Pressure-Modulated Host–Guest Interactions Boost Effective Blue-Light Emission of MIL-140A Nanocrystals
Corresponding Author: Xinyi Yang
Nano-Micro Letters,
Vol. 18 (2026), Article Number: 70
Abstract
Luminescent metal–organic frameworks (MOFs) have garnered significant attention due to their structural tunability and potential applications in solid-state lighting, bioimaging, sensing, anti-counterfeiting, and other fields. Nevertheless, due to the tendency of 1,4-benzenedicarboxylic acid (BDC) to rotate within the framework, MOFs composed of it exhibit significant non-radiative energy dissipation and thus impair the emissive properties. In this study, efficient luminescence of MIL-140A nanocrystals (NCs) with BDC rotors as ligands is achieved by pressure treatment strategy. Pressure treatment effectively modulates the pore structure of the framework, enhancing the interactions between the N, N-dimethylformamide guest molecules and the BDC ligands. The enhanced host–guest interaction contributes to the structural rigidity of the MOF, thereby suppressing the rotation-induced excited-state energy loss. As a result, the pressure-treated MIL-140A NCs displayed bright blue-light emission, with the photoluminescence quantum yield increasing from an initial 6.8% to 69.2%. This study developed an effective strategy to improve the luminescence performance of rotor ligand MOFs, offers a new avenue for the rational design and synthesis of MOFs with superior luminescent properties.
Highlights:
1 The luminescence performance of MIL-140A is successfully improved via pressure treatment strategy with a significant increase of photoluminescence quantum yield from the initial 6.8% to 69.2%.
2 Pressure treatment boosts the host–guest interactions by inducing aperture contraction, which enhances the structural rigidity and thus enables efficient emission.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Z. Han, K. Wang, H.-C. Zhou, P. Cheng, W. Shi, Preparation and quantitative analysis of multicenter luminescence materials for sensing function. Nat. Protoc. 18(5), 1621–1640 (2023). https://doi.org/10.1038/s41596-023-00810-1
- H. Tsai, S. Shrestha, R.A. Vilá, W. Huang, C. Liu et al., Bright and stable light-emitting diodes made with perovskite nanocrystals stabilized in metal–organic frameworks. Nat. Photon. 15(11), 843–849 (2021). https://doi.org/10.1038/s41566-021-00857-0
- Y. Tang, H. Wu, W. Cao, Y. Cui, G. Qian, Luminescent metal–organic frameworks for white LEDs. Adv. Opt. Mater. 9(23), 2001817 (2021). https://doi.org/10.1002/adom.202001817
- B. Zhou, Z. Qi, D. Yan, Highly efficient and direct ultralong all-phosphorescence from metal-organic framework photonic glasses. Angew. Chem. Int. Ed. 61(39), e202208735 (2022). https://doi.org/10.1002/anie.202208735
- R. Haldar, R. Matsuda, S. Kitagawa, S.J. George, T.K. Maji, Amine-responsive adaptable nanospaces: fluorescent porous coordination polymer for molecular recognition. Angew. Chem. Int. Ed. 53(44), 11772–11777 (2014). https://doi.org/10.1002/anie.201405619
- J. Huang, P. Wu, Controlled assembly of luminescent lanthanide-organic frameworks via post-treatment of 3D-printed objects. Nano-Micro Lett. 13(1), 15 (2020). https://doi.org/10.1007/s40820-020-00543-w
