Nonswelling Lubricative Nanocolloidal Hydrogel Resistant to Biodegradation
Corresponding Author: Yunfeng Li
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 327
Abstract
Hydrogels derived from biopolymers have numerous applications in bioengineering, drug delivery, wound healing, and wearable devices. Yet, their strong swelling and uncontrollable degradation stimulate the development of hydrogels that overcome these limitations. Here, we report nanocolloidal hydrogels formed from nanoparticles of methacryloyl-modified biopolymers that exhibit resistance to swelling and enzymatic degradation both in vitro and in vivo, along with exhibiting a broad-range of mechanical and lubrication properties, wear resistance and biocompatibility. The nonswelling behavior of nanocolloidal hydrogels takes origin in the resistance to swelling of their hydrophobic regions which are resulted from the nanophase of hydrophobic methacryloyl groups in the interior of the constituent nanoparticles. The developed approach to the preparation of nanocolloidal hydrogel with greatly enhanced properties will have applications in long-term drug delivery and cell culture, soft tissue augmentation, and implantable bioelectronics.
Highlights:
1 Novel nanocolloidal hydrogels form nanoparticles of methacryloyl-modified biopolymers.
2 The nanocolloidal hydrogels exhibit tunable mechanical properties, nonswelling behavior, excellent biodegradation resistance, and good biocompatibility.
3 The nanocolloidal hydrogels show outstanding lubrication with a friction coefficient as low as ~ 0.0018.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Y.S. Zhang, A. Khademhosseini, Advances in engineering hydrogels. Science 356(6337), eaaf3627 (2017). https://doi.org/10.1126/science.aaf3627
- Y. Li, E. Kumacheva, Hydrogel microenvironments for cancer spheroid growth and drug screening. Sci. Adv. 4(4), eaas8998 (2018). https://doi.org/10.1126/sciadv.aas8998
- S.R. Caliari, J.A. Burdick, A practical guide to hydrogels for cell culture. Nat. Methods 13(5), 405–414 (2016). https://doi.org/10.1038/nmeth.3839
- E. Prince, E. Kumacheva, Design and applications of man-made biomimetic fibrillar hydrogels. Nat. Rev. Mater. 4(2), 99–115 (2019). https://doi.org/10.1038/s41578-018-0077-9
- S. Correa, A.K. Grosskopf, H. Lopez Hernandez, D. Chan, A.C. Yu et al., Translational applications of hydrogels. Chem. Rev. 121(18), 11385–11457 (2021). https://doi.org/10.1021/acs.chemrev.0c01177
- K. Hayashi, F. Okamoto, S. Hoshi, T. Katashima, D.C. Zujur et al., Fast-forming hydrogel with ultralow polymeric content as an artificial vitreous body. Nat. Biomed. Eng. 1, 0044 (2017). https://doi.org/10.1038/s41551-017-0044
- T.M. O’Shea, A.A. Aimetti, E. Kim, V. Yesilyurt, R. Langer, Synthesis and characterization of a library of in situ curing, nonswelling ethoxylated polyol thiol-ene hydrogels for tailorable macromolecule delivery. Adv. Mater. 27(1), 65–72 (2015). https://doi.org/10.1002/adma.201403724
- Z.L. Wu, M. Moshe, J. Greener, H. Therien-Aubin, Z. Nie et al., Three-dimensional shape transformations of hydrogel sheets induced by small-scale modulation of internal stresses. Nat. Commun. 4, 1586 (2013). https://doi.org/10.1038/ncomms2549
- F. Zhao, X. Zhou, Y. Liu, Y. Shi, Y. Dai et al., Super moisture-absorbent gels for all-weather atmospheric water harvesting. Adv. Mater. 31(10), 1806446 (2019). https://doi.org/10.1002/adma.201806446
- F. Chen, P.W. Tillberg, E.S. Boyden, Expansion Microscopy. Science 347, 543–548 (2015). https://doi.org/10.1126/science.1260088
- H. Kamata, Y. Akagi, Y. Kayasuga-Kariya, U.-I. Chung, T. Sakai, “Nonswellable” hydrogel without mechanical hysteresis. Science 343(6173), 873–875 (2014). https://doi.org/10.1126/science.1247811
- I.K. Han, K.-I. Song, S.-M. Jung, Y. Jo, J. Kwon et al., Electroconductive, adhesive, non-swelling, and viscoelastic hydrogels for bioelectronics. Adv. Mater. 35(4), 2203431 (2023). https://doi.org/10.1002/adma.202203431
- Q. Gao, F. Sun, Y. Li, L. Li, M. Liu et al., Biological tissue-inspired ultrasoft, ultrathin, and mechanically enhanced microfiber composite hydrogel for flexible bioelectronics. Nano-Micro Lett. 15(1), 139 (2023). https://doi.org/10.1007/s40820-023-01096-4
