Achieving Wide-Temperature-Range Physical and Chemical Hydrogen Sorption in a Structural Optimized Mg/N-Doped Porous Carbon Nanocomposite
Corresponding Author: Jianxin Zou
Nano-Micro Letters,
Vol. 18 (2026), Article Number: 94
Abstract
Nanoconfinement is a promising approach to simultaneously enhance the thermodynamics, kinetics, and cycling stability of hydrogen storage materials. The introduction of supporting scaffolds usually causes a reduction in the total hydrogen storage capacity due to “dead weight.” Here, we synthesize an optimized N-doped porous carbon (rN-pC) without heavy metal as supporting scaffold to confine Mg/MgH2 nanoparticles (Mg/MgH2@rN-pC). rN-pC with 60 wt% loading capacity of Mg (denoted as 60 Mg@rN-pC) can adsorb and desorb 0.62 wt% H2 on the rN-pC scaffold. The nanoconfined MgH2 can be chemically dehydrided at 175 °C, providing ~ 3.59 wt% H2 with fast kinetics (fully dehydrogenated at 300 °C within 15 min). This study presents the first realization of nanoconfined Mg-based system with adsorption-active scaffolds. Besides, the nanoconfined MgH2 formation enthalpy is reduced to ~ 68 kJ mol−1 H2 from ~ 75 kJ mol−1 H2 for pure MgH2. The composite can be also compressed to nanostructured pellets, with volumetric H2 density reaching 33.4 g L−1 after 500 MPa compression pressure, which surpasses the 24 g L−1 volumetric capacity of 350 bar compressed H2. Our approach can be implemented to the design of hybrid H2 storage materials with enhanced capacity and desorption rate.
Highlights:
1 The as-synthesized rN-pC exhibited H2 uptake of ~0.9 wt% at 77 K and ultralow pressure of ~0.1 bar, with an isosteric adsorption enthalpy (Qst) of ~14 kJ mol-1 H2 at zero coverage.
2 The 60MgH2@rN-pC started to decompose at 175 °C and released H2 of 3.38 wt% at 300 °C within 30 min, which showed outstanding desorption kinetics of MgH2 among Mg-carbon material nanocomposites.
3 The drawback of nanoconfinement scaffolds that cannot store hydrogen was firstly overcome.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M.D. Allendorf, V. Stavila, J.L. Snider, M. Witman, M.E. Bowden et al., Challenges to developing materials for the transport and storage of hydrogen. Nat. Chem. 14(11), 1214–1223 (2022). https://doi.org/10.1038/s41557-022-01056-2
- K.T. Møller, T.R. Jensen, E. Akiba, H.-W. Li, Hydrogen - A sustainable energy carrier. Prog. Nat. Sci. Mater. Int. 27(1), 34–40 (2017). https://doi.org/10.1016/j.pnsc.2016.12.014
- S. Chu, A. Majumdar, Opportunities and challenges for a sustainable energy future. Nature 488(7411), 294–303 (2012). https://doi.org/10.1038/nature11475
- M. van der Spek, C. Banet, C. Bauer, P. Gabrielli, W. Goldthorpe et al., Perspective on the hydrogen economy as a pathway to reach net-zero CO2 emissions in Europe. Energy Environ. Sci. 15(3), 1034–1077 (2022). https://doi.org/10.1039/D1EE02118D
- J.P. Berro Ramirez, D. Halm, J.-C. Grandidier, S. Villalonga, F. Nony, 700 bar type IV high pressure hydrogen storage vessel burst–simulation and experimental validation. Int. J. Hydrog. Energy 40(38), 13183–13192 (2015). https://doi.org/10.1016/j.ijhydene.2015.05.126
- Y. Zhao, M. Gong, Y. Zhou, X. Dong, J. Shen, Thermodynamics analysis of hydrogen storage based on compressed gaseous hydrogen, liquid hydrogen and cryo-compressed hydrogen. Int. J. Hydrog. Energy 44(31), 16833–16840 (2019). https://doi.org/10.1016/j.ijhydene.2019.04.207
- J. Yang, A. Sudik, C. Wolverton, D.J. Siegel, High capacity hydrogen storage materials: attributes for automotive applications and techniques for materials discovery. Chem. Soc. Rev. 39(2), 656–675 (2010). https://doi.org/10.1039/B802882F
- S. Liu, J. Liu, X. Liu, J.-X. Shang, R. Yu et al., Non-classical hydrogen storage mechanisms other than chemisorption and physisorption. Appl. Phys. Rev. 9(2), 021315 (2022). https://doi.org/10.1063/5.0088529
- G.S. Walker, M. Abbas, D.M. Grant, C. Udeh, Destabilisation of magnesium hydride by germanium as a new potential multicomponent hydrogen storage system. Chem. Commun. 47(28), 8001–8003 (2011). https://doi.org/10.1039/C0CC03425H
- B. Bogdanović, A. Ritter, B. Spliethoff, Active MgH2 Mg systems for reversible chemical energy storage. Angew. Chem. Int. Ed. 29(3), 223–234 (1990). https://doi.org/10.1002/anie.199002233
- W. Liu, Y. Mao, J. Zheng, Z. Wang, C. Shang et al., Enhancing the flotation separation of magnesite and dolomite by introducing a phosphonic acid depressant during grinding. Sep. Purif. Technol. 361, 131412 (2025). https://doi.org/10.1016/j.seppur.2025.131412
- P. Loganathan, G. Naidu, S. Vigneswaran, Mining valuable minerals from seawater: a critical review. Environ. Sci. Water Res. Technol. 3(1), 37–53 (2017). https://doi.org/10.1039/c6ew00268d
- I.P. Jain, C. Lal, A. Jain, Hydrogen storage in Mg: a most promising material. Int. J. Hydrog. Energy 35(10), 5133–5144 (2010). https://doi.org/10.1016/j.ijhydene.2009.08.088
- Y. Yang, X. Zhang, L. Zhang, W. Zhang, H. Liu et al., Recent advances in catalyst-modified Mg-based hydrogen storage materials. J. Mater. Sci. Technol. 163, 182–211 (2023). https://doi.org/10.1016/j.jmst.2023.03.063
- X. Zhang, S. Ju, C. Li, J. Hao, Y. Sun et al., Atomic reconstruction for realizing stable solar-driven reversible hydrogen storage of magnesium hydride. Nat. Commun. 15, 2815 (2024). https://doi.org/10.1038/s41467-024-47077-y
- X. Zhang, Y. Sun, S. Ju, J. Ye, X. Hu et al., Solar-driven reversible hydrogen storage. Adv. Mater. 35(2), e2206946 (2023). https://doi.org/10.1002/adma.202206946
- N.A. Niaz, I. Ahmad, W.S. Khan, S.T. Hussain, Synthesis of nanostructured Mg–Ni alloy and its hydrogen storage properties. J. Mater. Sci. Technol. 28(5), 401–406 (2012). https://doi.org/10.1016/S1005-0302(12)60075-9
- L. Ren, Y. Li, Z. Li, X. Lin, C. Lu et al., Boosting hydrogen storage performance of MgH2 by oxygen vacancy-rich H-V2O5 nanosheet as an excited H-pump. Nano-Micro Lett. 16(1), 160 (2024). https://doi.org/10.1007/s40820-024-01375-8
