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S1 Supplementary Experimental Methods
S1.1 Synthesis of 4,4'-((2,5-di(hydrazinecarbonyl)-1,4-phenylene)bis(oxy))bis(N,N,N-trimethylbutan-1-aminium) (DQA) monomer
DQA monomer was synthesized according to our previous study [S1].
diethyl 2,5-bis(4-bromobutoxy)terephthalate (A). 2,5-dihydroxyterephthalic acid diethyl ester (3.05 g, 12.0 mmol), potassium carbonate (8.29 g, 0.06 mol) and potassium iodide (450 mg, 2.7 mmol) were dissolved in 250 mL of acetone, to which 1,4-dibromobutane (10.36 g, 48.0 mmol) was added. Afterwards, the resulting mixture was heated at 70 °C for 27 h under N2 protection and then cooled to room temperature. After filtration and filtrate evaporation, the crude product was purified by the chromatographic column to obtain A as a white solid (3.63 g, 6.93 mmol, 57.8% yield). 1H NMR (500 MHz, CDCl3): δ = 7.34 (s, 1H), 4.37 (q, J = 7.1 Hz, 2H), 4.05 (t, J = 6.0 Hz, 2H), 3.50 (t, J = 6.6 Hz, 2H), 2.15 – 2.06 (m, 1H), 1.97 (p, J = 6.9, 6.3 Hz, 1H), 1.39 (t, J = 7.1 Hz, 3H). 13C NMR (101 MHz, CDCl3): δ = 165.88, 151.76, 124.99, 116.81, 68.90, 61.48, 33.49, 29.53, 28.01, 14.46.
4,4'-((2,5-bis(ethoxycarbonyl)-1,4-phenylene)bis(oxy))bis(N,N,N-trimethylbutan-1-aminium) (B). A (3.63g, 6.93 mmol) was dissolved in 50 mL of ethanol and 15 mL of trimethylamine solution was added. The resulting mixture was refluxed at 50 °C for 36 h. Through solution evaporation, the obtained solid was dissolved in 40 mL of water, to which silver chloride (2.15 g, 15 mmol) was added. The mixture was stirred at 90 °C for 7 h under N2 protection. After cooling, the mixture was filtered and the filtrate was evaporated to obtain B as a white solid (3.76 g, 6.8 mmol, 98.1% yield). 1H NMR (500 MHz, DMSO-d6): δ = 7.34 (s, 1H), 4.29 (q, J = 7.1 Hz, 2H), 4.05 (t, J = 6.0 Hz, 2H), 3.44 – 3.38 (m, 2H), 3.07 (s, 9H), 1.86 (dt, J = 15.7, 7.6 Hz, 2H), 1.73 (p, J = 6.6 Hz, 2H), 1.30 (t, J = 7.1 Hz, 3H). 13C NMR (101 MHz, DMSO-d6): δ = 165.10, 150.51, 124.70, 115.72, 68.48, 64.76, 60.97, 52.05, 25.60, 18.47, 14.10.
4,4'-((2,5-di(hydrazinecarbonyl)-1,4-phenylene)bis(oxy))bis(N,N,N-trimethylbutan-1-aminium) (DQA). B (3.76 g, 6.8 mmol) was dissolved in 60 mL of ethanol and 10 mL of hydrazine hydrate was added. The solution was heated to reflux at 80 °C for 48 h. After cooling, the mixture was evaporated and the product was then vacuum-dried at 45 °C for 12 h to obtain DQA as a faint yellow solid (3.43 g, 6.53 mmol, 96.0% yield). 1H NMR (500 MHz, DMSO- d6): δ = 9.33 (s, 1H), 7.27 (s, 1H), 4.56 (s, 2H), 4.08 (t, J = 5.9 Hz, 2H), 3.47 – 3.36 (m, 2H), 3.08 (s, 9H), 1.86 (dt, J = 15.7, 7.1 Hz, 2H), 1.76 (p, J = 7.2, 6.7 Hz, 2H). 13C NMR (101 MHz, D2O): δ = 167.16, 149.96, 126.43, 115.04, 69.11, 66.18, 52.93, 25.27, 19.52.
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Scheme S1 Synthesis of DQA monomer
S1.2 Determination of MWCO of membranes
The MWCO of membranes was identified by the rejection of 90% for spherical neutral solutes polyethylene glycol (PEG) with a molecular weight of 200, 400, 600, 800, and 1000 Da. The experiments were conducted under the operating conditions of 200 ppm feed solution under 4.0 bar pressure. The rejection of solutes was calculated using Eq. 2 in the main text, where the concentrations of the permeate and feed solution were determined by total organic carbon (TOC) analyzer (ANATAILIN, HTY-CT1000B, China). Additionally, the Stokes radius of PEG molecules was calculated based on Eq. S1:
