Improved Na+/K+ Storage Properties of ReSe2–Carbon Nanofibers Based on Graphene Modifications
Corresponding Author: Rensheng He
Nano-Micro Letters,
Vol. 11 (2019), Article Number: 22
Abstract
Rhenium diselenide (ReSe2) has caused considerable concerns in the field of energy storage because the compound and its composites still suffer from low specific capacity and inferior cyclic stability. In this study, ReSe2 nanoparticles encapsulated in carbon nanofibers were synthesized successfully with simple electrospinning and heat treatment. It was found that graphene modifications could affect considerably the microstructure and electrochemical properties of ReSe2–carbon nanofibers. Accordingly, the modified compound maintained a capacity of 227 mAh g−1 after 500 cycles at 200 mA g−1 for Na+ storage, 230 mAh g−1 after 200 cycles at 200 mA g−1, 212 mAh g−1 after 150 cycles at 500 mA g−1 for K+ storage, which corresponded to the capacity retention ratios of 89%, 97%, and 86%, respectively. Even in Na+ full cells, its capacity was maintained to 82% after 200 cycles at 1C (117 mA g−1). The superior stability of ReSe2–carbon nanofibers benefitted from the extremely weak van der Waals interactions and large interlayer spacing of ReSe2, in association with the role of graphene-modified carbon nanofibers, in terms of the shortening of electron/ion transport paths and the improvement of structural support. This study may provide a new route for a broadened range of applications of other rhenium-based compounds.
Highlights:
1 Graphene modifications effectively improved conductivity but also resulted in a regulatory effect on the decrease in its diameter.
2 The synergistic action of graphene and carbon fibers protected the structure of the electrode material and shortened the ion diffusion path.
3 ReSe2@G@CNFs exerted high capacity and long cyclic stability in Na+/K+ half cells. When this compound was assembled in Na+ full cells, the cells displayed excellent performances
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S.M. Lukic, J. Cao, R.C. Bansal, F. Rodriguez, A. Emadi, Energy storage systems for automotive applications. IEEE Trans. Ind. Electron. 55(6), 2258–2267 (2008). https://doi.org/10.1109/TIE.2008.918390
- B. Dunn, H. Kamath, J.-M. Tarascon, Electrical energy storage for the grid: a battery of choices. Science 334(6058), 928–935 (2011). https://doi.org/10.1126/science.1212741
- D.P. Dubal, O. Ayyad, V. Ruiz, P. Gomez-Romero, Hybrid energy storage: the merging of battery and supercapacitor chemistries. Chem. Soc. Rev. 44(7), 1777–1790 (2015). https://doi.org/10.1039/C4CS00266K
- Z. Wang, L. Zhou, X.W. David Lou, Metal oxide hollow nanostructures for lithium-ion batteries. Adv. Mater. 24(14), 1903–1911 (2012). https://doi.org/10.1002/adma.201200469
- Y. Ren, Z. Liu, F. Pourpoint, A.R. Armstrong, C.P. Grey, P.G. Bruce, Nanoparticulate TioO2(b): an anode for lithium-ion batteries. Angew. Chem. Int. Ed. 51(9), 2164–2167 (2012). https://doi.org/10.1002/anie.201108300
- J.Y. Luo, W.J. Cui, P. He, Y.Y. Xia, Raising the cycling stability of aqueous lithium-ion batteries by eliminating oxygen in the electrolyte. Nat. Chem. 2(9), 760–765 (2010). https://doi.org/10.1038/nchem.763
- M.D. Slater, D. Kim, E. Lee, C.S. Johnson, Sodium-ion batteries. Adv. Funct. Mater. 23(8), 947–958 (2013). https://doi.org/10.1002/adfm.201200691
- Y. Yan, Y.-X. Yin, Y.-G. Guo, L.-J. Wan, A sandwich-like hierarchically porous carbon/graphene composite as a high-performance anode material for sodium-ion batteries. Adv. Energy Mater. 4(8), 1301584 (2014). https://doi.org/10.1002/aenm.201301584
- P. Senguttuvan, S.-D. Han, S. Kim, A.L. Lipson, S. Tepavcevic et al., A high power rechargeable nonaqueous multivalent Zn/V2O5 battery. Adv. Energy Mater. 6(24), 1600826 (2016). https://doi.org/10.1002/aenm.201600826