- X. Yu, A.A. Ryadun, D.I. Pavlov, T.Y. Guselnikova, A.S. Potapov et al., Highly luminescent lanthanide metal-organic frameworks with tunable color for nanomolar detection of iron(III), ofloxacin and gossypol and anti-counterfeiting applications. Angew. Chem. Int. Ed. 62(35), e202306680 (2023). https://doi.org/10.1002/anie.202306680
- J.-B. Zhang, Y.-B. Tian, Z.-G. Gu, J. Zhang, Metal-organic framework-based photodetectors. Nano-Micro Lett. 16(1), 253 (2024). https://doi.org/10.1007/s40820-024-01465-7
- H.-Q. Zheng, Y. Yang, Z. Wang, D. Yang, G. Qian et al., Photo-stimuli-responsive dual-emitting luminescence of a spiropyran-encapsulating metal–organic framework for dynamic information encryption. Adv. Mater. 35(26), 2300177 (2023). https://doi.org/10.1002/adma.202300177
- Z. Li, G. Wang, Y. Ye, B. Li, H. Li et al., Loading photochromic molecules into a luminescent metal-organic framework for information anticounterfeiting. Angew. Chem. Int. Ed. 58(50), 18025–18031 (2019). https://doi.org/10.1002/anie.201910467
- Z. Zhuang, D. Liu, Conductive MOFs with photophysical properties: applications and thin-film fabrication. Nano-Micro Lett. 12(1), 132 (2020). https://doi.org/10.1007/s40820-020-00470-w
- X. Fang, B. Zong, S. Mao, Metal–organic framework-based sensors for environmental contaminant sensing. Nano-Micro Lett. 10(4), 64 (2018). https://doi.org/10.1007/s40820-018-0218-0
- N.B. Shustova, B.D. McCarthy, M. Dincă, Turn-on fluorescence in tetraphenylethylene-based metal–organic frameworks: an alternative to aggregation-induced emission. J. Am. Chem. Soc. 133(50), 20126–20129 (2011). https://doi.org/10.1021/ja209327q
- H.-Q. Yin, X.-Y. Wang, X.-B. Yin, Rotation restricted emission and antenna effect in single metal-organic frameworks. J. Am. Chem. Soc. 141(38), 15166–15173 (2019). https://doi.org/10.1021/jacs.9b06755
- Y.Y. Liu, X. Zhang, K. Li, Q.C. Peng, Y.J. Qin et al., Restriction of intramolecular vibration in aggregation-induced emission luminogens: applications in multifunctional luminescent metal–organic frameworks. Angew. Chem. Int. Ed. 60(41), 22417–22423 (2021). https://doi.org/10.1002/anie.202108326
- C.-Y. Liu, X.-R. Chen, H.-X. Chen, Z. Niu, H. Hirao et al., Ultrafast luminescent light-up guest detection based on the lock of the host molecular vibration. J. Am. Chem. Soc. 142(14), 6690–6697 (2020). https://doi.org/10.1021/jacs.0c00368
- S. Liu, Y. Lin, D. Yan, Dynamic multi-color long-afterglow and cold-warm white light through phosphorescence resonance energy transfer in host-guest metal-organic frameworks. Sci. China Chem. 66(12), 3532–3538 (2023). https://doi.org/10.1007/s11426-023-1656-y
- H.-Q. Zheng, Y. Cui, G. Qian, Guest encapsulation in metal–organic frameworks for photonics. Acc. Mater. Res. 4(11), 982–994 (2023). https://doi.org/10.1021/accountsmr.3c00169
- X. Yang, D. Yan, Long-afterglow metal-organic frameworks: reversible guest-induced phosphorescence tunability. Chem. Sci. 7(7), 4519–4526 (2016). https://doi.org/10.1039/c6sc00563b
- W. Zhao, J. Zhang, Z. Sun, G. Xiao, H. Zheng et al., Chemical synthesis driven by high pressure. CCS Chem. (2025). https://doi.org/10.31635/ccschem.025.202405293
- Y. Ge, S. Ma, C. You, K. Hu, C. Liu et al., A distinctive HPHT platform with different types of large-volume press subsystems at SECUF. Matter Radiat. Extrem. 9(6), 063801 (2024). https://doi.org/10.1063/5.0205477
