Two-Dimensional MXene-Based Advanced Sensors for Neuromorphic Computing Intelligent Application
Corresponding Author: Tianyu Wang
Nano-Micro Letters,
Vol. 18 (2026), Article Number: 64
Abstract
As emerging two-dimensional (2D) materials, carbides and nitrides (MXenes) could be solid solutions or organized structures made up of multi-atomic layers. With remarkable and adjustable electrical, optical, mechanical, and electrochemical characteristics, MXenes have shown great potential in brain-inspired neuromorphic computing electronics, including neuromorphic gas sensors, pressure sensors and photodetectors. This paper provides a forward-looking review of the research progress regarding MXenes in the neuromorphic sensing domain and discussed the critical challenges that need to be resolved. Key bottlenecks such as insufficient long-term stability under environmental exposure, high costs, scalability limitations in large-scale production, and mechanical mismatch in wearable integration hinder their practical deployment. Furthermore, unresolved issues like interfacial compatibility in heterostructures and energy inefficiency in neuromorphic signal conversion demand urgent attention. The review offers insights into future research directions enhance the fundamental understanding of MXene properties and promote further integration into neuromorphic computing applications through the convergence with various emerging technologies.
Highlights:
1 The latest research progress in the field of MXene-based neuromorphic computing is reviewed.
2 The design strategy of MXene-based neuromorphic devices encompasses multiple factors are summarized, including material selection, circuit integration, and architecture optimization.
3 Future development paths for MXene-based neuromorphic computing are discussed, including large-scale manufacturing, stability enhancement, and interdisciplinary integration.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- A. VahidMohammadi, J. Rosen, Y. Gogotsi, The world of two-dimensional carbides and nitrides (MXenes). Science 372(6547), 1165 (2021). https://doi.org/10.1126/science.abf1581
- M. Naguib, O. Mashtalir, J. Carle, V. Presser, J. Lu et al., Two-dimensional transition metal carbides. ACS Nano 6(2), 1322–1331 (2012). https://doi.org/10.1021/nn204153h
- M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu et al., Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 23(37), 4248–4253 (2011). https://doi.org/10.1002/adma.201102306
- M. Sokol, V. Natu, S. Kota, M.W. Barsoum, On the chemical diversity of the MAX phases. Trends Chem. 1(2), 210–223 (2019). https://doi.org/10.1016/j.trechm.2019.02.016
- M. Ghidiu, M.R. Lukatskaya, M.-Q. Zhao, Y. Gogotsi, M.W. Barsoum, Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance. Nature 516(7529), 78–81 (2014). https://doi.org/10.1038/nature13970
- T. Omori, T. Kusama, S. Kawata, I. Ohnuma, Y. Sutou et al., Abnormal grain growth induced by cyclic heat treatment. Science 341(6153), 1500–1502 (2013). https://doi.org/10.1126/science.1238017
- X. Wang, S. Kajiyama, H. Iinuma, E. Hosono, S. Oro et al., Pseudocapacitance of MXene nanosheets for high-power sodium-ion hybrid capacitors. Nat. Commun. 6, 6544 (2015). https://doi.org/10.1038/ncomms7544
- M. Naguib, J. Halim, J. Lu, K.M. Cook, L. Hultman et al., New two-dimensional niobium and vanadium carbides as promising materials for Li-ion batteries. J. Am. Chem. Soc. 135(43), 15966–15969 (2013). https://doi.org/10.1021/ja405735d
- B. Anasori, M.R. Lukatskaya, Y. Gogotsi, 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater. 2(2), 16098 (2017). https://doi.org/10.1038/natrevmats.2016.98
- N.C. Frey, J. Wang, G.I. Vega Bellido, B. Anasori, Y. Gogotsi et al., Prediction of synthesis of 2D metal carbides and nitrides (MXenes) and their precursors with positive and unlabeled machine learning. ACS Nano 13(3), 3031–3041 (2019). https://doi.org/10.1021/acsnano.8b08014
- M. Shen, W. Jiang, K. Liang, S. Zhao, R. Tang et al., One-pot green process to synthesize MXene with controllable surface terminations using molten salts. Angew. Chem. Int. Ed. 60(52), 27013–27018 (2021). https://doi.org/10.1002/anie.202110640
- Y. Li, H. Shao, Z. Lin, J. Lu, L. Liu et al., A general Lewis acidic etching route for preparing MXenes with enhanced electrochemical performance in non-aqueous electrolyte. Nat. Mater. 19(8), 894–899 (2020). https://doi.org/10.1038/s41563-020-0657-0
- H. Riazi, S.K. Nemani, M.C. Grady, B. Anasori, M. Soroush, Ti3C2MXene–polymer nanocomposites and their applications. J. Mater. Chem. A 9(13), 8051–8098 (2021). https://doi.org/10.1039/d0ta08023c
- G. Chen, Y. Xie, Y. Tang, T. Wang, Z. Wang et al., Unraveling the role of metal vacancy sites and doped nitrogen in enhancing pseudocapacitance performance of defective MXene. Small 20(12), 2307408 (2024). https://doi.org/10.1002/smll.202307408
- L. Gao, W. Bao, A.V. Kuklin, S. Mei, H. Zhang et al., Hetero-MXenes: theory, synthesis, and emerging applications. Adv. Mater. 33(10), 2004129 (2021). https://doi.org/10.1002/adma.202004129
- K. Deshmukh, T. Kovářík, S.K.K. Pasha, State of the art recent progress in two dimensional MXenes based gas sensors and biosensors: a comprehensive review. Coord. Chem. Rev. 424, 213514 (2020). https://doi.org/10.1016/j.ccr.2020.213514
- C. Dai, Y. Chen, X. Jing, L. Xiang, D. Yang et al., Two-dimensional tantalum carbide (MXenes) composite nanosheets for multiple imaging-guided photothermal tumor ablation. ACS Nano 11(12), 12696–12712 (2017). https://doi.org/10.1021/acsnano.7b07241
- Y. Dong, H. Shi, Z.-S. Wu, Recent advances and promise of MXene-based nanostructures for high-performance metal ion batteries. Adv. Funct. Mater. 30(47), 2000706 (2020). https://doi.org/10.1002/adfm.202000706
- M.K. Aslam, Y. Niu, M. Xu, MXenes for non-lithium-ion (Na, K, Ca, Mg, and Al) batteries and supercapacitors. Adv. Energy Mater. 11(2), 2000681 (2021). https://doi.org/10.1002/aenm.202000681
- E. Lee, A. VahidMohammadi, B.C. Prorok, Y.S. Yoon, M. Beidaghi et al., Room temperature gas sensing of two-dimensional titanium carbide (MXene). ACS Appl. Mater. Interfaces 9(42), 37184–37190 (2017). https://doi.org/10.1021/acsami.7b11055
- C.-W. You, T. Fu, C.-B. Li, X. Song, B. Tang et al., A latent-fire-detecting olfactory system enabled by ultra-fast and sub-ppm ammonia-responsive Ti3C2Tx MXene/MoS2 sensors. Adv. Funct. Mater. 32(44), 2208131 (2022). https://doi.org/10.1002/adfm.202208131
- Y. Wang, Y. Gong, L. Yang, Z. Xiong, Z. Lv et al., MXene-ZnO memristor for multimodal in-sensor computing. Adv. Funct. Mater. 31(21), 2100144 (2021). https://doi.org/10.1002/adfm.202100144
- D.B. Velusamy, J.K. El-Demellawi, A.M. El-Zohry, A. Giugni, S. Lopatin et al., MXenes for plasmonic photodetection. Adv. Mater. 31(32), 1807658 (2019). https://doi.org/10.1002/adma.201807658
- H. Tan, Q. Tao, I. Pande, S. Majumdar, F. Liu et al., Tactile sensory coding and learning with bio-inspired optoelectronic spiking afferent nerves. Nat. Commun. 11, 1369 (2020). https://doi.org/10.1038/s41467-020-15105-2
- D. Tan, Z. Zhang, H. Shi, N. Sun, Q. Li, S. Bi, J. Huang, Y. Liu, Q. Guo, C. Jiang, Bioinspired artificial visual-respiratory synapse as multimodal scene recognition system with oxidized-vacancies MXene. Adv. Mater. 36(36), 2407751 (2024). https://doi.org/10.1002/adma.202407751
- O. Mashtalir, M. Naguib, V.N. Mochalin, Y. Dall’Agnese, M. Heon et al., Intercalation and delamination of layered carbides and carbonitrides. Nat. Commun. 4, 1716 (2013). https://doi.org/10.1038/ncomms2664
- Y. Ma, Y. Yue, H. Zhang, F. Cheng, W. Zhao et al., 3D synergistical MXene/reduced graphene oxide aerogel for a piezoresistive sensor. ACS Nano 12(4), 3209–3216 (2018). https://doi.org/10.1021/acsnano.7b06909
- C.W. Lee, S.J. Kim, H.-K. Shin, Y.-J. Cho, C. Yoo et al., Optically-modulated and mechanically-flexible MXene artificial synapses with visible-to-near IR broadband-responsiveness. Nano Today 61, 102633 (2025). https://doi.org/10.1016/j.nantod.2025.102633
- M. Khazaei, M. Arai, T. Sasaki, C.-Y. Chung, N.S. Venkataramanan et al., Novel electronic and magnetic properties of two-dimensional transition metal carbides and nitrides. Adv. Funct. Mater. 23(17), 2185–2192 (2013). https://doi.org/10.1002/adfm.201202502
- D. Geng, X. Zhao, Z. Chen, W. Sun, W. Fu et al., Direct synthesis of large-area 2D Mo2C on in situ grown graphene. Adv. Mater. 29(35), 1700072 (2017). https://doi.org/10.1002/adma.201700072
