Low Energy Consumption Photoelectric Memristors with Multi-Level Linear Conductance Modulation in Artificial Visual Systems Application
Corresponding Author: Xiaobing Yan
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 317
Abstract
Optical synapses have an ability to perceive and remember visual information, making them expected to provide more intelligent and efficient visual solutions for humans. As a new type of artificial visual sensory devices, photoelectric memristors can fully simulate synaptic performance and have great prospects in the development of biological vision. However, due to the urgent problems of nonlinear conductance and high-energy consumption, its further application in high-precision control scenarios and integration is hindered. In this work, we report an optoelectronic memristor with a structure of TiN/CeO2/ZnO/ITO/Mica, which can achieve minimal energy consumption (187 pJ) at a single pulse (0.5 V, 5 ms). Under the stimulation of continuous pulses, linearity can be achieved up to 99.6%. In addition, the device has a variety of synaptic functions under the combined action of photoelectric, which can be used for advanced vision. By utilizing its typical long-term memory characteristics, we achieved image recognition and long-term memory in a 3 × 3 synaptic array and further achieved female facial feature extraction behavior with an activation rate of over 92%. Moreover, we also use the linear response characteristic of the device to design and implement the night meeting behavior of autonomous vehicles based on the hardware platform. This work highlights the potential of photoelectric memristors for advancing neuromorphic vision systems, offering a new direction for bionic eyes and visual automation technology.
Highlights:
1 Developed a novel photo-memristor with single-pulse low energy consumption (187 pJ) and multi-pulse linearity up to 0.996.
2 Using photoelectric synaptic characteristics, achieved long-term memory in a 3 × 3 array and over 92% activation of female facial feature recognition in a 64 × 64 model.
3 Using the continuous response characteristics of optical synapses, an intelligent driving system with automatic night meeting was designed.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- B.H. Jeong, J. Lee, M. Ku, J. Lee, D. Kim et al., RGB color-discriminable photonic synapse for neuromorphic vision system. Nano-Micro Lett. 17(1), 78 (2024). https://doi.org/10.1007/s40820-024-01579-y
- K. Liu, T. Zhang, B. Dang, L. Bao, L. Xu et al., An optoelectronic synapse based on α-In2Se3 with controllable temporal dynamics for multimode and multiscale reservoir computing. Nat. Electron. 5(11), 761–773 (2022). https://doi.org/10.1038/s41928-022-00847-2
- S. Zhong, L. Su, M. Xu, D. Loke, B. Yu et al., Recent advances in artificial sensory neurons: biological fundamentals, devices, applications, and challenges. Nano-Micro Lett. 17(1), 61 (2024). https://doi.org/10.1007/s40820-024-01550-x
- B. Dang, T. Zhang, X. Wu, K. Liu, R. Huang et al., Reconfigurable in-sensor processing based on a multi-phototransistor–one-memristor array. Nat. Electron. 7(11), 991–1003 (2024). https://doi.org/10.1038/s41928-024-01280-3
- X. Ji, B.D. Paulsen, G.K.K. Chik, R. Wu, Y. Yin et al., Mimicking associative learning using an ion-trapping non-volatile synaptic organic electrochemical transistor. Nat. Commun. 12(1), 2480 (2021). https://doi.org/10.1038/s41467-021-22680-5
- Y. van de Burgt, E. Lubberman, E.J. Fuller, S.T. Keene, G.C. Faria et al., A non-volatile organic electrochemical device as a low-voltage artificial synapse for neuromorphic computing. Nat. Mater. 16(4), 414–418 (2017). https://doi.org/10.1038/nmat4856
- G.-X. Zhang, Z.-C. Zhang, X.-D. Chen, L. Kang, Y. Li et al., Broadband sensory networks with locally stored responsivities for neuromorphic machine vision. Sci. Adv. 9(37), eadi5104 (2023). https://doi.org/10.1126/sciadv.adi5104