- S. Guo, Y. Li, Y. Mao, W. Tao, K. Bu et al., Reconfiguring band-edge states and charge distribution of organic semiconductor-incorporated 2D perovskites via pressure gating. Sci. Adv. 8(44), eadd1984 (2022). https://doi.org/10.1126/sciadv.add1984
- S. Guo, W. Mihalyi-Koch, Y. Mao, X. Li, K. Bu et al., Exciton engineering of 2D Ruddlesden-Popper perovskites by synergistically tuning the intra and interlayer structures. Nat. Commun. 15(1), 3001 (2024). https://doi.org/10.1038/s41467-024-47225-4
- Y. Mao, S. Guo, X. Huang, K. Bu, Z. Li et al., Pressure-modulated anomalous organic-inorganic interactions enhance structural distortion and second-harmonic generation in MHyPbBr(3) perovskite. J. Am. Chem. Soc. 145(43), 23842–23848 (2023). https://doi.org/10.1021/jacs.3c09375
- R. Cao, K. Sun, C. Liu, Y. Mao, W. Guo et al., Structurally flexible 2D spacer for suppressing the electron-phonon coupling induced non-radiative decay in perovskite solar cells. Nano-Micro Lett. 16(1), 178 (2024). https://doi.org/10.1007/s40820-024-01401-9
- Y. Yang, Y. Wang, F.-Q. Bai, S.-X. Li, Q. Yang et al., Regulating planarized intramolecular charge transfer for efficient single-phase white-light emission in undoped metal–organic framework nanocrystals. Nano Lett. 24(32), 9898–9905 (2024). https://doi.org/10.1021/acs.nanolett.4c02174
- T. Zhang, Y. Yin, X. Yang, N. Li, W. Wang et al., Space-confined charge transfer turns on multicolor emission in metal-organic frameworks via pressure treatment. Nat. Commun. 16, 4166 (2025). https://doi.org/10.1038/s41467-025-59552-1
- T. Zhang, X. Yong, J. Yu, Y. Wang, M. Wu et al., Brightening blue photoluminescence in nonemission MOF-2 by pressure treatment engineering. Adv. Mater. 35(23), e2211729 (2023). https://doi.org/10.1002/adma.202211729
- Z. Xiao, S. Shan, Y. Wang, H. Zheng, K. Li et al., Harvesting multicolor photoluminescence in nonaromatic interpenetrated metal–organic framework nanocrystals via pressure-modulated carbonyls aggregation. Adv. Mater. 36(27), 2403281 (2024). https://doi.org/10.1002/adma.202403281
- Y. Wang, X. Yang, C. Liu, Z. Liu, Q. Fang et al., Maximized green photoluminescence in Tb-based metal-organic framework via pressure-treated engineering. Angew. Chem. Int. Ed. 61(48), e202210836 (2022). https://doi.org/10.1002/anie.202210836
- Q. Yang, W. Wang, Y. Yang, P. Li, X. Yang et al., Pressure treatment enables white-light emission in Zn-IPA MOF via asymmetrical metal-ligand chelate coordination. Nat. Commun. 16(1), 696 (2025). https://doi.org/10.1038/s41467-025-55978-9
- J. Dong, V. Wee, D. Zhao, Stimuli-responsive metal–organic frameworks enabled by intrinsic molecular motion. Nat. Mater. 21(12), 1334–1340 (2022). https://doi.org/10.1038/s41563-022-01317-y
- Z.-H. Zhu, C. Bi, H.-H. Zou, G. Feng, S. Xu et al., Smart tetraphenylethene-based luminescent metal–organic frameworks with amide-assisted thermofluorochromics and piezofluorochromics. Adv. Sci. 9(16), 2200850 (2022). https://doi.org/10.1002/advs.202200850
- Z. Li, F. Jiang, M. Yu, S. Li, L. Chen et al., Achieving gas pressure-dependent luminescence from an AIEgen-based metal-organic framework. Nat. Commun. 13(1), 2142 (2022). https://doi.org/10.1038/s41467-022-29737-z
- Q. Zhou, Q. Ding, Z. Geng, C. Hu, L. Yang et al., A flexible smart healthcare platform conjugated with artificial epidermis assembled by three-dimensionally conductive MOF network for gas and pressure sensing. Nano-Micro Lett. 17(1), 50 (2024). https://doi.org/10.1007/s40820-024-01548-5