- B.J. Neuman, K. Radcliff, J. Rihn, Cauda equina syndrome after a TLIF resulting from postoperative expansion of a hydrogel dural sealant. Clin. Orthop. Relat. Res. 470(6), 1640–1645 (2012). https://doi.org/10.1007/s11999-011-2071-z
- S.-H. Lee, C.-W. Park, S.-G. Lee, W.-K. Kim, Postoperative cervical cord compression induced by hydrogel dural sealant (DuraSeal®). Korean J. Spine 10(1), 44–46 (2013). https://doi.org/10.14245/kjs.2013.10.1.44
- M. Roldá N-Pallarés, J. Herná Ndez-Montero, F. Llanes, J.E. Ferná Ndez-Rubio, F. Ortega, MIRAgel hydrolytic degradation and long-term observations. Arch. Ophthalmol. 125, 511–514 (2007). https://doi.org/10.1001/archopht.125.4.511
- F.I. Tolentino, M. Roldan, J. Nassif, M.F. Refojo, Hydrogel implant for scleral buckling long-term observations. Retina 5(1), 38–41 (1985). https://doi.org/10.1097/00006982-198500510-00008
- J.F. Marin, F.I. Tolentino, M.F. Refojo, C.L. Schepens, Long-term complications of the MAI hydrogel intrascleral buckling implant. Arch. Ophthalmol. 110(1), 86–88 (1992). https://doi.org/10.1001/archopht.1992.01080130088031
- V. Delplace, P.E.B. Nickerson, A. Ortin-Martinez, A.E.G. Baker, V.A. Wallace et al., Nonswelling, ultralow content inverse electron-demand Diels–alder hyaluronan hydrogels with tunable gelation time: synthesis and in vitro evaluation. Adv. Funct. Mater. 30(14), 1903978 (2020). https://doi.org/10.1002/adfm.201903978
- L. Xu, S. Gao, Q. Guo, C. Wang, Y. Qiao et al., A solvent-exchange strategy to regulate noncovalent interactions for strong and antiswelling hydrogels. Adv. Mater. 32(52), 2004579 (2020). https://doi.org/10.1002/adma.202004579
- Y. Liu, J. Song, Z. Liu, J. Chen, D. Wang et al., Anti-swelling polyelectrolyte hydrogel with submillimeter lateral confinement for osmotic energy conversion. Nano-Micro Lett. 17(1), 81 (2024). https://doi.org/10.1007/s40820-024-01577-0
- Z. Qin, X. Yu, H. Wu, J. Li, H. Lv et al., Nonswellable and tough supramolecular hydrogel based on strong micelle cross-linkings. Biomacromolecules 20(9), 3399–3407 (2019). https://doi.org/10.1021/acs.biomac.9b00666
- M. Pi, S. Qin, S. Wen, Z. Wang, X. Wang et al., Rapid gelation of tough and anti-swelling hydrogels under mild conditions for underwater communication. Adv. Funct. Mater. 33(1), 2210188 (2023). https://doi.org/10.1002/adfm.202210188
- G. Tian, D. Yang, C. Liang, Y. Liu, J. Chen et al., A nonswelling hydrogel with regenerable high wet tissue adhesion for bioelectronics. Adv. Mater. 35(18), 2212302 (2023). https://doi.org/10.1002/adma.202212302
- S. Bian, L. Hao, X. Qiu, J. Wu, H. Chang et al., An injectable rapid-adhesion and anti-swelling adhesive hydrogel for hemostasis and wound sealing. Adv. Funct. Mater. 32(46), 2207741 (2022). https://doi.org/10.1002/adfm.202207741
- F. Jia, J.M. Kubiak, M. Onoda, Y. Wang, R.J. MacFarlane, Design and synthesis of quick setting nonswelling hydrogels via brush polymers. Adv. Sci. 8(16), 2100968 (2021). https://doi.org/10.1002/advs.202100968
- H. Kamata, K. Kushiro, M. Takai, U.-I. Chung, T. Sakai, Non-osmotic hydrogels: a rational strategy for safely degradable hydrogels. Angew. Chem. Int. Ed. 55(32), 9282–9286 (2016). https://doi.org/10.1002/anie.201602610
- S. Wang, J. Liu, L. Wang, H. Cai, Q. Wang et al., Underwater adhesion and anti-swelling hydrogels. Adv. Mater. Technol. 8(6), 2201477 (2023). https://doi.org/10.1002/admt.202201477
- X. Dou, H. Wang, F. Yang, H. Shen, X. Wang et al., One-step soaking strategy toward anti-swelling hydrogels with a stiff “armor.” Adv. Sci. 10(9), 2206242 (2023). https://doi.org/10.1002/advs.202206242
- H.J. Kim, H. Kim, Y.H. Choi, E.S. Lee, Y.H. Kim et al., Rapid fabrication of tendon-inspired ultrastrong, water-rich hydrogel fibers: synergistic engineering of cyano- p-aramid nanofibers and poly(vinyl alcohol). ACS Nano 19(8), 8316–8327 (2025). https://doi.org/10.1021/acsnano.4c18686
- Y. Zhang, Z. Xu, Y. Yuan, C. Liu, M. Zhang et al., Flexible antiswelling photothermal-therapy MXene hydrogel-based epidermal sensor for intelligent human–machine interfacing. Adv. Funct. Mater. 33(21), 2300299 (2023). https://doi.org/10.1002/adfm.202300299