- C. Chen, Y. Yang, S. Ding, Z. Wei, X. Tang, P. Li, T. Wang, G. Cao, M. Zhang, S-doped carbon@TiO2 to store Li+/Na+ with high capacity and long life-time. Energy Storage Mater. 13, 215–222 (2018). https://doi.org/10.1016/j.ensm.2018.01.015
- Z. Jian, W. Luo, X. Ji, Carbon electrodes for k-ion batteries. J. Am. Chem. Soc. 137(36), 11566–11569 (2015). https://doi.org/10.1021/jacs.5b06809
- S.W. Kim, D.H. Seo, X. Ma, G. Ceder, K. Kang, Electrode materials for rechargeable sodium-ion batteries: potential alternatives to current lithium-ion batteries. Adv. Energy Mater. 2(7), 710–721 (2012). https://doi.org/10.1002/aenm.201200026
- Y. Liu, F. Fan, J. Wang, Y. Liu, H. Chen et al., In situ transmission electron microscopy study of electrochemical sodiation and potassiation of carbon nanofibers. Nano Lett. 14(6), 3445–3452 (2014). https://doi.org/10.1021/nl500970a
- W. Zhang, J. Mao, S. Li, Z. Chen, Z. Guo, Phosphorus-based alloy materials for advanced potassium-ion battery anode. J. Am. Chem. Soc. 139(9), 3316–3319 (2017). https://doi.org/10.1021/jacs.6b12185
- N. Recham, G.l. Rousse, M.T. Sougrati, J.-Nl. Chotard, C. Frayret et al., Preparation and characterization of a stable FeSO4 F-based framework for alkali ion insertion electrodes. Chem. Mater. 24(22), 4363–4370 (2012). https://doi.org/10.1021/cm302428w
- W. Wang, J. Zhou, Z. Wang, L. Zhao, P. Li, Y. Yang, C. Yang, H. Huang, S. Guo, Short-range order in mesoporous carbon boosts potassium-ion battery performance. Adv. Energy Mater. 8(5), 1701648 (2018). https://doi.org/10.1002/aenm.201701648
- Y. Marcus, Thermodynamic functions of transfer of single ions from water to nonaqueous and mixed solvents: part 3-standard potentials of selected electrodes. Pure Appl. Chem. 57(8), 1129–1132 (1985). https://doi.org/10.1002/aenm.201701648
- Z. Jian, Z. Xing, C. Bommier, Z. Li, X. Ji, Hard carbon microspheres: potassium-ion anode versus sodium-ion anode. Adv. Energy Mater. 6(3), 1501874 (2016). https://doi.org/10.1002/aenm.201501874
- Y. Dong, Z.S. Wu, S. Zheng, X. Wang, J. Qin, S. Wang, X. Shi, X. Bao, Ti3C2 mxene-derived sodium/potassium titanate nanoribbons for high-performance sodium/potassium ion batteries with enhanced capacities. ACS Nano 11(5), 4792–4800 (2017). https://doi.org/10.1021/acsnano.7b01165
- S. Zhang, B.V.R. Chowdari, Z. Wen, J. Jin, J. Yang, Constructing highly oriented configuration by few-layer MoS2: towards high-performance lithium-ion batteries and hydrogen evolution reactions. ACS Nano 9(12), 12464–12472 (2015). https://doi.org/10.1021/acsnano.5b05891
- Q.H. Wang, K. Kalantarzadeh, A. Kis, J.N. Coleman, M.S. Strano, Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotech. 7(11), 699–712 (2012). https://doi.org/10.1038/nnano.2012.193
- X. Meng, K. He, D. Su, X. Zhang, C. Sun et al., Gallium sulfide–single-walled carbon nanotube composites: high-performance anodes for lithium-ion batteries. Adv. Funct. Mater. 24(34), 5435–5442 (2014). https://doi.org/10.1002/adfm.201401002
- D. Wolverson, S. Crampin, A.S. Kazemi, A. Ilie, S.J. Bending, Raman spectra of monolayer, few-layer, and bulk ReSe2: an anisotropic layered semiconductor. ACS Nano 8(11), 11154–11164 (2014). https://doi.org/10.1021/nn5053926
- Q. Zhang, S. Tan, R.G. Mendes, Z. Sun, Y. Chen et al., Extremely weak van der waals coupling in vertical ReS2 nanowalls for high-current-density lithium-ion batteries. Adv. Mater. 28(13), 2616–2623 (2016). https://doi.org/10.1002/adma.201505498
- M. Hafeez, L. Gan, H. Li, Y. Ma, T. Zhai, Chemical vapor deposition synthesis of ultrathin hexagonal ReSe2 flakes for anisotropic raman property and optoelectronic application. Adv. Mater. 28(37), 8296–8301 (2016). https://doi.org/10.1002/adma.201601977