                                            (S1)                                                    
where  is molecular weight of PEG. The mean pore size of the membranes equals the Stokes radius of the spherical solute with a 50% rejection. The pore size distribution is derived by the following Eq. S2, which was represented by a probability density function:
                                   (S2)                                                 
where μp is the mean pore size, σp equals to the ratio of the solute radius at R =84.13% to R =50.00%, and rp is the Stokes radius of the spherical solute.
S1.3 MD simulations
The MD simulations were performed using the Gromacs 2022.1 program [S2], conducted under constant temperature and pressure conditions with periodic boundary conditions. A single simulation system, which primarily comprises a COF molecular layer and a plane formed by 20 PEI chains with a degree of polymerization of 20 was built. The distance between the COF and PEI was set at 3.0 nm. Subsequently, in addition to Cl⁻ of COF, this system was filled with 173 Cl⁻ ions, 173 Li⁺ ions, and 17,212 water molecules. The molecules were placed within a cuboid box measuring 9.0 nm × 8.0 nm × 8.0 nm. Both the COF and PEI molecules, along with ions, were modeled using the GAFF all-atom force field, and the TIP3P water model was employed to solvate the complex system [S3]. An initial energy minimization of 50,000 steps was conducted using the steepest descent method. The simulations utilized the NPT ensemble, with the Leap-Frog algorithm used to integrate the equations of motion. Long-range electrostatic interactions were treated using the PME method [S4], while van der Waals and Coulomb interactions were truncated at 12 Å and updated every 10 steps. The Lincs algorithm was applied to constrain all bond lengths [S5], with parameters set to lincs_iter = 1 and lincs_order = 4. The system temperature was raised from 0 K to 298.15 K using the V-rescale temperature coupler [S6]. The Parrinello-Rahman method was employed to maintain a constant pressure of 1 bar [S7], ensuring isotropic pressure conditions. Non-bonded interactions were computed using a neighbor grid-based cutoff scheme, with short and long cutoff distances set at 9 Å and 14 Å, respectively. All simulations were initialized with velocities randomly assigned according to the Maxwell-Boltzmann distribution, with a total of 50,000,000 steps simulated at a time step of 1 fs, resulting in a total simulation time of 50 ns, generating 2000 conformations. Visualization of simulation results was achieved using the built-in Gromacs tools and VMD software.
S1.4 DFT calculations
The interaction energies quantitatively reveal the distinct roles of COF nanosheets and PEI. The first principles density-functional theory calculations were carried out using the DMol3 module in Materials Studio. The electron exchange–functional was calculated using Perdew-Burke–Ernzerhof (PBE) described by generalized gradient approximation (GGA). An all electron double numerical atomic orbital augmented by Double Numerical plus polarization (DNP) is used as the basis set and all electrons are included in the calculation. The convergence criteria in total energy, maximum force, and maximum displacement were set at 10-5 Hartree, 0.002 Hartree/Å, and 0.005 Å, respectively. The electronic self-consistent field (SCF) tolerance was set at 10-6 Hartree. Accordingly, the interaction energy is defined as follows: 
	