- X. Zhang, Y. Liu, Z. Ren, X. Zhang, J. Hu et al., Realizing 6.7 wt% reversible storage of hydrogen at ambient temperature with non-confined ultrafine magnesium hydrides. Energy Environ. Sci. 14(4), 2302–2313 (2021). https://doi.org/10.1039/D0EE03160G
- R. Bardhan, A.M. Ruminski, A. Brand, J.J. Urban, Magnesium nanocrystal-polymer composites: a new platform for designer hydrogen storage materials. Energy Environ. Sci. 4(12), 4882–4895 (2011). https://doi.org/10.1039/C1EE02258J
- B. Han, Y. Jia, J. Wang, X. Xiao, L. Chen et al., The structural, energetic and dehydrogenation properties of pure and Ti-doped Mg(0001)/MgH2(110) interfaces. J. Mater. Chem. A 11(48), 26602–26616 (2023). https://doi.org/10.1039/d3ta06177a
- X. Yu, Z. Tang, D. Sun, L. Ouyang, M. Zhu, Recent advances and remaining challenges of nanostructured materials for hydrogen storage applications. Prog. Mater. Sci. 88, 1–48 (2017). https://doi.org/10.1016/j.pmatsci.2017.03.001
- A. Schneemann, J.L. White, S. Kang, S. Jeong, L.F. Wan et al., Nanostructured metal hydrides for hydrogen storage. Chem. Rev. 118(22), 10775–10839 (2018). https://doi.org/10.1021/acs.chemrev.8b00313
- G. Xia, Y. Tan, X. Chen, D. Sun, Z. Guo et al., Monodisperse magnesium hydride nanops uniformly self-assembled on graphene. Adv. Mater. 27(39), 5981–5988 (2015). https://doi.org/10.1002/adma.201502005
- T.K. Nielsen, K. Manickam, M. Hirscher, F. Besenbacher, T.R. Jensen, Confinement of MgH2 nanoclusters within nanoporous aerogel scaffold materials. ACS Nano 3(11), 3521–3528 (2009). https://doi.org/10.1021/nn901072w
- M. Konarova, A. Tanksale, J. Norberto Beltramini, Q.L. Gao, Effects of nano-confinement on the hydrogen desorption properties of MgH2. Nano Energy 2(1), 98–104 (2013). https://doi.org/10.1016/j.nanoen.2012.07.024
- M.A. Lillo-Ródenas, Z.X. Guo, K.F. Aguey-Zinsou, D. Cazorla-Amorós, A. Linares-Solano, Effects of different carbon materials on MgH2 decomposition. Carbon 46(1), 126–137 (2008). https://doi.org/10.1016/j.carbon.2007.10.033
- Y. Fu, Z. Yu, S. Guo, Y. Li, Q. Peng et al., Catalytic effect of bamboo-like carbon nanotubes loaded with NiFe nanops on hydrogen storage properties of MgH2. Chem. Eng. J. 458, 141337 (2023). https://doi.org/10.1016/j.cej.2023.141337
- X. Huang, X. Xiao, W. Zhang, X. Fan, L. Zhang et al., Transition metal (Co, Ni) nanops wrapped with carbon and their superior catalytic activities for the reversible hydrogen storage of magnesium hydride. Phys. Chem. Chem. Phys. 19(5), 4019–4029 (2017). https://doi.org/10.1039/c6cp07852d
- Z. Ma, Q. Zhang, S. Panda, W. Zhu, F. Sun et al., In situ catalyzed and nanoconfined magnesium hydride nanocrystals in a Ni-MOF scaffold for hydrogen storage. Sustain. Energy Fuels 4(9), 4694–4703 (2020). https://doi.org/10.1039/D0SE00818D
- P.E. de Jongh, R.W.P. Wagemans, T.M. Eggenhuisen, B.S. Dauvillier, P.B. Radstake et al., The preparation of carbon-supported magnesium nanops using melt infiltration. Chem. Mater. 19(24), 6052–6057 (2007). https://doi.org/10.1021/cm702205v
- L. Ren, W. Zhu, Y. Li, X. Lin, H. Xu et al., Oxygen vacancy-rich 2D TiO2 nanosheets: a bridge toward high stability and rapid hydrogen storage kinetics of nano-confined MgH(2). Nano-Micro Lett. 14(1), 144 (2022). https://doi.org/10.1007/s40820-022-00891-9
- P. Peng, H.Z.H. Jiang, S. Collins, H. Furukawa, J.R. Long et al., Long duration energy storage using hydrogen in metal–organic frameworks: opportunities and challenges. ACS Energy Lett. 9(6), 2727–2735 (2024). https://doi.org/10.1021/acsenergylett.4c00894
- O.K. Farha, A.Ö. Yazaydın, I. Eryazici, C.D. Malliakas, B.G. Hauser et al., De novo synthesis of a metal-organic framework material featuring ultrahigh surface area and gas storage capacities. Nat. Chem. 2(11), 944–948 (2010). https://doi.org/10.1038/nchem.834
- S.S. Han, H. Furukawa, O.M. Yaghi, W.A. Goddard III., Covalent organic frameworks as exceptional hydrogen storage materials. J. Am. Chem. Soc. 130(35), 11580–11581 (2008). https://doi.org/10.1021/ja803247y
- L.S. Blankenship, N. Balahmar, R. Mokaya, Oxygen-rich microporous carbons with exceptional hydrogen storage capacity. Nat. Commun. 8, 1545 (2017). https://doi.org/10.1038/s41467-017-01633-x
- L. Xiao, Y. Cao, W.A. Henderson, M.L. Sushko, Y. Shao et al., Hard carbon nanops as high-capacity, high-stability anodic materials for Na-ion batteries. Nano Energy 19, 279–288 (2016). https://doi.org/10.1016/j.nanoen.2015.10.034
- Q. Zhang, Y. Huang, T. Ma, K. Li, F. Ye et al., Facile synthesis of small MgH2 nanops confined in different carbon materials for hydrogen storage. J. Alloys Compd. 825, 153953 (2020). https://doi.org/10.1016/j.jallcom.2020.153953
- I. Kusunoki, M. Sakai, Y. Igari, S. Ishidzuka, T. Takami et al., XPS study of nitridation of diamond and graphite with a nitrogen ion beam. Surf. Sci. 492(3), 315–328 (2001). https://doi.org/10.1016/S0039-6028(01)01430-3
- J.J. Nicolas, K.E. Gubbins, W.B. Streett, D.J. Tildesley, Eq. of state for the lennard-Jones fluid. Mol. Phys. 37(5), 1429–1454 (1979). https://doi.org/10.1080/00268977900101051
- P. Giannozzi, O. Andreussi, T. Brumme, O. Bunau, M. Buongiorno Nardelli et al., Advanced capabilities for materials modelling with quantum ESPRESSO. J. Phys. Condens. Matter 29(46), 465901 (2017). https://doi.org/10.1088/1361-648x/aa8f79
- J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77(18), 3865–3868 (1996). https://doi.org/10.1103/physrevlett.77.3865
- G. Kresse, D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59(3), 1758–1775 (1999). https://doi.org/10.1103/physrevb.59.1758
- H.J. Monkhorst, J.D. Pack, Special points for Brillouin-zone integrations. Phys. Rev. B 13(12), 5188–5192 (1976). https://doi.org/10.1103/physrevb.13.5188
- Z. Xia, H. Xiao, Grand canonical ensemble modeling of electrochemical interfaces made simple. J. Chem. Theory Comput. 19(15), 5168–5175 (2023). https://doi.org/10.1021/acs.jctc.3c00237
- D. Bahamon, M. Khalil, A. Belabbes, Y. Alwahedi, L.F. Vega et al., A DFT study of the adsorption energy and electronic interactions of the SO2 molecule on a CoP hydrotreating catalyst. RSC Adv. 11(5), 2947–2957 (2021). https://doi.org/10.1039/C9RA10634K
