Cobalt-Based Electrocatalysts for Sustainable Nitrate Conversion: Structural Design and Mechanistic Advancements
Corresponding Author: Zheng‑Jun Wang
Nano-Micro Letters,
Vol. 18 (2026), Article Number: 73
Abstract
Electrocatalytic nitrate-to-ammonia conversion offers dual environmental and sustainable synthesis benefits, but achieving high efficiency with low-cost catalysts remains a major challenge. This review focuses on cobalt-based electrocatalysts, emphasizing their structural engineering for enhanced the performance of electrocatalytic nitrate reduction reaction (NO3RR) through dimensional control, compositional tuning, and coordination microenvironment modulation. Notably, by critically analyzing metallic cobalt, cobalt alloys, cobalt compounds, cobalt single atom and molecular catalyst configurations, we firstly establish correlations between atomic-scale structural features and catalytic performance in a coordination environment perspective for NO3RR, including the dynamic reconstruction during operation and its impact on active site. Synergizing experimental breakthroughs with computational modeling, we decode mechanisms underlying competitive hydrogen evolution suppression, intermediate adsorption-energy optimization, and durability enhancement in complex aqueous environments. The development of cobalt-based catalysts was summarized and prospected, and the emerging opportunities of machine learning in accelerating the research and development of high-performance catalysts and the configuration of series reactors for scalable nitrate-to-ammonia systems were also introduced. Bridging surface science and applications, it outlines a framework for designing multifunctional electrocatalysts to restore nitrogen cycle balance sustainably.
Highlights:
1 This review covers almost all cobalt-based electrocatalysts for nitrate reduction reaction (NO3RR), including metallic cobalt, cobalt alloys, cobalt compounds, cobalt single-atom and molecular catalysts, etc.
2 The mechanism of enhancing the NO3RR performance by suppressing the hydrogen evolution reaction, as well as the durability and degradation processes, was discussed from the perspective of the electronic structure and adsorption behavior.
3 The influence of different coordination environments of Co active sites on NO3RR performance was discussed, including different isomorphic forms of the same elements around Co, different types of elements, doping of trace elements, and in situ evolution of constituent elements, etc.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- V. Rosca, M. Duca, M.T. de Groot, M.T.M. Koper, Nitrogen cycle electrocatalysis. Chem. Rev. 109(6), 2209–2244 (2009). https://doi.org/10.1021/cr8003696
- D.E. Canfield, A.N. Glazer, P.G. Falkowski, The evolution and future of Earth’s nitrogen cycle. Science 330(6001), 192–196 (2010). https://doi.org/10.1126/science.1186120
- X.H. Wang, B. Wu, Y. Zhu, D. Wang, N.B. Li et al., Design refinement of catalytic system for scale-up mild nitrogen photo-fixation. Nano-Micro Lett. 17(1), 182 (2025). https://doi.org/10.1007/s40820-025-01695-3
- Y. Wang, Y. Sun, H. Li, W. Zhang, S. Wu et al., Controlled etching to immobilize highly dispersed Fe in MXene for electrochemical ammonia production. Carbon Neutralization 1(2), 117–125 (2022). https://doi.org/10.1002/cnl2.18
- C. Chen, S. Li, X. Zhu, S. Bo, K. Cheng et al., Balancing sub-reaction activity to boost electrocatalytic urea synthesis using a metal-free electrocatalyst. Carbon Energy 5(10), e345 (2023). https://doi.org/10.1002/cey2.345
- J. Han, H. Sun, F. Tian, W. Zhang, Z. Zhang et al., Modulating the coordination environment of cobalt porphyrins for enhanced electrochemical nitrite reduction to ammonia. Carbon Energy 7(1), e657 (2025). https://doi.org/10.1002/cey2.657
- X. Zhang, Y. Cao, Z.-F. Huang, S. Zhang, C. Liu et al., Regulating the interfacial charge transfer and constructing symmetry-breaking sites for the enhanced N2 electroreduction activity. Carbon Energy 5(2), e266 (2023). https://doi.org/10.1002/cey2.266
- T. Xu, H. Yang, T. Lu, R. Zhong, J.-J. Lv et al., Microenvironment engineering by targeted delivery of Ag nanops for boosting electrocatalytic CO2 reduction reaction. Nat. Commun. 16(1), 977 (2025). https://doi.org/10.1038/s41467-025-56039-x
- D. Wang, C. Chen, S. Wang, Defect engineering for advanced electrocatalytic conversion of nitrogen-containing molecules. Sci. China Chem. 66(4), 1052–1072 (2023). https://doi.org/10.1007/s11426-022-1419-y
- H. Xu, Y. Ma, J. Chen, W.-X. Zhang, J. Yang, Electrocatalytic reduction of nitrate–a step towards a sustainable nitrogen cycle. Chem. Soc. Rev. 51(7), 2710–2758 (2022). https://doi.org/10.1039/D1CS00857A
- Y. Zhao, B.P. Setzler, J. Wang, J. Nash, T. Wang et al., An efficient direct ammonia fuel cell for affordable carbon-neutral transportation. Joule 3(10), 2472–2484 (2019). https://doi.org/10.1016/j.joule.2019.07.005
- J. Guo, P. Chen, Catalyst: NH3 as an energy carrier. Chem 3(5), 709–712 (2017). https://doi.org/10.1016/j.chempr.2017.10.004
- X. Teng, D. Si, L. Chen, J. Shi, Synergetic catalytic effects by strong metal–support interaction for efficient electrocatalysis. eScience 4(6), 100272 (2024). https://doi.org/10.1016/j.esci.2024.100272
- J. Yang, P. Sebastian, M. Duca, T. Hoogenboom, M.T.M. Koper, pH dependence of the electroreduction of nitrate on Rh and Pt polycrystalline electrodes. Chem. Commun. 50(17), 2148–2151 (2014). https://doi.org/10.1039/C3CC49224A
- W. Zhou, C. Feng, X. Li, X. Jiang, L. Jing et al., Boosting electrochemical urea synthesis via constructing ordered Pd-Zn active pair. Nano-Micro Lett. 16(1), 247 (2024). https://doi.org/10.1007/s40820-024-01462-w
- J. Chen, Y. Ha, R. Wang, Y. Liu, H. Xu et al., Inner Co synergizing outer Ru supported on carbon nanotubes for efficient pH-universal hydrogen evolution catalysis. Nano-Micro Lett. 14(1), 186 (2022). https://doi.org/10.1007/s40820-022-00933-2
- S. Zhang, Y. Zha, Y. Ye, K. Li, Y. Lin et al., Oxygen-coordinated single Mn sites for efficient electrocatalytic nitrate reduction to ammonia. Nano-Micro Lett. 16(1), 9 (2023). https://doi.org/10.1007/s40820-023-01217-z
- X.-Y. Ji, K. Sun, Z.-K. Liu, X. Liu, W. Dong et al., Identification of dynamic active sites among Cu species derived from MOFs@CuPc for electrocatalytic nitrate reduction reaction to ammonia. Nano-Micro Lett. 15(1), 110 (2023). https://doi.org/10.1007/s40820-023-01091-9
- K. Yang, S.-H. Han, C. Cheng, C. Guo, T. Li et al., Unveiling the reaction mechanism of nitrate reduction to ammonia over cobalt-based electrocatalysts. J. Am. Chem. Soc. 146(19), 12976–12983 (2024). https://doi.org/10.1021/jacs.3c13517
- Z. Mo, X. He, S. Zhou, B. Liu, Efficient synthesis of co-based electrocatalysts from waste batteries and distillers’ grains toward nitrate wastewater to ammonia. ACS Sustainable Chem. Eng. 12(31), 11821–11830 (2024). https://doi.org/10.1021/acssuschemeng.4c04572
- L. Fang, S. Wang, S. Lu, F. Yin, Y. Dai et al., Efficient electroreduction of nitrate via enriched active phases on copper-cobalt oxides. Chin. Chem. Lett. 35(4), 108864 (2024). https://doi.org/10.1016/j.cclet.2023.108864
- M. Teng, J. Ye, C. Wan, G. He, H. Chen, Research progress on Cu-based catalysts for electrochemical nitrate reduction reaction to ammonia. Ind. Eng. Chem. Res. 61(40), 14731–14746 (2022). https://doi.org/10.1021/acs.iecr.2c02495
- Y. Wang, W. Zhou, R. Jia, Y. Yu, B. Zhang, Unveiling the activity origin of a copper-based electrocatalyst for selective nitrate reduction to ammonia. Angew. Chem. Int. Ed. 59(13), 5350–5354 (2020). https://doi.org/10.1002/anie.201915992
- J. Wang, J. Cai, K.-X. Ren, L. Liu, S.-J. Zheng et al., Stepwise structural evolution toward robust carboranealkynyl-protected copper nanocluster catalysts for nitrate electroreduction, 2024. https://www.science.org
- S. Yuan, Y. Xue, R. Ma, Q. Ma, Y. Chen et al., Advances in iron-based electrocatalysts for nitrate reduction. Sci. Total. Environ. 866, 161444 (2023). https://doi.org/10.1016/j.scitotenv.2023.161444
- X. Zhang, Y. Wang, C. Liu, Y. Yu, S. Lu et al., Recent advances in non-noble metal electrocatalysts for nitrate reduction. Chem. Eng. J. 403, 126269 (2021). https://doi.org/10.1016/j.cej.2020.126269
- X. Hu, Y. Wang, R. Wu, Y. Zhao, N-doped Co3O4 catalyst with a high efficiency for the catalytic decomposition of N2O. Mol. Catal. 509, 111656 (2021). https://doi.org/10.1016/j.mcat.2021.111656
- X. Deng, Y. Yang, L. Wang, X.-Z. Fu, J.-L. Luo, Metallic co nanoarray catalyzes selective NH3 production from electrochemical nitrate reduction at current densities exceeding 2 A cm−2. Adv. Sci. 8(7), 2004523 (2021). https://doi.org/10.1002/advs.202004523
- D. Liu, L. Qiao, S. Peng, H. Bai, C. Liu et al., Recent advances in electrocatalysts for efficient nitrate reduction to ammonia. Adv. Funct. Mater. 33(43), 2303480 (2023). https://doi.org/10.1002/adfm.202303480
- Z. Wang, D. Richards, N. Singh, Recent discoveries in the reaction mechanism of heterogeneous electrocatalytic nitrate reduction. Catal. Sci. Technol. 11(3), 705–725 (2021). https://doi.org/10.1039/D0CY02025G
- W. Chen, X. Yang, Z. Chen, Z. Ou, J. Hu et al., Emerging applications, developments, prospects, and challenges of electrochemical nitrate-to-ammonia conversion. Adv. Funct. Mater. 33(29), 2300512 (2023). https://doi.org/10.1002/adfm.202300512
