 31597–31631 (2024). https://doi.org/10.1021/acsnano.4c09582
S. Zang, J. Chen, Y. Yamauchi, S.W. Sharshir, H. Huang et al., Moisture power generation: from material selection to device structure optimization. ACS Nano 18(31), 19912–19930 (2024). https://doi.org/10.1021/acsnano.4c01416
A. Entezari, O.C. Esan, X. Yan, R. Wang, L. An, Sorption-based atmospheric water harvesting: materials, components, systems, and applications. Adv. Mater. 35(40), 2210957 (2023). https://doi.org/10.1002/adma.202210957
L. Wang, W. Zhang, Y. Deng, Advances and challenges for hydrovoltaic intelligence. ACS Nano 17(15), 14229–14252 (2023). https://doi.org/10.1021/acsnano.3c02043
J. Tan, X. Wang, W. Chu, S. Fang, C. Zheng et al., Harvesting energy from atmospheric water: grand challenges in continuous electricity generation. Adv. Mater. 36(12), 2211165 (2024). https://doi.org/10.1002/adma.202211165
Z. Feng, T. Yin, C. Liu, X. Yin, T. Wan et al., Atmospheric water sorption–desorption as a pathway for green energy generation. Adv. Mater. 37(36), 2506046 (2025). https://doi.org/10.1002/adma.202506046
T. Xu, X. Ding, H. Cheng, G. Han, L. Qu, Moisture-enabled electricity from hygroscopic materials: a new type of clean energy. Adv. Mater. 36(12), 2209661 (2024). https://doi.org/10.1002/adma.202209661
D. Shen, W.W. Duley, P. Peng, M. Xiao, J. Feng et al., Moisture-enabled electricity generation: from physics and materials to self-powered applications. Adv. Mater. 32(52), 2003722 (2020). https://doi.org/10.1002/adma.202003722
X. Wang, F. Lin, X. Wang, S. Fang, J. Tan et al., Hydrovoltaic technology: from mechanism to applications. Chem. Soc. Rev. 51(12), 4902–4927 (2022). https://doi.org/10.1039/D1CS00778E
X. Zhao, D. Shen, W.W. Duley, C. Tan, Y.N. Zhou, Water-enabled electricity generation: a perspective. Adv. Energy Sustain. Res. 3(4), 2100196 (2022). https://doi.org/10.1002/aesr.202100196
Z. Zhang, X. Li, J. Yin, Y. Xu, W. Fei et al., Emerging hydrovoltaic technology. Nat. Nanotechnol. 13(12), 1109–1119 (2018). https://doi.org/10.1038/s41565-018-0228-6
D. Shen, F. Li, J. Zhao, R. Wang, B. Li et al., Ionic hydrogel-based moisture electric generators for underwater electronics. Adv. Sci. 11(43), 2408954 (2024). https://doi.org/10.1002/advs.202408954
G. Zhao, F. Li, L. Guo, D. Zhang, H. Luo et al., Cellulose/ionic hydrogel moisture electric generators with enhanced output and stability. Chem. Eng. J. 518, 164788 (2025). https://doi.org/10.1016/j.cej.2025.164788
F. Li, J. Zhao, B. Li, Z. Han, L. Guo et al., Water-triboelectrification-complemented moisture electric generator. ACS Nano 18(44), 30658–30667 (2024). https://doi.org/10.1021/acsnano.4c09581
H. Wang, Y. Sun, T. He, Y. Huang, H. Cheng et al., Bilayer of polyelectrolyte films for spontaneous power generation in air up to an integrated 1000 V output. Nat. Nanotechnol. 16(7), 811–819 (2021). https://doi.org/10.1038/s41565-021-00903-6
S. Yang, X. Tao, W. Chen, J. Mao, H. Luo et al., Ionic hydrogel for efficient and scalable moisture-electric generation. Adv. Mater. 34(21), 2200693 (2022). https://doi.org/10.1002/adma.202200693
R. Zhu, T. Liu, A. Balilonda, Y. Luo, K. Ma et al., Green, safe, durable, printed fabric hygroelectric generators for wearable systems. Adv. Mater. 2502091 (2025). https://doi.org/10.1002/adma.202502091
Z. Feng, T. Wan, T. Yin, C. Liu, S. Zhang et al., Constructing water-retaining/ion-regulating bi-layers for highly durable, all-climate, efficient moisture electric generators. Adv. Mater. 37(27), 2416008 (2025). https://doi.org/10.1002/adma.202416008
D. Shen, X. Zhang, L. Zhu, Laser processing for electricity generators: physics, methods and applications. Nano Energy 120, 109182 (2024). https://doi.org/10.1016/j.nanoen.2023.109182
F. Zhao, H. Cheng, Z. Zhang, L. Jiang, L. Qu, Direct power generation from a graphene oxide film under moisture. Adv. Mater. 27(29), 4351–4357 (2015). https://doi.org/10.1002/adma.201501867
K. Hu, R. Xiong, H. Guo, R. Ma, S. Zhang et al., Self-powered electronic skin with biotactile selectivity. Adv. Mater. 28(18), 3549–3556 (2016). https://doi.org/10.1002/adma.201506187
T. Xu, X. Ding, C. Shao, L. Song, T. Lin et al., Electric power generation through the direct interaction of pristine graphene-oxide with water molecules. Small 14(14), 1704473 (2018). https://doi.org/10.1002/smll.201704473
T. Zhong, H. Guan, Y. Dai, H. He, L. Xing et al., A self-powered flexibly-arranged gas monitoring system with evaporating rainwater as fuel for building atmosphere big data. Nano Energy 60, 52–60 (2019). https://doi.org/10.1016/j.nanoen.2019.03.041