- H. Furukawa, K.E. Cordova, M. O’Keeffe, O.M. Yaghi, The chemistry and applications of metal-organic frameworks. Science 341(6149), 1230444 (2013). https://doi.org/10.1126/science.1230444
- Z. Chen, P. Li, R. Anderson, X. Wang, X. Zhang et al., Balancing volumetric and gravimetric uptake in highly porous materials for clean energy. Science 368(6488), 297–303 (2020). https://doi.org/10.1126/science.aaz8881
- A. Streb, M. Mazzotti, Adsorption for efficient low carbon hydrogen production: part 1: adsorption equilibrium and breakthrough studies for H2/CO2/CH4 on zeolite 13X. Adsorption 27(4), 541–558 (2021). https://doi.org/10.1007/s10450-021-00306-y
- S.Y. Sawant, K. Munusamy, R.S. Somani, M. John, B.L. Newalkar et al., Precursor suitability and pilot scale production of super activated carbon for greenhouse gas adsorption and fuel gas storage. Chem. Eng. J. 315, 415–425 (2017). https://doi.org/10.1016/j.cej.2017.01.037
- J. Ren, Y. Huang, H. Zhu, B. Zhang, H. Zhu et al., Recent progress on MOF-derived carbon materials for energy storage. Carbon Energy 2(2), 176–202 (2020). https://doi.org/10.1002/cey2.44
- C. Wang, J. Kim, J. Tang, M. Kim, H. Lim et al., New strategies for novel MOF-derived carbon materials based on nanoarchitectures. Chem 6(1), 19–40 (2020). https://doi.org/10.1016/j.chempr.2019.09.005
- Y. Wang, H. Liu, K. Wang, S. Song, P. Tsiakaras, 3D interconnected hierarchically porous N-doped carbon with NH3 activation for efficient oxygen reduction reaction. Appl. Catal. B Environ. 210, 57–66 (2017). https://doi.org/10.1016/j.apcatb.2017.03.054
- D. Fairen-Jimenez, S.A. Moggach, M.T. Wharmby, P.A. Wright, S. Parsons et al., Opening the gate: framework flexibility in ZIF-8 explored by experiments and simulations. J. Am. Chem. Soc. 133(23), 8900–8902 (2011). https://doi.org/10.1021/ja202154j
- D. Liu, Y. Wu, Q. Xia, Z. Li, H. Xi, Experimental and molecular simulation studies of CO2 adsorption on zeolitic imidazolate frameworks: ZIF-8 and amine-modified ZIF-8. Adsorption 19(1), 25–37 (2013). https://doi.org/10.1007/s10450-012-9407-1
- K. Li, Q. Liu, H. Cheng, M. Hu, S. Zhang, Classification and carbon structural transformation from anthracite to natural coaly graphite by XRD, Raman spectroscopy, and HRTEM. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 249, 119286 (2021). https://doi.org/10.1016/j.saa.2020.119286
- C. Buttersack, Modeling of type IV and V sigmoidal adsorption isotherms. Phys. Chem. Chem. Phys. 21(10), 5614–5626 (2019). https://doi.org/10.1039/c8cp07751g
- M. Thommes, Physical adsorption characterization of nanoporous materials. Chem. Ing. Tech. 82(7), 1059–1073 (2010). https://doi.org/10.1002/cite.201000064
- Q. Liang, Z. Li, Z.-H. Huang, F. Kang, Q.-H. Yang, Holey graphitic carbon nitride nanosheets with carbon vacancies for highly improved photocatalytic hydrogen production. Adv. Funct. Mater. 25(44), 6885–6892 (2015). https://doi.org/10.1002/adfm.201503221
- Y. Li, Y. Hu, Y. Zhao, G. Shi, L. Deng et al., An electrochemical avenue to green-luminescent graphene quantum dots as potential electron-acceptors for photovoltaics. Adv. Mater. 23(6), 776–780 (2011). https://doi.org/10.1002/adma.201003819
- Y. Li, Y. Zhao, H. Cheng, Y. Hu, G. Shi et al., Nitrogen-doped graphene quantum dots with oxygen-rich functional groups. J. Am. Chem. Soc. 134(1), 15–18 (2012). https://doi.org/10.1021/ja206030c
- K. Artyushkova, B. Kiefer, B. Halevi, A. Knop-Gericke, R. Schlogl et al., Density functional theory calculations of XPS binding energy shift for nitrogen-containing graphene-like structures. Chem. Commun. 49(25), 2539–2541 (2013). https://doi.org/10.1039/C3CC40324F
- A.C. Ferrari, J.C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri et al., Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 97(18), 187401 (2006). https://doi.org/10.1103/physrevlett.97.187401
- A.C. Ferrari, J. Robertson, Resonant Raman spectroscopy of disordered, amorphous, and diamondlike carbon. Phys. Rev. B 64(7), 075414 (2001). https://doi.org/10.1103/physrevb.64.075414
- A.C. Ferrari, J. Robertson, Interpretation of raman spectra of disordered and amorphous carbon. Phys. Rev. B 61(20), 14095–14107 (2000). https://doi.org/10.1103/physrevb.61.14095
- Z. Shi, W. Yang, Y. Gu, T. Liao, Z. Sun, Metal-nitrogen-doped carbon materials as highly efficient catalysts: progress and rational design. Adv. Sci. 7(15), 2001069 (2020). https://doi.org/10.1002/advs.202001069
- N. Kostoglou, C. Koczwara, S. Stock, C. Tampaxis, G. Charalambopoulou et al., Nanoporous polymer-derived activated carbon for hydrogen adsorption and electrochemical energy storage. Chem. Eng. J. 427, 131730 (2022). https://doi.org/10.1016/j.cej.2021.131730
- J. Burress, M. Kraus, M. Beckner, R. Cepel, G. Suppes et al., Hydrogen storage in engineered carbon nanospaces. Nanotechnology 20(20), 204026 (2009). https://doi.org/10.1088/0957-4484/20/20/204026
- X. Guo, J. Wang, Comparison of linearization methods for modeling the Langmuir adsorption isotherm. J. Mol. Liq. 296, 111850 (2019). https://doi.org/10.1016/j.molliq.2019.111850
- V.P. Ting, A.J. Ramirez-Cuesta, N. Bimbo, J.E. Sharpe, A. Noguera-Diaz et al., Direct evidence for solid-like hydrogen in a nanoporous carbon hydrogen storage material at supercritical temperatures. ACS Nano 9(8), 8249–8254 (2015). https://doi.org/10.1021/acsnano.5b02623
- I. López-Corral, J. de Celis, A. Juan, B. Irigoyen, DFT study of H2 adsorption on Pd-decorated single walled carbon nanotubes with C-vacancies. Int. J. Hydrog. Energy 37(13), 10156–10164 (2012). https://doi.org/10.1016/j.ijhydene.2011.12.073
- R. Muhammad, Y. Shuai, H.-P. Tan, First-principles study on hydrogen adsorption on nitrogen doped graphene. Phys. E Low Dimens. Syst. Nanostruct. 88, 115–124 (2017). https://doi.org/10.1016/j.physe.2016.12.012
- G. Sethia, A. Sayari, Activated carbon with optimum pore size distribution for hydrogen storage. Carbon 99, 289–294 (2016). https://doi.org/10.1016/j.carbon.2015.12.032