- S. Yang, C. Wang, H. Sahin, H. Chen, Y. Li et al., Tuning the optical, magnetic, and electrical properties of ReSe2 by nanoscale strain engineering. Nano Lett. 15(3), 1660–1666 (2015). https://doi.org/10.1021/nl504276u
- C. Fang, G. Wiegers, C. Haas, R. De Groot, Electronic structures of, and in the real and the hypothetical undistorted structures. J. Phys.: Condense. Matter. 9(21), 4411 (1997). https://doi.org/10.1088/0953-8984/9/21/008
- C. Ho, Y. Huang, K. Tiong, In-plane anisotropy of the optical and electrical properties of ReS2 and ReSe2 layered crystals. J. Alloys Compds. 317, 222–226 (2001). https://doi.org/10.1016/S0925-8388(00)01332-3
- Z. Huang, Z. Chen, S. Ding, C. Chen, M. Zhang, Multi-protection from nanochannels and graphene of SnSb-graphene-carbon composites ensuring high properties for potassium-ion batteries. Solid State Ionics 324, 267–275 (2018). https://doi.org/10.1016/j.ssi.2018.07.019
- Q. Wang, C. Guo, Y. Zhu, J. He, H. Wang, Reduced graphene oxide-wrapped FeS2 composite as anode for high-performance sodium-ion batteries. Nano-Micro Lett. 10(2), 30 (2017). https://doi.org/10.1007/s40820-017-0183-z
- J. Liang, C. Yuan, H. Li, K. Fan, Z. Wei, H. Sun, J. Ma, Growth of SnO2 nanoflowers on N-doped carbon nanofibers as anode for Li- and Na-ion batteries. Nano-Micro Lett. 10(2), 21 (2017). https://doi.org/10.1007/s40820-017-0172-2
- K. Tang, L. Fu, R.J. White, L. Yu, M.M. Titirici, M. Antonietti, J. Maier, Hollow carbon nanospheres with superior rate capability for sodium-based batteries. Adv. Energy Mater. 2(7), 873–877 (2012). https://doi.org/10.1002/aenm.201100691
- J. Lu, C. Nan, L. Li, Q. Peng, Y. Li, Flexible SnS nanobelts: facile synthesis, formation mechanism and application in Li-ion batteries. Nano Res. 6(1), 55–64 (2013). https://doi.org/10.1002/aenm.201100691
- T. Yang, Y. Liu, M. Zhang, Improving the electrochemical properties of Cr–SnO2 by multi-protecting method using graphene and carbon-coating. Solid State Ionics 308, 1–7 (2017). https://doi.org/10.1016/j.ssi.2017.05.011
- M. Zhang, F. Yan, X. Tang, Q. Li, T. Wang, G. Cao, Flexible CoO–graphene–carbon nanofiber mats as binder-free anodes for lithium-ion batteries with superior rate capacity and cyclic stability. J. Mater. Chem. A 2(16), 5890–5897 (2014). https://doi.org/10.1039/C4TA00311J
- X. Zhang, X. Fan, C. Yan, H. Li, Y. Zhu, X. Li, L. Yu, Interfacial microstructure and properties of carbon fiber composites modified with graphene oxide. ACS Appl. Mater. Interfaces. 4(3), 1543–1552 (2012). https://doi.org/10.1021/am201757v
- F. Zhang, C. Xia, J. Zhu, B. Ahmed, H. Liang, D.B. Velusamy, U. Schwingenschlögl, H.N. Alshareef, SnSe2 2D anodes for advanced sodium ion batteries. Adv. Energy Mater. 6(22), 1601188 (2016). https://doi.org/10.1002/aenm.201601188
- G. Wang, J. Yang, J. Park, X. Gou, B. Wang, H. Liu, J. Yao, Facile synthesis and characterization of graphene nanosheets. J. Phys. Chem. C 112(22), 8192–8195 (2008). https://doi.org/10.1021/jp710931h
- Z. Ali, T. Tang, X. Huang, Y. Wang, M. Asif, Y. Hou, Cobalt selenide decorated carbon spheres for excellent cycling performance of sodium ion batteries. Energy Storage Mater. 13, 19–28 (2018). https://doi.org/10.1016/j.ensm.2017.12.014
- Y. Huang, H. Lu, H. Gu, J. Fu, S. Mo, C. Wei, Y.E. Miao, T. Liu, A CNT@MoSe2 hybrid catalyst for efficient and stable hydrogen evolution. Nanoscale 7(44), 18595–18602 (2015). https://doi.org/10.1039/C5NR05739F
- M. Mao, C. Cui, M. Wu, M. Zhang, T. Gao et al., Flexible ReS2 nanosheets/N-doped carbon nanofibers-based paper as a universal anode for alkali (Li, Na, K) ion battery. Nano Energy 45, 346–352 (2018). https://doi.org/10.1016/j.nanoen.2018.01.001