F. Zhao, Y. Liang, H. Cheng, L. Jiang, L. Qu, Highly efficient moisture-enabled electricity generation from graphene oxide frameworks. Energy Environ. Sci. 9(3), 912–916 (2016). https://doi.org/10.1039/C5EE03701H
Y. Huang, H. Cheng, C. Yang, P. Zhang, Q. Liao et al., Interface-mediated hygroelectric generator with an output voltage approaching 1.5 volts. Nat. Commun. 9(1), 4166 (2018). https://doi.org/10.1038/s41467-018-06633-z
G. Xue, Y. Xu, T. Ding, J. Li, J. Yin et al., Water-evaporation-induced electricity with nanostructured carbon materials. Nat. Nanotechnol. 12(4), 317–321 (2017). https://doi.org/10.1038/nnano.2016.300
X. Liu, H. Gao, J.E. Ward, X. Liu, B. Yin et al., Power generation from ambient humidity using protein nanowires. Nature 578(7796), 550–554 (2020). https://doi.org/10.1038/s41586-020-2010-9
S. Guo, Y. Zhang, Z. Yu, M. Dai, X. Liu et al., Leaf-based energy harvesting and storage utilizing hygroscopic iron hydrogel for continuous power generation. Nat. Commun. 16(1), 5267 (2025). https://doi.org/10.1038/s41467-025-60341-z
P. Duan, C. Wang, Y. Huang, C. Fu, X. Lu et al., Moisture-based green energy harvesting over 600 hours via photocatalysis-enhanced hydrovoltaic effect. Nat. Commun. 16(1), 239 (2025). https://doi.org/10.1038/s41467-024-55516-z
J. Xu, P. Wang, Z. Bai, H. Cheng, R. Wang et al., Sustainable moisture energy. Nat. Rev. Mater. 9(10), 722–737 (2024). https://doi.org/10.1038/s41578-023-00643-0
R. Li, P. Wang, Sorbents, processes and applications beyond water production in sorption-based atmospheric water harvesting. Nat. Water. 1(7), 573–586 (2023). https://doi.org/10.1038/s44221-023-00099-0
H. Xia, W. Zhou, X. Qu, W. Wang, X. Wang et al., Electricity generated by upstream proton diffusion in two-dimensional nanochannels. Nat. Nanotechnol. 19(9), 1316–1322 (2024). https://doi.org/10.1038/s41565-024-01691-5
H. Cheng, Y. Huang, F. Zhao, C. Yang, P. Zhang et al., Spontaneous power source in ambient air of a well-directionally reduced graphene oxide bulk. Energy Environ. Sci. 11(10), 2839–2845 (2018). https://doi.org/10.1039/C8EE01502C
H. Zhang, N. He, B. Wang, B. Ding, B. Jiang et al., High-performance, highly stretchable, flexible moist-electric generators via molecular engineering of hydrogels. Adv. Mater. 35(20), e2300398 (2023). https://doi.org/10.1002/adma.202300398
Y. Zhang, S. Guo, Z.G. Yu, H. Qu, W. Sun et al., An asymmetric hygroscopic structure for moisture-driven hygro-ionic electricity generation and storage. Adv. Mater. 34(21), 2201228 (2022). https://doi.org/10.1002/adma.202201228
H. He, J. Zhang, J. Pan, Z. Wang, M. Deng et al., Moisture-enabled electric generators based on electrospinning silk fibroin/poly(ethylene oxide) film impregnated with gradient-structured sericin. ACS Appl. Energy Mater. 7(7), 2980–2988 (2024). https://doi.org/10.1021/acsaem.4c00368
R. Zhu, Y. Zhu, L. Hu, P. Guan, D. Su et al., Lab free protein-based moisture electric generators with a high electric output. Energy Environ. Sci. 16(5), 2338–2345 (2023). https://doi.org/10.1039/D3EE00770G
B. Shao, Z. Song, X. Chen, Y. Wu, Y. Li et al., Bioinspired hierarchical nanofabric electrode for silicon hydrovoltaic device with record power output. ACS Nano 15(4), 7472–7481 (2021). https://doi.org/10.1021/acsnano.1c00891
Q. Hu, X. Lin, G. Ren, J. Lü, W. Wang et al., Hydrovoltaic electricity generation induced by living leaf transpiration. Nat. Water. 2(10), 988–998 (2024). https://doi.org/10.1038/s44221-024-00311-9
H. Wang, T. He, X. Hao, Y. Huang, H. Yao et al., Moisture adsorption-desorption full cycle power generation. Nat. Commun. 13, 2524 (2022). https://doi.org/10.1038/s41467-022-30156-3
Y. Huang, C. Wang, C. Shao, B. Wang, N. Chen et al., Graphene oxide assemblies for sustainable clean-water harvesting and green-electricity generation. Acc. Mater. Res. 2(2), 97–107 (2021). https://doi.org/10.1021/accountsmr.0c00073
Z. Huang, T. Zhang, H. Cao, Z. Xu, A. Ju et al., Flexible moisture-driven electricity generators based on heterogeneous gels and carbon nanotubes. ACS Appl. Mater. Interfaces 17(5), 7916–7928 (2025). https://doi.org/10.1021/acsami.4c21266
R. Zhang, R. Zheng, Z. Zheng, Q. Chen, N. Jiang et al., Bacterial cellulose/multi-walled carbon nanotube composite films for moist-electric energy harvesting. Int. J. Biol. Macromol. 263(Pt 1), 130022 (2024). https://doi.org/10.1016/j.ijbiomac.2024.130022
W. Duan, Z. Sun, X. Jiang, S. Tang, X. Wang, Carbon materials for evaporation- and moisture-induced power generation. Nano Energy 134, 110516 (2025). https://doi.org/10.1016/j.nanoen.2024.110516