- X. Liang, H. Zhu, X. Yang, S. Xue, Z. Liang et al., Recent advances in designing efficient electrocatalysts for electrochemical nitrate reduction to ammonia. Small Struct. 4(6), 2200202 (2023). https://doi.org/10.1002/sstr.202200202
- W. Chen, Y. Xu, J. Liu, H. Cao, Y. Li et al., Recent developments in Ti-based nanocatalysts for electrochemical nitrate-to-ammonia conversion. Inorg. Chem. Front. 10(17), 4901–4917 (2023). https://doi.org/10.1039/d3qi00732d
- L. Xie, S. Sun, L. Hu, J. Chen, J. Li et al., In situ derived Co2B nanosheet array: a high-efficiency electrocatalyst for ambient ammonia synthesis via nitrate reduction. ACS Appl. Mater. Interfaces 14(44), 49650–49657 (2022). https://doi.org/10.1021/acsami.2c12175
- M. Wang, S. Li, Y. Gu, W. Xu, H. Wang et al., Polynuclear cobalt cluster-based coordination polymers for efficient nitrate-to-ammonia electroreduction. J. Am. Chem. Soc. 146(29), 20439–20448 (2024). https://doi.org/10.1021/jacs.4c06098
- Y. Bu, W. Yu, W. Zhang, C. Wang, J. Ding et al., Engineering the Co(II)/Co(III) redox cycle and Coδ+ species shuttle for nitrate-to-ammonia conversion. Nano Lett. 24(9), 2812–2820 (2024). https://doi.org/10.1021/acs.nanolett.3c04920
- W. Fu, X. Du, P. Su, Q. Zhang, M. Zhou, Synergistic effect of Co(III) and Co(II) in a 3D structured Co3O4/carbon felt electrode for enhanced electrochemical nitrate reduction reaction. ACS Appl. Mater. Interfaces 13(24), 28348–28358 (2021). https://doi.org/10.1021/acsami.1c07063
- H. Liu, J. Qin, J. Mu, B. Liu, In situ interface engineered Co/NC derived from ZIF-67 as an efficient electrocatalyst for nitrate reduction to ammonia. J. Colloid Interface Sci. 636, 134–140 (2023). https://doi.org/10.1016/j.jcis.2023.01.014
- O.Q. Carvalho, R. Marks, H.K.K. Nguyen, M.E. Vitale-Sullivan, S.C. Martinez et al., Role of electronic structure on nitrate reduction to ammonium: a periodic journey. J. Am. Chem. Soc. 144(32), 14809–14818 (2022). https://doi.org/10.1021/jacs.2c05673
- H.B. Michaelson, The work function of the elements and its periodicity. J. Appl. Phys. 48(11), 4729–4733 (1977). https://doi.org/10.1063/1.323539
- W. Sheng, M. Myint, J.G. Chen, Y. Yan, Correlating the hydrogen evolution reaction activity in alkaline electrolytes with the hydrogen binding energy on monometallic surfaces. Energy Environ. Sci. 6(5), 1509–1512 (2013). https://doi.org/10.1039/C3EE00045A
- S. Trasatti, Work function, electronegativity, and electrochemical behaviour of metals II. Potentials of zero charge and “electrochemical” work functions. J. Electroanal. Chem. Interfacial Electrochem. 33(2), 351–378 (1971). https://doi.org/10.1016/S0022-0728(71)80123-7
- S. Ye, Z. Chen, G. Zhang, W. Chen, C. Peng et al., Elucidating the activity, mechanism and application of selective electrosynthesis of ammonia from nitrate on cobalt phosphide. Energy Environ. Sci. 15(2), 760–770 (2022). https://doi.org/10.1039/D1EE03097C
- Y. Xiong, Y. Wang, J. Zhou, F. Liu, F. Hao et al., Electrochemical nitrate reduction: ammonia synthesis and the beyond. Adv. Mater. 36(17), 2304021 (2024). https://doi.org/10.1002/adma.202304021
- J. Wang, T. Feng, J. Chen, V. Ramalingam, Z. Li et al., Electrocatalytic nitrate/nitrite reduction to ammonia synthesis using metal nanocatalysts and bio-inspired metalloenzymes. Nano Energy 86, 106088 (2021). https://doi.org/10.1016/j.nanoen.2021.106088
- K. Fan, W. Xie, J. Li, Y. Sun, P. Xu et al., Active hydrogen boosts electrochemical nitrate reduction to ammonia. Nat. Commun. 13(1), 7958 (2022). https://doi.org/10.1038/s41467-022-35664-w
- L. Qiao, D. Liu, A. Zhu, J. Feng, P. Zhou et al., Nickel-facilitated in situ surface reconstruction on spinel Co3O4 for enhanced electrochemical nitrate reduction to ammonia. Appl. Catal. B Environ. 340, 123219 (2024). https://doi.org/10.1016/j.apcatb.2023.123219
- J.-Y. Fang, Q.-Z. Zheng, Y.-Y. Lou, K.-M. Zhao, S.-N. Hu et al., Ampere-level current density ammonia electrochemical synthesis using CuCo nanosheets simulating nitrite reductase bifunctional nature. Nat. Commun. 13(1), 7899 (2022). https://doi.org/10.1038/s41467-022-35533-6
- R. Zhao, Q. Yan, L. Yu, T. Yan, X. Zhu et al., A bi-co corridor construction effectively improving the selectivity of electrocatalytic nitrate reduction toward ammonia by nearly 100%. Adv. Mater. 35(48), 2306633 (2023). https://doi.org/10.1002/adma.202306633
- T. Hu, C. Wang, M. Wang, C.M. Li, C. Guo, Theoretical insights into superior nitrate reduction to ammonia performance of copper catalysts. ACS Catal. 11(23), 14417–14427 (2021). https://doi.org/10.1021/acscatal.1c03666
- J.M. McEnaney, S.J. Blair, A.C. Nielander, J.A. Schwalbe, D.M. Koshy et al., Electrolyte engineering for efficient electrochemical nitrate reduction to ammonia on a titanium electrode. ACS Sustainable Chem. Eng. 8(7), 2672–2681 (2020). https://doi.org/10.1021/acssuschemeng.9b05983
- S. Hoekx, N. Daems, D. Arenas Esteban, S. Bals, T. Breugelmans, Toward the rational design of Cu electrocatalysts for improved performance of the NO3RR. ACS Appl. Energy Mater. 7(9), 3761–3775 (2024). https://doi.org/10.1021/acsaem.3c03207
- W. Duan, Y. Li, Y. Ou, H. Tuo, L. Tian et al., Insights into electrochemical nitrate reduction to nitrogen on metal catalysts for wastewater treatment. Environ. Sci. Technol. 59(6), 3263–3275 (2025). https://doi.org/10.1021/acs.est.4c09975
- J. Yin, Z. Yin, J. Jin, M. Sun, B. Huang et al., A new hexagonal cobalt nanosheet catalyst for selective CO2 conversion to ethanal. J. Am. Chem. Soc. 143(37), 15335–15343 (2021). https://doi.org/10.1021/jacs.1c06877
- J.L. Domingo, Cobalt in the environment and its toxicological implications, in Rev Environ Contam Toxicol. ed. by G.W. Ware (Springer, New York, 1989), pp.105–132. https://doi.org/10.1007/978-1-4613-8850-0_3
- W. Betteridge, The properties of metallic cobalt. Prog. Mater. Sci. 24, 51–142 (1980). https://doi.org/10.1016/0079-6425(79)90004-5
- S. Xu, Y. Shi, Z. Wen, X. Liu, Y. Zhu et al., Polystyrene spheres-templated mesoporous carbonous frameworks implanted with cobalt nanops for highly efficient electrochemical nitrate reduction to ammonia. Appl. Catal. B Environ. 323, 122192 (2023). https://doi.org/10.1016/j.apcatb.2022.122192
- J. Chen, X. He, J. Li, X. Li, Z. Cai et al., Three-dimensional porous Co foam with nanosheets subunits for high-performance electrocatalytic nitrate-to-ammonia conversion. Inorg. Chem. Front. 10(15), 4450–4455 (2023). https://doi.org/10.1039/d3qi00718a
- Z. Xu, L. Wan, Y. Liao, M. Pang, Q. Xu et al., Continuous ammonia electrosynthesis using physically interlocked bipolar membrane at 1000 mA cm-2. Nat. Commun. 14(1), 1619 (2023). https://doi.org/10.1038/s41467-023-37273-7
- J. Chen, T. Gong, Q. Hou, J. Li, L. Zhang et al., Co/N-doped carbon nanospheres derived from an adenine-based metal organic framework enabled high-efficiency electrocatalytic nitrate reduction to ammonia. Chem. Commun. 58(97), 13459–13462 (2022). https://doi.org/10.1039/D2CC05333K
- T. Xie, X. Li, J. Li, J. Chen, S. Sun et al., Co nanops decorated corncob-derived biomass carbon as an efficient electrocatalyst for nitrate reduction to ammonia. Inorg. Chem. 61(35), 14195–14200 (2022). https://doi.org/10.1021/acs.inorgchem.2c02499
- M. Liu, Z. Lu, L. Yang, R. Gao, X. Zhang et al., Co-N bond promotes the H* pathway for the electrocatalytic reduction of nitrate (NO3RR) to ammonia. J. Environ. Chem. Eng. 11(3), 109718 (2023). https://doi.org/10.1016/j.jece.2023.109718
- K. Zhang, P. Sun, Y. Huang, M. Tang, X. Zou et al., Electrochemical nitrate reduction to ammonia on CuCo nanowires at practical level. Adv. Funct. Mater. 34(44), 2405179 (2024). https://doi.org/10.1002/adfm.202405179
- X. Fan, D. Zhao, Z. Deng, L. Zhang, J. Li et al., Constructing Co@TiO2 nanoarray heterostructure with Schottky contact for selective electrocatalytic nitrate reduction to ammonia. Small 19(17), e2208036 (2023). https://doi.org/10.1002/smll.202208036
- J.S. Bunch, A.M. van der Zande, S.S. Verbridge, I.W. Frank, D.M. Tanenbaum et al., Electromechanical resonators from graphene sheets. Science 315(5811), 490–493 (2007). https://doi.org/10.1126/science.1136836
- Y. Wang, A. Xu, Z. Wang, L. Huang, J. Li et al., Enhanced nitrate-to-ammonia activity on copper-nickel alloys via tuning of intermediate adsorption. J. Am. Chem. Soc. 142(12), 5702–5708 (2020). https://doi.org/10.1021/jacs.9b13347
- Z. Fang, P. Wu, Y. Qian, G. Yu, Gel-derived amorphous bismuth–nickel alloy promotes electrocatalytic nitrogen fixation via optimizing nitrogen adsorption and activation. Angew. Chem. Int. Ed. 60(8), 4275–4281 (2021). https://doi.org/10.1002/anie.202014302
- Y. Chen, Y. Zhao, Z. Zhao, Y. Liu, Highly dispersed face-centered cubic copper–cobalt alloys constructed by ultrafast carbothermal shock for efficient electrocatalytic nitrate-to-ammonia conversion. Mater. Today Energy 29, 101112 (2022). https://doi.org/10.1016/j.mtener.2022.101112
- W. He, S. Chandra, T. Quast, S. Varhade, S. Dieckhöfer et al., Enhanced nitrate-to-ammonia efficiency over linear assemblies of copper-cobalt nanophases stabilized by redox polymers. Adv. Mater. 35(32), 2303050 (2023). https://doi.org/10.1002/adma.202303050
- T.H. Jeon, Z.-Y. Wu, F.-Y. Chen, W. Choi, P.J.J. Alvarez et al., Cobalt–copper nanops on three-dimensional substrate for efficient ammonia synthesis via electrocatalytic nitrate reduction. J. Phys. Chem. C 126(16), 6982–6989 (2022). https://doi.org/10.1021/acs.jpcc.1c10781