- J. Li, R. Zou, Y. Cui, G. Lei, Z. Li et al., In situ formed MgTi2O4 from MgO improving the cycling stability of MgH2. Chem. Eng. J. 470, 144259 (2023). https://doi.org/10.1016/j.cej.2023.144259
- L.S. Blankenship, R. Mokaya, Modulating the porosity of carbons for improved adsorption of hydrogen, carbon dioxide, and methane: a review. Mater. Adv. 3(4), 1905–1930 (2022). https://doi.org/10.1039/D1MA00911G
- L. Borchardt, D. Leistenschneider, J. Haase, M. Dvoyashkin, Revising the concept of pore hierarchy for ionic transport in carbon materials for supercapacitors. Adv. Energy Mater. 8(24), 1800892 (2018). https://doi.org/10.1002/aenm.201800892
- R.L. Blaine, H.E. Kissinger, Homer Kissinger and the Kissinger eq. Thermochim. Acta 540, 1–6 (2012). https://doi.org/10.1016/j.tca.2012.04.008
- F. Jensen, Activation energies and the Arrhenius Eq. Qual. Reliab. Eng. Int. 1(1), 13–17 (1985). https://doi.org/10.1002/qre.4680010104
- E.M. Kumar, A. Rajkamal, R. Thapa, Screening based approach and dehydrogenation kinetics for MgH2: guide to find suitable dopant using first-principles approach. Sci. Rep. 7(1), 15550 (2017). https://doi.org/10.1038/s41598-017-15694-x
- S. Dong, C. Li, J. Wang, H. Liu, Z. Ding et al., The “burst effect” of hydrogen desorption in MgH2 dehydrogenation. J. Mater. Chem. A 10(42), 22363–22372 (2022). https://doi.org/10.1039/D2TA06458H
- A.S. Awad, E. El-Asmar, T. Tayeh, F. Mauvy, M. Nakhl et al., Effect of carbons (G and CFs), TM (Ni, Fe and Al) and oxides (Nb2O5 and V2O5) on hydrogen generation from ball milled Mg-based hydrolysis reaction for fuel cell. Energy 95, 175–186 (2016). https://doi.org/10.1016/j.energy.2015.12.004
- E. Alasmar, A.S. Awad, D. Hachem, T. Tayeh, M. Nakhl et al., Hydrogen generation from Nd-Ni-Mg system by hydrolysis reaction. J. Alloys Compd. 740, 52–60 (2018). https://doi.org/10.1016/j.jallcom.2017.12.305
- T. Huang, C. Zhou, Surface diffusion-controlled jonhson–mehl–avrami–Kolmogorov model for hydrogenation of Mg-based alloys. J. Phys. Chem. C 127(28), 13900–13910 (2023). https://doi.org/10.1021/acs.jpcc.3c02650
- Y. Jia, C. Sun, L. Cheng, M. Abdul Wahab, J. Cui et al., Destabilization of Mg–H bonding through nano-interfacial confinement by unsaturated carbon for hydrogen desorption from MgH2. Phys. Chem. Chem. Phys. 15(16), 5814–5820 (2013). https://doi.org/10.1039/C3CP50515D
- V. Fuster, F.J. Castro, H. Troiani, G. Urretavizcaya, Characterization of graphite catalytic effect in reactively ball-milled MgH2–C and Mg–C composites. Int. J. Hydrog. Energy 36(15), 9051–9061 (2011). https://doi.org/10.1016/j.ijhydene.2011.04.153
- Q. Zhang, Y. Xu, Y. Wang, H. Zhang, Y. Wang et al., Enhanced hydrogen storage performance of MgH2 Ni2P/graphene nanosheets. Int. J. Hydrog. Energy 41(38), 17000–17007 (2016). https://doi.org/10.1016/j.ijhydene.2016.07.133
- S. Gao, X. Wang, H. Liu, T. He, Y. Wang et al., Effects of nano-composites (FeB, FeB/CNTs) on hydrogen storage properties of MgH2. J. Power. Sources 438, 227006 (2019). https://doi.org/10.1016/j.jpowsour.2019.227006
- Y. Huang, G. Xia, J. Chen, B. Zhang, Q. Li et al., One-step uniform growth of magnesium hydride nanops on graphene. Prog. Nat. Sci. Mater. Int. 27(1), 81–87 (2017). https://doi.org/10.1016/j.pnsc.2016.12.015
- M. Liu, S. Zhao, X. Xiao, M. Chen, C. Sun et al., Novel 1D carbon nanotubes uniformly wrapped nanoscale MgH2 for efficient hydrogen storage cycling performances with extreme high gravimetric and volumetric capacities. Nano Energy 61, 540–549 (2019). https://doi.org/10.1016/j.nanoen.2019.04.094
- L. Ren, W. Zhu, Q. Zhang, C. Lu, F. Sun et al., MgH2 confinement in MOF-derived N-doped porous carbon nanofibers for enhanced hydrogen storage. Chem. Eng. J. 434, 134701 (2022). https://doi.org/10.1016/j.cej.2022.134701
- S.J. Yang, T. Kim, J.H. Im, Y.S. Kim, K. Lee et al., MOF-derived hierarchically porous carbon with exceptional porosity and hydrogen storage capacity. Chem. Mater. 24(3), 464–470 (2012). https://doi.org/10.1021/cm202554j
- J.F. Stampfer Jr., C.E. Holley Jr., J.F. Suttle, The magnesium-hydrogen System1-3. J. Am. Chem. Soc. 82(14), 3504–3508 (1960). https://doi.org/10.1021/ja01499a006
- M.S. El-Eskandarany, Metallic glassy Ti2Ni grain-growth inhibitor powder for enhancing the hydrogenation/dehydrogenation kinetics of MgH2. RSC Adv. 9(2), 1036–1046 (2019). https://doi.org/10.1039/C8RA08200F
- H. Liang, D. Chen, D. Thiry, W. Li, M. Chen et al., Efficient hydrogen storage with the combination of metal Mg and porous nanostructured material. Int. J. Hydrogen Energy 44(31), 16824–16832 (2019). https://doi.org/10.1016/j.ijhydene.2019.04.212
- Y. Li, L. Ren, Y. Yao, Y. Zhao, H. Xu et al., A single-atom interface engineering strategy to promote hydrogen sorption performances of magnesium hydride. Adv. Funct. Mater. 35(13), 2417915 (2025). https://doi.org/10.1002/adfm.202417915
- Y. Teng, Y. Zhang, X. Xie, J. Yao, Z. Zhang et al., Interfacial electron transfer in PbI2@single-walled carbon nanotube van der Waals heterostructures for high-stability self-powered photodetectors. J. Am. Chem. Soc. 146(9), 6231–6239 (2024). https://doi.org/10.1021/jacs.3c14188
- Y. Xia, L. Wang, G. Gao, T. Mao, Z. Wang et al., Constructed Mott-schottky heterostructure catalyst to trigger interface disturbance and manipulate redox kinetics in Li-O2 battery. Nano-Micro Lett. 16(1), 258 (2024). https://doi.org/10.1007/s40820-024-01476-4
- L.C. Allen, Electronegativity is the average one-electron energy of the valence-shell electrons in ground-state free atoms. J. Am. Chem. Soc. 111(25), 9003–9014 (1989). https://doi.org/10.1021/ja00207a003
- D. He, Y. Wang, C. Wu, Q. Li, W. Ding et al., Enhanced hydrogen desorption properties of magnesium hydride by coupling non-metal doping and nano-confinement. Appl. Phys. Lett. 107(24), 243907 (2015). https://doi.org/10.1063/1.4938245
- U. D. O. Energy, Targets for onboard hydrogen storage systems for light-duty vehicles, (2009).