L. Li, Z. Chen, M. Hao, S. Wang, F. Sun et al., Moisture-driven power generation for multifunctional flexible sensing systems. Nano Lett. 19(8), 5544–5552 (2019). https://doi.org/10.1021/acs.nanolett.9b02081
H. Wang, H. Cheng, Y. Huang, C. Yang, D. Wang et al., Transparent, self-healing, arbitrary tailorable moist-electric film generator. Nano Energy 67, 104238 (2020). https://doi.org/10.1016/j.nanoen.2019.104238
T. Xu, X. Ding, Y. Huang, C. Shao, L. Song et al., An efficient polymer moist-electric generator. Energy Environ. Sci. 12(3), 972–978 (2019). https://doi.org/10.1039/C9EE00252A
N. Chen, Q. Liu, C. Liu, G. Zhang, J. Jing et al., MEG actualized by high-valent metal carrier transport. Nano Energy 65, 104047 (2019). https://doi.org/10.1016/j.nanoen.2019.104047
S. Yang, L. Zhang, J. Mao, J. Guo, Y. Chai et al., Green moisture-electric generator based on supramolecular hydrogel with tens of milliamp electricity toward practical applications. Nat. Commun. 15(1), 3329 (2024). https://doi.org/10.1038/s41467-024-47652-3
T. Guang, Y. Huang, H. Wang, T. He, K. Zhu et al., DNA-based recyclable moist-electric generator. Friction 13(2), 9440927 (2025). https://doi.org/10.26599/frict.2025.9440927
T. He, H. Wang, B. Lu, T. Guang, C. Yang et al., Fully printed planar moisture-enabled electric generator arrays for scalable function integration. Joule 7(5), 935–951 (2023). https://doi.org/10.1016/j.joule.2023.04.007
L. Yi, Q. Wei, Y. Hou, J. Shi, S. Niu et al., Self-sustained electricity generation from ambient moisture enabled by step-gradient polysaccharide films. Adv. Funct. Mater. e10258 (2025). https://doi.org/10.1002/adfm.202510258
W. Lu, T. Ding, X. Wang, C. Zhang, T. Li et al., Anion-cation heterostructured hydrogels for all-weather responsive electricity and water harvesting from atmospheric air. Nano Energy 104, 107892 (2022). https://doi.org/10.1016/j.nanoen.2022.107892
P. Wang, J. Xu, R. Wang, T. Li, Emerging self-sustained electricity generation enabled by moisture. Cell Rep. Phys. Sci. 4(8), 101517 (2023). https://doi.org/10.1016/j.xcrp.2023.101517
J. Tan, S. Fang, Z. Zhang, J. Yin, L. Li et al., Self-sustained electricity generator driven by the compatible integration of ambient moisture adsorption and evaporation. Nat. Commun. 13(1), 3643 (2022). https://doi.org/10.1038/s41467-022-31221-7
Y. Chen, C. Ye, J. He, R. Guo, L. Qu et al., Achieving persistent and ultra-high voltage output through an arid-adapted plant-inspired high-performance moisture-electric generator. Energy Environ. Sci. 18(12), 6063–6075 (2025). https://doi.org/10.1039/D5EE01194A
K. Zhao, J.W. Lee, Z.G. Yu, W. Jiang, J.W. Oh et al., Humidity-tolerant moisture-driven energy generator with MXene aerogel–organohydrogel bilayer. ACS Nano 17(6), 5472–5485 (2023). https://doi.org/10.1021/acsnano.2c10747
K. Zhao, S. Li, G. Zan, G. Kim, W. Jiang et al., Moisture-driven energy generation by vertically structured polymer aerogel on water-collecting gel. Nano Energy 126, 109645 (2024). https://doi.org/10.1016/j.nanoen.2024.109645
X. Zhang, J. Liang, K. Ahmad, Z. Almutairi, C. Wan, Moisture-driven fabric-based generator for powering wearable electronics. Device 2(4), 100316 (2024). https://doi.org/10.1016/j.device.2024.100316
Y. Yao, X. Lu, C. Fu, Y. Zhang, J. Fang et al., Patterned coating of ionic diode arrays toward flexible moist-electric generators to power wireless sensor nodes. Adv. Funct. Mater. 34(9), 2311465 (2024). https://doi.org/10.1002/adfm.202311465
C. Guo, H. Tang, P. Wang, Q. Xu, H. Pan et al., Radiative cooling assisted self-sustaining and highly efficient moisture energy harvesting. Nat. Commun. 15(1), 6100 (2024). https://doi.org/10.1038/s41467-024-50396-9
H. Yan, Z. Liu, R. Qi, A review of humidity gradient-based power generator: devices, materials and mechanisms. Nano Energy 101, 107591 (2022). https://doi.org/10.1016/j.nanoen.2022.107591
W. Lu, W.L. Ong, G.W. Ho, Advances in harvesting water and energy from ubiquitous atmospheric moisture. J. Mater. Chem. A 11(24), 12456–12481 (2023). https://doi.org/10.1039/D2TA09552A
C. Zhang, M.O.G. Nayeem, Z. Wang, X. Pu, C. Dagdeviren et al., Conductive hydrogels for bioenergy harvesting and self-powered application. Prog. Mater. Sci. 138, 101156 (2023). https://doi.org/10.1016/j.pmatsci.2023.101156
D. Shen, M. Xiao, G. Zou, L. Liu, W.W. Duley et al., Self-powered wearable electronics based on moisture enabled electricity generation. Adv. Mater. 30(18), 1705925 (2018). https://doi.org/10.1002/adma.201705925