- P. Liu, J. Yan, H. Huang, W. Song, Cu/Co bimetallic conductive MOFs: Electronic modulation for enhanced nitrate reduction to ammonia. Chem. Eng. J. 466, 143134 (2023). https://doi.org/10.1016/j.cej.2023.143134
- S. Han, H. Li, T. Li, F. Chen, R. Yang et al., Ultralow overpotential nitrate reduction to ammonia via a three-step relay mechanism. Nat. Catal. 6(5), 402–414 (2023). https://doi.org/10.1038/s41929-023-00951-2
- H. Luo, S. Li, Z. Wu, M. Jiang, M. Kuang et al., Relay catalysis of Fe and co with multi-active sites for specialized division of labor in electrocatalytic nitrate reduction reaction. Adv. Funct. Mater. 34(42), 2403838 (2024). https://doi.org/10.1002/adfm.202403838
- C. Chen, Y. Huang, H. Zhang, X. Wang, Y. Wang et al., Controllable synthesis of Cu-doped CoO hierarchical structure for high performance lithium-ion battery. J. Power. Sources 314, 66–75 (2016). https://doi.org/10.1016/j.jpowsour.2016.02.085
- R. Gao, Z. Li, X. Zhang, J. Zhang, Z. Hu et al., Carbon-dotted defective CoO with oxygen vacancies: a synergetic design of bifunctional cathode catalyst for Li–O2 batteries. ACS Catal. 6(1), 400–406 (2016). https://doi.org/10.1021/acscatal.5b01903
- Y. Ma, M. Zha, Y. Dong, L. Li, G. Hu, Mn-doped Co3O4 nanoarrays as a promising electrocatalyst for oxygen evolution reaction. Mater. Res. Express 6(11), 115033 (2019). https://doi.org/10.1088/2053-1591/ab45bd
- Q. Hu, S. Qi, Q. Huo, Y. Zhao, J. Sun et al., Designing efficient nitrate reduction electrocatalysts by identifying and optimizing active sites of co-based spinels. J. Am. Chem. Soc. 146(5), 2967–2976 (2024). https://doi.org/10.1021/jacs.3c06904
- J. Li, J. Li, J. Ren, H. Hong, D. Liu et al., Electric-field-treated Ni/Co3O4 film as high-performance bifunctional electrocatalysts for efficient overall water splitting. Nano-Micro Lett. 14(1), 148 (2022). https://doi.org/10.1007/s40820-022-00889-3
- L. Su, K. Li, H. Zhang, M. Fan, D. Ying et al., Electrochemical nitrate reduction by using a novel Co3O4/Ti cathode. Water Res. 120, 1–11 (2017). https://doi.org/10.1016/j.watres.2017.04.069
- C. Li, K. Li, C. Chen, Q. Tang, T. Sun et al., Electrochemical removal of nitrate using a nanosheet structured Co3O4/Ti cathode: effects of temperature, current and pH adjusting. Sep. Purif. Technol. 237, 116485 (2020). https://doi.org/10.1016/j.seppur.2019.116485
- K. Li, C. Chen, X. Bian, T. Sun, J. Jia, Electrolytic nitrate reduction using Co3O4 rod-like and sheet-like cathodes with the control of (220) facet exposure and Co2+/Co3+ ratio. Electrochim. Acta 362, 137121 (2020). https://doi.org/10.1016/j.electacta.2020.137121
- Z. Fan, C. Cao, X. Yang, W. Yuan, F. Qin et al., Interfacial electronic interactions promoted activation for nitrate electroreduction to ammonia over Ag-modified Co3O4. Angew. Chem. Int. Ed. 63(44), e202410356 (2024). https://doi.org/10.1002/anie.202410356
- Z.-N. Zhang, Q.-L. Hong, X.-H. Wang, H. Huang, S.-N. Li et al., Au nanowires decorated ultrathin Co3O4 nanosheets toward light-enhanced nitrate electroreduction. Small 19(27), 2300530 (2023). https://doi.org/10.1002/smll.202300530
- M. Zhang, K. Song, C. Liu, Z. Zhang, W.-Q. He et al., Electron-rich Au nanocrystals/Co3O4 interface for enhanced electrochemical nitrate reduction into ammonia. J. Colloid Interface Sci. 650, 193–202 (2023). https://doi.org/10.1016/j.jcis.2023.06.073
- F. Zhao, G. Hai, X. Li, Z. Jiang, H. Wang, Enhanced electrocatalytic nitrate reduction to ammonia on cobalt oxide nanosheets via multiscale defect modulation. Chem. Eng. J. 461, 141960 (2023). https://doi.org/10.1016/j.cej.2023.141960
- Y. Wang, C. Liu, B. Zhang, Y. Yu, Self-template synthesis of hierarchically structured Co3O4@NiO bifunctional electrodes for selective nitrate reduction and tetrahydroisoquinolines semi-dehydrogenation. Sci. China Mater. 63(12), 2530–2538 (2020). https://doi.org/10.1007/s40843-020-1365-0
- H. Liu, J. Li, F. Du, L. Yang, S. Huang et al., A core–shell copper oxides-cobalt oxides heterostructure nanowire arrays for nitrate reduction to ammonia with high yield rate. Green Energy Environ. 8(6), 1619–1629 (2023). https://doi.org/10.1016/j.gee.2022.03.003
- J. Gao, B. Jiang, C. Ni, Y. Qi, Y. Zhang et al., Non-precious Co3O4-TiO2/Ti cathode based electrocatalytic nitrate reduction: Preparation, performance and mechanism. Appl. Catal. B Environ. 254, 391–402 (2019). https://doi.org/10.1016/j.apcatb.2019.05.016
- W. Fu, Z. Hu, Y. Du, P. Su, Y. Su et al., Building dual active sites Co3O4/Cu electrode to break scaling relations for enhancement of electrochemical reduction of nitrate to high-value ammonia. J. Hazard. Mater. 434, 128887 (2022). https://doi.org/10.1016/j.jhazmat.2022.128887
- M. Yang, J. Wang, C. Shuang, A. Li, The improvement on total nitrogen removal in nitrate reduction by using a prepared CuO–Co3O4/Ti cathode. Chemosphere 255, 126970 (2020). https://doi.org/10.1016/j.chemosphere.2020.126970
- P. Wei, J. Liang, Q. Liu, L. Xie, X. Tong et al., Iron-doped cobalt oxide nanoarray for efficient electrocatalytic nitrate-to-ammonia conversion. J. Colloid Interface Sci. 615, 636–642 (2022). https://doi.org/10.1016/j.jcis.2022.01.186
- J. Wang, C. Cai, Y. Wang, X. Yang, D. Wu et al., Electrocatalytic reduction of nitrate to ammonia on low-cost ultrathin CoOx nanosheets. ACS Catal. 11(24), 15135–15140 (2021). https://doi.org/10.1021/acscatal.1c03918
- Y. Gu, Q. Chen, X. Ju, Z. Zhang, P. Hu et al., CoO (111) nanowire arrays for high-efficiency electrochemical nitrate reduction to ammonia. Mater. Lett. 341, 134252 (2023). https://doi.org/10.1016/j.matlet.2023.134252
- T. Jin, J. Wang, Y. Gong, Q. Zheng, T. Wang et al., Mechanochemical-tuning size dependence of iridium single atom and nanocluster toward highly selective ammonium production. Chem Catal. 3(1), 100477 (2023). https://doi.org/10.1016/j.checat.2022.11.016
- D. Liu, L. Qiao, Y. Chen, P. Zhou, J. Feng et al., Electrocatalytic reduction of nitrate to ammonia on low-cost manganese-incorporated Co3O4 nanotubes. Appl. Catal. B Environ. 324, 122293 (2023). https://doi.org/10.1016/j.apcatb.2022.122293
- Z. Li, J. Liang, Q. Liu, L. Xie, L. Zhang et al., High-efficiency ammonia electrosynthesis via selective reduction of nitrate on ZnCo2O4 nanosheet array. Mater. Today Phys. 23, 100619 (2022). https://doi.org/10.1016/j.mtphys.2022.100619
- Z. Niu, S. Fan, X. Li, P. Wang, Z. Liu et al., Bifunctional copper-cobalt spinel electrocatalysts for efficient tandem-like nitrate reduction to ammonia. Chem. Eng. J. 450, 138343 (2022). https://doi.org/10.1016/j.cej.2022.138343
- W. Wang, J. Chen, E.C.M. Tse, Selective electroreduction of nitrate into ammonia on CuCoAl layered double hydroxide for sustainable resourcification. ChemRxiv (2023). https://doi.org/10.26434/chemrxiv-2023-fv4tm
- P. Huang, T. Fan, X. Ma, J. Zhang, Y. Zhang et al., 3D flower-like zinc cobaltite for electrocatalytic reduction of nitrate to ammonia under ambient conditions. Chemsuschem 15(4), e202102049 (2022). https://doi.org/10.1002/cssc.202102049
- Y.-J. Zhang, V. Sethuraman, R. Michalsky, A.A. Peterson, Competition between CO2 reduction and H2 evolution on transition-metal electrocatalysts. ACS Catal. 4(10), 3742–3748 (2014). https://doi.org/10.1021/cs5012298
- Z. Deng, J. Liang, Q. Liu, C. Ma, L. Xie et al., High-efficiency ammonia electrosynthesis on self-supported Co2AlO4 nanoarray in neutral media by selective reduction of nitrate. Chem. Eng. J. 435, 135104 (2022). https://doi.org/10.1016/j.cej.2022.135104
- X. Fan, J. Liang, L. Zhang, D. Zhao, L. Yue et al., Enhanced electrocatalytic nitrate reduction to ammonia using plasma-induced oxygen vacancies in CoTiO3-x nanofiber. Carbon Neutralization 1(1), 6–13 (2022). https://doi.org/10.1002/cnl2.8
- W. Tao, P. Wang, H. Li, R. Huang, G. Zhou, Engineering sulfur vacancies optimization in Ni3Co6S8 nanospheres toward extraordinarily efficient nitrate electroreduction to ammonia. Appl. Catal. B Environ. 324, 122193 (2023). https://doi.org/10.1016/j.apcatb.2022.122193
- Y.-C. Hao, Y. Guo, L.-W. Chen, M. Shu, X.-Y. Wang et al., Promoting nitrogen electroreduction to ammonia with bismuth nanocrystals and potassium cations in water. Nat. Catal. 2(5), 448–456 (2019). https://doi.org/10.1038/s41929-019-0241-7
- Z. Niu, S. Fan, X. Li, J. Duan, A. Chen, Interfacial engineering of CoMn2O4/NC induced electronic delocalization boosts electrocatalytic nitrogen oxyanions reduction to ammonia. Appl. Catal. B Environ. 322, 122090 (2023). https://doi.org/10.1016/j.apcatb.2022.122090
- W. Tao, P. Wang, B. Hu, X. Wang, G. Zhou, Accelerating the reaction kinetics from nitrate to ammonia by anion substitution in NiCo-based catalysts. J. Environ. Chem. Eng. 11(1), 109117 (2023). https://doi.org/10.1016/j.jece.2022.109117
- T. Ren, Z. Yu, H. Yu, K. Deng, Z. Wang et al., Sustainable ammonia electrosynthesis from nitrate wastewater coupled to electrocatalytic upcycling of polyethylene terephthalate plastic waste. ACS Nano 17(13), 12422–12432 (2023). https://doi.org/10.1021/acsnano.3c01862
- H. Zheng, Y. Zhang, Y. Wang, Z. Wu, F. Lai et al., Perovskites with enriched oxygen vacancies as a family of electrocatalysts for efficient nitrate reduction to ammonia. Small 19(5), 2205625 (2023). https://doi.org/10.1002/smll.202205625
- H.-J. Qiu, L. Liu, Y.-P. Mu, H.-J. Zhang, Y. Wang, Designed synthesis of cobalt-oxide-based nanomaterials for superior electrochemical energy storage devices. Nano Res. 8(2), 321–339 (2015). https://doi.org/10.1007/s12274-014-0589-6