- Z.-Q. Yao, K. Wang, R. Liu, Y.-J. Yuan, J.-J. Pang et al., Dynamic full-color tuning of organic chromophore in a multi-stimuli-responsive 2D flexible MOF. Angew. Chem. Int. Ed. 61(17), e202202073 (2022). https://doi.org/10.1002/anie.202202073
- X.-T. Liu, W. Hua, H.-X. Nie, M. Chen, Z. Chang et al., Manipulating spatial alignment of donor and acceptor in host-guest MOF for TADF. Natl. Sci. Rev. 9(8), nwab222 (2022). https://doi.org/10.1093/nsr/nwab222
- X. Guo, N. Zhu, S.-P. Wang, G. Li, F.-Q. Bai et al., Stimuli-responsive luminescent properties of tetraphenylethene-based strontium and cobalt metal–organic frameworks. Angew. Chem. Int. Ed. 59(44), 19716–19721 (2020). https://doi.org/10.1002/anie.202010326
- V. Guillerm, F. Ragon, M. Dan-Hardi, T. Devic, M. Vishnuvarthan et al., A series of isoreticular, highly stable, porous zirconium oxide based metal-organic frameworks. Angew. Chem. Int. Ed. 51(37), 9267–9271 (2012). https://doi.org/10.1002/anie.201204806
- C. He, C. Hou, Y.M. Wang, X.Y. Gong, H.L. Jiang et al., Open metal site (OMS) and Lewis basic site (LBS)-functionalized copper–organic framework with high CO2 uptake performance and highly selective CO2/N2 and CO2/CH4 separation. CrystEngComm 22(19), 3378–3384 (2020). https://doi.org/10.1039/c9ce02005e
- V. Tzitzios, N. Kostoglou, M. Giannouri, G. Basina, C. Tampaxis et al., Solvothermal synthesis, nanostructural characterization and gas cryo-adsorption studies in a metal–organic framework (IRMOF-1) material. Int. J. Hydrogen Energy 42(37), 23899–23907 (2017). https://doi.org/10.1016/j.ijhydene.2017.04.059
- M.R. Ryder, B. Van de Voorde, B. Civalleri, T.D. Bennett, S. Mukhopadhyay et al., Detecting molecular rotational dynamics complementing the low-frequency terahertz vibrations in a zirconium-based metal-organic framework. Phys. Rev. Lett. 118(25), 255502 (2017). https://doi.org/10.1103/PhysRevLett.118.255502
- J. Wang, S. Yang, L. Zhang, X. Xiao, Z. Deng et al., Constructing flexible crystalline porous organic salts via a zwitterionic strategy. J. Am. Chem. Soc. 146(45), 31042–31052 (2024). https://doi.org/10.1021/jacs.4c10713
- P. Ying, J. Zhang, Z. Zhong, Pressure-induced phase transition of isoreticular MOFs: mechanical instability due to ligand buckling. Microporous Mesoporous Mater. 312, 110765 (2021). https://doi.org/10.1016/j.micromeso.2020.110765
- C. Serre, C. Mellot-Draznieks, S. Surblé, N. Audebrand, Y. Filinchuk et al., Role of solvent-host interactions that lead to very large swelling of hybrid frameworks. Science 315(5820), 1828–1831 (2007). https://doi.org/10.1126/science.1137975
References
Z. Han, K. Wang, H.-C. Zhou, P. Cheng, W. Shi, Preparation and quantitative analysis of multicenter luminescence materials for sensing function. Nat. Protoc. 18(5), 1621–1640 (2023). https://doi.org/10.1038/s41596-023-00810-1
H. Tsai, S. Shrestha, R.A. Vilá, W. Huang, C. Liu et al., Bright and stable light-emitting diodes made with perovskite nanocrystals stabilized in metal–organic frameworks. Nat. Photon. 15(11), 843–849 (2021). https://doi.org/10.1038/s41566-021-00857-0
Y. Tang, H. Wu, W. Cao, Y. Cui, G. Qian, Luminescent metal–organic frameworks for white LEDs. Adv. Opt. Mater. 9(23), 2001817 (2021). https://doi.org/10.1002/adom.202001817