C. Gu, Y. Luo, H. Ji, S. Wang, B. Huang et al., Insight into hydrovoltaic technology: from mechanism to applications. Adv. Sustain. Syst. 9(2), 2400805 (2025). https://doi.org/10.1002/adsu.202400805
C. Fu, X. Lu, T. Yang, Characterization methods on moisture-enabled power generator: mechanism, parameters and applications. J. Phys. D Appl. Phys. 57(37), 373003 (2024). https://doi.org/10.1088/1361-6463/ad572d
K. Ni, Q. Ren, S. Liu, B. Sun, Y.-C. Lai et al., Advances in asymmetric moist-electric generators with innovative heterogeneous structures. Energy Environ. Sci. 17(24), 9406–9424 (2024). https://doi.org/10.1039/D4EE02252A
Y. Wang, J. Ju, W. Zhu, Y. Liu, Y. Zhang et al., Water evaporation systems for the simultaneous generation of electricity and water desalination: a review. J. Mater. Chem. A 12(37), 24761–24801 (2024). https://doi.org/10.1039/D4TA04084H
Z. Li, T. Yang, J.-H. Zhang, T. Meng, S. Melhi et al., New paradigms of water-enabled electrical energy generation. SusMat 4(3), e206 (2024). https://doi.org/10.1002/sus2.206
H. Lim, M.S. Kim, Y. Cho, J. Ahn, S. Ahn et al., Hydrovoltaic electricity generator with hygroscopic materials: a review and new perspective. Adv. Mater. 36(12), 2301080 (2024). https://doi.org/10.1002/adma.202301080
H. Su, A. Nilghaz, D. Liu, L. Dai, J. Tian et al., Harnessing the power of water: a review of hydroelectric nanogenerators. Nano Energy 116, 108819 (2023). https://doi.org/10.1016/j.nanoen.2023.108819
J. Liang, Y. Wang, X. Ma, X. Song, H. Wang et al., Directional oxygen defect engineering in black phosphorus aerogel for flexible and stable moisture-electric generators. Adv. Funct. Mater. 35(15), 2418834 (2025). https://doi.org/10.1002/adfm.202418834
Y. Diao, Q. Hu, Y. Liu, R.J. Zeng, S. Zhou et al., Natural electricity production from soil-air water exchange: a wide and untapped energy. Nano Energy 135, 110619 (2025). https://doi.org/10.1016/j.nanoen.2024.110619
J. Bai, Y. Huang, H. Wang, T. Guang, Q. Liao et al., Sunlight-coordinated high-performance moisture power in natural conditions. Adv. Mater. 34(10), 2103897 (2022). https://doi.org/10.1002/adma.202103897
Y. Huang, H. Cheng, C. Yang, H. Yao, C. Li et al., All-region-applicable, continuous power supply of graphene oxide composite. Energy Environ. Sci. 12(6), 1848–1856 (2019). https://doi.org/10.1039/c9ee00838a
V. Kedambaimoole, N. Kumar, V. Shirhatti, S. Nuthalapati, M.M. Nayak et al., Electric spark induced instantaneous and selective reduction of graphene oxide on textile for wearable electronics. ACS Appl. Mater. Interfaces 12(13), 15527–15537 (2020). https://doi.org/10.1021/acsami.9b22497
Y. Tao, Z. Wang, H. Xu, W. Ding, X. Zhao et al., Moisture-powered memristor with interfacial oxygen migration for power-free reading of multiple memory states. Nano Energy 71, 104628 (2020). https://doi.org/10.1016/j.nanoen.2020.104628
C. Ge, Y. Wang, M. Wang, Z. Zheng, S. Wang et al., Silk fibroin-regulated nanochannels for flexible hydrovoltaic ion sensing. Adv. Mater. 36(15), 2310260 (2024). https://doi.org/10.1002/adma.202310260
L. Li, Z. Zheng, C. Ge, Y. Wang, H. Dai et al., A flexible tough hydrovoltaic coating for wearable sensing electronics. Adv. Mater. 35(40), 2304099 (2023). https://doi.org/10.1002/adma.202304099
Y. Wang, X. Yuan, K. Ni, Y. Song, X. Li et al., 3D dendritic hierarchically gradient nanoflowers in situ grown on conductive substrates for efficient hydrovoltaic power generation. Energy Environ. Sci. 17(13), 4780–4793 (2024). https://doi.org/10.1039/D4EE00828F
Y. Song, Z. Song, C. Jiang, C. Xing, X. Zeng et al., Ferroelectric layer-assisted asymmetric heterojunction boosts power output in silicon hydrovoltaic device. Adv. Energy Mater. 13(48), 2302765 (2023). https://doi.org/10.1002/aenm.202302765
B. Shao, C. Xing, Y. Song, C. Jiang, G. Bai et al., Boosting electrical output of nanostructured silicon hydrovoltaic device via cobalt oxide enabled electrode surface contact. Nano Energy 106, 108081 (2023). https://doi.org/10.1016/j.nanoen.2022.108081
X. Chen, C. Jiang, Y. Song, B. Shao, Y. Wu et al., Integrating hydrovoltaic device with triboelectric nanogenerator to achieve simultaneous energy harvesting from water droplet and vapor. Nano Energy 100, 107495 (2022). https://doi.org/10.1016/j.nanoen.2022.107495
S.-H. Sohn, G.-J. Choi, B.-D. On, I.-K. Park, Synergistic coupling of tribovoltaic and moisture-enabled electricity generation in layered-double hydroxides. Adv. Energy Mater. 14(10), 2304206 (2024). https://doi.org/10.1002/aenm.202304206