- Z. Li, Y. Chen, Z. Jian, H. Jiang, J.J. Razink, W.F. Stickle, J.C. Neuefeind, X. Ji, Defective hard carbon anode for Na-ion batteries. Chem. Mater. 30(14), 4536–4542 (2018). https://doi.org/10.1021/acs.chemmater.8b00645
- G. Zhang, J. Zhu, W. Zeng, S. Hou, F. Gong, F. Li, C.C. Li, H. Duan, Tin quantum dots embedded in nitrogen-doped carbon nanofibers as excellent anode for lithium-ion batteries. Nano Energy 9, 61–70 (2014). https://doi.org/10.1016/j.nanoen.2014.06.030
- J. Gao, L. Li, J. Tan, H. Sun, B. Li, J.C. Idrobo, C.V. Singh, T.M. Lu, N. Koratkar, Vertically oriented arrays of ReS2 nanosheets for electrochemical energy storage and electrocatalysis. Nano Lett. 16(6), 3780–3787 (2016). https://doi.org/10.1021/acs.nanolett.6b01180
- B. Jariwala, D. Voiry, A. Jindal, B.A. Chalke, R. Bapat, A. Thamizhavel, M. Chhowalla, M. Deshmukh, A. Bhattacharya, Synthesis and characterization of ReS2 and ReSe2 layered chalcogenide single crystals. Chem. Mater. 28(10), 3352–3359 (2016). https://doi.org/10.1021/acs.chemmater.6b00364
- F. Qi, Y. Chen, B. Zheng, J. He, Q. Li et al., 3D chrysanthemum-like ReS2 microspheres composed of curly few-layered nanosheets with enhanced electrochemical properties for lithium-ion batteries. J. Mater. Sci. 52(7), 3622–3629 (2016). https://doi.org/10.1007/s10853-016-0500-9
- Y. Liu, H. Kang, L. Jiao, C. Chen, K. Cao, Y. Wang, H. Yuan, Exfoliated-SnS2 restacked on graphene as a high-capacity, high-rate, and long-cycle life anode for sodium ion batteries. Nanoscale 7(4), 1325–1332 (2015). https://doi.org/10.1039/C4NR05106H
- N. Zhang, Y. Liu, Y. Lu, X. Han, F. Cheng, J. Chen, Spherical nano-Sb@C composite as a high-rate and ultra-stable anode material for sodium-ion batteries. Nano Res. 8(10), 3384–3393 (2015). https://doi.org/10.1007/s12274-015-0838-3
- X. Cao, Y. Shi, W. Shi, X. Rui, Q. Yan, J. Kong, H. Zhang, Preparation of MoS2-coated three-dimensional graphene networks for high-performance anode material in lithium-ion batteries. Small 9(20), 3433–3438 (2013). https://doi.org/10.1002/smll.201202697
- F. Qi, J. He, Y. Chen, B. Zheng, Q. Li et al., Few-layered ReS2 nanosheets grown on carbon nanotubes: a highly efficient anode for high-performance lithium-ion batteries. Chem. Eng. J. 315, 10–17 (2017). https://doi.org/10.1016/j.cej.2017.01.004
- X. Zhou, L.J. Wan, Y.G. Guo, Binding SnO2 nanocrystals in nitrogen-doped graphene sheets as anode materials for lithium-ion batteries. Adv. Mater. 25(15), 2152–2157 (2013). https://doi.org/10.1002/adma.201300071
- J. Li, S. Xiong, Y. Liu, Z. Ju, Y. Qian, High electrochemical performance of monodisperse NiCo2O4 mesoporous microspheres as an anode material for Li-ion batteries. ACS Appl. Mater. Interfaces 5(3), 981–988 (2013). https://doi.org/10.1021/am3026294
- C. Chen, Y. Yang, X. Tang, R. Qiu, S. Wang, G. Cao, M. Zhang, Graphene-encapsulated FeS2 in carbon fibers as high reversible anodes for Na+/K+ batteries in a wide temperature range. Small (2019). https://doi.org/10.1002/smll.201804740
- H. Park, J. Kwon, H. Choi, D. Shin, T. Song, X.W.D. Lou, Unusual Na(+) ion intercalation/deintercalation in metal-rich Cu1.8S for Na-ion batteries. ACS Nano 12(3), 2827–2837 (2018). https://doi.org/10.1021/acsnano.8b00118
- Z.T. Shi, W. Kang, J. Xu, L.L. Sun, C. Wu et al., In situ carbon-doped Mo(Se0.85S0.15)2 hierarchical nanotubes as stable anodes for high-performance sodium-ion batteries. Small 11(42), 5667–5674 (2015). https://doi.org/10.1002/smll.201501360
- Y.V. Lim, Y. Wang, D. Kong, L. Guo, J.I. Wong, L.K. Ang, H.Y. Yang, Cubic-shaped WS2 nanopetals on a prussian blue derived nitrogen-doped carbon nanoporous framework for high performance sodium-ion batteries. J. Mater. Chem. A 5(21), 10406–10415 (2017). https://doi.org/10.1039/C7TA01821E