B. Zhou, Z. Qi, D. Yan, Highly efficient and direct ultralong all-phosphorescence from metal-organic framework photonic glasses. Angew. Chem. Int. Ed. 61(39), e202208735 (2022). https://doi.org/10.1002/anie.202208735
R. Haldar, R. Matsuda, S. Kitagawa, S.J. George, T.K. Maji, Amine-responsive adaptable nanospaces: fluorescent porous coordination polymer for molecular recognition. Angew. Chem. Int. Ed. 53(44), 11772–11777 (2014). https://doi.org/10.1002/anie.201405619
J. Huang, P. Wu, Controlled assembly of luminescent lanthanide-organic frameworks via post-treatment of 3D-printed objects. Nano-Micro Lett. 13(1), 15 (2020). https://doi.org/10.1007/s40820-020-00543-w
X. Yu, A.A. Ryadun, D.I. Pavlov, T.Y. Guselnikova, A.S. Potapov et al., Highly luminescent lanthanide metal-organic frameworks with tunable color for nanomolar detection of iron(III), ofloxacin and gossypol and anti-counterfeiting applications. Angew. Chem. Int. Ed. 62(35), e202306680 (2023). https://doi.org/10.1002/anie.202306680
J.-B. Zhang, Y.-B. Tian, Z.-G. Gu, J. Zhang, Metal-organic framework-based photodetectors. Nano-Micro Lett. 16(1), 253 (2024). https://doi.org/10.1007/s40820-024-01465-7
H.-Q. Zheng, Y. Yang, Z. Wang, D. Yang, G. Qian et al., Photo-stimuli-responsive dual-emitting luminescence of a spiropyran-encapsulating metal–organic framework for dynamic information encryption. Adv. Mater. 35(26), 2300177 (2023). https://doi.org/10.1002/adma.202300177
Z. Li, G. Wang, Y. Ye, B. Li, H. Li et al., Loading photochromic molecules into a luminescent metal-organic framework for information anticounterfeiting. Angew. Chem. Int. Ed. 58(50), 18025–18031 (2019). https://doi.org/10.1002/anie.201910467
Z. Zhuang, D. Liu, Conductive MOFs with photophysical properties: applications and thin-film fabrication. Nano-Micro Lett. 12(1), 132 (2020). https://doi.org/10.1007/s40820-020-00470-w
X. Fang, B. Zong, S. Mao, Metal–organic framework-based sensors for environmental contaminant sensing. Nano-Micro Lett. 10(4), 64 (2018). https://doi.org/10.1007/s40820-018-0218-0
N.B. Shustova, B.D. McCarthy, M. Dincă, Turn-on fluorescence in tetraphenylethylene-based metal–organic frameworks: an alternative to aggregation-induced emission. J. Am. Chem. Soc. 133(50), 20126–20129 (2011). https://doi.org/10.1021/ja209327q
H.-Q. Yin, X.-Y. Wang, X.-B. Yin, Rotation restricted emission and antenna effect in single metal-organic frameworks. J. Am. Chem. Soc. 141(38), 15166–15173 (2019). https://doi.org/10.1021/jacs.9b06755
Y.Y. Liu, X. Zhang, K. Li, Q.C. Peng, Y.J. Qin et al., Restriction of intramolecular vibration in aggregation-induced emission luminogens: applications in multifunctional luminescent metal–organic frameworks. Angew. Chem. Int. Ed. 60(41), 22417–22423 (2021). https://doi.org/10.1002/anie.202108326
C.-Y. Liu, X.-R. Chen, H.-X. Chen, Z. Niu, H. Hirao et al., Ultrafast luminescent light-up guest detection based on the lock of the host molecular vibration. J. Am. Chem. Soc. 142(14), 6690–6697 (2020). https://doi.org/10.1021/jacs.0c00368
S. Liu, Y. Lin, D. Yan, Dynamic multi-color long-afterglow and cold-warm white light through phosphorescence resonance energy transfer in host-guest metal-organic frameworks. Sci. China Chem. 66(12), 3532–3538 (2023). https://doi.org/10.1007/s11426-023-1656-y