References
M.D. Allendorf, V. Stavila, J.L. Snider, M. Witman, M.E. Bowden et al., Challenges to developing materials for the transport and storage of hydrogen. Nat. Chem. 14(11), 1214–1223 (2022). https://doi.org/10.1038/s41557-022-01056-2
K.T. Møller, T.R. Jensen, E. Akiba, H.-W. Li, Hydrogen - A sustainable energy carrier. Prog. Nat. Sci. Mater. Int. 27(1), 34–40 (2017). https://doi.org/10.1016/j.pnsc.2016.12.014
S. Chu, A. Majumdar, Opportunities and challenges for a sustainable energy future. Nature 488(7411), 294–303 (2012). https://doi.org/10.1038/nature11475
M. van der Spek, C. Banet, C. Bauer, P. Gabrielli, W. Goldthorpe et al., Perspective on the hydrogen economy as a pathway to reach net-zero CO2 emissions in Europe. Energy Environ. Sci. 15(3), 1034–1077 (2022). https://doi.org/10.1039/D1EE02118D
J.P. Berro Ramirez, D. Halm, J.-C. Grandidier, S. Villalonga, F. Nony, 700 bar type IV high pressure hydrogen storage vessel burst–simulation and experimental validation. Int. J. Hydrog. Energy 40(38), 13183–13192 (2015). https://doi.org/10.1016/j.ijhydene.2015.05.126
Y. Zhao, M. Gong, Y. Zhou, X. Dong, J. Shen, Thermodynamics analysis of hydrogen storage based on compressed gaseous hydrogen, liquid hydrogen and cryo-compressed hydrogen. Int. J. Hydrog. Energy 44(31), 16833–16840 (2019). https://doi.org/10.1016/j.ijhydene.2019.04.207
J. Yang, A. Sudik, C. Wolverton, D.J. Siegel, High capacity hydrogen storage materials: attributes for automotive applications and techniques for materials discovery. Chem. Soc. Rev. 39(2), 656–675 (2010). https://doi.org/10.1039/B802882F
S. Liu, J. Liu, X. Liu, J.-X. Shang, R. Yu et al., Non-classical hydrogen storage mechanisms other than chemisorption and physisorption. Appl. Phys. Rev. 9(2), 021315 (2022). https://doi.org/10.1063/5.0088529
G.S. Walker, M. Abbas, D.M. Grant, C. Udeh, Destabilisation of magnesium hydride by germanium as a new potential multicomponent hydrogen storage system. Chem. Commun. 47(28), 8001–8003 (2011). https://doi.org/10.1039/C0CC03425H
B. Bogdanović, A. Ritter, B. Spliethoff, Active MgH2 Mg systems for reversible chemical energy storage. Angew. Chem. Int. Ed. 29(3), 223–234 (1990). https://doi.org/10.1002/anie.199002233
W. Liu, Y. Mao, J. Zheng, Z. Wang, C. Shang et al., Enhancing the flotation separation of magnesite and dolomite by introducing a phosphonic acid depressant during grinding. Sep. Purif. Technol. 361, 131412 (2025). https://doi.org/10.1016/j.seppur.2025.131412
P. Loganathan, G. Naidu, S. Vigneswaran, Mining valuable minerals from seawater: a critical review. Environ. Sci. Water Res. Technol. 3(1), 37–53 (2017). https://doi.org/10.1039/c6ew00268d
I.P. Jain, C. Lal, A. Jain, Hydrogen storage in Mg: a most promising material. Int. J. Hydrog. Energy 35(10), 5133–5144 (2010). https://doi.org/10.1016/j.ijhydene.2009.08.088
Y. Yang, X. Zhang, L. Zhang, W. Zhang, H. Liu et al., Recent advances in catalyst-modified Mg-based hydrogen storage materials. J. Mater. Sci. Technol. 163, 182–211 (2023). https://doi.org/10.1016/j.jmst.2023.03.063
X. Zhang, S. Ju, C. Li, J. Hao, Y. Sun et al., Atomic reconstruction for realizing stable solar-driven reversible hydrogen storage of magnesium hydride. Nat. Commun. 15, 2815 (2024). https://doi.org/10.1038/s41467-024-47077-y
X. Zhang, Y. Sun, S. Ju, J. Ye, X. Hu et al., Solar-driven reversible hydrogen storage. Adv. Mater. 35(2), e2206946 (2023). https://doi.org/10.1002/adma.202206946
N.A. Niaz, I. Ahmad, W.S. Khan, S.T. Hussain, Synthesis of nanostructured Mg–Ni alloy and its hydrogen storage properties. J. Mater. Sci. Technol. 28(5), 401–406 (2012). https://doi.org/10.1016/S1005-0302(12)60075-9
L. Ren, Y. Li, Z. Li, X. Lin, C. Lu et al., Boosting hydrogen storage performance of MgH2 by oxygen vacancy-rich H-V2O5 nanosheet as an excited H-pump. Nano-Micro Lett. 16(1), 160 (2024). https://doi.org/10.1007/s40820-024-01375-8
X. Zhang, Y. Liu, Z. Ren, X. Zhang, J. Hu et al., Realizing 6.7 wt% reversible storage of hydrogen at ambient temperature with non-confined ultrafine magnesium hydrides. Energy Environ. Sci. 14(4), 2302–2313 (2021). https://doi.org/10.1039/D0EE03160G
R. Bardhan, A.M. Ruminski, A. Brand, J.J. Urban, Magnesium nanocrystal-polymer composites: a new platform for designer hydrogen storage materials. Energy Environ. Sci. 4(12), 4882–4895 (2011). https://doi.org/10.1039/C1EE02258J
B. Han, Y. Jia, J. Wang, X. Xiao, L. Chen et al., The structural, energetic and dehydrogenation properties of pure and Ti-doped Mg(0001)/MgH2(110) interfaces. J. Mater. Chem. A 11(48), 26602–26616 (2023). https://doi.org/10.1039/d3ta06177a
X. Yu, Z. Tang, D. Sun, L. Ouyang, M. Zhu, Recent advances and remaining challenges of nanostructured materials for hydrogen storage applications. Prog. Mater. Sci. 88, 1–48 (2017). https://doi.org/10.1016/j.pmatsci.2017.03.001
A. Schneemann, J.L. White, S. Kang, S. Jeong, L.F. Wan et al., Nanostructured metal hydrides for hydrogen storage. Chem. Rev. 118(22), 10775–10839 (2018). https://doi.org/10.1021/acs.chemrev.8b00313
G. Xia, Y. Tan, X. Chen, D. Sun, Z. Guo et al., Monodisperse magnesium hydride nanops uniformly self-assembled on graphene. Adv. Mater. 27(39), 5981–5988 (2015). https://doi.org/10.1002/adma.201502005
T.K. Nielsen, K. Manickam, M. Hirscher, F. Besenbacher, T.R. Jensen, Confinement of MgH2 nanoclusters within nanoporous aerogel scaffold materials. ACS Nano 3(11), 3521–3528 (2009). https://doi.org/10.1021/nn901072w