- Z. Fan, Y. Wang, Z. Xie, D. Wang, Y. Yuan et al., Modified MXene/holey graphene films for advanced supercapacitor electrodes with superior energy storage. Adv. Sci. 5(10), 1800750 (2018). https://doi.org/10.1002/advs.201800750
- M. Naguib, V.N. Mochalin, M.W. Barsoum, Y. Gogotsi, 25th anniversary : MXenes: a new family of two-dimensional materials. Adv. Mater. 26(7), 992–1005 (2014). https://doi.org/10.1002/adma.201304138
- X. Li, Z. Huang, C.E. Shuck, G. Liang, Y. Gogotsi et al., MXene chemistry, electrochemistry and energy storage applications. Nat. Rev. Chem. 6(6), 389–404 (2022). https://doi.org/10.1038/s41570-022-00384-8
- B. Anasori, M.R. Lukatskaya, Y. Gogotsi, 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater. 2, 16098 (2017). https://doi.org/10.1038/natrevmats.2016.98
- G.R. Berdiyorov, Optical properties of functionalized Ti3C2T2 (T = F, O, OH) MXene: first-principles calculations. AIP Adv. 6(5), 055105 (2016). https://doi.org/10.1063/1.4948799
- Y. Bai, K. Zhou, N. Srikanth, J.H.L. Pang, X. He et al., Dependence of elastic and optical properties on surface terminated groups in two-dimensional MXene monolayers: a first-principles study. RSC Adv. 6(42), 35731–35739 (2016). https://doi.org/10.1039/C6RA03090D
- L. Gao, H. Chen, A.V. Kuklin, S. Wageh, A.A. Al-Ghamdi et al., Optical properties of few-layer Ti3CN MXene: from experimental observations to theoretical calculations. ACS Nano 16(2), 3059–3069 (2022). https://doi.org/10.1021/acsnano.1c10577
- H. Dai, J. Chang, J. Yang, H. Wang, J. Zhou et al., Bio-inspired interfacial engineering of MXene fibers toward synergistic improvement in mechanical strength and electrochemical performance. Adv. Funct. Mater. 34(11), 2312654 (2024). https://doi.org/10.1002/adfm.202312654
- B.C. Wyatt, A. Rosenkranz, B. Anasori, 2D MXenes: tunable mechanical and tribological properties. Adv. Mater. 33(17), 2007973 (2021). https://doi.org/10.1002/adma.202007973
- K. Liu, Q. Yan, M. Chen, W. Fan, Y. Sun et al., Elastic properties of chemical-vapor-deposited monolayer MoS2, WS2, and their bilayer heterostructures. Nano Lett. 14(9), 5097–5103 (2014). https://doi.org/10.1021/nl501793a
- G.-H. Lee, R.C. Cooper, S.J. An, S. Lee, A. van der Zande et al., High-strength chemical-vapor-deposited graphene and grain boundaries. Science 340(6136), 1073–1076 (2013). https://doi.org/10.1126/science.1235126
- K. Hantanasirisakul, Y. Gogotsi, Electronic and optical properties of 2D transition metal carbides and nitrides (MXenes). Adv. Mater. 30(52), 1804779 (2018). https://doi.org/10.1002/adma.201804779
- M. Khazaei, A. Ranjbar, M. Arai, T. Sasaki, S. Yunoki, Electronic properties and applications of MXenes: a theoretical review. J. Mater. Chem. C 5(10), 2488–2503 (2017). https://doi.org/10.1039/c7tc00140a
- J.L. Hart, K. Hantanasirisakul, A.C. Lang, B. Anasori, D. Pinto et al., Control of MXenes’ electronic properties through termination and intercalation. Nat. Commun. 10, 522 (2019). https://doi.org/10.1038/s41467-018-08169-8
- B. Anasori, C. Shi, E.J. Moon, Y. Xie, C.A. Voigt et al., Control of electronic properties of 2D carbides (MXenes) by manipulating their transition metal layers. Nanoscale Horiz. 1(3), 227–234 (2016). https://doi.org/10.1039/C5NH00125K
- P. Urbankowski, B. Anasori, T. Makaryan, D. Er, S. Kota et al., Synthesis of two-dimensional titanium nitride Ti4N3(MXene). Nanoscale 8(22), 11385–11391 (2016). https://doi.org/10.1039/c6nr02253g
- J. Halim, S. Kota, M.R. Lukatskaya, M. Naguib, M.-Q. Zhao et al., Synthesis and characterization of 2D molybdenum carbide (MXene). Adv. Funct. Mater. 26(18), 3118–3127 (2016). https://doi.org/10.1002/adfm.201505328
- N.M. Caffrey, Effect of mixed surface terminations on the structural and electrochemical properties of two-dimensional Ti3C2T2 and V2CT2 MXenes multilayers. Nanoscale 10(28), 13520–13530 (2018). https://doi.org/10.1039/C8NR03221A
- W. Sun, Y. Xie, P.R.C. Kent, Double transition metal MXenes with wide band gaps and novel magnetic properties. Nanoscale 10(25), 11962–11968 (2018). https://doi.org/10.1039/C8NR00513C
- Y. Liu, H. Xiao, W.A. Goddard 3rd., Schottky-barrier-free contacts with two-dimensional semiconductors by surface-engineered MXenes. J. Am. Chem. Soc. 138(49), 15853–15856 (2016). https://doi.org/10.1021/jacs.6b10834
- V. Kamysbayev, A.S. Filatov, H. Hu, X. Rui, F. Lagunas et al., Covalent surface modifications and superconductivity of two-dimensional metal carbide MXenes. Science 369(6506), 979–983 (2020). https://doi.org/10.1126/science.aba8311
- Y. Zhou, Z. Peng, Y. Chen, K. Luo, J. Zhang et al., First-principles study of the electronic, optical and transport of few-layer semiconducting MXene. Comput. Mater. Sci. 168, 137–143 (2019). https://doi.org/10.1016/j.commatsci.2019.05.051
- M. Naguib, R.R. Unocic, B.L. Armstrong, J. Nanda, Large-scale delamination of multi-layers transition metal carbides and carbonitrides “MXenes.” Dalton Trans. 44(20), 9353–9358 (2015). https://doi.org/10.1039/C5DT01247C
- L. Wu, X. Jiang, J. Zhao, W. Liang, Z. Li et al., MXene-based nonlinear optical information converter for all-optical modulator and switcher. Laser Photon. Rev. 12(12), 1800215 (2018). https://doi.org/10.1002/lpor.201800215
- A. VahidMohammadi, M. Mojtabavi, N.M. Caffrey, M. Wanunu, M. Beidaghi, Assembling 2D MXenes into highly stable pseudocapacitive electrodes with high power and energy densities. Adv. Mater. 31(8), 1806931 (2019). https://doi.org/10.1002/adma.201806931
- Q. Liu, P. Wang, Q. Wei, L. Zhou, H. Ren et al., Chiral perovskite nanowire optoelectronic synapse for full-stokes polarization-resolved perception and reservoir computing. Adv. Funct. Mater. 35(8), 2415551 (2025). https://doi.org/10.1002/adfm.202415551
- J. Huang, J. Feng, Z. Chen, Z. Dai, S. Yang et al., A bioinspired MXene-based flexible sensory neuron for tactile near-sensor computing. Nano Energy 126, 109684 (2024). https://doi.org/10.1016/j.nanoen.2024.109684
- M.J. Loes, S. Bagheri, A. Sinitskii, Layer-dependent gas sensing mechanism of 2D titanium carbide (Ti3C2Tx) MXene. ACS Nano 18(38), 26251–26260 (2024). https://doi.org/10.1021/acsnano.4c08225
- K. Maleski, C.E. Shuck, A.T. Fafarman, Y. Gogotsi, The broad chromatic range of two-dimensional transition metal carbides. Adv. Opt. Mater. 9(4), 2001563 (2021). https://doi.org/10.1002/adom.202001563
- K. Hantanasirisakul, M.-Q. Zhao, P. Urbankowski, J. Halim, B. Anasori et al., Fabrication of Ti3C2Tx MXene transparent thin films with tunable optoelectronic properties. Adv. Electron. Mater. 2(6), 1600050 (2016). https://doi.org/10.1002/aelm.201600050
- M. Khazaei, M. Arai, T. Sasaki, M. Estili, Y. Sakka, Two-dimensional molybdenum carbides: potential thermoelectric materials of the MXene family. Phys. Chem. Chem. Phys. 16(17), 7841–7849 (2014). https://doi.org/10.1039/c4cp00467a
- M. Jang, S.H. Kim, S. Kim, K. Chae, S. Choi et al., Unleashing 2D MXene’s plasmonic effect for advanced photonic device applications. Adv. Funct. Mater. 34(46), 2405341 (2024). https://doi.org/10.1002/adfm.202405341
- S. Ahn, T.-H. Han, K. Maleski, J. Song, Y.-H. Kim et al., A 2D titanium carbide MXene flexible electrode for high-efficiency light-emitting diodes. Adv. Mater. 32(23), 2000919 (2020). https://doi.org/10.1002/adma.202000919
- Y. Dong, S. Chertopalov, K. Maleski, B. Anasori, L. Hu et al., Saturable absorption in 2D Ti3C2 MXene thin films for passive photonic diodes. Adv. Mater. 30(10), 1705714 (2018). https://doi.org/10.1002/adma.201705714
- G. Han, X.-F. Li, A. Berbille, Y. Zhang, X. Luo et al., Enhanced piezoelectricity of MAPbI3 by the introduction of MXene and its utilization in boosting high-performance photodetectors. Adv. Mater. 36(23), 2313288 (2024). https://doi.org/10.1002/adma.202313288
- Y. Di, K. Ba, Y. Chen, X. Wang, M. Zhang et al., Interface engineering to drive high-performance MXene/PbS quantum dot NIR photodiode. Adv. Sci. 11(6), 2307169 (2024). https://doi.org/10.1002/advs.202307169
- J. Jiang, C. Ling, T. Xu, W. Wang, X. Niu et al., Defect engineering for modulating the trap states in 2D photoconductors. Adv. Mater. 30(40), 1804332 (2018). https://doi.org/10.1002/adma.201804332
- Y. Huang, X. Fan, S.-C. Chen, N. Zhao, Emerging technologies of flexible pressure sensors: materials, modeling, devices, and manufacturing. Adv. Funct. Mater. 29(12), 1808509 (2019). https://doi.org/10.1002/adfm.201808509
- D. Lei, N. Liu, T. Su, Q. Zhang, L. Wang et al., Roles of MXene in pressure sensing: preparation, composite structure design, and mechanism. Adv. Mater. 34(52), 2110608 (2022). https://doi.org/10.1002/adma.202110608