- S.M. Morozova, A. Gevorkian, E. Kumacheva, Design, characterization and applications of nanocolloidal hydrogels. Chem. Soc. Rev. 52(15), 5317–5339 (2023). https://doi.org/10.1039/d3cs00387f
- B. Sui, Y. Zhu, X. Jiang, Y. Wang, N. Zhang et al., Recastable assemblies of carbon dots into mechanically robust macroscopic materials. Nat. Commun. 14(1), 6782 (2023). https://doi.org/10.1038/s41467-023-42516-8
- Y. Jiang, Z. Xu, T. Huang, Y. Liu, F. Guo et al., Direct 3D printing of ultralight graphene oxide aerogel microlattices. Adv. Funct. Mater. 28(16), 1707024 (2018). https://doi.org/10.1002/adfm.201707024
- B. Xie, R.L. Parkhill, W.L. Warren, J.E. Smay, Direct writing of three-dimensional polymer scaffolds using colloidal gels. Adv. Funct. Mater. 16(13), 1685–1693 (2006). https://doi.org/10.1002/adfm.200500666
- Y. Huang, S.M. Morozova, T. Li, S. Li, H.E. Naguib et al., Stimulus-responsive transport properties of nanocolloidal hydrogels. Biomacromolecules 24(3), 1173–1183 (2023). https://doi.org/10.1021/acs.biomac.2c01222
- E.C. Cho, J.W. Kim, A. Fernandez-Nieves, D.A. Weitz, Highly responsive hydrogel scaffolds formed by three-dimensional organization of microgel nanops. Nano Lett. 8(1), 168–172 (2008). https://doi.org/10.1021/nl072346e
- F. Varrato, L. Di Michele, M. Belushkin, G. Foffi, Arrested demixing opens route to bigels. Proc. Natl. Acad. Sci. U.S.A. 109(47), 19155–19160 (2012). https://doi.org/10.1073/pnas.1214971109
- Y. Li, N. Khuu, A. Gevorkian, S. Sarjinsky, H. Therien-Aubin et al., Supramolecular nanofibrillar thermoreversible hydrogel for growth and release of cancer spheroids. Angew. Chem. Int. Ed. 56(22), 6083–6087 (2017). https://doi.org/10.1002/anie.201610353
- S.M. Morozova, T.G. Statsenko, E.O. Ryabchenko, A. Gevorkian, V. Adibnia et al., Multicolored nanocolloidal hydrogel inks. Adv. Funct. Mater. 31(52), 2105470 (2021). https://doi.org/10.1002/adfm.202105470
- Z. Li, G. Wang, Y. Wang, H. Li, Reversible phase transition of robust luminescent hybrid hydrogels. Angew. Chem. Int. Ed. 57(8), 2194–2198 (2018). https://doi.org/10.1002/anie.201712670
- Y. Zhang, Y. Wang, H. Wang, Y. Yu, Q. Zhong et al., Super-elastic magnetic structural color hydrogels. Small 15(35), 1902198 (2019). https://doi.org/10.1002/smll.201902198
- M. Alizadehgiashi, N. Khuu, A. Khabibullin, A. Henry, M. Tebbe et al., Nanocolloidal hydrogel for heavy metal scavenging. ACS Nano 12(8), 8160–8168 (2018). https://doi.org/10.1021/acsnano.8b03202
- J. Cao, Z. Zhou, Q. Song, K. Chen, G. Su et al., Ultrarobust Ti3C2Tx MXene-based soft actuators via bamboo-inspired mesoscale assembly of hybrid nanostructures. ACS Nano 14(6), 7055–7065 (2020). https://doi.org/10.1021/acsnano.0c01779
- J.A. Burdick, C. Chung, X. Jia, M.A. Randolph, R. Langer, Controlled degradation and mechanical behavior of photopolymerized hyaluronic acid networks. Biomacromolecules 6(1), 386–391 (2005). https://doi.org/10.1021/bm049508a
- N. Huebsch, P.R. Arany, A.S. Mao, D. Shvartsman, O.A. Ali et al., Harnessing traction-mediated manipulation of the cell/matrix interface to control stem-cell fate. Nat. Mater. 9(6), 518–526 (2010). https://doi.org/10.1038/nmat2732
- Y. Li, N. Khuu, E. Prince, H. Tao, N. Zhang et al., Matrix stiffness-regulated growth of breast tumor spheroids and their response to chemotherapy. Biomacromolecules 22(2), 419–429 (2021). https://doi.org/10.1021/acs.biomac.0c01287
- Z. Li, W. Xu, J. Yang, J. Wang, J. Wang et al., A tumor microenvironments-adapted polypeptide hydrogel/nanogel composite boosts antitumor molecularly targeted inhibition and immunoactivation. Adv. Mater. 34(21), 2200449 (2022). https://doi.org/10.1002/adma.202200449
- X. Zhang, K. Shi, X. Yang, J. Wang, H. Liu et al., Supramolecular semi-convertible hydrogel enabled self-healing responsive lubrication under dynamic shearing. CCS Chem. 5(11), 2482–2496 (2023). https://doi.org/10.31635/ccschem.023.202202670