K. Jiao, H. Yan, F. Qian, W. Zhang, H. Li et al., Energy harvesting based on water evaporation-induced electrokinetic streaming potential/current in porous carbonized carrots. J. Power. Sources 569, 233007 (2023). https://doi.org/10.1016/j.jpowsour.2023.233007
A. Mansouri, L.W. Kostiuk, Giant streaming currents measured in a gold sputtered glass microchannel array. Chem. Phys. Lett. 646, 81–86 (2016). https://doi.org/10.1016/j.cplett.2016.01.012
M. Sadeghi, M.H. Saidi, M. Kröger, M. Tagliazucchi, Stimuli-responsive polyelectrolyte brushes for regulating streaming current magnetic field and energy conversion efficiency in soft nanopores. Phys. Fluids 34(8), 082022 (2022). https://doi.org/10.1063/5.0101738
D. Jougnot, A. Mendieta, P. Leroy, A. Maineult, Exploring the effect of the pore size distribution on the streaming potential generation in saturated porous media, insight from pore network simulations. J. Geophys. Res. Solid Earth 124(6), 5315–5335 (2019). https://doi.org/10.1029/2018JB017240
J. Xu, C. Xu, X. Xie, W. Chen, Y. Liu, Optimized nano-heterojunction and hydrophilic carbon cloth for efficient solar driven dual-mode desalination and hydroelectricity co-generation. Chem. Eng. J. 498, 155763 (2024). https://doi.org/10.1016/j.cej.2024.155763
H. Su, K.A.S. Usman, A. Nilghaz, Y. Bu, K. Tang et al., Efficient energy generation from a sweat-powered, wearable, MXene-based hydroelectric nanogenerator. Device 2(5), 100356 (2024). https://doi.org/10.1016/j.device.2024.100356
M. Li, L. Zong, W. Yang, X. Li, J. You et al., Biological nanofibrous generator for electricity harvest from moist air flow. Adv. Funct. Mater. 29(32), 1901798 (2019). https://doi.org/10.1002/adfm.201901798
J. Bae, T.G. Yun, B.L. Suh, J. Kim, I.-D. Kim, Self-operating transpiration-driven electrokinetic power generator with an artificial hydrological cycle. Energy Environ. Sci. 13(2), 527–534 (2020). https://doi.org/10.1039/C9EE02616A
Y. Liu, F. Yu, Y. Jiang, L. Wang, M. Zhang et al., High performance hydrovoltaic devices based on asymmetrical electrode design. J. Power. Sources 613, 234874 (2024). https://doi.org/10.1016/j.jpowsour.2024.234874
Y. Liu, Z. Li, Wang, X. Yang, Y. Yang et al., Surface functional modification for boosting power density of hydrovoltaic devices. Adv. Funct. Mater. 34(14), 2312666 (2024). https://doi.org/10.1002/adfm.202312666
Z. Liu, C. Liu, Z. Chen, H. Huang, Y. Liu et al., Recent advances in two-dimensional materials for hydrovoltaic energy technology. Exploration 3(2), 20220061 (2023). https://doi.org/10.1002/EXP.20220061
C. Fu, J. Zhou, X. Lu, H. Feng, Y. Zhang et al., A long life moisture-enabled electric generator based on ionic diode rectification and electrode chemistry regulation. Adv. Sci. 11(15), 2305530 (2024). https://doi.org/10.1002/advs.202305530
Y. Huang, H. Cheng, L. Qu, Emerging materials for water-enabled electricity generation. ACS Mater. Lett. 3(2), 193–209 (2021). https://doi.org/10.1021/acsmaterialslett.0c00474
Y. Liang, F. Zhao, Z. Cheng, Y. Deng, Y. Xiao et al., Electric power generation via asymmetric moisturizing of graphene oxide for flexible, printable and portable electronics. Energy Environ. Sci. 11(7), 1730–1735 (2018). https://doi.org/10.1039/C8EE00671G
M. Wang, C. Ge, F. Wen, X. Luo, Y. Wang et al., A flexible hydrovoltaic device with strain-induced ion selectivity. Adv. Funct. Mater., 2508734 (2025). https://doi.org/10.1002/adfm.202508734
X. Zhang, X. Zhang, H.-T. Ren, T.-T. Li, C.-W. Lou, Highly hydrovoltaic fabrics based on water evaporation drive for self-powered wearable. Chem. Eng. J. 519, 165215 (2025). https://doi.org/10.1016/j.cej.2025.165215
Y. Wang, C. Ge, M. Wang, J. Ma, Y. Zhou et al., Multidimensional nanochannel regulation for high-performance flexible hydrovoltaic sensing devices. Adv. Funct. Mater. 35(31), 2425225 (2025). https://doi.org/10.1002/adfm.202425225
J. Li, R. Wang, C. Wang, Y. Xu, W. Cheng et al., Three-dimensional synergistic strategy for enhancing voltage output of ZnO hydrovoltaic devices. Adv. Funct. Mater. 35(34), 2421130 (2025). https://doi.org/10.1002/adfm.202421130
T. Cai, L. Lan, B. Peng, C. Zhang, S. Dai et al., Bilayer wood membrane with aligned ion nanochannels for spontaneous moist-electric generation. Nano Lett. 22(16), 6476–6483 (2022). https://doi.org/10.1021/acs.nanolett.2c00919
Y. Huang, H. Cheng, G. Shi, L. Qu, Highly efficient moisture-triggered nanogenerator based on graphene quantum dots. ACS Appl. Mater. Interfaces 9(44), 38170–38175 (2017). https://doi.org/10.1021/acsami.7b12542