- Y. Pang, K. Zhang, Z. Yang, S. Jiang, Z. Ju et al., Epidermis microstructure inspired graphene pressure sensor with random distributed spinosum for high sensitivity and large linearity. ACS Nano 12(3), 2346–2354 (2018). https://doi.org/10.1021/acsnano.7b07613
- X. Zheng, S. Zhang, M. Zhou, H. Lu, S. Guo et al., MXene functionalized, highly breathable and sensitive pressure sensors with multi-layered porous structure. Adv. Funct. Mater. 33(19), 2214880 (2023). https://doi.org/10.1002/adfm.202214880
- M. Yang, Y. Cheng, Y. Yue, Y. Chen, H. Gao et al., High-performance flexible pressure sensor with a self-healing function for tactile feedback. Adv. Sci. 9(20), 2200507 (2022). https://doi.org/10.1002/advs.202200507
- Y. Yue, N. Liu, T. Su, Y. Cheng, W. Liu et al., Self-powered nanofluidic pressure sensor with a linear transfer mechanism. Adv. Funct. Mater. 33(13), 2211613 (2023). https://doi.org/10.1002/adfm.202211613
- L. Gao, M. Wang, W. Wang, H. Xu, Y. Wang et al., Highly sensitive pseudocapacitive iontronic pressure sensor with broad sensing range. Nano-Micro Lett 13(1), 140 (2021). https://doi.org/10.1007/s40820-021-00664-w
- S. Sundaram, P. Kellnhofer, Y. Li, J.-Y. Zhu, A. Torralba et al., Learning the signatures of the human grasp using a scalable tactile glove. Nature 569(7758), 698–702 (2019). https://doi.org/10.1038/s41586-019-1234-z
- S.J. Kim, H.-J. Koh, C.E. Ren, O. Kwon, K. Maleski et al., Metallic Ti3C2Tx MXene gas sensors with ultrahigh signal-to-noise ratio. ACS Nano 12(2), 986–993 (2018). https://doi.org/10.1021/acsnano.7b07460
- S.H. Lee, W. Eom, H. Shin, R.B. Ambade, J.H. Bang et al., Room-temperature, highly durable Ti3C2Tx MXene/graphene hybrid fibers for NH3 gas sensing. ACS Appl. Mater. Interfaces 12(9), 10434–10442 (2020). https://doi.org/10.1021/acsami.9b21765
- Y.-Z. Zhang, K.H. Lee, D.H. Anjum, R. Sougrat, Q. Jiang et al., MXenes stretch hydrogel sensor performance to new limits. Sci. Adv. 4(6), eaat0098 (2018). https://doi.org/10.1126/sciadv.aat0098
- J. Choi, Y.-J. Kim, S.-Y. Cho, K. Park, H. Kang et al., In situ formation of multiple Schottky barriers in a Ti3C2 MXene film and its application in highly sensitive gas sensors. Adv. Funct. Mater. 30(40), 2003998 (2020). https://doi.org/10.1002/adfm.202003998
- S.-J. Choi, I.-D. Kim, Recent developments in 2D nanomaterials for chemiresistive-type gas sensors. Electron. Mater. Lett. 14(3), 221–260 (2018). https://doi.org/10.1007/s13391-018-0044-z
- Z. Qin, D. Zeng, J. Zhang, C. Wu, Y. Wen et al., Effect of layer number on recovery rate of WS2 nanosheets for ammonia detection at room temperature. Appl. Surf. Sci. 414, 244–250 (2017). https://doi.org/10.1016/j.apsusc.2017.04.063
- D.J. Late, Y.-K. Huang, B. Liu, J. Acharya, S.N. Shirodkar et al., Sensing behavior of atomically thin-layered MoS2 transistors. ACS Nano 7(6), 4879–4891 (2013). https://doi.org/10.1021/nn400026u
- B. Liu, L. Chen, G. Liu, A.N. Abbas, M. Fathi et al., High-performance chemical sensing using Schottky-contacted chemical vapor deposition grown monolayer MoS2 transistors. ACS Nano 8(5), 5304–5314 (2014). https://doi.org/10.1021/nn5015215
- A.V. Raghu, K.K. Karuppanan, J. Nampoothiri, B. Pullithadathil, Wearable, flexible ethanol gas sensor based on TiO2 nanops-grafted 2D-titanium carbide nanosheets. ACS Appl. Nano Mater. 2(3), 1152–1163 (2019). https://doi.org/10.1021/acsanm.8b01975
- W.Y. Chen, S.-N. Lai, C.-C. Yen, X. Jiang, D. Peroulis et al., Surface functionalization of Ti3C2Tx MXene with highly reliable superhydrophobic protection for volatile organic compounds sensing. ACS Nano 14(9), 11490–11501 (2020). https://doi.org/10.1021/acsnano.0c03896
- S. Kim, T.Y. Ko, A.K. Jena, A.S. Nissimagoudar, J. Lee et al., Instant self-assembly of functionalized MXenes in organic solvents: general fabrication to high-performance chemical gas sensors. Adv. Funct. Mater. 34(11), 2310641 (2024). https://doi.org/10.1002/adfm.202310641
- Q. Zhao, W. Zhou, M. Zhang, Y. Wang, Z. Duan et al., Edge-enriched MoTiC2Tx/MoS2 heterostructure with coupling interface for selective NO2 monitoring. Adv. Funct. Mater. 32(39), 2203528 (2022). https://doi.org/10.1002/adfm.202203528
- X. Ding, Y. Zhang, Y. Zhang, X. Ding, H. Zhang et al., Modular assembly of MXene frameworks for noninvasive disease diagnosis via urinary volatiles. ACS Nano 16(10), 17376–17388 (2022). https://doi.org/10.1021/acsnano.2c08266
- M.A. Zidan, J.P. Strachan, W.D. Lu, The future of electronics based on memristive systems. Nat. Electron. 1(1), 22–29 (2018). https://doi.org/10.1038/s41928-017-0006-8
- J. Tang, F. Yuan, X. Shen, Z. Wang, M. Rao et al., Bridging biological and artificial neural networks with emerging neuromorphic devices: fundamentals, progress, and challenges. Adv. Mater. 31(49), 201902761 (2019). https://doi.org/10.1002/adma.201902761
- E.J. Fuller, S.T. Keene, A. Melianas, Z. Wang, S. Agarwal et al., Parallel programming of an ionic floating-gate memory array for scalable neuromorphic computing. Science 364(6440), 570–574 (2019). https://doi.org/10.1126/science.aaw5581
- Y. van de Burgt, A. Melianas, S.T. Keene, G. Malliaras, A. Salleo, Organic electronics for neuromorphic computing. Nat. Electron. 1(7), 386–397 (2018). https://doi.org/10.1038/s41928-018-0103-3
- Q. Xia, J.J. Yang, Memristive crossbar arrays for brain-inspired computing. Nat. Mater. 18(4), 309–323 (2019). https://doi.org/10.1038/s41563-019-0291-x
- T.S. Turova, The emergence of connectivity in neuronal networks: from bootstrap percolation to auto-associative memory. Brain Res. 1434, 277–284 (2012). https://doi.org/10.1016/j.brainres.2011.07.050
- W. Gerstner, H. Sprekeler, G. Deco, Theory and simulation in neuroscience. Science 338(6103), 60–65 (2012). https://doi.org/10.1126/science.1227356
- R. Yang, H.-M. Huang, X. Guo, Memristive synapses and neurons for bioinspired computing. Adv. Electron. Mater. 5(9), 1900287 (2019). https://doi.org/10.1002/aelm.201900287
- Y. Wang, L. Yin, W. Huang, Y. Li, S. Huang et al., Optoelectronic synaptic devices for neuromorphic computing. Adv. Intell. Syst. 3(1), 2000099 (2021). https://doi.org/10.1002/aisy.202000099
- M.A. Rafique, B.G. Lee, M. Jeon, Hybrid neuromorphic system for automatic speech recognition. Electron. Lett. 52(17), 1428–1430 (2016). https://doi.org/10.1049/el.2016.0975
- X. Dong, C. Chen, K. Pan, Y. Li, Z. Zhang et al., Nearly panoramic neuromorphic vision with transparent photosynapses. Adv. Sci. 10(30), 2303944 (2023). https://doi.org/10.1002/advs.202303944
- K.A. Nirmal, W. Ren, A.C. Khot, D.Y. Kang, T.D. Dongale et al., Flexible memristive organic solar cell using multilayer 2D titanium carbide MXene electrodes. Adv. Sci. 10(19), 2370122 (2023). https://doi.org/10.1002/advs.202370122
- R. Yu, X. Zhang, C. Gao, E. Li, Y. Yan et al., Low-voltage solution-processed artificial optoelectronic hybrid-integrated neuron based on 2D MXene for multi-task spiking neural network. Nano Energy 99, 107418 (2022). https://doi.org/10.1016/j.nanoen.2022.107418
- C. Hu, Z. Wei, L. Li, G. Shen, Strategy toward semiconducting Ti3C2Tx-MXene: phenylsulfonic acid groups modified Ti3C2Tx as photosensitive material for flexible visual sensory-neuromorphic system. Adv. Funct. Mater. 33(37), 2302188 (2023). https://doi.org/10.1002/adfm.202302188
- Y. Cao, T. Zhao, C. Liu, C. Zhao, H. Gao et al., Neuromorphic visual artificial synapse in-memory computing systems based on GeOx-coated MXene nanosheets. Nano Energy 112, 108441 (2023). https://doi.org/10.1016/j.nanoen.2023.108441
- Z. Wang, H. Wu, G.W. Burr, C.S. Hwang, K.L. Wang et al., Resistive switching materials for information processing. Nat. Rev. Mater. 5(3), 173–195 (2020). https://doi.org/10.1038/s41578-019-0159-3
- C. Wan, P. Cai, X. Guo, M. Wang, N. Matsuhisa et al., An artificial sensory neuron with visual-haptic fusion. Nat. Commun. 11, 4602 (2020). https://doi.org/10.1038/s41467-020-18375-y
- C. Li, M. Hu, Y. Li, H. Jiang, N. Ge et al., Analogue signal and image processing with large memristor crossbars. Nat. Electron. 1(1), 52–59 (2018). https://doi.org/10.1038/s41928-017-0002-z
- D. Ielmini, H.S.P. Wong, In-memory computing with resistive switching devices. Nat. Electron. 1(6), 333–343 (2018). https://doi.org/10.1038/s41928-018-0092-2
- C. Zhang, W.B. Ye, K. Zhou, H.-Y. Chen, J.-Q. Yang et al., Bioinspired artificial sensory nerve based on nafion memristor. Adv. Funct. Mater. 29(20), 1808783 (2019). https://doi.org/10.1002/adfm.201808783