- X. Xiong, W. Luo, X. Hu, C. Chen, L. Qie, D. Hou, Y. Huang, Flexible membranes of MoS2/C nanofibers by electrospinning as binder-free anodes for high-performance sodium-ion batteries. Sci. Rep. 5, 9254 (2015). https://doi.org/10.1038/srep09254
- H. Wang, X. Lan, D. Jiang, Y. Zhang, H. Zhong, Z. Zhang, Y. Jiang, Sodium storage and transport properties in pyrolysis synthesized MoSe2 nanoplates for high performance sodium-ion batteries. J. Power Sources 283, 187–194 (2015). https://doi.org/10.1016/j.jpowsour.2015.02.096
- K. Zhang, M. Park, L. Zhou, G.-H. Lee, W. Li, Y.-M. Kang, J. Chen, Urchin-like CoSe2 as a high-performance anode material for sodium-ion batteries. Adv. Funct. Mater. 26(37), 6728–6735 (2016). https://doi.org/10.1002/adfm.201602608
- C. Zhu, K. Song, P.A. van Aken, J. Maier, Y. Yu, Carbon-coated Na3V2(PO4)3 embedded in porous carbon matrix: an ultrafast Na-storage cathode with the potential of outperforming Li cathodes. Nano Lett. 14(4), 2175–2180 (2014). https://doi.org/10.1002/adfm.201602608
References
S.M. Lukic, J. Cao, R.C. Bansal, F. Rodriguez, A. Emadi, Energy storage systems for automotive applications. IEEE Trans. Ind. Electron. 55(6), 2258–2267 (2008). https://doi.org/10.1109/TIE.2008.918390
B. Dunn, H. Kamath, J.-M. Tarascon, Electrical energy storage for the grid: a battery of choices. Science 334(6058), 928–935 (2011). https://doi.org/10.1126/science.1212741
D.P. Dubal, O. Ayyad, V. Ruiz, P. Gomez-Romero, Hybrid energy storage: the merging of battery and supercapacitor chemistries. Chem. Soc. Rev. 44(7), 1777–1790 (2015). https://doi.org/10.1039/C4CS00266K
Z. Wang, L. Zhou, X.W. David Lou, Metal oxide hollow nanostructures for lithium-ion batteries. Adv. Mater. 24(14), 1903–1911 (2012). https://doi.org/10.1002/adma.201200469
Y. Ren, Z. Liu, F. Pourpoint, A.R. Armstrong, C.P. Grey, P.G. Bruce, Nanoparticulate TioO2(b): an anode for lithium-ion batteries. Angew. Chem. Int. Ed. 51(9), 2164–2167 (2012). https://doi.org/10.1002/anie.201108300
J.Y. Luo, W.J. Cui, P. He, Y.Y. Xia, Raising the cycling stability of aqueous lithium-ion batteries by eliminating oxygen in the electrolyte. Nat. Chem. 2(9), 760–765 (2010). https://doi.org/10.1038/nchem.763
M.D. Slater, D. Kim, E. Lee, C.S. Johnson, Sodium-ion batteries. Adv. Funct. Mater. 23(8), 947–958 (2013). https://doi.org/10.1002/adfm.201200691
Y. Yan, Y.-X. Yin, Y.-G. Guo, L.-J. Wan, A sandwich-like hierarchically porous carbon/graphene composite as a high-performance anode material for sodium-ion batteries. Adv. Energy Mater. 4(8), 1301584 (2014). https://doi.org/10.1002/aenm.201301584
P. Senguttuvan, S.-D. Han, S. Kim, A.L. Lipson, S. Tepavcevic et al., A high power rechargeable nonaqueous multivalent Zn/V2O5 battery. Adv. Energy Mater. 6(24), 1600826 (2016). https://doi.org/10.1002/aenm.201600826
C. Chen, Y. Yang, S. Ding, Z. Wei, X. Tang, P. Li, T. Wang, G. Cao, M. Zhang, S-doped carbon@TiO2 to store Li+/Na+ with high capacity and long life-time. Energy Storage Mater. 13, 215–222 (2018). https://doi.org/10.1016/j.ensm.2018.01.015
Z. Jian, W. Luo, X. Ji, Carbon electrodes for k-ion batteries. J. Am. Chem. Soc. 137(36), 11566–11569 (2015). https://doi.org/10.1021/jacs.5b06809
S.W. Kim, D.H. Seo, X. Ma, G. Ceder, K. Kang, Electrode materials for rechargeable sodium-ion batteries: potential alternatives to current lithium-ion batteries. Adv. Energy Mater. 2(7), 710–721 (2012). https://doi.org/10.1002/aenm.201200026
Y. Liu, F. Fan, J. Wang, Y. Liu, H. Chen et al., In situ transmission electron microscopy study of electrochemical sodiation and potassiation of carbon nanofibers. Nano Lett. 14(6), 3445–3452 (2014). https://doi.org/10.1021/nl500970a