H. Cheng, Y. Huang, L. Qu, Q. Cheng, G. Shi et al., Flexible in-plane graphene oxide moisture-electric converter for touchless interactive panel. Nano Energy 45, 37–43 (2018). https://doi.org/10.1016/j.nanoen.2017.12.033
X. Wei, D. He, Y.-N. Yang, Z. Geng, M. Shi et al., Enhancing the performance of fluorinated graphdiyne moisture cells via hard acid-base coordination of aluminum ions. Adv. Mater. 37(14), 2419706 (2025). https://doi.org/10.1002/adma.202419706
A. Awati, S. Zhou, T. Shi, J. Zeng, R. Yang et al., Interfacial super-assembly of intertwined nanofibers toward hybrid nanochannels for synergistic salinity gradient power conversion. ACS Appl. Mater. Interfaces 15(22), 27075–27088 (2023). https://doi.org/10.1021/acsami.3c03464
Y.-N. Yang, J. Wang, Z. Wang, C. Shao, Y. Han et al., Moisture-electric-moisture-sensitive heterostructure triggered proton hopping for quality-enhancing moist-electric generator. Nano-Micro Lett. 16(1), 56 (2023). https://doi.org/10.1007/s40820-023-01260-w
C. Liu, S. Wang, X. Wang, J. Mao, Y. Chen et al., Hydrovoltaic energy harvesting from moisture flow using an ionic polymer–hydrogel–carbon composite. Energy Environ. Sci. 15(6), 2489–2498 (2022). https://doi.org/10.1039/D2EE00030J
C. Yang, Y. Huang, H. Cheng, L. Jiang, L. Qu, Rollable, stretchable, and reconfigurable graphene hygroelectric generators. Adv. Mater. 31(2), e1805705 (2019). https://doi.org/10.1002/adma.201805705
J. Eun, S. Jeon, Direct fabrication of high performance moisture-driven power generators using laser induced graphitization of sodium chloride-impregnated cellulose nanofiber films. Nano Energy 92, 106772 (2022). https://doi.org/10.1016/j.nanoen.2021.106772
S. Lee, H. Jang, H. Lee, D. Yoon, S. Jeon, Direct fabrication of a moisture-driven power generator by laser-induced graphitization with a gradual defocusing method. ACS Appl. Mater. Interfaces 11(30), 26970–26975 (2019). https://doi.org/10.1021/acsami.9b08056
J. Chen, X. Zhang, M. Cheng, Q. Li, S. Zhao et al., A self-sustained moist-electric generator with enhanced energy density and longevity through a bilayer approach. Mater. Horiz. 12(7), 2309–2318 (2025). https://doi.org/10.1039/D4MH01642D
H. Liu, X. Ji, Z. Guo, X. Wei, J. Fan et al., A high-current hydrogel generator with engineered mechanoionic asymmetry. Nat. Commun. 15, 1494 (2024). https://doi.org/10.1038/s41467-024-45931-7
L. Yang, F. Yang, X. Liu, K. Li, Y. Zhou et al., A moisture-enabled fully printable power source inspired by electric eels. Proc. Natl. Acad. Sci. U. S. A. 118(16), e2023164118 (2021). https://doi.org/10.1073/pnas.2023164118
G. Ma, W. Li, X. Zhou, X. Wang, M. Cao et al., PVA–PNIPAM hydrogel-based moisture-electric generators with tunable pore structures for enhanced power generation. ACS Appl. Polym. Mater. 6(12), 7066–7076 (2024). https://doi.org/10.1021/acsapm.4c00849
J. Mo, X. Wang, X. Lin, X. Feng, C. Qiu et al., Sulfated cellulose nanofibrils-based hydrogel moist-electric generator for energy harvesting. Chem. Eng. J. 491, 152055 (2024). https://doi.org/10.1016/j.cej.2024.152055
Y. Cheng, C. Yang, T. Zhu, C. Wu, J. Huang et al., Light-assisted polyproton dissociated PAAm-PA hydrogel-based moisture-driven electricity generator with a broad operating range. Adv. Funct. Mater. 35(8), 2415533 (2025). https://doi.org/10.1002/adfm.202415533
J. Xue, F. Zhao, C. Hu, Y. Zhao, H. Luo et al., Vapor-activated power generation on conductive polymer. Adv. Funct. Mater. 26(47), 8784–8792 (2016). https://doi.org/10.1002/adfm.201604188
F. Ni, P. Xiao, C. Zhang, T. Chen, Hygroscopic polymer gels toward atmospheric moisture exploitations for energy management and freshwater generation. Matter 5(9), 2624–2658 (2022). https://doi.org/10.1016/j.matt.2022.06.010
Z. Sun, X. Wen, L. Wang, D. Ji, X. Qin et al., Emerging design principles, materials, and applications for moisture-enabled electric generation. eScience 2(1), 32–46 (2022). https://doi.org/10.1016/j.esci.2021.12.009
Y. Cheng, T. Zhu, Q. He, F. Wen, Y. Cheng et al., Hydrogel-based moisture electric generator with high output performance induced by proton hopping. Adv. Funct. Mater. 35(27), 2500186 (2025). https://doi.org/10.1002/adfm.202500186
J. Bai, Q. Liao, H. Yao, T. Guang, T. He et al., Self-induced interface enhanced moisture-harvesting and light-trapping toward high performance electric power generation. Energy Environ. Sci. 16(7), 3088–3097 (2023). https://doi.org/10.1039/D3EE00843F