- F. Zhou, Y. Chai, Near-sensor and in-sensor computing. Nat. Electron. 3(11), 664–671 (2020). https://doi.org/10.1038/s41928-020-00501-9
- Y. Kim, A. Chortos, W. Xu, Y. Liu, J.Y. Oh et al., A bioinspired flexible organic artificial afferent nerve. Science 360(6392), 998–1003 (2018). https://doi.org/10.1126/science.aao0098
- C. Wan, G. Chen, Y. Fu, M. Wang, N. Matsuhisa et al., An artificial sensory neuron with tactile perceptual learning. Adv. Mater. 30(30), 1801291 (2018). https://doi.org/10.1002/adma.201801291
- C. Wu, T.W. Kim, J.H. Park, B. Koo, S. Sung et al., Self-powered tactile sensor with learning and memory. ACS Nano 14(2), 1390–1398 (2020). https://doi.org/10.1021/acsnano.9b07165
- Y. Lee, J.-H. Ahn, Biomimetic tactile sensors based on nanomaterials. ACS Nano 14(2), 1220–1226 (2020). https://doi.org/10.1021/acsnano.0c00363
- J. Kim, M. Jang, G. Jeong, S. Yu, J. Park et al., MXene-enhanced β-phase crystallization in ferroelectric porous composites for highly-sensitive dynamic force sensors. Nano Energy 89, 106409 (2021). https://doi.org/10.1016/j.nanoen.2021.106409
- T. Xu, Q. Song, K. Liu, H. Liu, J. Pan et al., Nanocellulose-assisted construction of multifunctional MXene-based aerogels with engineering biomimetic texture for pressure sensor and compressible electrode. Nano-Micro Lett. 15(1), 98 (2023). https://doi.org/10.1007/s40820-023-01073-x
- J. Min, J. Tu, C. Xu, H. Lukas, S. Shin et al., Skin-interfaced wearable sweat sensors for precision medicine. Chem. Rev. 123(8), 5049–5138 (2023). https://doi.org/10.1021/acs.chemrev.2c00823
- L. Liu, Y. Zhang, Y. Yan, Four levels of in-sensor computing in bionic olfaction: from discrete components to multi-modal integrations. Nanoscale Horiz. 8(10), 1301–1312 (2023). https://doi.org/10.1039/D3NH00115F
- M. Lin, H. Hu, S. Zhou, S. Xu, Soft wearable devices for deep-tissue sensing. Nat. Rev. Mater. 7(11), 850–869 (2022). https://doi.org/10.1038/s41578-022-00427-y
- J. Li, Y. Liu, L. Yuan, B. Zhang, E.S. Bishop et al., A tissue-like neurotransmitter sensor for the brain and gut. Nature 606(7912), 94–101 (2022). https://doi.org/10.1038/s41586-022-04615-2
- J. He, R. Wei, S. Ge, W. Wu, J. Guo et al., Artificial visual-tactile perception array for enhanced memory and neuromorphic computations. InfoMat 6(3), e12493 (2024). https://doi.org/10.1002/inf2.12493
- S.N. Flesher, J.E. Downey, J.M. Weiss, C.L. Hughes, A.J. Herrera et al., A brain-computer interface that evokes tactile sensations improves robotic arm control. Science 372(6544), 831–836 (2021). https://doi.org/10.1126/science.abd0380
- X. Wu, L. Jiang, H. Xu, B. Wang, L. Yang et al., Bionic olfactory synaptic transistors for artificial neuromotor pathway construction and gas recognition. Adv. Funct. Mater. 34(36), 2401965 (2024). https://doi.org/10.1002/adfm.202401965
- S. Qu, L. Sun, S. Zhang, J. Liu, Y. Li et al., An artificially-intelligent cornea with tactile sensation enables sensory expansion and interaction. Nat. Commun. 14, 7181 (2023). https://doi.org/10.1038/s41467-023-42240-3
- Y. Ni, J. Liu, H. Han, Q. Yu, L. Yang et al., Visualized in-sensor computing. Nat. Commun. 15, 3454 (2024). https://doi.org/10.1038/s41467-024-47630-9
- C. Jiang, H. Xu, L. Yang, J. Liu, Y. Li et al., Neuromorphic antennal sensory system. Nat. Commun. 15(1), 2109 (2024). https://doi.org/10.1038/s41467-024-46393-7
- X. Ji, X. Lin, J. Rivnay, Organic electrochemical transistors as on-site signal amplifiers for electrochemical aptamer-based sensing. Nat. Commun. 14(1), 1665 (2023). https://doi.org/10.1038/s41467-023-37402-2
- S.Y. Chun, Y.G. Song, J.E. Kim, J.U. Kwon, K. Soh et al., An artificial olfactory system based on a chemi-memristive device. Adv. Mater. 35(35), 2302219 (2023). https://doi.org/10.1002/adma.202302219
- T. Wang, D. Huang, Z. Yang, S. Xu, G. He et al., A review on graphene-based gas/vapor sensors with unique properties and potential applications. Nano-Micro Lett. 8(2), 95–119 (2016). https://doi.org/10.1007/s40820-015-0073-1
- H. Ma, H. Fang, X. Xie, Y. Liu, H. Tian et al., Optoelectronic synapses based on MXene/violet phosphorus van der Waals heterojunctions for visual-olfactory crossmodal perception. Nano-Micro Lett. 16(1), 104 (2024). https://doi.org/10.1007/s40820-024-01330-7
- H. Pazniak, A.S. Varezhnikov, D.A. Kolosov, I.A. Plugin, A. Di Vito et al., 2D molybdenum carbide MXenes for enhanced selective detection of humidity in air. Adv. Mater. 33(52), 2104878 (2021). https://doi.org/10.1002/adma.202104878
- N.B. Mullani, D.D. Kumbhar, D.-H. Lee, M.J. Kwon, S.-Y. Cho et al., Surface modification of a titanium carbide MXene memristor to enhance memory window and low-power operation. Adv. Funct. Mater. 33(26), 2300343 (2023). https://doi.org/10.1002/adfm.202300343
- F.F. Athena, M. Nnaji, D. Vaca, M. Tian, W. Buchmaier et al., MAX phase Ti2AlN for HfO2 memristors with ultra-low reset current density and large on/off ratio. Adv. Funct. Mater. 34(29), 2316290 (2024). https://doi.org/10.1002/adfm.202316290
- D. Ju, M. Noh, S. Lee, G. Kim, J. Park et al., Self-rectifying volatile memristor for highly dynamic functions. Adv. Funct. Mater. 35(29), 2423880 (2025). https://doi.org/10.1002/adfm.202423880
- H.-J. Kim, D.-S. Woo, S.-M. Jin, H.-J. Kwon, K.-H. Kwon et al., Super-linear-threshold-switching selector with multiple jar-shaped Cu-filaments in the amorphous Ge3Se7 resistive switching layer in a cross-point synaptic memristor array. Adv. Mater. 34(40), 2203643 (2022). https://doi.org/10.1002/adma.202203643
- J. Chen, M. Xiao, Z. Chen, S. Khan, S. Ghosh et al., Inkjet-printed reconfigurable and recyclable memristors on paper. InfoMat 7(5), e70000 (2025). https://doi.org/10.1002/inf2.70000
- R. Yuan, Q. Duan, P.J. Tiw, G. Li, Z. Xiao et al., A calibratable sensory neuron based on epitaxial VO2 for spike-based neuromorphic multisensory system. Nat. Commun. 13(1), 3973 (2022). https://doi.org/10.1038/s41467-022-31747-w
- S. Kuang, T. Zhang, Smelling directions: olfaction modulates ambiguous visual motion perception. Sci. Rep. 4, 5796 (2014). https://doi.org/10.1038/srep05796
- C. Jiang, J. Liu, Y. Ni, S. Qu, L. Liu et al., Mammalian-brain-inspired neuromorphic motion-cognition nerve achieves cross-modal perceptual enhancement. Nat. Commun. 14(1), 1344 (2023). https://doi.org/10.1038/s41467-023-36935-w
- J. Guo, A. Guo, Crossmodal interactions between olfactory and visual learning in Drosophila. Science 309(5732), 307–310 (2005). https://doi.org/10.1126/science.1111280
- J. Zhu, X. Zhang, R. Wang, M. Wang, P. Chen et al., A heterogeneously integrated spiking neuron array for multimode-fused perception and object classification. Adv. Mater. 34(24), 2200481 (2022). https://doi.org/10.1002/adma.202200481
- H. Tan, Y. Zhou, Q. Tao, J. Rosen, S. van Dijken, Bioinspired multisensory neural network with crossmodal integration and recognition. Nat. Commun. 12, 1120 (2021). https://doi.org/10.1038/s41467-021-21404-z
- Y. Qiao, J. Luo, T. Cui, H. Liu, H. Tang et al., Soft electronics for health monitoring assisted by machine learning. Nano-Micro Lett. 15(1), 66 (2023). https://doi.org/10.1007/s40820-023-01029-1
- X. Chen, T. Wang, J. Shi, W. Lv, Y. Han et al., A novel artificial neuron-like gas sensor constructed from CuS quantum dots/Bi2S3 nanosheets. Nano-Micro Lett. 14(1), 8 (2021). https://doi.org/10.1007/s40820-021-00740-1
- J.H. Ju, S. Seo, S. Baek, D. Lee, S. Lee et al., Two-dimensional MXene synapse for brain-inspired neuromorphic computing. Small 17(34), 2102595 (2021). https://doi.org/10.1002/smll.202102595
- J. Ren, X. Huang, R. Han, G. Chen, Q. Li et al., Avian bone-inspired super fatigue resistant MXene-based aerogels with human-like tactile perception for multilevel information encryption assisted by machine learning. Adv. Funct. Mater. 34(39), 2403091 (2024). https://doi.org/10.1002/adfm.202403091
- J.K. Eshraghian, M. Ward, E.O. Neftci, X. Wang, G. Lenz et al., Training spiking neural networks using lessons from deep learning. Proc. IEEE 111(9), 1016–1054 (2023). https://doi.org/10.1109/JPROC.2023.3308088
- A. Rao, P. Plank, A. Wild, W. Maass, A long short-term memory for AI applications in spike-based neuromorphic hardware. Nat. Mach. Intell. 4(5), 467–479 (2022). https://doi.org/10.1038/s42256-022-00480-w
- F. Wang, F. Hu, M. Dai, S. Zhu, F. Sun et al., A two-dimensional mid-infrared optoelectronic retina enabling simultaneous perception and encoding. Nat. Commun. 14, 1938 (2023). https://doi.org/10.1038/s41467-023-37623-5