- Z. Long, X. Qiu, C.L.J. Chan, Z. Sun, Z. Yuan et al., A neuromorphic bionic eye with filter-free color vision using hemispherical perovskite nanowire array retina. Nat. Commun. 14(1), 1972 (2023). https://doi.org/10.1038/s41467-023-37581-y
- Z. Zhang, X. Zhao, X. Zhang, X. Hou, X. Ma et al., In-sensor reservoir computing system for latent fingerprint recognition with deep ultraviolet photo-synapses and memristor array. Nat. Commun. 13(1), 6590 (2022). https://doi.org/10.1038/s41467-022-34230-8
- G. Wu, X. Zhang, G. Feng, J. Wang, K. Zhou et al., Ferroelectric-defined reconfigurable homojunctions for in-memory sensing and computing. Nat. Mater. 22(12), 1499–1506 (2023). https://doi.org/10.1038/s41563-023-01676-0
- J. Chen, Z. Zhou, B.J. Kim, Y. Zhou, Z. Wang et al., Optoelectronic graded neurons for bioinspired in-sensor motion perception. Nat. Nanotechnol. 18(8), 882–888 (2023). https://doi.org/10.1038/s41565-023-01379-2
- X. Wu, S. Wang, W. Huang, Y. Dong, Z. Wang et al., Wearable in-sensor reservoir computing using optoelectronic polymers with through-space charge-transport characteristics for multi-task learning. Nat. Commun. 14(1), 468 (2023). https://doi.org/10.1038/s41467-023-36205-9
- X. Yang, Z. Xiong, Y. Chen, Y. Ren, L. Zhou et al., A self-powered artificial retina perception system for image preprocessing based on photovoltaic devices and memristive arrays. Nano Energy 78, 105246 (2020). https://doi.org/10.1016/j.nanoen.2020.105246
- Y. Lee, T.-W. Lee, Organic synapses for neuromorphic electronics: from brain-inspired computing to sensorimotor nervetronics. Acc. Chem. Res. 52(4), 964–974 (2019). https://doi.org/10.1021/acs.accounts.8b00553
- C. Wan, P. Cai, M. Wang, Y. Qian, W. Huang et al., Artificial sensory memory. Adv. Mater. 32(15), 1902434 (2020). https://doi.org/10.1002/adma.201902434
- S. Zhu, T. Xie, Z. Lv, Y.-B. Leng, Y.-Q. Zhang et al., Hierarchies in visual pathway: functions and inspired artificial vision. Adv. Mater. 36(6), 2301986 (2024). https://doi.org/10.1002/adma.202301986
- J. Lee, B.H. Jeong, E. Kamaraj, D. Kim, H. Kim et al., Light-enhanced molecular polarity enabling multispectral color-cognitive memristor for neuromorphic visual system. Nat. Commun. 14(1), 5775 (2023). https://doi.org/10.1038/s41467-023-41419-y
- C. Zhu, H. Liu, W. Wang, L. Xiang, J. Jiang et al., Optical synaptic devices with ultra-low power consumption for neuromorphic computing. Light Sci. Appl. 11(1), 337 (2022). https://doi.org/10.1038/s41377-022-01031-z
- M. Lian, C. Gao, Z. Lin, L. Shan, C. Chen et al., Towards mixed physical node reservoir computing: light-emitting synaptic reservoir system with dual photoelectric output. Light Sci. Appl. 13(1), 179 (2024). https://doi.org/10.1038/s41377-024-01516-z
- F. Cao, Z. Hu, T. Yan, E. Hong, X. Deng et al., A dual-functional perovskite-based photodetector and memristor for visual memory. Adv. Mater. 35(44), e2304550 (2023). https://doi.org/10.1002/adma.202304550
- Y. Lin, W. Wang, R. Li, J. Kim, C. Zhang et al., Multifunctional optoelectronic memristor based on CeO2/MoS2 heterojunction for advanced artificial synapses and bionic visual system with nociceptive sensing. Nano Energy 121, 109267 (2024). https://doi.org/10.1016/j.nanoen.2024.109267
- T.-Y. Wang, J.-L. Meng, Q.-X. Li, Z.-Y. He, H. Zhu et al., Reconfigurable optoelectronic memristor for in-sensor computing applications. Nano Energy 89, 106291 (2021). https://doi.org/10.1016/j.nanoen.2021.106291
- Z. Zhao, Z. Wang, J. Xu, P. Zhao, J. Wang et al., High photoresponsivity and fast response speed ferroelectric photomemristor for artificial visual system application. Adv. Funct. Mater. 34(45), 2406666 (2024). https://doi.org/10.1002/adfm.202406666
- S. Feng, J. Li, L. Feng, Z. Liu, J. Wang et al., Dual-mode conversion of photodetector and neuromorphic vision sensor via bias voltage regulation on a single device. Adv. Mater. 35(49), 2308090 (2023). https://doi.org/10.1002/adma.202308090