J. Liu, Y. Wang, L. Zhou, Z. Yu, Y. Yuan, Hydrogel-integrated waste activated sludge for reliable moisture-driven electrical power generation under low and fluctuating humidity conditions. Chem. Eng. J. 513, 162880 (2025). https://doi.org/10.1016/j.cej.2025.162880
J. Fang, X. Zhang, P. Duan, Z. Jiang, X. Lu et al., Efficient and cold-tolerant moisture-enabled power generator combining ionic diode and ionic hydrogel. Mater. Horiz. 11(5), 1261–1271 (2024). https://doi.org/10.1039/D3MH01496G
Z. Sun, X. Wen, L. Wang, J. Yu, X. Qin, Capacitor-inspired high-performance and durable moist-electric generator. Energy Environ. Sci. 15(11), 4584–4591 (2022). https://doi.org/10.1039/D2EE02046G
D. Lv, S. Zheng, C. Cao, K. Li, L. Ai et al., Defect-enhanced selective ion transport in an ionic nanocomposite for efficient energy harvesting from moisture. Energy Environ. Sci. 15(6), 2601–2609 (2022). https://doi.org/10.1039/D2EE00432A
R. Zhu, Q. Yu, M. Li, A. Li, D. Zhan et al., Green synthesis of natural nanocomposite with synergistically tunable sorption/desorption for solar-driven all-weather moisture harvesting. Nano Energy 124, 109471 (2024). https://doi.org/10.1016/j.nanoen.2024.109471
Y. Huang, K. Zhou, H. Cheng, T. He, H. Wang et al., Three-dimensional printing of high-performance moisture power generators. Adv. Funct. Mater. 34(2), 2308620 (2024). https://doi.org/10.1002/adfm.202308620
Q. Hu, G. Ren, J. Ye, B. Zhang, C. Rensing et al., Hygroelectric-photovoltaic coupling generator using self-assembled bio-nano hybrids. Chem. Eng. J. 452, 139169 (2023). https://doi.org/10.1016/j.cej.2022.139169
X. Liu, H. Gao, L. Sun, J. Yao, Generic air-gen effect in nanoporous materials for sustainable energy harvesting from air humidity. Adv. Mater. 36(12), 2300748 (2024). https://doi.org/10.1002/adma.202300748
S. Li, A. Liu, W. Qiu, Y. Wang, G. Liu et al., An all-protein multisensory highly bionic skin. ACS Nano 18(5), 4579–4589 (2024). https://doi.org/10.1021/acsnano.3c12525
S. Li, G. Liu, H. Wen, G. Liu, H. Wang et al., A skin-like pressure- and vibration-sensitive tactile sensor based on polyacrylamide/silk fibroin elastomer. Adv. Funct. Mater. 32(19), 2111747 (2022). https://doi.org/10.1002/adfm.202111747
Z. Wang, J. Li, C. Shao, X. Lin, Y.-N. Yang et al., Moisture power in natural polymeric silk fibroin flexible membrane triggers efficient antibacterial activity of silver nanops. Nano Energy 90, 106529 (2021). https://doi.org/10.1016/j.nanoen.2021.106529
W. Yang, L. Lv, X. Li, X. Han, M. Li et al., Quaternized silk nanofibrils for electricity generation from moisture and ion rectification. ACS Nano 14(8), 10600–10607 (2020). https://doi.org/10.1021/acsnano.0c04686
Z. Lin, Z. Meng, H. Miao, R. Wu, W. Qiu et al., Biomimetic salinity power generation based on silk fibroin ion-exchange membranes. ACS Nano 15(3), 5649–5660 (2021). https://doi.org/10.1021/acsnano.1c00820
L. Li, F. Dong, P. Miao, N. He, B. Wang et al., High-efficiency moisture energy harvesting at –30°C via hybrid solute engineering. Energy Environ. Sci. 18(6), 2985–2994 (2025). https://doi.org/10.1039/d4ee05936k
Z. Sun, L. Feng, C. Xiong, X. He, L. Wang et al., Electrospun nanofiber fabric: an efficient, breathable and wearable moist-electric generator. J. Mater. Chem. A 9(11), 7085–7093 (2021). https://doi.org/10.1039/D0TA11974A
K. Liu, P. Yang, S. Li, J. Li, T. Ding et al., Induced potential in porous carbon films through water vapor absorption. Angew. Chem. Int. Ed. 55(28), 8003–8007 (2016). https://doi.org/10.1002/anie.201602708
Q. Chen, J. Zhao, H. Cheng, Graphene-based assemblies for moist-electric generation. Front. Energy Res. 9, 738142 (2021). https://doi.org/10.3389/fenrg.2021.738142
C. Shao, J. Gao, T. Xu, B. Ji, Y. Xiao et al., Wearable fiberform hygroelectric generator. Nano Energy 53, 698–705 (2018). https://doi.org/10.1016/j.nanoen.2018.09.043
Y. Liang, F. Zhao, Z. Cheng, Q. Zhou, H. Shao et al., Self-powered wearable graphene fiber for information expression. Nano Energy 32, 329–335 (2017). https://doi.org/10.1016/j.nanoen.2016.12.062
G. Zan, W. Jiang, H. Kim, K. Zhao, S. Li et al., A core–shell fiber moisture-driven electric generator enabled by synergetic complex coacervation and built-in potential. Nat. Commun. 15, 10056 (2024). https://doi.org/10.1038/s41467-024-54442-4
Q. Zhang, Z. Ren, P. Jia, J. Shi, J. Yin et al., An ultra-miniaturized fiber humidity sensor based on near-parallel ion pathways induced efficient water−electricity conversion. Adv. Mater. 37(3), 2411558 (2025). https://doi.org/10.1002/adma.202411558