M. Konarova, A. Tanksale, J. Norberto Beltramini, Q.L. Gao, Effects of nano-confinement on the hydrogen desorption properties of MgH2. Nano Energy 2(1), 98–104 (2013). https://doi.org/10.1016/j.nanoen.2012.07.024
M.A. Lillo-Ródenas, Z.X. Guo, K.F. Aguey-Zinsou, D. Cazorla-Amorós, A. Linares-Solano, Effects of different carbon materials on MgH2 decomposition. Carbon 46(1), 126–137 (2008). https://doi.org/10.1016/j.carbon.2007.10.033
Y. Fu, Z. Yu, S. Guo, Y. Li, Q. Peng et al., Catalytic effect of bamboo-like carbon nanotubes loaded with NiFe nanops on hydrogen storage properties of MgH2. Chem. Eng. J. 458, 141337 (2023). https://doi.org/10.1016/j.cej.2023.141337
X. Huang, X. Xiao, W. Zhang, X. Fan, L. Zhang et al., Transition metal (Co, Ni) nanops wrapped with carbon and their superior catalytic activities for the reversible hydrogen storage of magnesium hydride. Phys. Chem. Chem. Phys. 19(5), 4019–4029 (2017). https://doi.org/10.1039/c6cp07852d
Z. Ma, Q. Zhang, S. Panda, W. Zhu, F. Sun et al., In situ catalyzed and nanoconfined magnesium hydride nanocrystals in a Ni-MOF scaffold for hydrogen storage. Sustain. Energy Fuels 4(9), 4694–4703 (2020). https://doi.org/10.1039/D0SE00818D
P.E. de Jongh, R.W.P. Wagemans, T.M. Eggenhuisen, B.S. Dauvillier, P.B. Radstake et al., The preparation of carbon-supported magnesium nanops using melt infiltration. Chem. Mater. 19(24), 6052–6057 (2007). https://doi.org/10.1021/cm702205v
L. Ren, W. Zhu, Y. Li, X. Lin, H. Xu et al., Oxygen vacancy-rich 2D TiO2 nanosheets: a bridge toward high stability and rapid hydrogen storage kinetics of nano-confined MgH(2). Nano-Micro Lett. 14(1), 144 (2022). https://doi.org/10.1007/s40820-022-00891-9
P. Peng, H.Z.H. Jiang, S. Collins, H. Furukawa, J.R. Long et al., Long duration energy storage using hydrogen in metal–organic frameworks: opportunities and challenges. ACS Energy Lett. 9(6), 2727–2735 (2024). https://doi.org/10.1021/acsenergylett.4c00894
O.K. Farha, A.Ö. Yazaydın, I. Eryazici, C.D. Malliakas, B.G. Hauser et al., De novo synthesis of a metal-organic framework material featuring ultrahigh surface area and gas storage capacities. Nat. Chem. 2(11), 944–948 (2010). https://doi.org/10.1038/nchem.834
S.S. Han, H. Furukawa, O.M. Yaghi, W.A. Goddard III., Covalent organic frameworks as exceptional hydrogen storage materials. J. Am. Chem. Soc. 130(35), 11580–11581 (2008). https://doi.org/10.1021/ja803247y
L.S. Blankenship, N. Balahmar, R. Mokaya, Oxygen-rich microporous carbons with exceptional hydrogen storage capacity. Nat. Commun. 8, 1545 (2017). https://doi.org/10.1038/s41467-017-01633-x
L. Xiao, Y. Cao, W.A. Henderson, M.L. Sushko, Y. Shao et al., Hard carbon nanops as high-capacity, high-stability anodic materials for Na-ion batteries. Nano Energy 19, 279–288 (2016). https://doi.org/10.1016/j.nanoen.2015.10.034
Q. Zhang, Y. Huang, T. Ma, K. Li, F. Ye et al., Facile synthesis of small MgH2 nanops confined in different carbon materials for hydrogen storage. J. Alloys Compd. 825, 153953 (2020). https://doi.org/10.1016/j.jallcom.2020.153953
I. Kusunoki, M. Sakai, Y. Igari, S. Ishidzuka, T. Takami et al., XPS study of nitridation of diamond and graphite with a nitrogen ion beam. Surf. Sci. 492(3), 315–328 (2001). https://doi.org/10.1016/S0039-6028(01)01430-3
J.J. Nicolas, K.E. Gubbins, W.B. Streett, D.J. Tildesley, Eq. of state for the lennard-Jones fluid. Mol. Phys. 37(5), 1429–1454 (1979). https://doi.org/10.1080/00268977900101051
P. Giannozzi, O. Andreussi, T. Brumme, O. Bunau, M. Buongiorno Nardelli et al., Advanced capabilities for materials modelling with quantum ESPRESSO. J. Phys. Condens. Matter 29(46), 465901 (2017). https://doi.org/10.1088/1361-648x/aa8f79
J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77(18), 3865–3868 (1996). https://doi.org/10.1103/physrevlett.77.3865
G. Kresse, D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59(3), 1758–1775 (1999). https://doi.org/10.1103/physrevb.59.1758
H.J. Monkhorst, J.D. Pack, Special points for Brillouin-zone integrations. Phys. Rev. B 13(12), 5188–5192 (1976). https://doi.org/10.1103/physrevb.13.5188
Z. Xia, H. Xiao, Grand canonical ensemble modeling of electrochemical interfaces made simple. J. Chem. Theory Comput. 19(15), 5168–5175 (2023). https://doi.org/10.1021/acs.jctc.3c00237
D. Bahamon, M. Khalil, A. Belabbes, Y. Alwahedi, L.F. Vega et al., A DFT study of the adsorption energy and electronic interactions of the SO2 molecule on a CoP hydrotreating catalyst. RSC Adv. 11(5), 2947–2957 (2021). https://doi.org/10.1039/C9RA10634K
H. Furukawa, K.E. Cordova, M. O’Keeffe, O.M. Yaghi, The chemistry and applications of metal-organic frameworks. Science 341(6149), 1230444 (2013). https://doi.org/10.1126/science.1230444
Z. Chen, P. Li, R. Anderson, X. Wang, X. Zhang et al., Balancing volumetric and gravimetric uptake in highly porous materials for clean energy. Science 368(6488), 297–303 (2020). https://doi.org/10.1126/science.aaz8881
A. Streb, M. Mazzotti, Adsorption for efficient low carbon hydrogen production: part 1: adsorption equilibrium and breakthrough studies for H2/CO2/CH4 on zeolite 13X. Adsorption 27(4), 541–558 (2021). https://doi.org/10.1007/s10450-021-00306-y
S.Y. Sawant, K. Munusamy, R.S. Somani, M. John, B.L. Newalkar et al., Precursor suitability and pilot scale production of super activated carbon for greenhouse gas adsorption and fuel gas storage. Chem. Eng. J. 315, 415–425 (2017). https://doi.org/10.1016/j.cej.2017.01.037