	E(A-B)=E(total)－E(A)－E(B)
	(S3)


where E(A-B) is the interaction energy between Li+/Cl- and COF/PEI; E(total) is the energy of Li+/Cl- and COF/PEI; E(A) is the energy of Li+ or Cl- and E(B) is the energy of COF or PEI, respectively.
[image: ]
Scheme S2 Schematic illustration of the structure of polyuria
S2 Supplementary Figures and Tables
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Fig. S1 TEM image of COF nanosheets
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Fig. S2 Pore size of COF
The pore size was simulated via Material Studio.
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Fig. S3 SEM image of COF scaffold membranes
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Fig. S4 AFM image of COF scaffold membranes
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Fig. S5 SEM image of PU membranes
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Fig. S6 AFM image of PU membranes
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Fig. S7 SEM image of COF hybrid membranes
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Fig. S8 AFM image of COF hybrid membranes
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Fig. S9 SEM image of COF membranes
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Fig. S10 AFM image of COF membranes
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Fig. S11 Cross-sectional SEM image of PU membranes
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Fig. S12 Cross-sectional SEM image of COF hybrid membranes
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Fig. S13 Cross-sectional SEM image of COF membranes
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Fig. S14 FTIR spectra of COF scaffold membranes
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Fig. S15 MWCO of COF scaffold membranes
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Fig. S16 Effect of mass ratio of COF/PEI on zeta potential of COF scaffold membranes
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Fig. S17 Effect of COF volume on zeta potential of COF membranes
[image: ]
Fig. S18 Effect of PPDI concentration on performance of COF scaffold membranes

[image: ]
Fig. S19 Effect of volume ratio of water/ethanol on performance of COF scaffold membranes
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Fig. S20 Effect of reaction time on performance of COF scaffold membranes
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Fig. S21 Rejection and permeance to 1000 ppm MgCl2 with respect to different feed solution concentration
[image: ]
Fig. S22 Rejection and permeance to 1000 ppm LiCl with respect to different feed solution concentration
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Fig. S23 Rejection to 1000 ppm MgCl2 with different pressure
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Fig. S24 The COF scaffold membrane resistant to (a) H2SO4 (pH=3) and (b) NaOH (pH=11)
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Fig. S25 Rejection to different salts of simulated salt lake brine
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Fig. S26 MD model without solvent water molecules
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Fig. S27 RDF distribution of Cl⁻ between COF nanosheets and PEI
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Fig. S28 RDF distribution of Li⁺ between COF nanosheets and PEI
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Fig. S29 MSD of Cl⁻ and Li⁺
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Fig. S30 Rejection and separation factor of COF scaffold membranes in the single-solute system (MgSO4 and Li2SO4)
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Fig. S31 Rejection and separation factor of COF scaffold membranes in the mixed-solute system (MgSO4 and Li2SO4)
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Fig. S32 Rejection and separation factor of PU membranes in the single-solute system (MgSO4 and Li2SO4)
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Fig. S33 Rejection and separation factor of PU membranes in the mixed-solute system (MgSO4 and Li2SO4)
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Fig. S34 Rejection and separation factor of COF hybrid membranes in the single-solute system (MgSO4 and Li2SO4)
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Fig. S35 Rejection and separation factor of COF hybrid membranes in the mixed-solute system (MgSO4 and Li2SO4)
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Fig. S36 Rejection and separation factor of COF membranes in the single-solute system (MgSO4 and Li2SO4)
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Fig. S37 Rejection and separation factor of COF membranes in the mixed-solute system (MgSO4 and Li2SO4)
Table S1 Mg2+/Li+ mass ratios in feed and permeate in the mixed-solute system
	Mg2+/Li+ mass ratio

	Feed
	Permeate

	1
	0.0066

	5
	0.0284

	10
	0.0511

	20
	0.1011

	50
	0.2156

	100
	1.7756


Table S2 The summary of Li+/Mg2+ separation performance of mixed-solute system of nanofiltration membranes
	Membrane
	Permeance
(LMH/bar)
	Mg2+/Li+ mass ratio
	True selectivity
	Testing conditions
(Ctotal, Pressure)

	References

	TFNPHF
	6.7
	21.4
	13.1
	2000 ppm, 6 bar
	[S8]

	MBCN
	23
	73
	23.9
	2000 ppm, 4 bar
	[S9]