W. Zhang, J. Mao, S. Li, Z. Chen, Z. Guo, Phosphorus-based alloy materials for advanced potassium-ion battery anode. J. Am. Chem. Soc. 139(9), 3316–3319 (2017). https://doi.org/10.1021/jacs.6b12185
N. Recham, G.l. Rousse, M.T. Sougrati, J.-Nl. Chotard, C. Frayret et al., Preparation and characterization of a stable FeSO4 F-based framework for alkali ion insertion electrodes. Chem. Mater. 24(22), 4363–4370 (2012). https://doi.org/10.1021/cm302428w
W. Wang, J. Zhou, Z. Wang, L. Zhao, P. Li, Y. Yang, C. Yang, H. Huang, S. Guo, Short-range order in mesoporous carbon boosts potassium-ion battery performance. Adv. Energy Mater. 8(5), 1701648 (2018). https://doi.org/10.1002/aenm.201701648
Y. Marcus, Thermodynamic functions of transfer of single ions from water to nonaqueous and mixed solvents: part 3-standard potentials of selected electrodes. Pure Appl. Chem. 57(8), 1129–1132 (1985). https://doi.org/10.1002/aenm.201701648
Z. Jian, Z. Xing, C. Bommier, Z. Li, X. Ji, Hard carbon microspheres: potassium-ion anode versus sodium-ion anode. Adv. Energy Mater. 6(3), 1501874 (2016). https://doi.org/10.1002/aenm.201501874
Y. Dong, Z.S. Wu, S. Zheng, X. Wang, J. Qin, S. Wang, X. Shi, X. Bao, Ti3C2 mxene-derived sodium/potassium titanate nanoribbons for high-performance sodium/potassium ion batteries with enhanced capacities. ACS Nano 11(5), 4792–4800 (2017). https://doi.org/10.1021/acsnano.7b01165
S. Zhang, B.V.R. Chowdari, Z. Wen, J. Jin, J. Yang, Constructing highly oriented configuration by few-layer MoS2: towards high-performance lithium-ion batteries and hydrogen evolution reactions. ACS Nano 9(12), 12464–12472 (2015). https://doi.org/10.1021/acsnano.5b05891
Q.H. Wang, K. Kalantarzadeh, A. Kis, J.N. Coleman, M.S. Strano, Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotech. 7(11), 699–712 (2012). https://doi.org/10.1038/nnano.2012.193
X. Meng, K. He, D. Su, X. Zhang, C. Sun et al., Gallium sulfide–single-walled carbon nanotube composites: high-performance anodes for lithium-ion batteries. Adv. Funct. Mater. 24(34), 5435–5442 (2014). https://doi.org/10.1002/adfm.201401002
D. Wolverson, S. Crampin, A.S. Kazemi, A. Ilie, S.J. Bending, Raman spectra of monolayer, few-layer, and bulk ReSe2: an anisotropic layered semiconductor. ACS Nano 8(11), 11154–11164 (2014). https://doi.org/10.1021/nn5053926
Q. Zhang, S. Tan, R.G. Mendes, Z. Sun, Y. Chen et al., Extremely weak van der waals coupling in vertical ReS2 nanowalls for high-current-density lithium-ion batteries. Adv. Mater. 28(13), 2616–2623 (2016). https://doi.org/10.1002/adma.201505498
M. Hafeez, L. Gan, H. Li, Y. Ma, T. Zhai, Chemical vapor deposition synthesis of ultrathin hexagonal ReSe2 flakes for anisotropic raman property and optoelectronic application. Adv. Mater. 28(37), 8296–8301 (2016). https://doi.org/10.1002/adma.201601977
S. Yang, C. Wang, H. Sahin, H. Chen, Y. Li et al., Tuning the optical, magnetic, and electrical properties of ReSe2 by nanoscale strain engineering. Nano Lett. 15(3), 1660–1666 (2015). https://doi.org/10.1021/nl504276u
C. Fang, G. Wiegers, C. Haas, R. De Groot, Electronic structures of, and in the real and the hypothetical undistorted structures. J. Phys.: Condense. Matter. 9(21), 4411 (1997). https://doi.org/10.1088/0953-8984/9/21/008
C. Ho, Y. Huang, K. Tiong, In-plane anisotropy of the optical and electrical properties of ReS2 and ReSe2 layered crystals. J. Alloys Compds. 317, 222–226 (2001). https://doi.org/10.1016/S0925-8388(00)01332-3
Z. Huang, Z. Chen, S. Ding, C. Chen, M. Zhang, Multi-protection from nanochannels and graphene of SnSb-graphene-carbon composites ensuring high properties for potassium-ion batteries. Solid State Ionics 324, 267–275 (2018). https://doi.org/10.1016/j.ssi.2018.07.019