H.-Q. Zheng, Y. Cui, G. Qian, Guest encapsulation in metal–organic frameworks for photonics. Acc. Mater. Res. 4(11), 982–994 (2023). https://doi.org/10.1021/accountsmr.3c00169
X. Yang, D. Yan, Long-afterglow metal-organic frameworks: reversible guest-induced phosphorescence tunability. Chem. Sci. 7(7), 4519–4526 (2016). https://doi.org/10.1039/c6sc00563b
W. Zhao, J. Zhang, Z. Sun, G. Xiao, H. Zheng et al., Chemical synthesis driven by high pressure. CCS Chem. (2025). https://doi.org/10.31635/ccschem.025.202405293
Y. Ge, S. Ma, C. You, K. Hu, C. Liu et al., A distinctive HPHT platform with different types of large-volume press subsystems at SECUF. Matter Radiat. Extrem. 9(6), 063801 (2024). https://doi.org/10.1063/5.0205477
S. Guo, Y. Li, Y. Mao, W. Tao, K. Bu et al., Reconfiguring band-edge states and charge distribution of organic semiconductor-incorporated 2D perovskites via pressure gating. Sci. Adv. 8(44), eadd1984 (2022). https://doi.org/10.1126/sciadv.add1984
S. Guo, W. Mihalyi-Koch, Y. Mao, X. Li, K. Bu et al., Exciton engineering of 2D Ruddlesden-Popper perovskites by synergistically tuning the intra and interlayer structures. Nat. Commun. 15(1), 3001 (2024). https://doi.org/10.1038/s41467-024-47225-4
Y. Mao, S. Guo, X. Huang, K. Bu, Z. Li et al., Pressure-modulated anomalous organic-inorganic interactions enhance structural distortion and second-harmonic generation in MHyPbBr(3) perovskite. J. Am. Chem. Soc. 145(43), 23842–23848 (2023). https://doi.org/10.1021/jacs.3c09375
R. Cao, K. Sun, C. Liu, Y. Mao, W. Guo et al., Structurally flexible 2D spacer for suppressing the electron-phonon coupling induced non-radiative decay in perovskite solar cells. Nano-Micro Lett. 16(1), 178 (2024). https://doi.org/10.1007/s40820-024-01401-9
Y. Yang, Y. Wang, F.-Q. Bai, S.-X. Li, Q. Yang et al., Regulating planarized intramolecular charge transfer for efficient single-phase white-light emission in undoped metal–organic framework nanocrystals. Nano Lett. 24(32), 9898–9905 (2024). https://doi.org/10.1021/acs.nanolett.4c02174
T. Zhang, Y. Yin, X. Yang, N. Li, W. Wang et al., Space-confined charge transfer turns on multicolor emission in metal-organic frameworks via pressure treatment. Nat. Commun. 16, 4166 (2025). https://doi.org/10.1038/s41467-025-59552-1
T. Zhang, X. Yong, J. Yu, Y. Wang, M. Wu et al., Brightening blue photoluminescence in nonemission MOF-2 by pressure treatment engineering. Adv. Mater. 35(23), e2211729 (2023). https://doi.org/10.1002/adma.202211729
Z. Xiao, S. Shan, Y. Wang, H. Zheng, K. Li et al., Harvesting multicolor photoluminescence in nonaromatic interpenetrated metal–organic framework nanocrystals via pressure-modulated carbonyls aggregation. Adv. Mater. 36(27), 2403281 (2024). https://doi.org/10.1002/adma.202403281
Y. Wang, X. Yang, C. Liu, Z. Liu, Q. Fang et al., Maximized green photoluminescence in Tb-based metal-organic framework via pressure-treated engineering. Angew. Chem. Int. Ed. 61(48), e202210836 (2022). https://doi.org/10.1002/anie.202210836
Q. Yang, W. Wang, Y. Yang, P. Li, X. Yang et al., Pressure treatment enables white-light emission in Zn-IPA MOF via asymmetrical metal-ligand chelate coordination. Nat. Commun. 16(1), 696 (2025). https://doi.org/10.1038/s41467-025-55978-9
J. Dong, V. Wee, D. Zhao, Stimuli-responsive metal–organic frameworks enabled by intrinsic molecular motion. Nat. Mater. 21(12), 1334–1340 (2022). https://doi.org/10.1038/s41563-022-01317-y