- D.P. Link, J. van den Dolder, J.J. van den Beucken, V.M. Cuijpers, J.G. Wolke et al., Evaluation of the biocompatibility of calcium phosphate cement/PLGA microp composites. J. Biomed. Mater. Res. A 87(3), 760–769 (2008). https://doi.org/10.1002/jbm.a.31831
- D. Li, H. Sun, L. Jiang, K. Zhang, W. Liu et al., Enhanced biocompatibility of PLGA nanofibers with gelatin/nano-hydroxyapatite bone biomimetics incorporation. ACS Appl. Mater. Interfaces 6(12), 9402–9410 (2014). https://doi.org/10.1021/am5017792
- A. Jahanban-Esfahlan, S. Dastmalchi, S. Davaran, A simple improved desolvation method for the rapid preparation of albumin nanops. Int. J. Biol. Macromol. 91, 703–709 (2016). https://doi.org/10.1016/j.ijbiomac.2016.05.032
- A. Fakhari, Q. Phan, C. Berkland, Hyaluronic acid colloidal gels as self-assembling elastic biomaterials. J. Biomed. Mater. Res. Part B Appl. Biomater. 102(3), 612–618 (2014). https://doi.org/10.1002/jbm.b.33041
- W. Wu, H. Feng, L. Xie, A. Zhang, F. Liu et al., Reprocessable and ultratough epoxy thermosetting plastic. Nat. Sustain. 7(6), 804–811 (2024). https://doi.org/10.1038/s41893-024-01331-9
- C.F. Guimarães, L. Gasperini, A.P. Marques, R.L. Reis, The stiffness of living tissues and its implications for tissue engineering. Nat. Rev. Mater. 5(5), 351–370 (2020). https://doi.org/10.1038/s41578-019-0169-1
- D. Liu, P. Jiang, Y. Wang, Y. Lu, J. Wu et al., Engineering tridimensional hydrogel tissue and organ phantoms with tunable springiness. Adv. Funct. Mater. 33(17), 2214885 (2023). https://doi.org/10.1002/adfm.202214885
- J.P. Gong, T. Kurokawa, T. Narita, G. Kagata, Y. Osada et al., Synthesis of hydrogels with extremely low surface friction. J. Am. Chem. Soc. 123(23), 5582–5583 (2001). https://doi.org/10.1021/ja003794q
- S. Lee, N.D. Spencer, Sweet, hairy, soft, and slippery. Science 319(5863), 575–576 (2008). https://doi.org/10.1126/science.1153273
- J. Kim, G. Zhang, M. Shi, Z. Suo, Fracture, fatigue, and friction of polymers in which entanglements greatly outnumber cross-links. Science 374(6564), 212–216 (2021). https://doi.org/10.1126/science.abg6320
- J.P. Gong, Friction and lubrication of hydrogels-its richness and complexity. Soft Matter 2(7), 544–552 (2006). https://doi.org/10.1039/b603209p
- W. Lin, J. Klein, Hydration lubrication in biomedical applications: from cartilage to hydrogels. Acc. Mater. Res. 3(2), 213–223 (2022). https://doi.org/10.1021/accountsmr.1c00219
- M. Fujiki, M. Ito, K. Mortensen, S. Yashima, M. Tokita et al., Friction coefficient of well-defined hydrogel networks. Macromolecules 49(2), 634–642 (2016). https://doi.org/10.1021/acs.macromol.5b01997
- P. Liu, Y. Zhang, Y. Guan, Y. Zhang, Peptide-crosslinked, highly entangled hydrogels with excellent mechanical properties but ultra-low solid content. Adv. Mater. 35(13), 2210021 (2023). https://doi.org/10.1002/adma.202210021
- S. Xiao, B. Ren, L. Huang, M. Shen, Y. Zhang et al., Salt-responsive zwitterionic polymer brushes with anti-polyelectrolyte property. Curr. Opin. Chem. Eng. 19, 86–93 (2018). https://doi.org/10.1016/j.coche.2017.12.008
- X. Li, Y. Tsutsui, T. Matsunaga, M. Shibayama, U.-I. Chung et al., Precise control and prediction of hydrogel degradation behavior. Macromolecules 44(9), 3567–3571 (2011). https://doi.org/10.1021/ma2004234
- H. Duan, M. Donovan, F. Hernandez, C. Di Primo, E. Garanger et al., Hyaluronic-acid-presenting self-assembled nanops transform a hyaluronidase HYAL1 substrate into an efficient and selective inhibitor. Angew. Chem. Int. Ed. 59(32), 13591–13596 (2020). https://doi.org/10.1002/anie.202005212
- O. Veiseh, A.J. Vegas, Domesticating the foreign body response: recent advances and applications. Adv. Drug Deliv. Rev. 144, 148–161 (2019). https://doi.org/10.1016/j.addr.2019.08.010
- W. Chang, L. Chen, K. Chen, The bioengineering application of hyaluronic acid in tissue regeneration and repair. Int. J. Biol. Macromol. 270, 132454 (2024). https://doi.org/10.1016/j.ijbiomac.2024.132454
- L. Zhang, H. Ren, L. Wu, Z. Liu, A. Xie et al., Recent advances in gel coatings: from lab to industry. J. Mater. Chem. A 12(30), 18901–18920 (2024). https://doi.org/10.1039/d4ta02586e