- W. Zhang, N. Han, Y. Dou, X. Zhang, J. Luo et al., Applications of cobalt phosphide-based materials in electrocatalysis. ACS Catal. 15(7), 5457–5479 (2025). https://doi.org/10.1021/acscatal.5c00623
- Y. Jia, Y.-G. Ji, Q. Xue, F.-M. Li, G.-T. Zhao et al., Efficient nitrate-to-ammonia electroreduction at cobalt phosphide nanoshuttles. ACS Appl. Mater. Interfaces 13(38), 45521–45527 (2021). https://doi.org/10.1021/acsami.1c12512
- J. Guan, L. Ge, Q. Yu, B. Ouyang, Y. Deng et al., Unraveling the structural evolution of cobalt sulfides in electrocatalytic NO3RR: the inescapable influence of Cl –. Inorg. Chem. 64(6), 2787–2794 (2025). https://doi.org/10.1021/acs.inorgchem.4c04780
- J. Zhang, W. He, T. Quast, J.R.C. Junqueira, S. Saddeler et al., Single-entity electrochemistry unveils dynamic transformation during tandem catalysis of Cu2O and Co3O4 for converting NO3− to NH3. Angew. Chem. Int. Ed. 62(8), e202214830 (2023). https://doi.org/10.1002/anie.202214830
- W. He, J. Zhang, S. Dieckhöfer, S. Varhade, A.C. Brix et al., Splicing the active phases of copper/cobalt-based catalysts achieves high-rate tandem electroreduction of nitrate to ammonia. Nat. Commun. 13(1), 1129 (2022). https://doi.org/10.1038/s41467-022-28728-4
- Z. Deng, C. Ma, X. Fan, Z. Li, Y. Luo et al., Construction of CoP/TiO2 nanoarray for enhanced electrochemical nitrate reduction to ammonia. Mater. Today Phys. 28, 100854 (2022). https://doi.org/10.1016/j.mtphys.2022.100854
- L. Yi, P. Shao, Z. Wen, Hypotoxic synthesis of Co2P nanodendrites for boosting ammonia electrosynthesis from nitrate. New J. Chem. 47(20), 9545–9549 (2023). https://doi.org/10.1039/D3NJ01670F
- Y. Shi, S. Xu, F. Li, Electrocatalytic nitrate reduction to ammonia via amorphous cobalt boride. Chem. Commun. 58(62), 8714–8717 (2022). https://doi.org/10.1039/D2CC02261C
- N. Sun, Y. Guo, L. Luo, X. Cai, S. Shen et al., Facile synthesis of CuCo-CoO composite electrocatalyst for nitrate reduction to ammonia with high activity, selectivity and stability. Appl. Surf. Sci. 624, 157118 (2023). https://doi.org/10.1016/j.apsusc.2023.157118
- J. Li, M. Li, N. An, S. Zhang, Q. Song et al., Boosted ammonium production by single cobalt atom catalysts with high faradic efficiencies. Proc. Natl. Acad. Sci. U. S. A. 119, e2123450119 (2022). https://doi.org/10.1073/pnas.2123450119
- D. Zhao, C. Ma, J. Li, R. Li, X. Fan et al., Direct eight-electron NO3–-to-NH3 conversion: using a Co-doped TiO2 nanoribbon array as a high-efficiency electrocatalyst. Inorg. Chem. Front. 9(24), 6412–6417 (2022). https://doi.org/10.1039/d2qi01791a
- S. Paul, S. Sarkar, A. Adalder, S. Kapse, R. Thapa et al., Strengthening the metal center of co–N4 active sites in a 1D–2D heterostructure for nitrate and nitrogen reduction reaction to ammonia. ACS Sustainable Chem. Eng. 11(16), 6191–6200 (2023). https://doi.org/10.1021/acssuschemeng.2c07114
- Y. Gao, K. Wang, C. Xu, H. Fang, H. Yu et al., Enhanced electrocatalytic nitrate reduction through phosphorus-vacancy-mediated kinetics in heterogeneous bimetallic phosphide hollow nanotube array. Appl. Catal. B Environ. 330, 122627 (2023). https://doi.org/10.1016/j.apcatb.2023.122627
- J. Gao, B. Jiang, C. Ni, Y. Qi, X. Bi, Enhanced reduction of nitrate by noble metal-free electrocatalysis on P doped three-dimensional Co3O4 cathode: mechanism exploration from both experimental and DFT studies. Chem. Eng. J. 382, 123034 (2020). https://doi.org/10.1016/j.cej.2019.123034
- X. Zhu, C. Ma, Y.-C. Wang, K. Qu, L. Song et al., Mott-schottky contact synergistically boosts the electroreduction of nitrate to ammonia under low-nitrate concentration. Energy Environ. Sci. 17(8), 2908–2920 (2024). https://doi.org/10.1039/D4EE00715H
- S. Partovi, Z. Xiong, K.M. Kulesa, J.M. Smith, Electrocatalytic reduction of nitrogen oxyanions with a redox-active cobalt macrocycle complex. Inorg. Chem. 61(24), 9034–9039 (2022). https://doi.org/10.1021/acs.inorgchem.2c00199
- Z. Jiang, Y. Wang, Z. Lin, Y. Yuan, X. Zhang et al., Molecular electrocatalysts for rapid and selective reduction of nitrogenous waste to ammonia. Energy Environ. Sci. 16(5), 2239–2246 (2023). https://doi.org/10.1039/D2EE03502B
- S. Zhou, L.-J. Zhang, L. Zhu, C.-H. Tung, L.-Z. Wu, Amphiphilic cobalt phthalocyanine boosts carbon dioxide reduction. Adv. Mater. 35(41), 2300923 (2023). https://doi.org/10.1002/adma.202300923
- S.A. Balogun, O.E. Fayemi, Recent advances in the use of CoPc-MWCNTs nanocomposites as electrochemical sensing materials. Biosensors 12(10), 850 (2022). https://doi.org/10.3390/bios12100850
- S. Yang, Y. Yu, X. Gao, Z. Zhang, F. Wang, Recent advances in electrocatalysis with phthalocyanines. Chem. Soc. Rev. 50(23), 12985–13011 (2021). https://doi.org/10.1039/D0CS01605E
- L. Lin, H. Li, C. Yan, H. Li, R. Si et al., Synergistic catalysis over iron-nitrogen sites anchored with cobalt phthalocyanine for efficient CO2 electroreduction. Adv. Mater. 31(41), 1903470 (2019). https://doi.org/10.1002/adma.201903470
- P.E.P. Win, D. Yu, W. Song, X. Huang, P. Zhu et al., To molecularly block hydrogen evolution sites of molybdenum disulfide toward improved catalytic performance for electrochemical nitrogen reduction. Small Methods 7(3), e2201463 (2023). https://doi.org/10.1002/smtd.202201463
- W.W. Kramer, C.C.L. McCrory, Polymer coordination promotes selective CO2 reduction by cobalt phthalocyanine. Chem. Sci. 7(4), 2506–2515 (2016). https://doi.org/10.1039/c5sc04015a
- S. Ren, D. Joulié, D. Salvatore, K. Torbensen, M. Wang et al., Molecular electrocatalysts can mediate fast, selective CO2 reduction in a flow cell. Science 365(6451), 367–369 (2019). https://doi.org/10.1126/science.aax4608
- Y. Wu, Z. Jiang, Z. Lin, Y. Liang, H. Wang, Direct electrosynthesis of methylamine from carbon dioxide and nitrate. Nat. Sustain. 4(8), 725–730 (2021). https://doi.org/10.1038/s41893-021-00705-7
- N. Li, H. Gao, Z. Liu, Q. Zhi, B. Li et al., Metalphthalocyanine frameworks grown on TiO2 nanotubes for synergistically and efficiently electrocatalyzing urea production from CO2 and nitrate. Sci. China Chem. 66(5), 1417–1424 (2023). https://doi.org/10.1007/s11426-023-1524-4
- J. Shen, Y.Y. Birdja, M.T.M. Koper, Electrocatalytic nitrate reduction by a cobalt protoporphyrin immobilized on a pyrolytic graphite electrode. Langmuir 31(30), 8495–8501 (2015). https://doi.org/10.1021/acs.langmuir.5b00977
- S. Xu, D.C. Ashley, H.-Y. Kwon, G.R. Ware, C.-H. Chen et al., A flexible, redox-active macrocycle enables the electrocatalytic reduction of nitrate to ammonia by a cobalt complex. Chem. Sci. 9(22), 4950–4958 (2018). https://doi.org/10.1039/c8sc00721g
- J. Liu, T. Cheng, L. Jiang, H. Zhang, Y. Shan et al., Efficient nitrate and oxygen electroreduction over pyrolysis-free mesoporous covalent co-salophen coordination frameworks on carbon nanotubes. Electrochim. Acta 363, 137280 (2020). https://doi.org/10.1016/j.electacta.2020.137280
- L. An, M.R. Narouz, P.T. Smith, P. De La Torre, C.J. Chang, Supramolecular enhancement of electrochemical nitrate reduction catalyzed by cobalt porphyrin organic cages for ammonia electrosynthesis in water. Angew. Chem. Int. Ed. 62(35), e202305719 (2023). https://doi.org/10.1002/anie.202305719
- H.-Y. Kwon, S.E. Braley, J.P. Madriaga, J.M. Smith, E. Jakubikova, Electrocatalytic nitrate reduction with co-based catalysts: comparison of DIM, TIM and cyclam ligands. Dalton Trans. 50(35), 12324–12331 (2021). https://doi.org/10.1039/D1DT02175C
- R.D. Mukhopadhyay, Y. Kim, J. Koo, K. Kim, Porphyrin boxes. Acc. Chem. Res. 51(11), 2730–2738 (2018). https://doi.org/10.1021/acs.accounts.8b00302
- B.P. Benke, P. Aich, Y. Kim, K.L. Kim, M.R. Rohman et al., Iodide-selective synthetic ion channels based on shape-persistent organic cages. J. Am. Chem. Soc. 139(22), 7432–7435 (2017). https://doi.org/10.1021/jacs.7b02708
- S. Lu, Precise design of nanoclusters for efficient nitrate-to-ammonia conversion. Precis. Chem. (2025). https://doi.org/10.1021/prechem.5c00038
- J. Qian, Z. Yang, J. Lyu, Q. Yao, J. Xie, Molecular interactions in atomically precise metal nanoclusters. Precis. Chem. 2(10), 495–517 (2024). https://doi.org/10.1021/prechem.4c00044
- S. Li, X. Du, Z. Liu, Y. Li, Y. Shao et al., Size effects of atomically precise gold nanoclusters in catalysis. Precis. Chem. 1(1), 14–28 (2023). https://doi.org/10.1021/prechem.3c00008
- M. Jiang, M. Zhu, J. Ding, H. Wang, Q. Yu et al., Nanocluster-agminated amorphous cobalt nanofilms for highly selective electroreduction of nitrate to ammonia. J. Hazard. Mater. 476, 134909 (2024). https://doi.org/10.1016/j.jhazmat.2024.134909
- W.W. Xu, X.C. Zeng, Y. Gao, Application of electronic counting rules for ligand-protected gold nanoclusters. Acc. Chem. Res. 51(11), 2739–2747 (2018). https://doi.org/10.1021/acs.accounts.8b00324
- N.C. Kani, N.H.L. Nguyen, K. Markel, R.R. Bhawnani, B. Shindel et al., Electrochemical reduction of nitrates on CoO nanoclusters-functionalized graphene with highest mass activity and nearly 100% selectivity to ammonia. Adv. Energy Mater. 13(17), 2204236 (2023). https://doi.org/10.1002/aenm.202204236
- L. Qiao, D. Liu, A. Zhu, J. Feng, P. Zhou et al., Nickel-facilitated in situ surface reconstruction on spinel Co3O4 for enhanced electrochemical nitrate reduction to ammonia. Appl. Catal. B Environ. 340, 123219 (2024). https://doi.org/10.1016/j.apcatb.2023.123219
- X. Meng, X. Tan, Y. Ma, A.A. Obisanya, J. Wang et al., Recent progress in cobalt-based electrocatalysts for efficient electrochemical nitrate reduction reaction. Adv. Funct. Mater. 35(14), 2418492 (2025). https://doi.org/10.1002/adfm.202418492