Y. Hu, W. Yang, W. Wei, Z. Sun, B. Wu et al., Phyto-inspired sustainable and high-performance fabric generators via moisture absorption-evaporation cycles. Sci. Adv. 10(2), eadk4620 (2024). https://doi.org/10.1126/sciadv.adk4620
X. Li, D. Lv, L. Ai, X. Wang, X. Xu et al., Superstrong ionogel enabled by coacervation-induced nanofibril assembly for sustainable moisture energy harvesting. ACS Nano 18(20), 12970–12980 (2024). https://doi.org/10.1021/acsnano.4c01179
R. Zhang, H. Wang, M. Qu, S. Li, Y. Ma et al., Sodium alginate based energy harvesting fibers: multiscale structure and moist-electrical properties. Chem. Eng. J. 473, 145325 (2023). https://doi.org/10.1016/j.cej.2023.145325
R. Gogoi, P. Garg, P.P. Das, A.K. Rajak, N. Nath et al., Application of tandem heterojunction of metal oxides and hydroxides as robust and repairable moisture-electric generator. Nano Energy 131, 110187 (2024). https://doi.org/10.1016/j.nanoen.2024.110187
Z. Sun, X. Wen, S. Guo, M. Zhou, L. Wang et al., Weavable yarn-shaped moisture-induced electric generator. Nano Energy 116, 108748 (2023). https://doi.org/10.1016/j.nanoen.2023.108748
M. Song, D. Kim, H. Lee, H. Han, S. Jeon, Synergistic effect of a Berlin green framework for highly efficient moisture-electric energy transformation. Energy Environ. Sci. 17(15), 5421–5428 (2024). https://doi.org/10.1039/D4EE00777H
L. Wang, H. Wang, C. Wu, J. Bai, T. He et al., Moisture-enabled self-charging and voltage stabilizing supercapacitor. Nat. Commun. 15, 4929 (2024). https://doi.org/10.1038/s41467-024-49393-9
S.-H. Lee, J.-Y. Kim, J. Kim, J. Yun, J. Youm et al., Cost-effective moisture-induced electrical power generators for sustainable electrodialysis desalination. Nano Energy 126, 109683 (2024). https://doi.org/10.1016/j.nanoen.2024.109683
G. Liu, Z. An, Y. Lu, Y. Wu, Z. Shi et al., High-output moisture-enabled electricity generator for fully self-powered wearable physical and biochemical monitoring. Nano Energy 119, 109098 (2024). https://doi.org/10.1016/j.nanoen.2023.109098
J. Zhou, X. Zhang, Y. Yao, T. Yang, Screen printing of ionic diode arrays for large-area uniform moist-electric generators. IScience 28(3), 112026 (2025). https://doi.org/10.1016/j.isci.2025.112026
X. Zhang, Z. Dai, J. Chen, X. Chen, X. Lin et al., Double-gradient-structured composite aerogels for ultra-high-performance moisture energy harvesting. Energy Environ. Sci. 16(8), 3600–3611 (2023). https://doi.org/10.1039/D3EE00981E
H. Liu, L. Liu, Y. Du, Y. Zheng, S. Zhao et al., Self-sustained water and electricity generation from ambient humidity by using metal-ion controlled hygroscopic hydrogels. Adv. Funct. Mater. 2420936 (2025). https://doi.org/10.1002/adfm.202420936
P. Li, Y. Hu, W. He, B. Lu, H. Wang et al., Multistage coupling water-enabled electric generator with customizable energy output. Nat. Commun. 14, 5702 (2023). https://doi.org/10.1038/s41467-023-41371-x
Z. Gao, C. Fang, Y. Gao, X. Yin, S. Zhang et al., Hybrid electromagnetic and moisture energy harvesting enabled by ionic diode films. Nat. Commun. 16, 312 (2025). https://doi.org/10.1038/s41467-024-55030-2
G. Ren, Q. Hu, J. Ye, A. Hu, J. Lü et al., All-biobased hydrovoltaic-photovoltaic electricity generators for all-weather energy harvesting. Research (2022). https://doi.org/10.34133/2022/9873203
Q. Ni, Q. Lou, C. Shen, G. Zheng, R. Song et al., Sensitive humidity sensor based on moisture-driven energy generation. Nano Res. 17(6), 5578–5586 (2024). https://doi.org/10.1007/s12274-024-6499-3
C. Yang, H. Wang, J. Yang, H. Yao, T. He et al., A machine-learning-enhanced simultaneous and multimodal sensor based on moist-electric powered graphene oxide. Adv. Mater. 34(41), 2205249 (2022). https://doi.org/10.1002/adma.202205249
F. Yu, L. Wang, X. Yang, Y. Yang, X. Li et al., Moisture-electric generators working in subzero environments based on laser-engraved hygroscopic hydrogel arrays. ACS Nano 19(3), 3807–3817 (2025). https://doi.org/10.1021/acsnano.4c14996
P. Dhakal, J.K. Shah, A generalized machine learning model for predicting ionic conductivity of ionic liquids. Mol. Syst. Des. Eng. 7(10), 1344–1353 (2022). https://doi.org/10.1039/D2ME00046F
H. Lin, Y. Yang, Y.-C. Hsu, J. Zhang, C. Welton et al., Metal–organic frameworks for water harvesting and concurrent carbon capture: a review for hygroscopic materials. Adv. Mater. 36(12), 2209073 (2024). https://doi.org/10.1002/adma.202209073
C. Yang, H. Wang, J. Bai, T. He, H. Cheng et al., Transfer learning enhanced water-enabled electricity generation in highly oriented graphene oxide nanochannels. Nat. Commun. 13(1), 6819 (2022). https://doi.org/10.1038/s41467-022-34496-y