- V.G. Muir, J.A. Burdick, Chemically modified biopolymers for the formation of biomedical hydrogels. Chem. Rev. 121(18), 10908–10949 (2021). https://doi.org/10.1021/acs.chemrev.0c00923
- Y. Wang, Y. Duan, B. Yang, Y. Li, Nanocomposite hydrogel bioinks for 3D bioprinting of tumor models. Biomacromolecules 25(8), 5288–5299 (2024). https://doi.org/10.1021/acs.biomac.4c00671
- Y. Wang, J. Li, Y. Li, B. Yang, Biomimetic bioinks of nanofibrillar polymeric hydrogels for 3D bioprinting. Nano Today 39, 101180 (2021). https://doi.org/10.1016/j.nantod.2021.101180
- K. Yao, G. Hong, X. Yuan, W. Kong, P. Xia et al., 3D printing of tough hydrogel scaffolds with functional surface structures for tissue regeneration. Nano-Micro Lett. 17(1), 27 (2024). https://doi.org/10.1007/s40820-024-01524-z
- J.A. Burdick, G.D. Prestwich, Hyaluronic acid hydrogels for biomedical applications. Adv. Mater. 23(12), H41–H56 (2011). https://doi.org/10.1002/adma.201003963
References
Y.S. Zhang, A. Khademhosseini, Advances in engineering hydrogels. Science 356(6337), eaaf3627 (2017). https://doi.org/10.1126/science.aaf3627
Y. Li, E. Kumacheva, Hydrogel microenvironments for cancer spheroid growth and drug screening. Sci. Adv. 4(4), eaas8998 (2018). https://doi.org/10.1126/sciadv.aas8998
S.R. Caliari, J.A. Burdick, A practical guide to hydrogels for cell culture. Nat. Methods 13(5), 405–414 (2016). https://doi.org/10.1038/nmeth.3839
E. Prince, E. Kumacheva, Design and applications of man-made biomimetic fibrillar hydrogels. Nat. Rev. Mater. 4(2), 99–115 (2019). https://doi.org/10.1038/s41578-018-0077-9
S. Correa, A.K. Grosskopf, H. Lopez Hernandez, D. Chan, A.C. Yu et al., Translational applications of hydrogels. Chem. Rev. 121(18), 11385–11457 (2021). https://doi.org/10.1021/acs.chemrev.0c01177
K. Hayashi, F. Okamoto, S. Hoshi, T. Katashima, D.C. Zujur et al., Fast-forming hydrogel with ultralow polymeric content as an artificial vitreous body. Nat. Biomed. Eng. 1, 0044 (2017). https://doi.org/10.1038/s41551-017-0044
T.M. O’Shea, A.A. Aimetti, E. Kim, V. Yesilyurt, R. Langer, Synthesis and characterization of a library of in situ curing, nonswelling ethoxylated polyol thiol-ene hydrogels for tailorable macromolecule delivery. Adv. Mater. 27(1), 65–72 (2015). https://doi.org/10.1002/adma.201403724
Z.L. Wu, M. Moshe, J. Greener, H. Therien-Aubin, Z. Nie et al., Three-dimensional shape transformations of hydrogel sheets induced by small-scale modulation of internal stresses. Nat. Commun. 4, 1586 (2013). https://doi.org/10.1038/ncomms2549
F. Zhao, X. Zhou, Y. Liu, Y. Shi, Y. Dai et al., Super moisture-absorbent gels for all-weather atmospheric water harvesting. Adv. Mater. 31(10), 1806446 (2019). https://doi.org/10.1002/adma.201806446
F. Chen, P.W. Tillberg, E.S. Boyden, Expansion Microscopy. Science 347, 543–548 (2015). https://doi.org/10.1126/science.1260088
H. Kamata, Y. Akagi, Y. Kayasuga-Kariya, U.-I. Chung, T. Sakai, “Nonswellable” hydrogel without mechanical hysteresis. Science 343(6173), 873–875 (2014). https://doi.org/10.1126/science.1247811
I.K. Han, K.-I. Song, S.-M. Jung, Y. Jo, J. Kwon et al., Electroconductive, adhesive, non-swelling, and viscoelastic hydrogels for bioelectronics. Adv. Mater. 35(4), 2203431 (2023). https://doi.org/10.1002/adma.202203431
Q. Gao, F. Sun, Y. Li, L. Li, M. Liu et al., Biological tissue-inspired ultrasoft, ultrathin, and mechanically enhanced microfiber composite hydrogel for flexible bioelectronics. Nano-Micro Lett. 15(1), 139 (2023). https://doi.org/10.1007/s40820-023-01096-4
B.J. Neuman, K. Radcliff, J. Rihn, Cauda equina syndrome after a TLIF resulting from postoperative expansion of a hydrogel dural sealant. Clin. Orthop. Relat. Res. 470(6), 1640–1645 (2012). https://doi.org/10.1007/s11999-011-2071-z
S.-H. Lee, C.-W. Park, S.-G. Lee, W.-K. Kim, Postoperative cervical cord compression induced by hydrogel dural sealant (DuraSeal®). Korean J. Spine 10(1), 44–46 (2013). https://doi.org/10.14245/kjs.2013.10.1.44
M. Roldá N-Pallarés, J. Herná Ndez-Montero, F. Llanes, J.E. Ferná Ndez-Rubio, F. Ortega, MIRAgel hydrolytic degradation and long-term observations. Arch. Ophthalmol. 125, 511–514 (2007). https://doi.org/10.1001/archopht.125.4.511