- W. Liu, Z. Du, Z. Duan, L. Li, G. Shen, Neuroprosthetic contact lens enabled sensorimotor system for point-of-care monitoring and feedback of intraocular pressure. Nat. Commun. 15, 5635 (2024). https://doi.org/10.1038/s41467-024-49907-5
- P. Tan, X. Han, Y. Zou, X. Qu, J. Xue et al., Self-powered gesture recognition wristband enabled by machine learning for full keyboard and multicommand input. Adv. Mater. 34(21), 2200793 (2022). https://doi.org/10.1002/adma.202200793
- C. Choi, J. Leem, M. Kim, A. Taqieddin, C. Cho et al., Curved neuromorphic image sensor array using a MoS2-organic heterostructure inspired by the human visual recognition system. Nat. Commun. 11, 5934 (2020). https://doi.org/10.1038/s41467-020-19806-6
- B. Lyu, M. Kim, H. Jing, J. Kang, C. Qian et al., Large-area MXene electrode array for flexible electronics. ACS Nano 13(10), 11392–11400 (2019). https://doi.org/10.1021/acsnano.9b04731
- Y. Zhang, L. Wang, L. Zhao, K. Wang, Y. Zheng et al., Flexible self-powered integrated sensing system with 3D periodic ordered black phosphorus@MXene thin-films. Adv. Mater. 33(22), 2007890 (2021). https://doi.org/10.1002/adma.202007890
References
A. VahidMohammadi, J. Rosen, Y. Gogotsi, The world of two-dimensional carbides and nitrides (MXenes). Science 372(6547), 1165 (2021). https://doi.org/10.1126/science.abf1581
M. Naguib, O. Mashtalir, J. Carle, V. Presser, J. Lu et al., Two-dimensional transition metal carbides. ACS Nano 6(2), 1322–1331 (2012). https://doi.org/10.1021/nn204153h
M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu et al., Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 23(37), 4248–4253 (2011). https://doi.org/10.1002/adma.201102306
M. Sokol, V. Natu, S. Kota, M.W. Barsoum, On the chemical diversity of the MAX phases. Trends Chem. 1(2), 210–223 (2019). https://doi.org/10.1016/j.trechm.2019.02.016
M. Ghidiu, M.R. Lukatskaya, M.-Q. Zhao, Y. Gogotsi, M.W. Barsoum, Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance. Nature 516(7529), 78–81 (2014). https://doi.org/10.1038/nature13970
T. Omori, T. Kusama, S. Kawata, I. Ohnuma, Y. Sutou et al., Abnormal grain growth induced by cyclic heat treatment. Science 341(6153), 1500–1502 (2013). https://doi.org/10.1126/science.1238017
X. Wang, S. Kajiyama, H. Iinuma, E. Hosono, S. Oro et al., Pseudocapacitance of MXene nanosheets for high-power sodium-ion hybrid capacitors. Nat. Commun. 6, 6544 (2015). https://doi.org/10.1038/ncomms7544
M. Naguib, J. Halim, J. Lu, K.M. Cook, L. Hultman et al., New two-dimensional niobium and vanadium carbides as promising materials for Li-ion batteries. J. Am. Chem. Soc. 135(43), 15966–15969 (2013). https://doi.org/10.1021/ja405735d
B. Anasori, M.R. Lukatskaya, Y. Gogotsi, 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater. 2(2), 16098 (2017). https://doi.org/10.1038/natrevmats.2016.98
N.C. Frey, J. Wang, G.I. Vega Bellido, B. Anasori, Y. Gogotsi et al., Prediction of synthesis of 2D metal carbides and nitrides (MXenes) and their precursors with positive and unlabeled machine learning. ACS Nano 13(3), 3031–3041 (2019). https://doi.org/10.1021/acsnano.8b08014
M. Shen, W. Jiang, K. Liang, S. Zhao, R. Tang et al., One-pot green process to synthesize MXene with controllable surface terminations using molten salts. Angew. Chem. Int. Ed. 60(52), 27013–27018 (2021). https://doi.org/10.1002/anie.202110640
Y. Li, H. Shao, Z. Lin, J. Lu, L. Liu et al., A general Lewis acidic etching route for preparing MXenes with enhanced electrochemical performance in non-aqueous electrolyte. Nat. Mater. 19(8), 894–899 (2020). https://doi.org/10.1038/s41563-020-0657-0
H. Riazi, S.K. Nemani, M.C. Grady, B. Anasori, M. Soroush, Ti3C2MXene–polymer nanocomposites and their applications. J. Mater. Chem. A 9(13), 8051–8098 (2021). https://doi.org/10.1039/d0ta08023c
G. Chen, Y. Xie, Y. Tang, T. Wang, Z. Wang et al., Unraveling the role of metal vacancy sites and doped nitrogen in enhancing pseudocapacitance performance of defective MXene. Small 20(12), 2307408 (2024). https://doi.org/10.1002/smll.202307408
L. Gao, W. Bao, A.V. Kuklin, S. Mei, H. Zhang et al., Hetero-MXenes: theory, synthesis, and emerging applications. Adv. Mater. 33(10), 2004129 (2021). https://doi.org/10.1002/adma.202004129
K. Deshmukh, T. Kovářík, S.K.K. Pasha, State of the art recent progress in two dimensional MXenes based gas sensors and biosensors: a comprehensive review. Coord. Chem. Rev. 424, 213514 (2020). https://doi.org/10.1016/j.ccr.2020.213514
C. Dai, Y. Chen, X. Jing, L. Xiang, D. Yang et al., Two-dimensional tantalum carbide (MXenes) composite nanosheets for multiple imaging-guided photothermal tumor ablation. ACS Nano 11(12), 12696–12712 (2017). https://doi.org/10.1021/acsnano.7b07241
Y. Dong, H. Shi, Z.-S. Wu, Recent advances and promise of MXene-based nanostructures for high-performance metal ion batteries. Adv. Funct. Mater. 30(47), 2000706 (2020). https://doi.org/10.1002/adfm.202000706
M.K. Aslam, Y. Niu, M. Xu, MXenes for non-lithium-ion (Na, K, Ca, Mg, and Al) batteries and supercapacitors. Adv. Energy Mater. 11(2), 2000681 (2021). https://doi.org/10.1002/aenm.202000681
E. Lee, A. VahidMohammadi, B.C. Prorok, Y.S. Yoon, M. Beidaghi et al., Room temperature gas sensing of two-dimensional titanium carbide (MXene). ACS Appl. Mater. Interfaces 9(42), 37184–37190 (2017). https://doi.org/10.1021/acsami.7b11055
C.-W. You, T. Fu, C.-B. Li, X. Song, B. Tang et al., A latent-fire-detecting olfactory system enabled by ultra-fast and sub-ppm ammonia-responsive Ti3C2Tx MXene/MoS2 sensors. Adv. Funct. Mater. 32(44), 2208131 (2022). https://doi.org/10.1002/adfm.202208131
Y. Wang, Y. Gong, L. Yang, Z. Xiong, Z. Lv et al., MXene-ZnO memristor for multimodal in-sensor computing. Adv. Funct. Mater. 31(21), 2100144 (2021). https://doi.org/10.1002/adfm.202100144
D.B. Velusamy, J.K. El-Demellawi, A.M. El-Zohry, A. Giugni, S. Lopatin et al., MXenes for plasmonic photodetection. Adv. Mater. 31(32), 1807658 (2019). https://doi.org/10.1002/adma.201807658
H. Tan, Q. Tao, I. Pande, S. Majumdar, F. Liu et al., Tactile sensory coding and learning with bio-inspired optoelectronic spiking afferent nerves. Nat. Commun. 11, 1369 (2020). https://doi.org/10.1038/s41467-020-15105-2
D. Tan, Z. Zhang, H. Shi, N. Sun, Q. Li, S. Bi, J. Huang, Y. Liu, Q. Guo, C. Jiang, Bioinspired artificial visual-respiratory synapse as multimodal scene recognition system with oxidized-vacancies MXene. Adv. Mater. 36(36), 2407751 (2024). https://doi.org/10.1002/adma.202407751
O. Mashtalir, M. Naguib, V.N. Mochalin, Y. Dall’Agnese, M. Heon et al., Intercalation and delamination of layered carbides and carbonitrides. Nat. Commun. 4, 1716 (2013). https://doi.org/10.1038/ncomms2664
Y. Ma, Y. Yue, H. Zhang, F. Cheng, W. Zhao et al., 3D synergistical MXene/reduced graphene oxide aerogel for a piezoresistive sensor. ACS Nano 12(4), 3209–3216 (2018). https://doi.org/10.1021/acsnano.7b06909
C.W. Lee, S.J. Kim, H.-K. Shin, Y.-J. Cho, C. Yoo et al., Optically-modulated and mechanically-flexible MXene artificial synapses with visible-to-near IR broadband-responsiveness. Nano Today 61, 102633 (2025). https://doi.org/10.1016/j.nantod.2025.102633
M. Khazaei, M. Arai, T. Sasaki, C.-Y. Chung, N.S. Venkataramanan et al., Novel electronic and magnetic properties of two-dimensional transition metal carbides and nitrides. Adv. Funct. Mater. 23(17), 2185–2192 (2013). https://doi.org/10.1002/adfm.201202502
D. Geng, X. Zhao, Z. Chen, W. Sun, W. Fu et al., Direct synthesis of large-area 2D Mo2C on in situ grown graphene. Adv. Mater. 29(35), 1700072 (2017). https://doi.org/10.1002/adma.201700072
Z. Fan, Y. Wang, Z. Xie, D. Wang, Y. Yuan et al., Modified MXene/holey graphene films for advanced supercapacitor electrodes with superior energy storage. Adv. Sci. 5(10), 1800750 (2018). https://doi.org/10.1002/advs.201800750
M. Naguib, V.N. Mochalin, M.W. Barsoum, Y. Gogotsi, 25th anniversary : MXenes: a new family of two-dimensional materials. Adv. Mater. 26(7), 992–1005 (2014). https://doi.org/10.1002/adma.201304138
X. Li, Z. Huang, C.E. Shuck, G. Liang, Y. Gogotsi et al., MXene chemistry, electrochemistry and energy storage applications. Nat. Rev. Chem. 6(6), 389–404 (2022). https://doi.org/10.1038/s41570-022-00384-8
B. Anasori, M.R. Lukatskaya, Y. Gogotsi, 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater. 2, 16098 (2017). https://doi.org/10.1038/natrevmats.2016.98
G.R. Berdiyorov, Optical properties of functionalized Ti3C2T2 (T = F, O, OH) MXene: first-principles calculations. AIP Adv. 6(5), 055105 (2016). https://doi.org/10.1063/1.4948799