Z.-H. Zhu, C. Bi, H.-H. Zou, G. Feng, S. Xu et al., Smart tetraphenylethene-based luminescent metal–organic frameworks with amide-assisted thermofluorochromics and piezofluorochromics. Adv. Sci. 9(16), 2200850 (2022). https://doi.org/10.1002/advs.202200850
Z. Li, F. Jiang, M. Yu, S. Li, L. Chen et al., Achieving gas pressure-dependent luminescence from an AIEgen-based metal-organic framework. Nat. Commun. 13(1), 2142 (2022). https://doi.org/10.1038/s41467-022-29737-z
Q. Zhou, Q. Ding, Z. Geng, C. Hu, L. Yang et al., A flexible smart healthcare platform conjugated with artificial epidermis assembled by three-dimensionally conductive MOF network for gas and pressure sensing. Nano-Micro Lett. 17(1), 50 (2024). https://doi.org/10.1007/s40820-024-01548-5
Z.-Q. Yao, K. Wang, R. Liu, Y.-J. Yuan, J.-J. Pang et al., Dynamic full-color tuning of organic chromophore in a multi-stimuli-responsive 2D flexible MOF. Angew. Chem. Int. Ed. 61(17), e202202073 (2022). https://doi.org/10.1002/anie.202202073
X.-T. Liu, W. Hua, H.-X. Nie, M. Chen, Z. Chang et al., Manipulating spatial alignment of donor and acceptor in host-guest MOF for TADF. Natl. Sci. Rev. 9(8), nwab222 (2022). https://doi.org/10.1093/nsr/nwab222
X. Guo, N. Zhu, S.-P. Wang, G. Li, F.-Q. Bai et al., Stimuli-responsive luminescent properties of tetraphenylethene-based strontium and cobalt metal–organic frameworks. Angew. Chem. Int. Ed. 59(44), 19716–19721 (2020). https://doi.org/10.1002/anie.202010326
V. Guillerm, F. Ragon, M. Dan-Hardi, T. Devic, M. Vishnuvarthan et al., A series of isoreticular, highly stable, porous zirconium oxide based metal-organic frameworks. Angew. Chem. Int. Ed. 51(37), 9267–9271 (2012). https://doi.org/10.1002/anie.201204806
C. He, C. Hou, Y.M. Wang, X.Y. Gong, H.L. Jiang et al., Open metal site (OMS) and Lewis basic site (LBS)-functionalized copper–organic framework with high CO2 uptake performance and highly selective CO2/N2 and CO2/CH4 separation. CrystEngComm 22(19), 3378–3384 (2020). https://doi.org/10.1039/c9ce02005e
V. Tzitzios, N. Kostoglou, M. Giannouri, G. Basina, C. Tampaxis et al., Solvothermal synthesis, nanostructural characterization and gas cryo-adsorption studies in a metal–organic framework (IRMOF-1) material. Int. J. Hydrogen Energy 42(37), 23899–23907 (2017). https://doi.org/10.1016/j.ijhydene.2017.04.059
M.R. Ryder, B. Van de Voorde, B. Civalleri, T.D. Bennett, S. Mukhopadhyay et al., Detecting molecular rotational dynamics complementing the low-frequency terahertz vibrations in a zirconium-based metal-organic framework. Phys. Rev. Lett. 118(25), 255502 (2017). https://doi.org/10.1103/PhysRevLett.118.255502
J. Wang, S. Yang, L. Zhang, X. Xiao, Z. Deng et al., Constructing flexible crystalline porous organic salts via a zwitterionic strategy. J. Am. Chem. Soc. 146(45), 31042–31052 (2024). https://doi.org/10.1021/jacs.4c10713
P. Ying, J. Zhang, Z. Zhong, Pressure-induced phase transition of isoreticular MOFs: mechanical instability due to ligand buckling. Microporous Mesoporous Mater. 312, 110765 (2021). https://doi.org/10.1016/j.micromeso.2020.110765
C. Serre, C. Mellot-Draznieks, S. Surblé, N. Audebrand, Y. Filinchuk et al., Role of solvent-host interactions that lead to very large swelling of hybrid frameworks. Science 315(5820), 1828–1831 (2007). https://doi.org/10.1126/science.1137975