F.I. Tolentino, M. Roldan, J. Nassif, M.F. Refojo, Hydrogel implant for scleral buckling long-term observations. Retina 5(1), 38–41 (1985). https://doi.org/10.1097/00006982-198500510-00008
J.F. Marin, F.I. Tolentino, M.F. Refojo, C.L. Schepens, Long-term complications of the MAI hydrogel intrascleral buckling implant. Arch. Ophthalmol. 110(1), 86–88 (1992). https://doi.org/10.1001/archopht.1992.01080130088031
V. Delplace, P.E.B. Nickerson, A. Ortin-Martinez, A.E.G. Baker, V.A. Wallace et al., Nonswelling, ultralow content inverse electron-demand Diels–alder hyaluronan hydrogels with tunable gelation time: synthesis and in vitro evaluation. Adv. Funct. Mater. 30(14), 1903978 (2020). https://doi.org/10.1002/adfm.201903978
L. Xu, S. Gao, Q. Guo, C. Wang, Y. Qiao et al., A solvent-exchange strategy to regulate noncovalent interactions for strong and antiswelling hydrogels. Adv. Mater. 32(52), 2004579 (2020). https://doi.org/10.1002/adma.202004579
Y. Liu, J. Song, Z. Liu, J. Chen, D. Wang et al., Anti-swelling polyelectrolyte hydrogel with submillimeter lateral confinement for osmotic energy conversion. Nano-Micro Lett. 17(1), 81 (2024). https://doi.org/10.1007/s40820-024-01577-0
Z. Qin, X. Yu, H. Wu, J. Li, H. Lv et al., Nonswellable and tough supramolecular hydrogel based on strong micelle cross-linkings. Biomacromolecules 20(9), 3399–3407 (2019). https://doi.org/10.1021/acs.biomac.9b00666
M. Pi, S. Qin, S. Wen, Z. Wang, X. Wang et al., Rapid gelation of tough and anti-swelling hydrogels under mild conditions for underwater communication. Adv. Funct. Mater. 33(1), 2210188 (2023). https://doi.org/10.1002/adfm.202210188
G. Tian, D. Yang, C. Liang, Y. Liu, J. Chen et al., A nonswelling hydrogel with regenerable high wet tissue adhesion for bioelectronics. Adv. Mater. 35(18), 2212302 (2023). https://doi.org/10.1002/adma.202212302
S. Bian, L. Hao, X. Qiu, J. Wu, H. Chang et al., An injectable rapid-adhesion and anti-swelling adhesive hydrogel for hemostasis and wound sealing. Adv. Funct. Mater. 32(46), 2207741 (2022). https://doi.org/10.1002/adfm.202207741
F. Jia, J.M. Kubiak, M. Onoda, Y. Wang, R.J. MacFarlane, Design and synthesis of quick setting nonswelling hydrogels via brush polymers. Adv. Sci. 8(16), 2100968 (2021). https://doi.org/10.1002/advs.202100968
H. Kamata, K. Kushiro, M. Takai, U.-I. Chung, T. Sakai, Non-osmotic hydrogels: a rational strategy for safely degradable hydrogels. Angew. Chem. Int. Ed. 55(32), 9282–9286 (2016). https://doi.org/10.1002/anie.201602610
S. Wang, J. Liu, L. Wang, H. Cai, Q. Wang et al., Underwater adhesion and anti-swelling hydrogels. Adv. Mater. Technol. 8(6), 2201477 (2023). https://doi.org/10.1002/admt.202201477
X. Dou, H. Wang, F. Yang, H. Shen, X. Wang et al., One-step soaking strategy toward anti-swelling hydrogels with a stiff “armor.” Adv. Sci. 10(9), 2206242 (2023). https://doi.org/10.1002/advs.202206242
H.J. Kim, H. Kim, Y.H. Choi, E.S. Lee, Y.H. Kim et al., Rapid fabrication of tendon-inspired ultrastrong, water-rich hydrogel fibers: synergistic engineering of cyano- p-aramid nanofibers and poly(vinyl alcohol). ACS Nano 19(8), 8316–8327 (2025). https://doi.org/10.1021/acsnano.4c18686
Y. Zhang, Z. Xu, Y. Yuan, C. Liu, M. Zhang et al., Flexible antiswelling photothermal-therapy MXene hydrogel-based epidermal sensor for intelligent human–machine interfacing. Adv. Funct. Mater. 33(21), 2300299 (2023). https://doi.org/10.1002/adfm.202300299
S.M. Morozova, A. Gevorkian, E. Kumacheva, Design, characterization and applications of nanocolloidal hydrogels. Chem. Soc. Rev. 52(15), 5317–5339 (2023). https://doi.org/10.1039/d3cs00387f
B. Sui, Y. Zhu, X. Jiang, Y. Wang, N. Zhang et al., Recastable assemblies of carbon dots into mechanically robust macroscopic materials. Nat. Commun. 14(1), 6782 (2023). https://doi.org/10.1038/s41467-023-42516-8
Y. Jiang, Z. Xu, T. Huang, Y. Liu, F. Guo et al., Direct 3D printing of ultralight graphene oxide aerogel microlattices. Adv. Funct. Mater. 28(16), 1707024 (2018). https://doi.org/10.1002/adfm.201707024