Y. Bai, K. Zhou, N. Srikanth, J.H.L. Pang, X. He et al., Dependence of elastic and optical properties on surface terminated groups in two-dimensional MXene monolayers: a first-principles study. RSC Adv. 6(42), 35731–35739 (2016). https://doi.org/10.1039/C6RA03090D
L. Gao, H. Chen, A.V. Kuklin, S. Wageh, A.A. Al-Ghamdi et al., Optical properties of few-layer Ti3CN MXene: from experimental observations to theoretical calculations. ACS Nano 16(2), 3059–3069 (2022). https://doi.org/10.1021/acsnano.1c10577
H. Dai, J. Chang, J. Yang, H. Wang, J. Zhou et al., Bio-inspired interfacial engineering of MXene fibers toward synergistic improvement in mechanical strength and electrochemical performance. Adv. Funct. Mater. 34(11), 2312654 (2024). https://doi.org/10.1002/adfm.202312654
B.C. Wyatt, A. Rosenkranz, B. Anasori, 2D MXenes: tunable mechanical and tribological properties. Adv. Mater. 33(17), 2007973 (2021). https://doi.org/10.1002/adma.202007973
K. Liu, Q. Yan, M. Chen, W. Fan, Y. Sun et al., Elastic properties of chemical-vapor-deposited monolayer MoS2, WS2, and their bilayer heterostructures. Nano Lett. 14(9), 5097–5103 (2014). https://doi.org/10.1021/nl501793a
G.-H. Lee, R.C. Cooper, S.J. An, S. Lee, A. van der Zande et al., High-strength chemical-vapor-deposited graphene and grain boundaries. Science 340(6136), 1073–1076 (2013). https://doi.org/10.1126/science.1235126
K. Hantanasirisakul, Y. Gogotsi, Electronic and optical properties of 2D transition metal carbides and nitrides (MXenes). Adv. Mater. 30(52), 1804779 (2018). https://doi.org/10.1002/adma.201804779
M. Khazaei, A. Ranjbar, M. Arai, T. Sasaki, S. Yunoki, Electronic properties and applications of MXenes: a theoretical review. J. Mater. Chem. C 5(10), 2488–2503 (2017). https://doi.org/10.1039/c7tc00140a
J.L. Hart, K. Hantanasirisakul, A.C. Lang, B. Anasori, D. Pinto et al., Control of MXenes’ electronic properties through termination and intercalation. Nat. Commun. 10, 522 (2019). https://doi.org/10.1038/s41467-018-08169-8
B. Anasori, C. Shi, E.J. Moon, Y. Xie, C.A. Voigt et al., Control of electronic properties of 2D carbides (MXenes) by manipulating their transition metal layers. Nanoscale Horiz. 1(3), 227–234 (2016). https://doi.org/10.1039/C5NH00125K
P. Urbankowski, B. Anasori, T. Makaryan, D. Er, S. Kota et al., Synthesis of two-dimensional titanium nitride Ti4N3(MXene). Nanoscale 8(22), 11385–11391 (2016). https://doi.org/10.1039/c6nr02253g
J. Halim, S. Kota, M.R. Lukatskaya, M. Naguib, M.-Q. Zhao et al., Synthesis and characterization of 2D molybdenum carbide (MXene). Adv. Funct. Mater. 26(18), 3118–3127 (2016). https://doi.org/10.1002/adfm.201505328
N.M. Caffrey, Effect of mixed surface terminations on the structural and electrochemical properties of two-dimensional Ti3C2T2 and V2CT2 MXenes multilayers. Nanoscale 10(28), 13520–13530 (2018). https://doi.org/10.1039/C8NR03221A
W. Sun, Y. Xie, P.R.C. Kent, Double transition metal MXenes with wide band gaps and novel magnetic properties. Nanoscale 10(25), 11962–11968 (2018). https://doi.org/10.1039/C8NR00513C
Y. Liu, H. Xiao, W.A. Goddard 3rd., Schottky-barrier-free contacts with two-dimensional semiconductors by surface-engineered MXenes. J. Am. Chem. Soc. 138(49), 15853–15856 (2016). https://doi.org/10.1021/jacs.6b10834
V. Kamysbayev, A.S. Filatov, H. Hu, X. Rui, F. Lagunas et al., Covalent surface modifications and superconductivity of two-dimensional metal carbide MXenes. Science 369(6506), 979–983 (2020). https://doi.org/10.1126/science.aba8311
Y. Zhou, Z. Peng, Y. Chen, K. Luo, J. Zhang et al., First-principles study of the electronic, optical and transport of few-layer semiconducting MXene. Comput. Mater. Sci. 168, 137–143 (2019). https://doi.org/10.1016/j.commatsci.2019.05.051
M. Naguib, R.R. Unocic, B.L. Armstrong, J. Nanda, Large-scale delamination of multi-layers transition metal carbides and carbonitrides “MXenes.” Dalton Trans. 44(20), 9353–9358 (2015). https://doi.org/10.1039/C5DT01247C
L. Wu, X. Jiang, J. Zhao, W. Liang, Z. Li et al., MXene-based nonlinear optical information converter for all-optical modulator and switcher. Laser Photon. Rev. 12(12), 1800215 (2018). https://doi.org/10.1002/lpor.201800215
A. VahidMohammadi, M. Mojtabavi, N.M. Caffrey, M. Wanunu, M. Beidaghi, Assembling 2D MXenes into highly stable pseudocapacitive electrodes with high power and energy densities. Adv. Mater. 31(8), 1806931 (2019). https://doi.org/10.1002/adma.201806931
Q. Liu, P. Wang, Q. Wei, L. Zhou, H. Ren et al., Chiral perovskite nanowire optoelectronic synapse for full-stokes polarization-resolved perception and reservoir computing. Adv. Funct. Mater. 35(8), 2415551 (2025). https://doi.org/10.1002/adfm.202415551
J. Huang, J. Feng, Z. Chen, Z. Dai, S. Yang et al., A bioinspired MXene-based flexible sensory neuron for tactile near-sensor computing. Nano Energy 126, 109684 (2024). https://doi.org/10.1016/j.nanoen.2024.109684
M.J. Loes, S. Bagheri, A. Sinitskii, Layer-dependent gas sensing mechanism of 2D titanium carbide (Ti3C2Tx) MXene. ACS Nano 18(38), 26251–26260 (2024). https://doi.org/10.1021/acsnano.4c08225
K. Maleski, C.E. Shuck, A.T. Fafarman, Y. Gogotsi, The broad chromatic range of two-dimensional transition metal carbides. Adv. Opt. Mater. 9(4), 2001563 (2021). https://doi.org/10.1002/adom.202001563
K. Hantanasirisakul, M.-Q. Zhao, P. Urbankowski, J. Halim, B. Anasori et al., Fabrication of Ti3C2Tx MXene transparent thin films with tunable optoelectronic properties. Adv. Electron. Mater. 2(6), 1600050 (2016). https://doi.org/10.1002/aelm.201600050
M. Khazaei, M. Arai, T. Sasaki, M. Estili, Y. Sakka, Two-dimensional molybdenum carbides: potential thermoelectric materials of the MXene family. Phys. Chem. Chem. Phys. 16(17), 7841–7849 (2014). https://doi.org/10.1039/c4cp00467a
M. Jang, S.H. Kim, S. Kim, K. Chae, S. Choi et al., Unleashing 2D MXene’s plasmonic effect for advanced photonic device applications. Adv. Funct. Mater. 34(46), 2405341 (2024). https://doi.org/10.1002/adfm.202405341
S. Ahn, T.-H. Han, K. Maleski, J. Song, Y.-H. Kim et al., A 2D titanium carbide MXene flexible electrode for high-efficiency light-emitting diodes. Adv. Mater. 32(23), 2000919 (2020). https://doi.org/10.1002/adma.202000919
Y. Dong, S. Chertopalov, K. Maleski, B. Anasori, L. Hu et al., Saturable absorption in 2D Ti3C2 MXene thin films for passive photonic diodes. Adv. Mater. 30(10), 1705714 (2018). https://doi.org/10.1002/adma.201705714
G. Han, X.-F. Li, A. Berbille, Y. Zhang, X. Luo et al., Enhanced piezoelectricity of MAPbI3 by the introduction of MXene and its utilization in boosting high-performance photodetectors. Adv. Mater. 36(23), 2313288 (2024). https://doi.org/10.1002/adma.202313288
Y. Di, K. Ba, Y. Chen, X. Wang, M. Zhang et al., Interface engineering to drive high-performance MXene/PbS quantum dot NIR photodiode. Adv. Sci. 11(6), 2307169 (2024). https://doi.org/10.1002/advs.202307169
J. Jiang, C. Ling, T. Xu, W. Wang, X. Niu et al., Defect engineering for modulating the trap states in 2D photoconductors. Adv. Mater. 30(40), 1804332 (2018). https://doi.org/10.1002/adma.201804332
Y. Huang, X. Fan, S.-C. Chen, N. Zhao, Emerging technologies of flexible pressure sensors: materials, modeling, devices, and manufacturing. Adv. Funct. Mater. 29(12), 1808509 (2019). https://doi.org/10.1002/adfm.201808509
D. Lei, N. Liu, T. Su, Q. Zhang, L. Wang et al., Roles of MXene in pressure sensing: preparation, composite structure design, and mechanism. Adv. Mater. 34(52), 2110608 (2022). https://doi.org/10.1002/adma.202110608
Y. Pang, K. Zhang, Z. Yang, S. Jiang, Z. Ju et al., Epidermis microstructure inspired graphene pressure sensor with random distributed spinosum for high sensitivity and large linearity. ACS Nano 12(3), 2346–2354 (2018). https://doi.org/10.1021/acsnano.7b07613
X. Zheng, S. Zhang, M. Zhou, H. Lu, S. Guo et al., MXene functionalized, highly breathable and sensitive pressure sensors with multi-layered porous structure. Adv. Funct. Mater. 33(19), 2214880 (2023). https://doi.org/10.1002/adfm.202214880
M. Yang, Y. Cheng, Y. Yue, Y. Chen, H. Gao et al., High-performance flexible pressure sensor with a self-healing function for tactile feedback. Adv. Sci. 9(20), 2200507 (2022). https://doi.org/10.1002/advs.202200507
Y. Yue, N. Liu, T. Su, Y. Cheng, W. Liu et al., Self-powered nanofluidic pressure sensor with a linear transfer mechanism. Adv. Funct. Mater. 33(13), 2211613 (2023). https://doi.org/10.1002/adfm.202211613