- L. Gan, X. Zhang, L. Guo, M. Ajmal, Ru Jia et al., Redirecting surface reconstruction of CoP-Cu heterojunctionto promote ammonia synthesis at industrial-level current density. Chem. Engin. J. 487, 150429 (2024). https://doi.org/10.1016/j.cej.2024.150429
- Z. Guo, C. Ye, Y. Shen, Effects of electrolyte pHs, temperatures, potentials and oxalate ions on the electrocatalytic reduction of nitrates. J. Electroanal. Chem. 957, 118143 (2024). https://doi.org/10.1016/j.jelechem.2024.118143
- K. Fahmi, F. Karam, J.M. Faheem, A. Nigarish, B.A. Ghafoor et al., Surface embellishment accelerates the oxygen evolution reaction and removal of organic pollutant using solvothermally designed Co2O3/CuO nanocomposite Surfaces and Interfaces 40, 103019 (2023). https://doi.org/10.1016/j.surfin.2023.103019
- H. Lin, J. Wei, Y. Guo, Y. Li, X. Lu et al., Bi1-CuCo2O4 hollow carbon nanofibers boosts NH3 production from electrocatalytic nitrate reduction. Adv. Funct. Mater. 34(51), 2409696 (2024). https://doi.org/10.1002/adfm.202409696
- H. Yu, S. Qu, P.-R. Chen, K.-Q. Ou, J.-Y. Lin et al., CO2 bubble-assisted in situ construction of mesoporous Co-doped Cu2(OH)2CO3 nanosheets as advanced electrodes towards fast and highly efficient electrochemical reduction of nitrate to N2 in wastewater. J. Hazard. Mater. 430, 128351 (2022). https://doi.org/10.1016/j.jhazmat.2022.128351
References
V. Rosca, M. Duca, M.T. de Groot, M.T.M. Koper, Nitrogen cycle electrocatalysis. Chem. Rev. 109(6), 2209–2244 (2009). https://doi.org/10.1021/cr8003696
D.E. Canfield, A.N. Glazer, P.G. Falkowski, The evolution and future of Earth’s nitrogen cycle. Science 330(6001), 192–196 (2010). https://doi.org/10.1126/science.1186120
X.H. Wang, B. Wu, Y. Zhu, D. Wang, N.B. Li et al., Design refinement of catalytic system for scale-up mild nitrogen photo-fixation. Nano-Micro Lett. 17(1), 182 (2025). https://doi.org/10.1007/s40820-025-01695-3
Y. Wang, Y. Sun, H. Li, W. Zhang, S. Wu et al., Controlled etching to immobilize highly dispersed Fe in MXene for electrochemical ammonia production. Carbon Neutralization 1(2), 117–125 (2022). https://doi.org/10.1002/cnl2.18
C. Chen, S. Li, X. Zhu, S. Bo, K. Cheng et al., Balancing sub-reaction activity to boost electrocatalytic urea synthesis using a metal-free electrocatalyst. Carbon Energy 5(10), e345 (2023). https://doi.org/10.1002/cey2.345
J. Han, H. Sun, F. Tian, W. Zhang, Z. Zhang et al., Modulating the coordination environment of cobalt porphyrins for enhanced electrochemical nitrite reduction to ammonia. Carbon Energy 7(1), e657 (2025). https://doi.org/10.1002/cey2.657
X. Zhang, Y. Cao, Z.-F. Huang, S. Zhang, C. Liu et al., Regulating the interfacial charge transfer and constructing symmetry-breaking sites for the enhanced N2 electroreduction activity. Carbon Energy 5(2), e266 (2023). https://doi.org/10.1002/cey2.266
T. Xu, H. Yang, T. Lu, R. Zhong, J.-J. Lv et al., Microenvironment engineering by targeted delivery of Ag nanops for boosting electrocatalytic CO2 reduction reaction. Nat. Commun. 16(1), 977 (2025). https://doi.org/10.1038/s41467-025-56039-x
D. Wang, C. Chen, S. Wang, Defect engineering for advanced electrocatalytic conversion of nitrogen-containing molecules. Sci. China Chem. 66(4), 1052–1072 (2023). https://doi.org/10.1007/s11426-022-1419-y
H. Xu, Y. Ma, J. Chen, W.-X. Zhang, J. Yang, Electrocatalytic reduction of nitrate–a step towards a sustainable nitrogen cycle. Chem. Soc. Rev. 51(7), 2710–2758 (2022). https://doi.org/10.1039/D1CS00857A
Y. Zhao, B.P. Setzler, J. Wang, J. Nash, T. Wang et al., An efficient direct ammonia fuel cell for affordable carbon-neutral transportation. Joule 3(10), 2472–2484 (2019). https://doi.org/10.1016/j.joule.2019.07.005
J. Guo, P. Chen, Catalyst: NH3 as an energy carrier. Chem 3(5), 709–712 (2017). https://doi.org/10.1016/j.chempr.2017.10.004
X. Teng, D. Si, L. Chen, J. Shi, Synergetic catalytic effects by strong metal–support interaction for efficient electrocatalysis. eScience 4(6), 100272 (2024). https://doi.org/10.1016/j.esci.2024.100272
J. Yang, P. Sebastian, M. Duca, T. Hoogenboom, M.T.M. Koper, pH dependence of the electroreduction of nitrate on Rh and Pt polycrystalline electrodes. Chem. Commun. 50(17), 2148–2151 (2014). https://doi.org/10.1039/C3CC49224A
W. Zhou, C. Feng, X. Li, X. Jiang, L. Jing et al., Boosting electrochemical urea synthesis via constructing ordered Pd-Zn active pair. Nano-Micro Lett. 16(1), 247 (2024). https://doi.org/10.1007/s40820-024-01462-w
J. Chen, Y. Ha, R. Wang, Y. Liu, H. Xu et al., Inner Co synergizing outer Ru supported on carbon nanotubes for efficient pH-universal hydrogen evolution catalysis. Nano-Micro Lett. 14(1), 186 (2022). https://doi.org/10.1007/s40820-022-00933-2
S. Zhang, Y. Zha, Y. Ye, K. Li, Y. Lin et al., Oxygen-coordinated single Mn sites for efficient electrocatalytic nitrate reduction to ammonia. Nano-Micro Lett. 16(1), 9 (2023). https://doi.org/10.1007/s40820-023-01217-z
X.-Y. Ji, K. Sun, Z.-K. Liu, X. Liu, W. Dong et al., Identification of dynamic active sites among Cu species derived from MOFs@CuPc for electrocatalytic nitrate reduction reaction to ammonia. Nano-Micro Lett. 15(1), 110 (2023). https://doi.org/10.1007/s40820-023-01091-9
K. Yang, S.-H. Han, C. Cheng, C. Guo, T. Li et al., Unveiling the reaction mechanism of nitrate reduction to ammonia over cobalt-based electrocatalysts. J. Am. Chem. Soc. 146(19), 12976–12983 (2024). https://doi.org/10.1021/jacs.3c13517
Z. Mo, X. He, S. Zhou, B. Liu, Efficient synthesis of co-based electrocatalysts from waste batteries and distillers’ grains toward nitrate wastewater to ammonia. ACS Sustainable Chem. Eng. 12(31), 11821–11830 (2024). https://doi.org/10.1021/acssuschemeng.4c04572
L. Fang, S. Wang, S. Lu, F. Yin, Y. Dai et al., Efficient electroreduction of nitrate via enriched active phases on copper-cobalt oxides. Chin. Chem. Lett. 35(4), 108864 (2024). https://doi.org/10.1016/j.cclet.2023.108864
M. Teng, J. Ye, C. Wan, G. He, H. Chen, Research progress on Cu-based catalysts for electrochemical nitrate reduction reaction to ammonia. Ind. Eng. Chem. Res. 61(40), 14731–14746 (2022). https://doi.org/10.1021/acs.iecr.2c02495
Y. Wang, W. Zhou, R. Jia, Y. Yu, B. Zhang, Unveiling the activity origin of a copper-based electrocatalyst for selective nitrate reduction to ammonia. Angew. Chem. Int. Ed. 59(13), 5350–5354 (2020). https://doi.org/10.1002/anie.201915992
J. Wang, J. Cai, K.-X. Ren, L. Liu, S.-J. Zheng et al., Stepwise structural evolution toward robust carboranealkynyl-protected copper nanocluster catalysts for nitrate electroreduction, 2024. https://www.science.org
S. Yuan, Y. Xue, R. Ma, Q. Ma, Y. Chen et al., Advances in iron-based electrocatalysts for nitrate reduction. Sci. Total. Environ. 866, 161444 (2023). https://doi.org/10.1016/j.scitotenv.2023.161444
X. Zhang, Y. Wang, C. Liu, Y. Yu, S. Lu et al., Recent advances in non-noble metal electrocatalysts for nitrate reduction. Chem. Eng. J. 403, 126269 (2021). https://doi.org/10.1016/j.cej.2020.126269
X. Hu, Y. Wang, R. Wu, Y. Zhao, N-doped Co3O4 catalyst with a high efficiency for the catalytic decomposition of N2O. Mol. Catal. 509, 111656 (2021). https://doi.org/10.1016/j.mcat.2021.111656
X. Deng, Y. Yang, L. Wang, X.-Z. Fu, J.-L. Luo, Metallic co nanoarray catalyzes selective NH3 production from electrochemical nitrate reduction at current densities exceeding 2 A cm−2. Adv. Sci. 8(7), 2004523 (2021). https://doi.org/10.1002/advs.202004523
D. Liu, L. Qiao, S. Peng, H. Bai, C. Liu et al., Recent advances in electrocatalysts for efficient nitrate reduction to ammonia. Adv. Funct. Mater. 33(43), 2303480 (2023). https://doi.org/10.1002/adfm.202303480
Z. Wang, D. Richards, N. Singh, Recent discoveries in the reaction mechanism of heterogeneous electrocatalytic nitrate reduction. Catal. Sci. Technol. 11(3), 705–725 (2021). https://doi.org/10.1039/D0CY02025G
W. Chen, X. Yang, Z. Chen, Z. Ou, J. Hu et al., Emerging applications, developments, prospects, and challenges of electrochemical nitrate-to-ammonia conversion. Adv. Funct. Mater. 33(29), 2300512 (2023). https://doi.org/10.1002/adfm.202300512
X. Liang, H. Zhu, X. Yang, S. Xue, Z. Liang et al., Recent advances in designing efficient electrocatalysts for electrochemical nitrate reduction to ammonia. Small Struct. 4(6), 2200202 (2023). https://doi.org/10.1002/sstr.202200202
W. Chen, Y. Xu, J. Liu, H. Cao, Y. Li et al., Recent developments in Ti-based nanocatalysts for electrochemical nitrate-to-ammonia conversion. Inorg. Chem. Front. 10(17), 4901–4917 (2023). https://doi.org/10.1039/d3qi00732d
L. Xie, S. Sun, L. Hu, J. Chen, J. Li et al., In situ derived Co2B nanosheet array: a high-efficiency electrocatalyst for ambient ammonia synthesis via nitrate reduction. ACS Appl. Mater. Interfaces 14(44), 49650–49657 (2022). https://doi.org/10.1021/acsami.2c12175
M. Wang, S. Li, Y. Gu, W. Xu, H. Wang et al., Polynuclear cobalt cluster-based coordination polymers for efficient nitrate-to-ammonia electroreduction. J. Am. Chem. Soc. 146(29), 20439–20448 (2024). https://doi.org/10.1021/jacs.4c06098
Y. Bu, W. Yu, W. Zhang, C. Wang, J. Ding et al., Engineering the Co(II)/Co(III) redox cycle and Coδ+ species shuttle for nitrate-to-ammonia conversion. Nano Lett. 24(9), 2812–2820 (2024). https://doi.org/10.1021/acs.nanolett.3c04920