Q. Wang, C. Guo, Y. Zhu, J. He, H. Wang, Reduced graphene oxide-wrapped FeS2 composite as anode for high-performance sodium-ion batteries. Nano-Micro Lett. 10(2), 30 (2017). https://doi.org/10.1007/s40820-017-0183-z
J. Liang, C. Yuan, H. Li, K. Fan, Z. Wei, H. Sun, J. Ma, Growth of SnO2 nanoflowers on N-doped carbon nanofibers as anode for Li- and Na-ion batteries. Nano-Micro Lett. 10(2), 21 (2017). https://doi.org/10.1007/s40820-017-0172-2
K. Tang, L. Fu, R.J. White, L. Yu, M.M. Titirici, M. Antonietti, J. Maier, Hollow carbon nanospheres with superior rate capability for sodium-based batteries. Adv. Energy Mater. 2(7), 873–877 (2012). https://doi.org/10.1002/aenm.201100691
J. Lu, C. Nan, L. Li, Q. Peng, Y. Li, Flexible SnS nanobelts: facile synthesis, formation mechanism and application in Li-ion batteries. Nano Res. 6(1), 55–64 (2013). https://doi.org/10.1002/aenm.201100691
T. Yang, Y. Liu, M. Zhang, Improving the electrochemical properties of Cr–SnO2 by multi-protecting method using graphene and carbon-coating. Solid State Ionics 308, 1–7 (2017). https://doi.org/10.1016/j.ssi.2017.05.011
M. Zhang, F. Yan, X. Tang, Q. Li, T. Wang, G. Cao, Flexible CoO–graphene–carbon nanofiber mats as binder-free anodes for lithium-ion batteries with superior rate capacity and cyclic stability. J. Mater. Chem. A 2(16), 5890–5897 (2014). https://doi.org/10.1039/C4TA00311J
X. Zhang, X. Fan, C. Yan, H. Li, Y. Zhu, X. Li, L. Yu, Interfacial microstructure and properties of carbon fiber composites modified with graphene oxide. ACS Appl. Mater. Interfaces. 4(3), 1543–1552 (2012). https://doi.org/10.1021/am201757v
F. Zhang, C. Xia, J. Zhu, B. Ahmed, H. Liang, D.B. Velusamy, U. Schwingenschlögl, H.N. Alshareef, SnSe2 2D anodes for advanced sodium ion batteries. Adv. Energy Mater. 6(22), 1601188 (2016). https://doi.org/10.1002/aenm.201601188
G. Wang, J. Yang, J. Park, X. Gou, B. Wang, H. Liu, J. Yao, Facile synthesis and characterization of graphene nanosheets. J. Phys. Chem. C 112(22), 8192–8195 (2008). https://doi.org/10.1021/jp710931h
Z. Ali, T. Tang, X. Huang, Y. Wang, M. Asif, Y. Hou, Cobalt selenide decorated carbon spheres for excellent cycling performance of sodium ion batteries. Energy Storage Mater. 13, 19–28 (2018). https://doi.org/10.1016/j.ensm.2017.12.014
Y. Huang, H. Lu, H. Gu, J. Fu, S. Mo, C. Wei, Y.E. Miao, T. Liu, A CNT@MoSe2 hybrid catalyst for efficient and stable hydrogen evolution. Nanoscale 7(44), 18595–18602 (2015). https://doi.org/10.1039/C5NR05739F
M. Mao, C. Cui, M. Wu, M. Zhang, T. Gao et al., Flexible ReS2 nanosheets/N-doped carbon nanofibers-based paper as a universal anode for alkali (Li, Na, K) ion battery. Nano Energy 45, 346–352 (2018). https://doi.org/10.1016/j.nanoen.2018.01.001
Z. Li, Y. Chen, Z. Jian, H. Jiang, J.J. Razink, W.F. Stickle, J.C. Neuefeind, X. Ji, Defective hard carbon anode for Na-ion batteries. Chem. Mater. 30(14), 4536–4542 (2018). https://doi.org/10.1021/acs.chemmater.8b00645
G. Zhang, J. Zhu, W. Zeng, S. Hou, F. Gong, F. Li, C.C. Li, H. Duan, Tin quantum dots embedded in nitrogen-doped carbon nanofibers as excellent anode for lithium-ion batteries. Nano Energy 9, 61–70 (2014). https://doi.org/10.1016/j.nanoen.2014.06.030
J. Gao, L. Li, J. Tan, H. Sun, B. Li, J.C. Idrobo, C.V. Singh, T.M. Lu, N. Koratkar, Vertically oriented arrays of ReS2 nanosheets for electrochemical energy storage and electrocatalysis. Nano Lett. 16(6), 3780–3787 (2016). https://doi.org/10.1021/acs.nanolett.6b01180
B. Jariwala, D. Voiry, A. Jindal, B.A. Chalke, R. Bapat, A. Thamizhavel, M. Chhowalla, M. Deshmukh, A. Bhattacharya, Synthesis and characterization of ReS2 and ReSe2 layered chalcogenide single crystals. Chem. Mater. 28(10), 3352–3359 (2016). https://doi.org/10.1021/acs.chemmater.6b00364