L. Gao, M. Wang, W. Wang, H. Xu, Y. Wang et al., Highly sensitive pseudocapacitive iontronic pressure sensor with broad sensing range. Nano-Micro Lett 13(1), 140 (2021). https://doi.org/10.1007/s40820-021-00664-w
S. Sundaram, P. Kellnhofer, Y. Li, J.-Y. Zhu, A. Torralba et al., Learning the signatures of the human grasp using a scalable tactile glove. Nature 569(7758), 698–702 (2019). https://doi.org/10.1038/s41586-019-1234-z
S.J. Kim, H.-J. Koh, C.E. Ren, O. Kwon, K. Maleski et al., Metallic Ti3C2Tx MXene gas sensors with ultrahigh signal-to-noise ratio. ACS Nano 12(2), 986–993 (2018). https://doi.org/10.1021/acsnano.7b07460
S.H. Lee, W. Eom, H. Shin, R.B. Ambade, J.H. Bang et al., Room-temperature, highly durable Ti3C2Tx MXene/graphene hybrid fibers for NH3 gas sensing. ACS Appl. Mater. Interfaces 12(9), 10434–10442 (2020). https://doi.org/10.1021/acsami.9b21765
Y.-Z. Zhang, K.H. Lee, D.H. Anjum, R. Sougrat, Q. Jiang et al., MXenes stretch hydrogel sensor performance to new limits. Sci. Adv. 4(6), eaat0098 (2018). https://doi.org/10.1126/sciadv.aat0098
J. Choi, Y.-J. Kim, S.-Y. Cho, K. Park, H. Kang et al., In situ formation of multiple Schottky barriers in a Ti3C2 MXene film and its application in highly sensitive gas sensors. Adv. Funct. Mater. 30(40), 2003998 (2020). https://doi.org/10.1002/adfm.202003998
S.-J. Choi, I.-D. Kim, Recent developments in 2D nanomaterials for chemiresistive-type gas sensors. Electron. Mater. Lett. 14(3), 221–260 (2018). https://doi.org/10.1007/s13391-018-0044-z
Z. Qin, D. Zeng, J. Zhang, C. Wu, Y. Wen et al., Effect of layer number on recovery rate of WS2 nanosheets for ammonia detection at room temperature. Appl. Surf. Sci. 414, 244–250 (2017). https://doi.org/10.1016/j.apsusc.2017.04.063
D.J. Late, Y.-K. Huang, B. Liu, J. Acharya, S.N. Shirodkar et al., Sensing behavior of atomically thin-layered MoS2 transistors. ACS Nano 7(6), 4879–4891 (2013). https://doi.org/10.1021/nn400026u
B. Liu, L. Chen, G. Liu, A.N. Abbas, M. Fathi et al., High-performance chemical sensing using Schottky-contacted chemical vapor deposition grown monolayer MoS2 transistors. ACS Nano 8(5), 5304–5314 (2014). https://doi.org/10.1021/nn5015215
A.V. Raghu, K.K. Karuppanan, J. Nampoothiri, B. Pullithadathil, Wearable, flexible ethanol gas sensor based on TiO2 nanops-grafted 2D-titanium carbide nanosheets. ACS Appl. Nano Mater. 2(3), 1152–1163 (2019). https://doi.org/10.1021/acsanm.8b01975
W.Y. Chen, S.-N. Lai, C.-C. Yen, X. Jiang, D. Peroulis et al., Surface functionalization of Ti3C2Tx MXene with highly reliable superhydrophobic protection for volatile organic compounds sensing. ACS Nano 14(9), 11490–11501 (2020). https://doi.org/10.1021/acsnano.0c03896
S. Kim, T.Y. Ko, A.K. Jena, A.S. Nissimagoudar, J. Lee et al., Instant self-assembly of functionalized MXenes in organic solvents: general fabrication to high-performance chemical gas sensors. Adv. Funct. Mater. 34(11), 2310641 (2024). https://doi.org/10.1002/adfm.202310641
Q. Zhao, W. Zhou, M. Zhang, Y. Wang, Z. Duan et al., Edge-enriched MoTiC2Tx/MoS2 heterostructure with coupling interface for selective NO2 monitoring. Adv. Funct. Mater. 32(39), 2203528 (2022). https://doi.org/10.1002/adfm.202203528
X. Ding, Y. Zhang, Y. Zhang, X. Ding, H. Zhang et al., Modular assembly of MXene frameworks for noninvasive disease diagnosis via urinary volatiles. ACS Nano 16(10), 17376–17388 (2022). https://doi.org/10.1021/acsnano.2c08266
M.A. Zidan, J.P. Strachan, W.D. Lu, The future of electronics based on memristive systems. Nat. Electron. 1(1), 22–29 (2018). https://doi.org/10.1038/s41928-017-0006-8
J. Tang, F. Yuan, X. Shen, Z. Wang, M. Rao et al., Bridging biological and artificial neural networks with emerging neuromorphic devices: fundamentals, progress, and challenges. Adv. Mater. 31(49), 201902761 (2019). https://doi.org/10.1002/adma.201902761
E.J. Fuller, S.T. Keene, A. Melianas, Z. Wang, S. Agarwal et al., Parallel programming of an ionic floating-gate memory array for scalable neuromorphic computing. Science 364(6440), 570–574 (2019). https://doi.org/10.1126/science.aaw5581
Y. van de Burgt, A. Melianas, S.T. Keene, G. Malliaras, A. Salleo, Organic electronics for neuromorphic computing. Nat. Electron. 1(7), 386–397 (2018). https://doi.org/10.1038/s41928-018-0103-3
Q. Xia, J.J. Yang, Memristive crossbar arrays for brain-inspired computing. Nat. Mater. 18(4), 309–323 (2019). https://doi.org/10.1038/s41563-019-0291-x
T.S. Turova, The emergence of connectivity in neuronal networks: from bootstrap percolation to auto-associative memory. Brain Res. 1434, 277–284 (2012). https://doi.org/10.1016/j.brainres.2011.07.050
W. Gerstner, H. Sprekeler, G. Deco, Theory and simulation in neuroscience. Science 338(6103), 60–65 (2012). https://doi.org/10.1126/science.1227356
R. Yang, H.-M. Huang, X. Guo, Memristive synapses and neurons for bioinspired computing. Adv. Electron. Mater. 5(9), 1900287 (2019). https://doi.org/10.1002/aelm.201900287
Y. Wang, L. Yin, W. Huang, Y. Li, S. Huang et al., Optoelectronic synaptic devices for neuromorphic computing. Adv. Intell. Syst. 3(1), 2000099 (2021). https://doi.org/10.1002/aisy.202000099
M.A. Rafique, B.G. Lee, M. Jeon, Hybrid neuromorphic system for automatic speech recognition. Electron. Lett. 52(17), 1428–1430 (2016). https://doi.org/10.1049/el.2016.0975
X. Dong, C. Chen, K. Pan, Y. Li, Z. Zhang et al., Nearly panoramic neuromorphic vision with transparent photosynapses. Adv. Sci. 10(30), 2303944 (2023). https://doi.org/10.1002/advs.202303944
K.A. Nirmal, W. Ren, A.C. Khot, D.Y. Kang, T.D. Dongale et al., Flexible memristive organic solar cell using multilayer 2D titanium carbide MXene electrodes. Adv. Sci. 10(19), 2370122 (2023). https://doi.org/10.1002/advs.202370122
R. Yu, X. Zhang, C. Gao, E. Li, Y. Yan et al., Low-voltage solution-processed artificial optoelectronic hybrid-integrated neuron based on 2D MXene for multi-task spiking neural network. Nano Energy 99, 107418 (2022). https://doi.org/10.1016/j.nanoen.2022.107418
C. Hu, Z. Wei, L. Li, G. Shen, Strategy toward semiconducting Ti3C2Tx-MXene: phenylsulfonic acid groups modified Ti3C2Tx as photosensitive material for flexible visual sensory-neuromorphic system. Adv. Funct. Mater. 33(37), 2302188 (2023). https://doi.org/10.1002/adfm.202302188
Y. Cao, T. Zhao, C. Liu, C. Zhao, H. Gao et al., Neuromorphic visual artificial synapse in-memory computing systems based on GeOx-coated MXene nanosheets. Nano Energy 112, 108441 (2023). https://doi.org/10.1016/j.nanoen.2023.108441
Z. Wang, H. Wu, G.W. Burr, C.S. Hwang, K.L. Wang et al., Resistive switching materials for information processing. Nat. Rev. Mater. 5(3), 173–195 (2020). https://doi.org/10.1038/s41578-019-0159-3
C. Wan, P. Cai, X. Guo, M. Wang, N. Matsuhisa et al., An artificial sensory neuron with visual-haptic fusion. Nat. Commun. 11, 4602 (2020). https://doi.org/10.1038/s41467-020-18375-y
C. Li, M. Hu, Y. Li, H. Jiang, N. Ge et al., Analogue signal and image processing with large memristor crossbars. Nat. Electron. 1(1), 52–59 (2018). https://doi.org/10.1038/s41928-017-0002-z
D. Ielmini, H.S.P. Wong, In-memory computing with resistive switching devices. Nat. Electron. 1(6), 333–343 (2018). https://doi.org/10.1038/s41928-018-0092-2
C. Zhang, W.B. Ye, K. Zhou, H.-Y. Chen, J.-Q. Yang et al., Bioinspired artificial sensory nerve based on nafion memristor. Adv. Funct. Mater. 29(20), 1808783 (2019). https://doi.org/10.1002/adfm.201808783
F. Zhou, Y. Chai, Near-sensor and in-sensor computing. Nat. Electron. 3(11), 664–671 (2020). https://doi.org/10.1038/s41928-020-00501-9
Y. Kim, A. Chortos, W. Xu, Y. Liu, J.Y. Oh et al., A bioinspired flexible organic artificial afferent nerve. Science 360(6392), 998–1003 (2018). https://doi.org/10.1126/science.aao0098
C. Wan, G. Chen, Y. Fu, M. Wang, N. Matsuhisa et al., An artificial sensory neuron with tactile perceptual learning. Adv. Mater. 30(30), 1801291 (2018). https://doi.org/10.1002/adma.201801291
C. Wu, T.W. Kim, J.H. Park, B. Koo, S. Sung et al., Self-powered tactile sensor with learning and memory. ACS Nano 14(2), 1390–1398 (2020). https://doi.org/10.1021/acsnano.9b07165
Y. Lee, J.-H. Ahn, Biomimetic tactile sensors based on nanomaterials. ACS Nano 14(2), 1220–1226 (2020). https://doi.org/10.1021/acsnano.0c00363
J. Kim, M. Jang, G. Jeong, S. Yu, J. Park et al., MXene-enhanced β-phase crystallization in ferroelectric porous composites for highly-sensitive dynamic force sensors. Nano Energy 89, 106409 (2021). https://doi.org/10.1016/j.nanoen.2021.106409