J. Ren, Y. Huang, H. Zhu, B. Zhang, H. Zhu et al., Recent progress on MOF-derived carbon materials for energy storage. Carbon Energy 2(2), 176–202 (2020). https://doi.org/10.1002/cey2.44
C. Wang, J. Kim, J. Tang, M. Kim, H. Lim et al., New strategies for novel MOF-derived carbon materials based on nanoarchitectures. Chem 6(1), 19–40 (2020). https://doi.org/10.1016/j.chempr.2019.09.005
Y. Wang, H. Liu, K. Wang, S. Song, P. Tsiakaras, 3D interconnected hierarchically porous N-doped carbon with NH3 activation for efficient oxygen reduction reaction. Appl. Catal. B Environ. 210, 57–66 (2017). https://doi.org/10.1016/j.apcatb.2017.03.054
D. Fairen-Jimenez, S.A. Moggach, M.T. Wharmby, P.A. Wright, S. Parsons et al., Opening the gate: framework flexibility in ZIF-8 explored by experiments and simulations. J. Am. Chem. Soc. 133(23), 8900–8902 (2011). https://doi.org/10.1021/ja202154j
D. Liu, Y. Wu, Q. Xia, Z. Li, H. Xi, Experimental and molecular simulation studies of CO2 adsorption on zeolitic imidazolate frameworks: ZIF-8 and amine-modified ZIF-8. Adsorption 19(1), 25–37 (2013). https://doi.org/10.1007/s10450-012-9407-1
K. Li, Q. Liu, H. Cheng, M. Hu, S. Zhang, Classification and carbon structural transformation from anthracite to natural coaly graphite by XRD, Raman spectroscopy, and HRTEM. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 249, 119286 (2021). https://doi.org/10.1016/j.saa.2020.119286
C. Buttersack, Modeling of type IV and V sigmoidal adsorption isotherms. Phys. Chem. Chem. Phys. 21(10), 5614–5626 (2019). https://doi.org/10.1039/c8cp07751g
M. Thommes, Physical adsorption characterization of nanoporous materials. Chem. Ing. Tech. 82(7), 1059–1073 (2010). https://doi.org/10.1002/cite.201000064
Q. Liang, Z. Li, Z.-H. Huang, F. Kang, Q.-H. Yang, Holey graphitic carbon nitride nanosheets with carbon vacancies for highly improved photocatalytic hydrogen production. Adv. Funct. Mater. 25(44), 6885–6892 (2015). https://doi.org/10.1002/adfm.201503221
Y. Li, Y. Hu, Y. Zhao, G. Shi, L. Deng et al., An electrochemical avenue to green-luminescent graphene quantum dots as potential electron-acceptors for photovoltaics. Adv. Mater. 23(6), 776–780 (2011). https://doi.org/10.1002/adma.201003819
Y. Li, Y. Zhao, H. Cheng, Y. Hu, G. Shi et al., Nitrogen-doped graphene quantum dots with oxygen-rich functional groups. J. Am. Chem. Soc. 134(1), 15–18 (2012). https://doi.org/10.1021/ja206030c
K. Artyushkova, B. Kiefer, B. Halevi, A. Knop-Gericke, R. Schlogl et al., Density functional theory calculations of XPS binding energy shift for nitrogen-containing graphene-like structures. Chem. Commun. 49(25), 2539–2541 (2013). https://doi.org/10.1039/C3CC40324F
A.C. Ferrari, J.C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri et al., Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 97(18), 187401 (2006). https://doi.org/10.1103/physrevlett.97.187401
A.C. Ferrari, J. Robertson, Resonant Raman spectroscopy of disordered, amorphous, and diamondlike carbon. Phys. Rev. B 64(7), 075414 (2001). https://doi.org/10.1103/physrevb.64.075414
A.C. Ferrari, J. Robertson, Interpretation of raman spectra of disordered and amorphous carbon. Phys. Rev. B 61(20), 14095–14107 (2000). https://doi.org/10.1103/physrevb.61.14095
Z. Shi, W. Yang, Y. Gu, T. Liao, Z. Sun, Metal-nitrogen-doped carbon materials as highly efficient catalysts: progress and rational design. Adv. Sci. 7(15), 2001069 (2020). https://doi.org/10.1002/advs.202001069
N. Kostoglou, C. Koczwara, S. Stock, C. Tampaxis, G. Charalambopoulou et al., Nanoporous polymer-derived activated carbon for hydrogen adsorption and electrochemical energy storage. Chem. Eng. J. 427, 131730 (2022). https://doi.org/10.1016/j.cej.2021.131730
J. Burress, M. Kraus, M. Beckner, R. Cepel, G. Suppes et al., Hydrogen storage in engineered carbon nanospaces. Nanotechnology 20(20), 204026 (2009). https://doi.org/10.1088/0957-4484/20/20/204026
X. Guo, J. Wang, Comparison of linearization methods for modeling the Langmuir adsorption isotherm. J. Mol. Liq. 296, 111850 (2019). https://doi.org/10.1016/j.molliq.2019.111850
V.P. Ting, A.J. Ramirez-Cuesta, N. Bimbo, J.E. Sharpe, A. Noguera-Diaz et al., Direct evidence for solid-like hydrogen in a nanoporous carbon hydrogen storage material at supercritical temperatures. ACS Nano 9(8), 8249–8254 (2015). https://doi.org/10.1021/acsnano.5b02623
I. López-Corral, J. de Celis, A. Juan, B. Irigoyen, DFT study of H2 adsorption on Pd-decorated single walled carbon nanotubes with C-vacancies. Int. J. Hydrog. Energy 37(13), 10156–10164 (2012). https://doi.org/10.1016/j.ijhydene.2011.12.073
R. Muhammad, Y. Shuai, H.-P. Tan, First-principles study on hydrogen adsorption on nitrogen doped graphene. Phys. E Low Dimens. Syst. Nanostruct. 88, 115–124 (2017). https://doi.org/10.1016/j.physe.2016.12.012
G. Sethia, A. Sayari, Activated carbon with optimum pore size distribution for hydrogen storage. Carbon 99, 289–294 (2016). https://doi.org/10.1016/j.carbon.2015.12.032
J. Li, R. Zou, Y. Cui, G. Lei, Z. Li et al., In situ formed MgTi2O4 from MgO improving the cycling stability of MgH2. Chem. Eng. J. 470, 144259 (2023). https://doi.org/10.1016/j.cej.2023.144259
L.S. Blankenship, R. Mokaya, Modulating the porosity of carbons for improved adsorption of hydrogen, carbon dioxide, and methane: a review. Mater. Adv. 3(4), 1905–1930 (2022). https://doi.org/10.1039/D1MA00911G