W. Fu, X. Du, P. Su, Q. Zhang, M. Zhou, Synergistic effect of Co(III) and Co(II) in a 3D structured Co3O4/carbon felt electrode for enhanced electrochemical nitrate reduction reaction. ACS Appl. Mater. Interfaces 13(24), 28348–28358 (2021). https://doi.org/10.1021/acsami.1c07063
H. Liu, J. Qin, J. Mu, B. Liu, In situ interface engineered Co/NC derived from ZIF-67 as an efficient electrocatalyst for nitrate reduction to ammonia. J. Colloid Interface Sci. 636, 134–140 (2023). https://doi.org/10.1016/j.jcis.2023.01.014
O.Q. Carvalho, R. Marks, H.K.K. Nguyen, M.E. Vitale-Sullivan, S.C. Martinez et al., Role of electronic structure on nitrate reduction to ammonium: a periodic journey. J. Am. Chem. Soc. 144(32), 14809–14818 (2022). https://doi.org/10.1021/jacs.2c05673
H.B. Michaelson, The work function of the elements and its periodicity. J. Appl. Phys. 48(11), 4729–4733 (1977). https://doi.org/10.1063/1.323539
W. Sheng, M. Myint, J.G. Chen, Y. Yan, Correlating the hydrogen evolution reaction activity in alkaline electrolytes with the hydrogen binding energy on monometallic surfaces. Energy Environ. Sci. 6(5), 1509–1512 (2013). https://doi.org/10.1039/C3EE00045A
S. Trasatti, Work function, electronegativity, and electrochemical behaviour of metals II. Potentials of zero charge and “electrochemical” work functions. J. Electroanal. Chem. Interfacial Electrochem. 33(2), 351–378 (1971). https://doi.org/10.1016/S0022-0728(71)80123-7
S. Ye, Z. Chen, G. Zhang, W. Chen, C. Peng et al., Elucidating the activity, mechanism and application of selective electrosynthesis of ammonia from nitrate on cobalt phosphide. Energy Environ. Sci. 15(2), 760–770 (2022). https://doi.org/10.1039/D1EE03097C
Y. Xiong, Y. Wang, J. Zhou, F. Liu, F. Hao et al., Electrochemical nitrate reduction: ammonia synthesis and the beyond. Adv. Mater. 36(17), 2304021 (2024). https://doi.org/10.1002/adma.202304021
J. Wang, T. Feng, J. Chen, V. Ramalingam, Z. Li et al., Electrocatalytic nitrate/nitrite reduction to ammonia synthesis using metal nanocatalysts and bio-inspired metalloenzymes. Nano Energy 86, 106088 (2021). https://doi.org/10.1016/j.nanoen.2021.106088
K. Fan, W. Xie, J. Li, Y. Sun, P. Xu et al., Active hydrogen boosts electrochemical nitrate reduction to ammonia. Nat. Commun. 13(1), 7958 (2022). https://doi.org/10.1038/s41467-022-35664-w
L. Qiao, D. Liu, A. Zhu, J. Feng, P. Zhou et al., Nickel-facilitated in situ surface reconstruction on spinel Co3O4 for enhanced electrochemical nitrate reduction to ammonia. Appl. Catal. B Environ. 340, 123219 (2024). https://doi.org/10.1016/j.apcatb.2023.123219
J.-Y. Fang, Q.-Z. Zheng, Y.-Y. Lou, K.-M. Zhao, S.-N. Hu et al., Ampere-level current density ammonia electrochemical synthesis using CuCo nanosheets simulating nitrite reductase bifunctional nature. Nat. Commun. 13(1), 7899 (2022). https://doi.org/10.1038/s41467-022-35533-6
R. Zhao, Q. Yan, L. Yu, T. Yan, X. Zhu et al., A bi-co corridor construction effectively improving the selectivity of electrocatalytic nitrate reduction toward ammonia by nearly 100%. Adv. Mater. 35(48), 2306633 (2023). https://doi.org/10.1002/adma.202306633
T. Hu, C. Wang, M. Wang, C.M. Li, C. Guo, Theoretical insights into superior nitrate reduction to ammonia performance of copper catalysts. ACS Catal. 11(23), 14417–14427 (2021). https://doi.org/10.1021/acscatal.1c03666
J.M. McEnaney, S.J. Blair, A.C. Nielander, J.A. Schwalbe, D.M. Koshy et al., Electrolyte engineering for efficient electrochemical nitrate reduction to ammonia on a titanium electrode. ACS Sustainable Chem. Eng. 8(7), 2672–2681 (2020). https://doi.org/10.1021/acssuschemeng.9b05983
S. Hoekx, N. Daems, D. Arenas Esteban, S. Bals, T. Breugelmans, Toward the rational design of Cu electrocatalysts for improved performance of the NO3RR. ACS Appl. Energy Mater. 7(9), 3761–3775 (2024). https://doi.org/10.1021/acsaem.3c03207
W. Duan, Y. Li, Y. Ou, H. Tuo, L. Tian et al., Insights into electrochemical nitrate reduction to nitrogen on metal catalysts for wastewater treatment. Environ. Sci. Technol. 59(6), 3263–3275 (2025). https://doi.org/10.1021/acs.est.4c09975
J. Yin, Z. Yin, J. Jin, M. Sun, B. Huang et al., A new hexagonal cobalt nanosheet catalyst for selective CO2 conversion to ethanal. J. Am. Chem. Soc. 143(37), 15335–15343 (2021). https://doi.org/10.1021/jacs.1c06877
J.L. Domingo, Cobalt in the environment and its toxicological implications, in Rev Environ Contam Toxicol. ed. by G.W. Ware (Springer, New York, 1989), pp.105–132. https://doi.org/10.1007/978-1-4613-8850-0_3
W. Betteridge, The properties of metallic cobalt. Prog. Mater. Sci. 24, 51–142 (1980). https://doi.org/10.1016/0079-6425(79)90004-5
S. Xu, Y. Shi, Z. Wen, X. Liu, Y. Zhu et al., Polystyrene spheres-templated mesoporous carbonous frameworks implanted with cobalt nanops for highly efficient electrochemical nitrate reduction to ammonia. Appl. Catal. B Environ. 323, 122192 (2023). https://doi.org/10.1016/j.apcatb.2022.122192
J. Chen, X. He, J. Li, X. Li, Z. Cai et al., Three-dimensional porous Co foam with nanosheets subunits for high-performance electrocatalytic nitrate-to-ammonia conversion. Inorg. Chem. Front. 10(15), 4450–4455 (2023). https://doi.org/10.1039/d3qi00718a
Z. Xu, L. Wan, Y. Liao, M. Pang, Q. Xu et al., Continuous ammonia electrosynthesis using physically interlocked bipolar membrane at 1000 mA cm-2. Nat. Commun. 14(1), 1619 (2023). https://doi.org/10.1038/s41467-023-37273-7
J. Chen, T. Gong, Q. Hou, J. Li, L. Zhang et al., Co/N-doped carbon nanospheres derived from an adenine-based metal organic framework enabled high-efficiency electrocatalytic nitrate reduction to ammonia. Chem. Commun. 58(97), 13459–13462 (2022). https://doi.org/10.1039/D2CC05333K
T. Xie, X. Li, J. Li, J. Chen, S. Sun et al., Co nanops decorated corncob-derived biomass carbon as an efficient electrocatalyst for nitrate reduction to ammonia. Inorg. Chem. 61(35), 14195–14200 (2022). https://doi.org/10.1021/acs.inorgchem.2c02499
M. Liu, Z. Lu, L. Yang, R. Gao, X. Zhang et al., Co-N bond promotes the H* pathway for the electrocatalytic reduction of nitrate (NO3RR) to ammonia. J. Environ. Chem. Eng. 11(3), 109718 (2023). https://doi.org/10.1016/j.jece.2023.109718
K. Zhang, P. Sun, Y. Huang, M. Tang, X. Zou et al., Electrochemical nitrate reduction to ammonia on CuCo nanowires at practical level. Adv. Funct. Mater. 34(44), 2405179 (2024). https://doi.org/10.1002/adfm.202405179
X. Fan, D. Zhao, Z. Deng, L. Zhang, J. Li et al., Constructing Co@TiO2 nanoarray heterostructure with Schottky contact for selective electrocatalytic nitrate reduction to ammonia. Small 19(17), e2208036 (2023). https://doi.org/10.1002/smll.202208036
J.S. Bunch, A.M. van der Zande, S.S. Verbridge, I.W. Frank, D.M. Tanenbaum et al., Electromechanical resonators from graphene sheets. Science 315(5811), 490–493 (2007). https://doi.org/10.1126/science.1136836
Y. Wang, A. Xu, Z. Wang, L. Huang, J. Li et al., Enhanced nitrate-to-ammonia activity on copper-nickel alloys via tuning of intermediate adsorption. J. Am. Chem. Soc. 142(12), 5702–5708 (2020). https://doi.org/10.1021/jacs.9b13347
Z. Fang, P. Wu, Y. Qian, G. Yu, Gel-derived amorphous bismuth–nickel alloy promotes electrocatalytic nitrogen fixation via optimizing nitrogen adsorption and activation. Angew. Chem. Int. Ed. 60(8), 4275–4281 (2021). https://doi.org/10.1002/anie.202014302
Y. Chen, Y. Zhao, Z. Zhao, Y. Liu, Highly dispersed face-centered cubic copper–cobalt alloys constructed by ultrafast carbothermal shock for efficient electrocatalytic nitrate-to-ammonia conversion. Mater. Today Energy 29, 101112 (2022). https://doi.org/10.1016/j.mtener.2022.101112
W. He, S. Chandra, T. Quast, S. Varhade, S. Dieckhöfer et al., Enhanced nitrate-to-ammonia efficiency over linear assemblies of copper-cobalt nanophases stabilized by redox polymers. Adv. Mater. 35(32), 2303050 (2023). https://doi.org/10.1002/adma.202303050
T.H. Jeon, Z.-Y. Wu, F.-Y. Chen, W. Choi, P.J.J. Alvarez et al., Cobalt–copper nanops on three-dimensional substrate for efficient ammonia synthesis via electrocatalytic nitrate reduction. J. Phys. Chem. C 126(16), 6982–6989 (2022). https://doi.org/10.1021/acs.jpcc.1c10781
P. Liu, J. Yan, H. Huang, W. Song, Cu/Co bimetallic conductive MOFs: Electronic modulation for enhanced nitrate reduction to ammonia. Chem. Eng. J. 466, 143134 (2023). https://doi.org/10.1016/j.cej.2023.143134
S. Han, H. Li, T. Li, F. Chen, R. Yang et al., Ultralow overpotential nitrate reduction to ammonia via a three-step relay mechanism. Nat. Catal. 6(5), 402–414 (2023). https://doi.org/10.1038/s41929-023-00951-2
H. Luo, S. Li, Z. Wu, M. Jiang, M. Kuang et al., Relay catalysis of Fe and co with multi-active sites for specialized division of labor in electrocatalytic nitrate reduction reaction. Adv. Funct. Mater. 34(42), 2403838 (2024). https://doi.org/10.1002/adfm.202403838
C. Chen, Y. Huang, H. Zhang, X. Wang, Y. Wang et al., Controllable synthesis of Cu-doped CoO hierarchical structure for high performance lithium-ion battery. J. Power. Sources 314, 66–75 (2016). https://doi.org/10.1016/j.jpowsour.2016.02.085
R. Gao, Z. Li, X. Zhang, J. Zhang, Z. Hu et al., Carbon-dotted defective CoO with oxygen vacancies: a synergetic design of bifunctional cathode catalyst for Li–O2 batteries. ACS Catal. 6(1), 400–406 (2016). https://doi.org/10.1021/acscatal.5b01903
Y. Ma, M. Zha, Y. Dong, L. Li, G. Hu, Mn-doped Co3O4 nanoarrays as a promising electrocatalyst for oxygen evolution reaction. Mater. Res. Express 6(11), 115033 (2019). https://doi.org/10.1088/2053-1591/ab45bd