T. Xu, Q. Song, K. Liu, H. Liu, J. Pan et al., Nanocellulose-assisted construction of multifunctional MXene-based aerogels with engineering biomimetic texture for pressure sensor and compressible electrode. Nano-Micro Lett. 15(1), 98 (2023). https://doi.org/10.1007/s40820-023-01073-x
J. Min, J. Tu, C. Xu, H. Lukas, S. Shin et al., Skin-interfaced wearable sweat sensors for precision medicine. Chem. Rev. 123(8), 5049–5138 (2023). https://doi.org/10.1021/acs.chemrev.2c00823
L. Liu, Y. Zhang, Y. Yan, Four levels of in-sensor computing in bionic olfaction: from discrete components to multi-modal integrations. Nanoscale Horiz. 8(10), 1301–1312 (2023). https://doi.org/10.1039/D3NH00115F
M. Lin, H. Hu, S. Zhou, S. Xu, Soft wearable devices for deep-tissue sensing. Nat. Rev. Mater. 7(11), 850–869 (2022). https://doi.org/10.1038/s41578-022-00427-y
J. Li, Y. Liu, L. Yuan, B. Zhang, E.S. Bishop et al., A tissue-like neurotransmitter sensor for the brain and gut. Nature 606(7912), 94–101 (2022). https://doi.org/10.1038/s41586-022-04615-2
J. He, R. Wei, S. Ge, W. Wu, J. Guo et al., Artificial visual-tactile perception array for enhanced memory and neuromorphic computations. InfoMat 6(3), e12493 (2024). https://doi.org/10.1002/inf2.12493
S.N. Flesher, J.E. Downey, J.M. Weiss, C.L. Hughes, A.J. Herrera et al., A brain-computer interface that evokes tactile sensations improves robotic arm control. Science 372(6544), 831–836 (2021). https://doi.org/10.1126/science.abd0380
X. Wu, L. Jiang, H. Xu, B. Wang, L. Yang et al., Bionic olfactory synaptic transistors for artificial neuromotor pathway construction and gas recognition. Adv. Funct. Mater. 34(36), 2401965 (2024). https://doi.org/10.1002/adfm.202401965
S. Qu, L. Sun, S. Zhang, J. Liu, Y. Li et al., An artificially-intelligent cornea with tactile sensation enables sensory expansion and interaction. Nat. Commun. 14, 7181 (2023). https://doi.org/10.1038/s41467-023-42240-3
Y. Ni, J. Liu, H. Han, Q. Yu, L. Yang et al., Visualized in-sensor computing. Nat. Commun. 15, 3454 (2024). https://doi.org/10.1038/s41467-024-47630-9
C. Jiang, H. Xu, L. Yang, J. Liu, Y. Li et al., Neuromorphic antennal sensory system. Nat. Commun. 15(1), 2109 (2024). https://doi.org/10.1038/s41467-024-46393-7
X. Ji, X. Lin, J. Rivnay, Organic electrochemical transistors as on-site signal amplifiers for electrochemical aptamer-based sensing. Nat. Commun. 14(1), 1665 (2023). https://doi.org/10.1038/s41467-023-37402-2
S.Y. Chun, Y.G. Song, J.E. Kim, J.U. Kwon, K. Soh et al., An artificial olfactory system based on a chemi-memristive device. Adv. Mater. 35(35), 2302219 (2023). https://doi.org/10.1002/adma.202302219
T. Wang, D. Huang, Z. Yang, S. Xu, G. He et al., A review on graphene-based gas/vapor sensors with unique properties and potential applications. Nano-Micro Lett. 8(2), 95–119 (2016). https://doi.org/10.1007/s40820-015-0073-1
H. Ma, H. Fang, X. Xie, Y. Liu, H. Tian et al., Optoelectronic synapses based on MXene/violet phosphorus van der Waals heterojunctions for visual-olfactory crossmodal perception. Nano-Micro Lett. 16(1), 104 (2024). https://doi.org/10.1007/s40820-024-01330-7
H. Pazniak, A.S. Varezhnikov, D.A. Kolosov, I.A. Plugin, A. Di Vito et al., 2D molybdenum carbide MXenes for enhanced selective detection of humidity in air. Adv. Mater. 33(52), 2104878 (2021). https://doi.org/10.1002/adma.202104878
N.B. Mullani, D.D. Kumbhar, D.-H. Lee, M.J. Kwon, S.-Y. Cho et al., Surface modification of a titanium carbide MXene memristor to enhance memory window and low-power operation. Adv. Funct. Mater. 33(26), 2300343 (2023). https://doi.org/10.1002/adfm.202300343
F.F. Athena, M. Nnaji, D. Vaca, M. Tian, W. Buchmaier et al., MAX phase Ti2AlN for HfO2 memristors with ultra-low reset current density and large on/off ratio. Adv. Funct. Mater. 34(29), 2316290 (2024). https://doi.org/10.1002/adfm.202316290
D. Ju, M. Noh, S. Lee, G. Kim, J. Park et al., Self-rectifying volatile memristor for highly dynamic functions. Adv. Funct. Mater. 35(29), 2423880 (2025). https://doi.org/10.1002/adfm.202423880
H.-J. Kim, D.-S. Woo, S.-M. Jin, H.-J. Kwon, K.-H. Kwon et al., Super-linear-threshold-switching selector with multiple jar-shaped Cu-filaments in the amorphous Ge3Se7 resistive switching layer in a cross-point synaptic memristor array. Adv. Mater. 34(40), 2203643 (2022). https://doi.org/10.1002/adma.202203643
J. Chen, M. Xiao, Z. Chen, S. Khan, S. Ghosh et al., Inkjet-printed reconfigurable and recyclable memristors on paper. InfoMat 7(5), e70000 (2025). https://doi.org/10.1002/inf2.70000
R. Yuan, Q. Duan, P.J. Tiw, G. Li, Z. Xiao et al., A calibratable sensory neuron based on epitaxial VO2 for spike-based neuromorphic multisensory system. Nat. Commun. 13(1), 3973 (2022). https://doi.org/10.1038/s41467-022-31747-w
S. Kuang, T. Zhang, Smelling directions: olfaction modulates ambiguous visual motion perception. Sci. Rep. 4, 5796 (2014). https://doi.org/10.1038/srep05796
C. Jiang, J. Liu, Y. Ni, S. Qu, L. Liu et al., Mammalian-brain-inspired neuromorphic motion-cognition nerve achieves cross-modal perceptual enhancement. Nat. Commun. 14(1), 1344 (2023). https://doi.org/10.1038/s41467-023-36935-w
J. Guo, A. Guo, Crossmodal interactions between olfactory and visual learning in Drosophila. Science 309(5732), 307–310 (2005). https://doi.org/10.1126/science.1111280
J. Zhu, X. Zhang, R. Wang, M. Wang, P. Chen et al., A heterogeneously integrated spiking neuron array for multimode-fused perception and object classification. Adv. Mater. 34(24), 2200481 (2022). https://doi.org/10.1002/adma.202200481
H. Tan, Y. Zhou, Q. Tao, J. Rosen, S. van Dijken, Bioinspired multisensory neural network with crossmodal integration and recognition. Nat. Commun. 12, 1120 (2021). https://doi.org/10.1038/s41467-021-21404-z
Y. Qiao, J. Luo, T. Cui, H. Liu, H. Tang et al., Soft electronics for health monitoring assisted by machine learning. Nano-Micro Lett. 15(1), 66 (2023). https://doi.org/10.1007/s40820-023-01029-1
X. Chen, T. Wang, J. Shi, W. Lv, Y. Han et al., A novel artificial neuron-like gas sensor constructed from CuS quantum dots/Bi2S3 nanosheets. Nano-Micro Lett. 14(1), 8 (2021). https://doi.org/10.1007/s40820-021-00740-1
J.H. Ju, S. Seo, S. Baek, D. Lee, S. Lee et al., Two-dimensional MXene synapse for brain-inspired neuromorphic computing. Small 17(34), 2102595 (2021). https://doi.org/10.1002/smll.202102595
J. Ren, X. Huang, R. Han, G. Chen, Q. Li et al., Avian bone-inspired super fatigue resistant MXene-based aerogels with human-like tactile perception for multilevel information encryption assisted by machine learning. Adv. Funct. Mater. 34(39), 2403091 (2024). https://doi.org/10.1002/adfm.202403091
J.K. Eshraghian, M. Ward, E.O. Neftci, X. Wang, G. Lenz et al., Training spiking neural networks using lessons from deep learning. Proc. IEEE 111(9), 1016–1054 (2023). https://doi.org/10.1109/JPROC.2023.3308088
A. Rao, P. Plank, A. Wild, W. Maass, A long short-term memory for AI applications in spike-based neuromorphic hardware. Nat. Mach. Intell. 4(5), 467–479 (2022). https://doi.org/10.1038/s42256-022-00480-w
F. Wang, F. Hu, M. Dai, S. Zhu, F. Sun et al., A two-dimensional mid-infrared optoelectronic retina enabling simultaneous perception and encoding. Nat. Commun. 14, 1938 (2023). https://doi.org/10.1038/s41467-023-37623-5
W. Liu, Z. Du, Z. Duan, L. Li, G. Shen, Neuroprosthetic contact lens enabled sensorimotor system for point-of-care monitoring and feedback of intraocular pressure. Nat. Commun. 15, 5635 (2024). https://doi.org/10.1038/s41467-024-49907-5
P. Tan, X. Han, Y. Zou, X. Qu, J. Xue et al., Self-powered gesture recognition wristband enabled by machine learning for full keyboard and multicommand input. Adv. Mater. 34(21), 2200793 (2022). https://doi.org/10.1002/adma.202200793
C. Choi, J. Leem, M. Kim, A. Taqieddin, C. Cho et al., Curved neuromorphic image sensor array using a MoS2-organic heterostructure inspired by the human visual recognition system. Nat. Commun. 11, 5934 (2020). https://doi.org/10.1038/s41467-020-19806-6
B. Lyu, M. Kim, H. Jing, J. Kang, C. Qian et al., Large-area MXene electrode array for flexible electronics. ACS Nano 13(10), 11392–11400 (2019). https://doi.org/10.1021/acsnano.9b04731
Y. Zhang, L. Wang, L. Zhao, K. Wang, Y. Zheng et al., Flexible self-powered integrated sensing system with 3D periodic ordered black phosphorus@MXene thin-films. Adv. Mater. 33(22), 2007890 (2021). https://doi.org/10.1002/adma.202007890