B. Xie, R.L. Parkhill, W.L. Warren, J.E. Smay, Direct writing of three-dimensional polymer scaffolds using colloidal gels. Adv. Funct. Mater. 16(13), 1685–1693 (2006). https://doi.org/10.1002/adfm.200500666
Y. Huang, S.M. Morozova, T. Li, S. Li, H.E. Naguib et al., Stimulus-responsive transport properties of nanocolloidal hydrogels. Biomacromolecules 24(3), 1173–1183 (2023). https://doi.org/10.1021/acs.biomac.2c01222
E.C. Cho, J.W. Kim, A. Fernandez-Nieves, D.A. Weitz, Highly responsive hydrogel scaffolds formed by three-dimensional organization of microgel nanops. Nano Lett. 8(1), 168–172 (2008). https://doi.org/10.1021/nl072346e
F. Varrato, L. Di Michele, M. Belushkin, G. Foffi, Arrested demixing opens route to bigels. Proc. Natl. Acad. Sci. U.S.A. 109(47), 19155–19160 (2012). https://doi.org/10.1073/pnas.1214971109
Y. Li, N. Khuu, A. Gevorkian, S. Sarjinsky, H. Therien-Aubin et al., Supramolecular nanofibrillar thermoreversible hydrogel for growth and release of cancer spheroids. Angew. Chem. Int. Ed. 56(22), 6083–6087 (2017). https://doi.org/10.1002/anie.201610353
S.M. Morozova, T.G. Statsenko, E.O. Ryabchenko, A. Gevorkian, V. Adibnia et al., Multicolored nanocolloidal hydrogel inks. Adv. Funct. Mater. 31(52), 2105470 (2021). https://doi.org/10.1002/adfm.202105470
Z. Li, G. Wang, Y. Wang, H. Li, Reversible phase transition of robust luminescent hybrid hydrogels. Angew. Chem. Int. Ed. 57(8), 2194–2198 (2018). https://doi.org/10.1002/anie.201712670
Y. Zhang, Y. Wang, H. Wang, Y. Yu, Q. Zhong et al., Super-elastic magnetic structural color hydrogels. Small 15(35), 1902198 (2019). https://doi.org/10.1002/smll.201902198
M. Alizadehgiashi, N. Khuu, A. Khabibullin, A. Henry, M. Tebbe et al., Nanocolloidal hydrogel for heavy metal scavenging. ACS Nano 12(8), 8160–8168 (2018). https://doi.org/10.1021/acsnano.8b03202
J. Cao, Z. Zhou, Q. Song, K. Chen, G. Su et al., Ultrarobust Ti3C2Tx MXene-based soft actuators via bamboo-inspired mesoscale assembly of hybrid nanostructures. ACS Nano 14(6), 7055–7065 (2020). https://doi.org/10.1021/acsnano.0c01779
J.A. Burdick, C. Chung, X. Jia, M.A. Randolph, R. Langer, Controlled degradation and mechanical behavior of photopolymerized hyaluronic acid networks. Biomacromolecules 6(1), 386–391 (2005). https://doi.org/10.1021/bm049508a
N. Huebsch, P.R. Arany, A.S. Mao, D. Shvartsman, O.A. Ali et al., Harnessing traction-mediated manipulation of the cell/matrix interface to control stem-cell fate. Nat. Mater. 9(6), 518–526 (2010). https://doi.org/10.1038/nmat2732
Y. Li, N. Khuu, E. Prince, H. Tao, N. Zhang et al., Matrix stiffness-regulated growth of breast tumor spheroids and their response to chemotherapy. Biomacromolecules 22(2), 419–429 (2021). https://doi.org/10.1021/acs.biomac.0c01287
Z. Li, W. Xu, J. Yang, J. Wang, J. Wang et al., A tumor microenvironments-adapted polypeptide hydrogel/nanogel composite boosts antitumor molecularly targeted inhibition and immunoactivation. Adv. Mater. 34(21), 2200449 (2022). https://doi.org/10.1002/adma.202200449
X. Zhang, K. Shi, X. Yang, J. Wang, H. Liu et al., Supramolecular semi-convertible hydrogel enabled self-healing responsive lubrication under dynamic shearing. CCS Chem. 5(11), 2482–2496 (2023). https://doi.org/10.31635/ccschem.023.202202670
D.P. Link, J. van den Dolder, J.J. van den Beucken, V.M. Cuijpers, J.G. Wolke et al., Evaluation of the biocompatibility of calcium phosphate cement/PLGA microp composites. J. Biomed. Mater. Res. A 87(3), 760–769 (2008). https://doi.org/10.1002/jbm.a.31831
D. Li, H. Sun, L. Jiang, K. Zhang, W. Liu et al., Enhanced biocompatibility of PLGA nanofibers with gelatin/nano-hydroxyapatite bone biomimetics incorporation. ACS Appl. Mater. Interfaces 6(12), 9402–9410 (2014). https://doi.org/10.1021/am5017792
A. Jahanban-Esfahlan, S. Dastmalchi, S. Davaran, A simple improved desolvation method for the rapid preparation of albumin nanops. Int. J. Biol. Macromol. 91, 703–709 (2016). https://doi.org/10.1016/j.ijbiomac.2016.05.032
A. Fakhari, Q. Phan, C. Berkland, Hyaluronic acid colloidal gels as self-assembling elastic biomaterials. J. Biomed. Mater. Res. Part B Appl. Biomater. 102(3), 612–618 (2014). https://doi.org/10.1002/jbm.b.33041