Q. Hu, S. Qi, Q. Huo, Y. Zhao, J. Sun et al., Designing efficient nitrate reduction electrocatalysts by identifying and optimizing active sites of co-based spinels. J. Am. Chem. Soc. 146(5), 2967–2976 (2024). https://doi.org/10.1021/jacs.3c06904
J. Li, J. Li, J. Ren, H. Hong, D. Liu et al., Electric-field-treated Ni/Co3O4 film as high-performance bifunctional electrocatalysts for efficient overall water splitting. Nano-Micro Lett. 14(1), 148 (2022). https://doi.org/10.1007/s40820-022-00889-3
L. Su, K. Li, H. Zhang, M. Fan, D. Ying et al., Electrochemical nitrate reduction by using a novel Co3O4/Ti cathode. Water Res. 120, 1–11 (2017). https://doi.org/10.1016/j.watres.2017.04.069
C. Li, K. Li, C. Chen, Q. Tang, T. Sun et al., Electrochemical removal of nitrate using a nanosheet structured Co3O4/Ti cathode: effects of temperature, current and pH adjusting. Sep. Purif. Technol. 237, 116485 (2020). https://doi.org/10.1016/j.seppur.2019.116485
K. Li, C. Chen, X. Bian, T. Sun, J. Jia, Electrolytic nitrate reduction using Co3O4 rod-like and sheet-like cathodes with the control of (220) facet exposure and Co2+/Co3+ ratio. Electrochim. Acta 362, 137121 (2020). https://doi.org/10.1016/j.electacta.2020.137121
Z. Fan, C. Cao, X. Yang, W. Yuan, F. Qin et al., Interfacial electronic interactions promoted activation for nitrate electroreduction to ammonia over Ag-modified Co3O4. Angew. Chem. Int. Ed. 63(44), e202410356 (2024). https://doi.org/10.1002/anie.202410356
Z.-N. Zhang, Q.-L. Hong, X.-H. Wang, H. Huang, S.-N. Li et al., Au nanowires decorated ultrathin Co3O4 nanosheets toward light-enhanced nitrate electroreduction. Small 19(27), 2300530 (2023). https://doi.org/10.1002/smll.202300530
M. Zhang, K. Song, C. Liu, Z. Zhang, W.-Q. He et al., Electron-rich Au nanocrystals/Co3O4 interface for enhanced electrochemical nitrate reduction into ammonia. J. Colloid Interface Sci. 650, 193–202 (2023). https://doi.org/10.1016/j.jcis.2023.06.073
F. Zhao, G. Hai, X. Li, Z. Jiang, H. Wang, Enhanced electrocatalytic nitrate reduction to ammonia on cobalt oxide nanosheets via multiscale defect modulation. Chem. Eng. J. 461, 141960 (2023). https://doi.org/10.1016/j.cej.2023.141960
Y. Wang, C. Liu, B. Zhang, Y. Yu, Self-template synthesis of hierarchically structured Co3O4@NiO bifunctional electrodes for selective nitrate reduction and tetrahydroisoquinolines semi-dehydrogenation. Sci. China Mater. 63(12), 2530–2538 (2020). https://doi.org/10.1007/s40843-020-1365-0
H. Liu, J. Li, F. Du, L. Yang, S. Huang et al., A core–shell copper oxides-cobalt oxides heterostructure nanowire arrays for nitrate reduction to ammonia with high yield rate. Green Energy Environ. 8(6), 1619–1629 (2023). https://doi.org/10.1016/j.gee.2022.03.003
J. Gao, B. Jiang, C. Ni, Y. Qi, Y. Zhang et al., Non-precious Co3O4-TiO2/Ti cathode based electrocatalytic nitrate reduction: Preparation, performance and mechanism. Appl. Catal. B Environ. 254, 391–402 (2019). https://doi.org/10.1016/j.apcatb.2019.05.016
W. Fu, Z. Hu, Y. Du, P. Su, Y. Su et al., Building dual active sites Co3O4/Cu electrode to break scaling relations for enhancement of electrochemical reduction of nitrate to high-value ammonia. J. Hazard. Mater. 434, 128887 (2022). https://doi.org/10.1016/j.jhazmat.2022.128887
M. Yang, J. Wang, C. Shuang, A. Li, The improvement on total nitrogen removal in nitrate reduction by using a prepared CuO–Co3O4/Ti cathode. Chemosphere 255, 126970 (2020). https://doi.org/10.1016/j.chemosphere.2020.126970
P. Wei, J. Liang, Q. Liu, L. Xie, X. Tong et al., Iron-doped cobalt oxide nanoarray for efficient electrocatalytic nitrate-to-ammonia conversion. J. Colloid Interface Sci. 615, 636–642 (2022). https://doi.org/10.1016/j.jcis.2022.01.186
J. Wang, C. Cai, Y. Wang, X. Yang, D. Wu et al., Electrocatalytic reduction of nitrate to ammonia on low-cost ultrathin CoOx nanosheets. ACS Catal. 11(24), 15135–15140 (2021). https://doi.org/10.1021/acscatal.1c03918
Y. Gu, Q. Chen, X. Ju, Z. Zhang, P. Hu et al., CoO (111) nanowire arrays for high-efficiency electrochemical nitrate reduction to ammonia. Mater. Lett. 341, 134252 (2023). https://doi.org/10.1016/j.matlet.2023.134252
T. Jin, J. Wang, Y. Gong, Q. Zheng, T. Wang et al., Mechanochemical-tuning size dependence of iridium single atom and nanocluster toward highly selective ammonium production. Chem Catal. 3(1), 100477 (2023). https://doi.org/10.1016/j.checat.2022.11.016
D. Liu, L. Qiao, Y. Chen, P. Zhou, J. Feng et al., Electrocatalytic reduction of nitrate to ammonia on low-cost manganese-incorporated Co3O4 nanotubes. Appl. Catal. B Environ. 324, 122293 (2023). https://doi.org/10.1016/j.apcatb.2022.122293
Z. Li, J. Liang, Q. Liu, L. Xie, L. Zhang et al., High-efficiency ammonia electrosynthesis via selective reduction of nitrate on ZnCo2O4 nanosheet array. Mater. Today Phys. 23, 100619 (2022). https://doi.org/10.1016/j.mtphys.2022.100619
Z. Niu, S. Fan, X. Li, P. Wang, Z. Liu et al., Bifunctional copper-cobalt spinel electrocatalysts for efficient tandem-like nitrate reduction to ammonia. Chem. Eng. J. 450, 138343 (2022). https://doi.org/10.1016/j.cej.2022.138343
W. Wang, J. Chen, E.C.M. Tse, Selective electroreduction of nitrate into ammonia on CuCoAl layered double hydroxide for sustainable resourcification. ChemRxiv (2023). https://doi.org/10.26434/chemrxiv-2023-fv4tm
P. Huang, T. Fan, X. Ma, J. Zhang, Y. Zhang et al., 3D flower-like zinc cobaltite for electrocatalytic reduction of nitrate to ammonia under ambient conditions. Chemsuschem 15(4), e202102049 (2022). https://doi.org/10.1002/cssc.202102049
Y.-J. Zhang, V. Sethuraman, R. Michalsky, A.A. Peterson, Competition between CO2 reduction and H2 evolution on transition-metal electrocatalysts. ACS Catal. 4(10), 3742–3748 (2014). https://doi.org/10.1021/cs5012298
Z. Deng, J. Liang, Q. Liu, C. Ma, L. Xie et al., High-efficiency ammonia electrosynthesis on self-supported Co2AlO4 nanoarray in neutral media by selective reduction of nitrate. Chem. Eng. J. 435, 135104 (2022). https://doi.org/10.1016/j.cej.2022.135104
X. Fan, J. Liang, L. Zhang, D. Zhao, L. Yue et al., Enhanced electrocatalytic nitrate reduction to ammonia using plasma-induced oxygen vacancies in CoTiO3-x nanofiber. Carbon Neutralization 1(1), 6–13 (2022). https://doi.org/10.1002/cnl2.8
W. Tao, P. Wang, H. Li, R. Huang, G. Zhou, Engineering sulfur vacancies optimization in Ni3Co6S8 nanospheres toward extraordinarily efficient nitrate electroreduction to ammonia. Appl. Catal. B Environ. 324, 122193 (2023). https://doi.org/10.1016/j.apcatb.2022.122193
Y.-C. Hao, Y. Guo, L.-W. Chen, M. Shu, X.-Y. Wang et al., Promoting nitrogen electroreduction to ammonia with bismuth nanocrystals and potassium cations in water. Nat. Catal. 2(5), 448–456 (2019). https://doi.org/10.1038/s41929-019-0241-7
Z. Niu, S. Fan, X. Li, J. Duan, A. Chen, Interfacial engineering of CoMn2O4/NC induced electronic delocalization boosts electrocatalytic nitrogen oxyanions reduction to ammonia. Appl. Catal. B Environ. 322, 122090 (2023). https://doi.org/10.1016/j.apcatb.2022.122090
W. Tao, P. Wang, B. Hu, X. Wang, G. Zhou, Accelerating the reaction kinetics from nitrate to ammonia by anion substitution in NiCo-based catalysts. J. Environ. Chem. Eng. 11(1), 109117 (2023). https://doi.org/10.1016/j.jece.2022.109117
T. Ren, Z. Yu, H. Yu, K. Deng, Z. Wang et al., Sustainable ammonia electrosynthesis from nitrate wastewater coupled to electrocatalytic upcycling of polyethylene terephthalate plastic waste. ACS Nano 17(13), 12422–12432 (2023). https://doi.org/10.1021/acsnano.3c01862
H. Zheng, Y. Zhang, Y. Wang, Z. Wu, F. Lai et al., Perovskites with enriched oxygen vacancies as a family of electrocatalysts for efficient nitrate reduction to ammonia. Small 19(5), 2205625 (2023). https://doi.org/10.1002/smll.202205625
H.-J. Qiu, L. Liu, Y.-P. Mu, H.-J. Zhang, Y. Wang, Designed synthesis of cobalt-oxide-based nanomaterials for superior electrochemical energy storage devices. Nano Res. 8(2), 321–339 (2015). https://doi.org/10.1007/s12274-014-0589-6
W. Zhang, N. Han, Y. Dou, X. Zhang, J. Luo et al., Applications of cobalt phosphide-based materials in electrocatalysis. ACS Catal. 15(7), 5457–5479 (2025). https://doi.org/10.1021/acscatal.5c00623
Y. Jia, Y.-G. Ji, Q. Xue, F.-M. Li, G.-T. Zhao et al., Efficient nitrate-to-ammonia electroreduction at cobalt phosphide nanoshuttles. ACS Appl. Mater. Interfaces 13(38), 45521–45527 (2021). https://doi.org/10.1021/acsami.1c12512
J. Guan, L. Ge, Q. Yu, B. Ouyang, Y. Deng et al., Unraveling the structural evolution of cobalt sulfides in electrocatalytic NO3RR: the inescapable influence of Cl –. Inorg. Chem. 64(6), 2787–2794 (2025). https://doi.org/10.1021/acs.inorgchem.4c04780
J. Zhang, W. He, T. Quast, J.R.C. Junqueira, S. Saddeler et al., Single-entity electrochemistry unveils dynamic transformation during tandem catalysis of Cu2O and Co3O4 for converting NO3− to NH3. Angew. Chem. Int. Ed. 62(8), e202214830 (2023). https://doi.org/10.1002/anie.202214830
W. He, J. Zhang, S. Dieckhöfer, S. Varhade, A.C. Brix et al., Splicing the active phases of copper/cobalt-based catalysts achieves high-rate tandem electroreduction of nitrate to ammonia. Nat. Commun. 13(1), 1129 (2022). https://doi.org/10.1038/s41467-022-28728-4
Z. Deng, C. Ma, X. Fan, Z. Li, Y. Luo et al., Construction of CoP/TiO2 nanoarray for enhanced electrochemical nitrate reduction to ammonia. Mater. Today Phys. 28, 100854 (2022). https://doi.org/10.1016/j.mtphys.2022.100854