	NF-HACC
	15.7
	21.4
	13.9
	2000 ppm, 6 bar
	[S10]

	PEI-LDH/GA
	6.3
	10
	18.7
	2000 ppm, 5 bar
	[S11]

	PEI/Cyclen-TMC
	14
	20
	8
	2000 ppm, 5 bar
	[S12]

	UiO/TFN/PEI 
	30.6
	20
	33
	2000 ppm, 4 bar
	[S13]

	DTES/PEI/TMC
	6.2
	20
	12.95
	2000 ppm, 8 bar
	[S14]

	SERS
	6.2
	20
	15.38
	2000 ppm, 15 bar
	[S15]

	SIP
	1.3
	20
	7.68
	2000 ppm, 15 bar
	

	PIP-TMC/[MimAP][Tf2N]
	4.72
	20
	8.12
	2100 ppm, 6 bar
	[S16]

	
	4.72
	40
	6.19
	4100 ppm, 6 bar
	

	CA/PEI
	18.6
	21.4
	66.4
	2000 ppm, 10 bar
	[S17]

	PAA/TMC
	7.39
	20
	82.8
	2000 ppm, 5 bar
	[S18]

	PAH/DA/PSS
	21.9
	35
	37.8
	2000 ppm, 2 bar
	[S19]

	NoriaPG/PEI
	22.5
	30.9
	88.6
	2000 ppm, 10 bar
	[S20]

	Cu-MPD
	16.2
	23
	8
	2000 ppm, 5 bar
	[S21]

	PGO
	6.85
	23
	23.5
	5000 ppm, 2 bar
	[S22]

	PEI-TMC/DAIB
	15.5
	15.3
	16.6
	5500 ppm, 6 bar
	[S23]

	PEI-TMC/QBPD
	26.11
	50
	5.2
	2000 ppm, 6 bar
	[S24]

	PEI-TMC/QEDTP
	18.82
	120
	15.6
	2000 ppm, 6 bar
	[S25]

	PEI-TMC/HMTAB
	16.32
	50
	10.1
	2000 ppm, 6 bar
	[S26]

	PEI-TMC/TQAIL
	13.26
	15.3
	23.17
	5500 ppm, 6 bar
	[S27]

	PEI-TMC/QTHIM
	33
	50
	10.9
	2000 ppm, 6 bar
	[S28]

	PEI-g-PA
	12
	20
	33.4
	2000 ppm, 4 bar
	[S29]

	PEI-TMC
	5.02
	20
	15.38
	2000 ppm, 8 bar
	[S30]

	RIP
	22.25
	20
	9.22
	2000 ppm, 15 bar
	[S31]

	polyamide-TG
	1.4
	20
	82.96
	2000 ppm, 4 bar
	[S32]

	NF-TC
	8
	20
	167
	2000 ppm, 5 bar
	[S33]

	COF scaffold membrane
	11.47
	10
	195.76
	2000 ppm, 6 bar
	This work

	
	
	20
	197.75
	
	

	
	
	50
	231.87
	
	

	
	
	100
	56.32
	
	


Table S3 The summary of reported diffusion coefficients
	Membrane
	Ion
	Diffusion coefficient
(10-5 cm2 s-1)
	References

	TpBDMe2
	K+
	0.976
	[S34]

	
	Na+
	0.0865
	

	
	Li+
	0.0632
	

	
	Mg2+
	0.0185
	

	TpPa–CO2H
	Rb+
	 (5.7 ± 0.81) × 10-4
	[S35]

	
	K+
	(7.6 ± 1.1) × 10−4
	

	
	Na+
	(6.3 ± 1.8) × 10−4
	

	
	Li+
	(4.2 ± 1.1) × 10-4
	

	COF-V-60%
	K+
	8.92 × 10-7
	[S36]

	
	Na+
	5.25 × 10-7
	

	TpTag-COF
	Cl-
	0.1524 ± 0.0501
	[S37]

	COF-170/PAN
	Cl-
	0.815
	[S38]

	
	SO42−
	0.477
	

	COF scaffold membrane
	Li+
Cl-
	0.989
2.141
	This work
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