W. Wu, H. Feng, L. Xie, A. Zhang, F. Liu et al., Reprocessable and ultratough epoxy thermosetting plastic. Nat. Sustain. 7(6), 804–811 (2024). https://doi.org/10.1038/s41893-024-01331-9
C.F. Guimarães, L. Gasperini, A.P. Marques, R.L. Reis, The stiffness of living tissues and its implications for tissue engineering. Nat. Rev. Mater. 5(5), 351–370 (2020). https://doi.org/10.1038/s41578-019-0169-1
D. Liu, P. Jiang, Y. Wang, Y. Lu, J. Wu et al., Engineering tridimensional hydrogel tissue and organ phantoms with tunable springiness. Adv. Funct. Mater. 33(17), 2214885 (2023). https://doi.org/10.1002/adfm.202214885
J.P. Gong, T. Kurokawa, T. Narita, G. Kagata, Y. Osada et al., Synthesis of hydrogels with extremely low surface friction. J. Am. Chem. Soc. 123(23), 5582–5583 (2001). https://doi.org/10.1021/ja003794q
S. Lee, N.D. Spencer, Sweet, hairy, soft, and slippery. Science 319(5863), 575–576 (2008). https://doi.org/10.1126/science.1153273
J. Kim, G. Zhang, M. Shi, Z. Suo, Fracture, fatigue, and friction of polymers in which entanglements greatly outnumber cross-links. Science 374(6564), 212–216 (2021). https://doi.org/10.1126/science.abg6320
J.P. Gong, Friction and lubrication of hydrogels-its richness and complexity. Soft Matter 2(7), 544–552 (2006). https://doi.org/10.1039/b603209p
W. Lin, J. Klein, Hydration lubrication in biomedical applications: from cartilage to hydrogels. Acc. Mater. Res. 3(2), 213–223 (2022). https://doi.org/10.1021/accountsmr.1c00219
M. Fujiki, M. Ito, K. Mortensen, S. Yashima, M. Tokita et al., Friction coefficient of well-defined hydrogel networks. Macromolecules 49(2), 634–642 (2016). https://doi.org/10.1021/acs.macromol.5b01997
P. Liu, Y. Zhang, Y. Guan, Y. Zhang, Peptide-crosslinked, highly entangled hydrogels with excellent mechanical properties but ultra-low solid content. Adv. Mater. 35(13), 2210021 (2023). https://doi.org/10.1002/adma.202210021
S. Xiao, B. Ren, L. Huang, M. Shen, Y. Zhang et al., Salt-responsive zwitterionic polymer brushes with anti-polyelectrolyte property. Curr. Opin. Chem. Eng. 19, 86–93 (2018). https://doi.org/10.1016/j.coche.2017.12.008
X. Li, Y. Tsutsui, T. Matsunaga, M. Shibayama, U.-I. Chung et al., Precise control and prediction of hydrogel degradation behavior. Macromolecules 44(9), 3567–3571 (2011). https://doi.org/10.1021/ma2004234
H. Duan, M. Donovan, F. Hernandez, C. Di Primo, E. Garanger et al., Hyaluronic-acid-presenting self-assembled nanops transform a hyaluronidase HYAL1 substrate into an efficient and selective inhibitor. Angew. Chem. Int. Ed. 59(32), 13591–13596 (2020). https://doi.org/10.1002/anie.202005212
O. Veiseh, A.J. Vegas, Domesticating the foreign body response: recent advances and applications. Adv. Drug Deliv. Rev. 144, 148–161 (2019). https://doi.org/10.1016/j.addr.2019.08.010
W. Chang, L. Chen, K. Chen, The bioengineering application of hyaluronic acid in tissue regeneration and repair. Int. J. Biol. Macromol. 270, 132454 (2024). https://doi.org/10.1016/j.ijbiomac.2024.132454
L. Zhang, H. Ren, L. Wu, Z. Liu, A. Xie et al., Recent advances in gel coatings: from lab to industry. J. Mater. Chem. A 12(30), 18901–18920 (2024). https://doi.org/10.1039/d4ta02586e
V.G. Muir, J.A. Burdick, Chemically modified biopolymers for the formation of biomedical hydrogels. Chem. Rev. 121(18), 10908–10949 (2021). https://doi.org/10.1021/acs.chemrev.0c00923
Y. Wang, Y. Duan, B. Yang, Y. Li, Nanocomposite hydrogel bioinks for 3D bioprinting of tumor models. Biomacromolecules 25(8), 5288–5299 (2024). https://doi.org/10.1021/acs.biomac.4c00671
Y. Wang, J. Li, Y. Li, B. Yang, Biomimetic bioinks of nanofibrillar polymeric hydrogels for 3D bioprinting. Nano Today 39, 101180 (2021). https://doi.org/10.1016/j.nantod.2021.101180
K. Yao, G. Hong, X. Yuan, W. Kong, P. Xia et al., 3D printing of tough hydrogel scaffolds with functional surface structures for tissue regeneration. Nano-Micro Lett. 17(1), 27 (2024). https://doi.org/10.1007/s40820-024-01524-z
J.A. Burdick, G.D. Prestwich, Hyaluronic acid hydrogels for biomedical applications. Adv. Mater. 23(12), H41–H56 (2011). https://doi.org/10.1002/adma.201003963