L. Yi, P. Shao, Z. Wen, Hypotoxic synthesis of Co2P nanodendrites for boosting ammonia electrosynthesis from nitrate. New J. Chem. 47(20), 9545–9549 (2023). https://doi.org/10.1039/D3NJ01670F
Y. Shi, S. Xu, F. Li, Electrocatalytic nitrate reduction to ammonia via amorphous cobalt boride. Chem. Commun. 58(62), 8714–8717 (2022). https://doi.org/10.1039/D2CC02261C
N. Sun, Y. Guo, L. Luo, X. Cai, S. Shen et al., Facile synthesis of CuCo-CoO composite electrocatalyst for nitrate reduction to ammonia with high activity, selectivity and stability. Appl. Surf. Sci. 624, 157118 (2023). https://doi.org/10.1016/j.apsusc.2023.157118
J. Li, M. Li, N. An, S. Zhang, Q. Song et al., Boosted ammonium production by single cobalt atom catalysts with high faradic efficiencies. Proc. Natl. Acad. Sci. U. S. A. 119, e2123450119 (2022). https://doi.org/10.1073/pnas.2123450119
D. Zhao, C. Ma, J. Li, R. Li, X. Fan et al., Direct eight-electron NO3–-to-NH3 conversion: using a Co-doped TiO2 nanoribbon array as a high-efficiency electrocatalyst. Inorg. Chem. Front. 9(24), 6412–6417 (2022). https://doi.org/10.1039/d2qi01791a
S. Paul, S. Sarkar, A. Adalder, S. Kapse, R. Thapa et al., Strengthening the metal center of co–N4 active sites in a 1D–2D heterostructure for nitrate and nitrogen reduction reaction to ammonia. ACS Sustainable Chem. Eng. 11(16), 6191–6200 (2023). https://doi.org/10.1021/acssuschemeng.2c07114
Y. Gao, K. Wang, C. Xu, H. Fang, H. Yu et al., Enhanced electrocatalytic nitrate reduction through phosphorus-vacancy-mediated kinetics in heterogeneous bimetallic phosphide hollow nanotube array. Appl. Catal. B Environ. 330, 122627 (2023). https://doi.org/10.1016/j.apcatb.2023.122627
J. Gao, B. Jiang, C. Ni, Y. Qi, X. Bi, Enhanced reduction of nitrate by noble metal-free electrocatalysis on P doped three-dimensional Co3O4 cathode: mechanism exploration from both experimental and DFT studies. Chem. Eng. J. 382, 123034 (2020). https://doi.org/10.1016/j.cej.2019.123034
X. Zhu, C. Ma, Y.-C. Wang, K. Qu, L. Song et al., Mott-schottky contact synergistically boosts the electroreduction of nitrate to ammonia under low-nitrate concentration. Energy Environ. Sci. 17(8), 2908–2920 (2024). https://doi.org/10.1039/D4EE00715H
S. Partovi, Z. Xiong, K.M. Kulesa, J.M. Smith, Electrocatalytic reduction of nitrogen oxyanions with a redox-active cobalt macrocycle complex. Inorg. Chem. 61(24), 9034–9039 (2022). https://doi.org/10.1021/acs.inorgchem.2c00199
Z. Jiang, Y. Wang, Z. Lin, Y. Yuan, X. Zhang et al., Molecular electrocatalysts for rapid and selective reduction of nitrogenous waste to ammonia. Energy Environ. Sci. 16(5), 2239–2246 (2023). https://doi.org/10.1039/D2EE03502B
S. Zhou, L.-J. Zhang, L. Zhu, C.-H. Tung, L.-Z. Wu, Amphiphilic cobalt phthalocyanine boosts carbon dioxide reduction. Adv. Mater. 35(41), 2300923 (2023). https://doi.org/10.1002/adma.202300923
S.A. Balogun, O.E. Fayemi, Recent advances in the use of CoPc-MWCNTs nanocomposites as electrochemical sensing materials. Biosensors 12(10), 850 (2022). https://doi.org/10.3390/bios12100850
S. Yang, Y. Yu, X. Gao, Z. Zhang, F. Wang, Recent advances in electrocatalysis with phthalocyanines. Chem. Soc. Rev. 50(23), 12985–13011 (2021). https://doi.org/10.1039/D0CS01605E
L. Lin, H. Li, C. Yan, H. Li, R. Si et al., Synergistic catalysis over iron-nitrogen sites anchored with cobalt phthalocyanine for efficient CO2 electroreduction. Adv. Mater. 31(41), 1903470 (2019). https://doi.org/10.1002/adma.201903470
P.E.P. Win, D. Yu, W. Song, X. Huang, P. Zhu et al., To molecularly block hydrogen evolution sites of molybdenum disulfide toward improved catalytic performance for electrochemical nitrogen reduction. Small Methods 7(3), e2201463 (2023). https://doi.org/10.1002/smtd.202201463
W.W. Kramer, C.C.L. McCrory, Polymer coordination promotes selective CO2 reduction by cobalt phthalocyanine. Chem. Sci. 7(4), 2506–2515 (2016). https://doi.org/10.1039/c5sc04015a
S. Ren, D. Joulié, D. Salvatore, K. Torbensen, M. Wang et al., Molecular electrocatalysts can mediate fast, selective CO2 reduction in a flow cell. Science 365(6451), 367–369 (2019). https://doi.org/10.1126/science.aax4608
Y. Wu, Z. Jiang, Z. Lin, Y. Liang, H. Wang, Direct electrosynthesis of methylamine from carbon dioxide and nitrate. Nat. Sustain. 4(8), 725–730 (2021). https://doi.org/10.1038/s41893-021-00705-7
N. Li, H. Gao, Z. Liu, Q. Zhi, B. Li et al., Metalphthalocyanine frameworks grown on TiO2 nanotubes for synergistically and efficiently electrocatalyzing urea production from CO2 and nitrate. Sci. China Chem. 66(5), 1417–1424 (2023). https://doi.org/10.1007/s11426-023-1524-4
J. Shen, Y.Y. Birdja, M.T.M. Koper, Electrocatalytic nitrate reduction by a cobalt protoporphyrin immobilized on a pyrolytic graphite electrode. Langmuir 31(30), 8495–8501 (2015). https://doi.org/10.1021/acs.langmuir.5b00977
S. Xu, D.C. Ashley, H.-Y. Kwon, G.R. Ware, C.-H. Chen et al., A flexible, redox-active macrocycle enables the electrocatalytic reduction of nitrate to ammonia by a cobalt complex. Chem. Sci. 9(22), 4950–4958 (2018). https://doi.org/10.1039/c8sc00721g
J. Liu, T. Cheng, L. Jiang, H. Zhang, Y. Shan et al., Efficient nitrate and oxygen electroreduction over pyrolysis-free mesoporous covalent co-salophen coordination frameworks on carbon nanotubes. Electrochim. Acta 363, 137280 (2020). https://doi.org/10.1016/j.electacta.2020.137280
L. An, M.R. Narouz, P.T. Smith, P. De La Torre, C.J. Chang, Supramolecular enhancement of electrochemical nitrate reduction catalyzed by cobalt porphyrin organic cages for ammonia electrosynthesis in water. Angew. Chem. Int. Ed. 62(35), e202305719 (2023). https://doi.org/10.1002/anie.202305719
H.-Y. Kwon, S.E. Braley, J.P. Madriaga, J.M. Smith, E. Jakubikova, Electrocatalytic nitrate reduction with co-based catalysts: comparison of DIM, TIM and cyclam ligands. Dalton Trans. 50(35), 12324–12331 (2021). https://doi.org/10.1039/D1DT02175C
R.D. Mukhopadhyay, Y. Kim, J. Koo, K. Kim, Porphyrin boxes. Acc. Chem. Res. 51(11), 2730–2738 (2018). https://doi.org/10.1021/acs.accounts.8b00302
B.P. Benke, P. Aich, Y. Kim, K.L. Kim, M.R. Rohman et al., Iodide-selective synthetic ion channels based on shape-persistent organic cages. J. Am. Chem. Soc. 139(22), 7432–7435 (2017). https://doi.org/10.1021/jacs.7b02708
S. Lu, Precise design of nanoclusters for efficient nitrate-to-ammonia conversion. Precis. Chem. (2025). https://doi.org/10.1021/prechem.5c00038
J. Qian, Z. Yang, J. Lyu, Q. Yao, J. Xie, Molecular interactions in atomically precise metal nanoclusters. Precis. Chem. 2(10), 495–517 (2024). https://doi.org/10.1021/prechem.4c00044
S. Li, X. Du, Z. Liu, Y. Li, Y. Shao et al., Size effects of atomically precise gold nanoclusters in catalysis. Precis. Chem. 1(1), 14–28 (2023). https://doi.org/10.1021/prechem.3c00008
M. Jiang, M. Zhu, J. Ding, H. Wang, Q. Yu et al., Nanocluster-agminated amorphous cobalt nanofilms for highly selective electroreduction of nitrate to ammonia. J. Hazard. Mater. 476, 134909 (2024). https://doi.org/10.1016/j.jhazmat.2024.134909
W.W. Xu, X.C. Zeng, Y. Gao, Application of electronic counting rules for ligand-protected gold nanoclusters. Acc. Chem. Res. 51(11), 2739–2747 (2018). https://doi.org/10.1021/acs.accounts.8b00324
N.C. Kani, N.H.L. Nguyen, K. Markel, R.R. Bhawnani, B. Shindel et al., Electrochemical reduction of nitrates on CoO nanoclusters-functionalized graphene with highest mass activity and nearly 100% selectivity to ammonia. Adv. Energy Mater. 13(17), 2204236 (2023). https://doi.org/10.1002/aenm.202204236
L. Qiao, D. Liu, A. Zhu, J. Feng, P. Zhou et al., Nickel-facilitated in situ surface reconstruction on spinel Co3O4 for enhanced electrochemical nitrate reduction to ammonia. Appl. Catal. B Environ. 340, 123219 (2024). https://doi.org/10.1016/j.apcatb.2023.123219
X. Meng, X. Tan, Y. Ma, A.A. Obisanya, J. Wang et al., Recent progress in cobalt-based electrocatalysts for efficient electrochemical nitrate reduction reaction. Adv. Funct. Mater. 35(14), 2418492 (2025). https://doi.org/10.1002/adfm.202418492
L. Gan, X. Zhang, L. Guo, M. Ajmal, Ru Jia et al., Redirecting surface reconstruction of CoP-Cu heterojunctionto promote ammonia synthesis at industrial-level current density. Chem. Engin. J. 487, 150429 (2024). https://doi.org/10.1016/j.cej.2024.150429
Z. Guo, C. Ye, Y. Shen, Effects of electrolyte pHs, temperatures, potentials and oxalate ions on the electrocatalytic reduction of nitrates. J. Electroanal. Chem. 957, 118143 (2024). https://doi.org/10.1016/j.jelechem.2024.118143
K. Fahmi, F. Karam, J.M. Faheem, A. Nigarish, B.A. Ghafoor et al., Surface embellishment accelerates the oxygen evolution reaction and removal of organic pollutant using solvothermally designed Co2O3/CuO nanocomposite Surfaces and Interfaces 40, 103019 (2023). https://doi.org/10.1016/j.surfin.2023.103019
H. Lin, J. Wei, Y. Guo, Y. Li, X. Lu et al., Bi1-CuCo2O4 hollow carbon nanofibers boosts NH3 production from electrocatalytic nitrate reduction. Adv. Funct. Mater. 34(51), 2409696 (2024). https://doi.org/10.1002/adfm.202409696
H. Yu, S. Qu, P.-R. Chen, K.-Q. Ou, J.-Y. Lin et al., CO2 bubble-assisted in situ construction of mesoporous Co-doped Cu2(OH)2CO3 nanosheets as advanced electrodes towards fast and highly efficient electrochemical reduction of nitrate to N2 in wastewater. J. Hazard. Mater. 430, 128351 (2022). https://doi.org/10.1016/j.jhazmat.2022.128351