L. Borchardt, D. Leistenschneider, J. Haase, M. Dvoyashkin, Revising the concept of pore hierarchy for ionic transport in carbon materials for supercapacitors. Adv. Energy Mater. 8(24), 1800892 (2018). https://doi.org/10.1002/aenm.201800892
R.L. Blaine, H.E. Kissinger, Homer Kissinger and the Kissinger eq. Thermochim. Acta 540, 1–6 (2012). https://doi.org/10.1016/j.tca.2012.04.008
F. Jensen, Activation energies and the Arrhenius Eq. Qual. Reliab. Eng. Int. 1(1), 13–17 (1985). https://doi.org/10.1002/qre.4680010104
E.M. Kumar, A. Rajkamal, R. Thapa, Screening based approach and dehydrogenation kinetics for MgH2: guide to find suitable dopant using first-principles approach. Sci. Rep. 7(1), 15550 (2017). https://doi.org/10.1038/s41598-017-15694-x
S. Dong, C. Li, J. Wang, H. Liu, Z. Ding et al., The “burst effect” of hydrogen desorption in MgH2 dehydrogenation. J. Mater. Chem. A 10(42), 22363–22372 (2022). https://doi.org/10.1039/D2TA06458H
A.S. Awad, E. El-Asmar, T. Tayeh, F. Mauvy, M. Nakhl et al., Effect of carbons (G and CFs), TM (Ni, Fe and Al) and oxides (Nb2O5 and V2O5) on hydrogen generation from ball milled Mg-based hydrolysis reaction for fuel cell. Energy 95, 175–186 (2016). https://doi.org/10.1016/j.energy.2015.12.004
E. Alasmar, A.S. Awad, D. Hachem, T. Tayeh, M. Nakhl et al., Hydrogen generation from Nd-Ni-Mg system by hydrolysis reaction. J. Alloys Compd. 740, 52–60 (2018). https://doi.org/10.1016/j.jallcom.2017.12.305
T. Huang, C. Zhou, Surface diffusion-controlled jonhson–mehl–avrami–Kolmogorov model for hydrogenation of Mg-based alloys. J. Phys. Chem. C 127(28), 13900–13910 (2023). https://doi.org/10.1021/acs.jpcc.3c02650
Y. Jia, C. Sun, L. Cheng, M. Abdul Wahab, J. Cui et al., Destabilization of Mg–H bonding through nano-interfacial confinement by unsaturated carbon for hydrogen desorption from MgH2. Phys. Chem. Chem. Phys. 15(16), 5814–5820 (2013). https://doi.org/10.1039/C3CP50515D
V. Fuster, F.J. Castro, H. Troiani, G. Urretavizcaya, Characterization of graphite catalytic effect in reactively ball-milled MgH2–C and Mg–C composites. Int. J. Hydrog. Energy 36(15), 9051–9061 (2011). https://doi.org/10.1016/j.ijhydene.2011.04.153
Q. Zhang, Y. Xu, Y. Wang, H. Zhang, Y. Wang et al., Enhanced hydrogen storage performance of MgH2 Ni2P/graphene nanosheets. Int. J. Hydrog. Energy 41(38), 17000–17007 (2016). https://doi.org/10.1016/j.ijhydene.2016.07.133
S. Gao, X. Wang, H. Liu, T. He, Y. Wang et al., Effects of nano-composites (FeB, FeB/CNTs) on hydrogen storage properties of MgH2. J. Power. Sources 438, 227006 (2019). https://doi.org/10.1016/j.jpowsour.2019.227006
Y. Huang, G. Xia, J. Chen, B. Zhang, Q. Li et al., One-step uniform growth of magnesium hydride nanops on graphene. Prog. Nat. Sci. Mater. Int. 27(1), 81–87 (2017). https://doi.org/10.1016/j.pnsc.2016.12.015
M. Liu, S. Zhao, X. Xiao, M. Chen, C. Sun et al., Novel 1D carbon nanotubes uniformly wrapped nanoscale MgH2 for efficient hydrogen storage cycling performances with extreme high gravimetric and volumetric capacities. Nano Energy 61, 540–549 (2019). https://doi.org/10.1016/j.nanoen.2019.04.094
L. Ren, W. Zhu, Q. Zhang, C. Lu, F. Sun et al., MgH2 confinement in MOF-derived N-doped porous carbon nanofibers for enhanced hydrogen storage. Chem. Eng. J. 434, 134701 (2022). https://doi.org/10.1016/j.cej.2022.134701
S.J. Yang, T. Kim, J.H. Im, Y.S. Kim, K. Lee et al., MOF-derived hierarchically porous carbon with exceptional porosity and hydrogen storage capacity. Chem. Mater. 24(3), 464–470 (2012). https://doi.org/10.1021/cm202554j
J.F. Stampfer Jr., C.E. Holley Jr., J.F. Suttle, The magnesium-hydrogen System1-3. J. Am. Chem. Soc. 82(14), 3504–3508 (1960). https://doi.org/10.1021/ja01499a006
M.S. El-Eskandarany, Metallic glassy Ti2Ni grain-growth inhibitor powder for enhancing the hydrogenation/dehydrogenation kinetics of MgH2. RSC Adv. 9(2), 1036–1046 (2019). https://doi.org/10.1039/C8RA08200F
H. Liang, D. Chen, D. Thiry, W. Li, M. Chen et al., Efficient hydrogen storage with the combination of metal Mg and porous nanostructured material. Int. J. Hydrogen Energy 44(31), 16824–16832 (2019). https://doi.org/10.1016/j.ijhydene.2019.04.212
Y. Li, L. Ren, Y. Yao, Y. Zhao, H. Xu et al., A single-atom interface engineering strategy to promote hydrogen sorption performances of magnesium hydride. Adv. Funct. Mater. 35(13), 2417915 (2025). https://doi.org/10.1002/adfm.202417915
Y. Teng, Y. Zhang, X. Xie, J. Yao, Z. Zhang et al., Interfacial electron transfer in PbI2@single-walled carbon nanotube van der Waals heterostructures for high-stability self-powered photodetectors. J. Am. Chem. Soc. 146(9), 6231–6239 (2024). https://doi.org/10.1021/jacs.3c14188
Y. Xia, L. Wang, G. Gao, T. Mao, Z. Wang et al., Constructed Mott-schottky heterostructure catalyst to trigger interface disturbance and manipulate redox kinetics in Li-O2 battery. Nano-Micro Lett. 16(1), 258 (2024). https://doi.org/10.1007/s40820-024-01476-4
L.C. Allen, Electronegativity is the average one-electron energy of the valence-shell electrons in ground-state free atoms. J. Am. Chem. Soc. 111(25), 9003–9014 (1989). https://doi.org/10.1021/ja00207a003
D. He, Y. Wang, C. Wu, Q. Li, W. Ding et al., Enhanced hydrogen desorption properties of magnesium hydride by coupling non-metal doping and nano-confinement. Appl. Phys. Lett. 107(24), 243907 (2015). https://doi.org/10.1063/1.4938245
U. D. O. Energy, Targets for onboard hydrogen storage systems for light-duty vehicles, (2009).