F. Qi, Y. Chen, B. Zheng, J. He, Q. Li et al., 3D chrysanthemum-like ReS2 microspheres composed of curly few-layered nanosheets with enhanced electrochemical properties for lithium-ion batteries. J. Mater. Sci. 52(7), 3622–3629 (2016). https://doi.org/10.1007/s10853-016-0500-9
Y. Liu, H. Kang, L. Jiao, C. Chen, K. Cao, Y. Wang, H. Yuan, Exfoliated-SnS2 restacked on graphene as a high-capacity, high-rate, and long-cycle life anode for sodium ion batteries. Nanoscale 7(4), 1325–1332 (2015). https://doi.org/10.1039/C4NR05106H
N. Zhang, Y. Liu, Y. Lu, X. Han, F. Cheng, J. Chen, Spherical nano-Sb@C composite as a high-rate and ultra-stable anode material for sodium-ion batteries. Nano Res. 8(10), 3384–3393 (2015). https://doi.org/10.1007/s12274-015-0838-3
X. Cao, Y. Shi, W. Shi, X. Rui, Q. Yan, J. Kong, H. Zhang, Preparation of MoS2-coated three-dimensional graphene networks for high-performance anode material in lithium-ion batteries. Small 9(20), 3433–3438 (2013). https://doi.org/10.1002/smll.201202697
F. Qi, J. He, Y. Chen, B. Zheng, Q. Li et al., Few-layered ReS2 nanosheets grown on carbon nanotubes: a highly efficient anode for high-performance lithium-ion batteries. Chem. Eng. J. 315, 10–17 (2017). https://doi.org/10.1016/j.cej.2017.01.004
X. Zhou, L.J. Wan, Y.G. Guo, Binding SnO2 nanocrystals in nitrogen-doped graphene sheets as anode materials for lithium-ion batteries. Adv. Mater. 25(15), 2152–2157 (2013). https://doi.org/10.1002/adma.201300071
J. Li, S. Xiong, Y. Liu, Z. Ju, Y. Qian, High electrochemical performance of monodisperse NiCo2O4 mesoporous microspheres as an anode material for Li-ion batteries. ACS Appl. Mater. Interfaces 5(3), 981–988 (2013). https://doi.org/10.1021/am3026294
C. Chen, Y. Yang, X. Tang, R. Qiu, S. Wang, G. Cao, M. Zhang, Graphene-encapsulated FeS2 in carbon fibers as high reversible anodes for Na+/K+ batteries in a wide temperature range. Small (2019). https://doi.org/10.1002/smll.201804740
H. Park, J. Kwon, H. Choi, D. Shin, T. Song, X.W.D. Lou, Unusual Na(+) ion intercalation/deintercalation in metal-rich Cu1.8S for Na-ion batteries. ACS Nano 12(3), 2827–2837 (2018). https://doi.org/10.1021/acsnano.8b00118
Z.T. Shi, W. Kang, J. Xu, L.L. Sun, C. Wu et al., In situ carbon-doped Mo(Se0.85S0.15)2 hierarchical nanotubes as stable anodes for high-performance sodium-ion batteries. Small 11(42), 5667–5674 (2015). https://doi.org/10.1002/smll.201501360
Y.V. Lim, Y. Wang, D. Kong, L. Guo, J.I. Wong, L.K. Ang, H.Y. Yang, Cubic-shaped WS2 nanopetals on a prussian blue derived nitrogen-doped carbon nanoporous framework for high performance sodium-ion batteries. J. Mater. Chem. A 5(21), 10406–10415 (2017). https://doi.org/10.1039/C7TA01821E
X. Xiong, W. Luo, X. Hu, C. Chen, L. Qie, D. Hou, Y. Huang, Flexible membranes of MoS2/C nanofibers by electrospinning as binder-free anodes for high-performance sodium-ion batteries. Sci. Rep. 5, 9254 (2015). https://doi.org/10.1038/srep09254
H. Wang, X. Lan, D. Jiang, Y. Zhang, H. Zhong, Z. Zhang, Y. Jiang, Sodium storage and transport properties in pyrolysis synthesized MoSe2 nanoplates for high performance sodium-ion batteries. J. Power Sources 283, 187–194 (2015). https://doi.org/10.1016/j.jpowsour.2015.02.096
K. Zhang, M. Park, L. Zhou, G.-H. Lee, W. Li, Y.-M. Kang, J. Chen, Urchin-like CoSe2 as a high-performance anode material for sodium-ion batteries. Adv. Funct. Mater. 26(37), 6728–6735 (2016). https://doi.org/10.1002/adfm.201602608
C. Zhu, K. Song, P.A. van Aken, J. Maier, Y. Yu, Carbon-coated Na3V2(PO4)3 embedded in porous carbon matrix: an ultrafast Na-storage cathode with the potential of outperforming Li cathodes. Nano Lett. 14(4), 2175–2180 (2014). https://doi.org/10.1002/adfm.201602608