- X. Duan, Z. Cao, K. Gao, W. Yan, S. Sun et al., Memristor-based neuromorphic chips. Adv. Mater. 36(14), 2310704 (2024). https://doi.org/10.1002/adma.202310704
- J. Zeng, B. Zhao, Y. Liu, T. Xu, W. Jiang et al., Linear weight update synaptic responses in ferrimagnetic neuromorphic devices. Adv. Electron. Mater. 11(5), 2400591 (2025). https://doi.org/10.1002/aelm.202400591
- S.-O. Park, T. Park, H. Jeong, S. Hong, S. Seo et al., Linear conductance update improvement of CMOS-compatible second-order memristors for fast and energy-efficient training of a neural network using a memristor crossbar array. Nanoscale Horiz. 8(10), 1366–1376 (2023). https://doi.org/10.1039/D3NH00121K
- K. He, C. Wang, Y. He, J. Su, X. Chen, Artificial neuron devices. Chem. Rev. 123(23), 13796–13865 (2023). https://doi.org/10.1021/acs.chemrev.3c00527
- H. Tan, G. Liu, X. Zhu, H. Yang, B. Chen et al., An optoelectronic resistive switching memory with integrated demodulating and arithmetic functions. Adv. Mater. 27(17), 2797–2803 (2015). https://doi.org/10.1002/adma.201500039
- H. Tan, G. Liu, H. Yang, X. Yi, L. Pan et al., Light-gated memristor with integrated logic and memory functions. ACS Nano 11(11), 11298–11305 (2017). https://doi.org/10.1021/acsnano.7b05762
- J. Jiang, W. Xiao, X. Li, Y. Zhao, Z. Qin et al., Hardware-level image recognition system based on ZnO photo-synapse array with the self-denoising function. Adv. Funct. Mater. 34(19), 2313507 (2024). https://doi.org/10.1002/adfm.202313507
- G. Indiveri, E. Chicca, R. Douglas, A VLSI array of low-power spiking neurons and bistable synapses with spike-timing dependent plasticity. IEEE Trans. Neural Netw. 17(1), 211–221 (2006). https://doi.org/10.1109/TNN.2005.860850
- V. Krishnamurthi, T. Ahmed, M. Mohiuddin, A. Zavabeti, N. Pillai et al., A visible-blind photodetector and artificial optoelectronic synapse using liquid-metal exfoliated ZnO nanosheets. Adv. Opt. Mater. 9(16), 2100449 (2021). https://doi.org/10.1002/adom.202100449
- Y. Sun, L. Qian, D. Xie, Y. Lin, M. Sun et al., Photoelectric synaptic plasticity realized by 2D perovskite. Adv. Funct. Mater. 29(28), 1902538 (2019). https://doi.org/10.1002/adfm.201902538
- P. Li, M. Zhang, Q. Zhou, Q. Zhang, D. Xie et al., Reconfigurable optoelectronic transistors for multimodal recognition. Nat. Commun. 15(1), 3257 (2024). https://doi.org/10.1038/s41467-024-47580-2
- Y. Wang, Z. Lv, J. Chen, Z. Wang, Y. Zhou et al., Photonic synapses based on inorganic perovskite quantum dots for neuromorphic computing. Adv. Mater. 30(38), 1802883 (2018). https://doi.org/10.1002/adma.201802883
- J. Zeng, Y. Chen, J. Liu, T. Xu, L. Fang et al., Ferrimagnet-based neuromorphic device mimicking the ventral visual pathway for high-accuracy target recognition. ACS Appl. Mater. Interfaces 16(43), 59088–59095 (2024). https://doi.org/10.1021/acsami.4c13405
References
B.H. Jeong, J. Lee, M. Ku, J. Lee, D. Kim et al., RGB color-discriminable photonic synapse for neuromorphic vision system. Nano-Micro Lett. 17(1), 78 (2024). https://doi.org/10.1007/s40820-024-01579-y
K. Liu, T. Zhang, B. Dang, L. Bao, L. Xu et al., An optoelectronic synapse based on α-In2Se3 with controllable temporal dynamics for multimode and multiscale reservoir computing. Nat. Electron. 5(11), 761–773 (2022). https://doi.org/10.1038/s41928-022-00847-2
S. Zhong, L. Su, M. Xu, D. Loke, B. Yu et al., Recent advances in artificial sensory neurons: biological fundamentals, devices, applications, and challenges. Nano-Micro Lett. 17(1), 61 (2024). https://doi.org/10.1007/s40820-024-01550-x
B. Dang, T. Zhang, X. Wu, K. Liu, R. Huang et al., Reconfigurable in-sensor processing based on a multi-phototransistor–one-memristor array. Nat. Electron. 7(11), 991–1003 (2024). https://doi.org/10.1038/s41928-024-01280-3
X. Ji, B.D. Paulsen, G.K.K. Chik, R. Wu, Y. Yin et al., Mimicking associative learning using an ion-trapping non-volatile synaptic organic electrochemical transistor. Nat. Commun. 12(1), 2480 (2021). https://doi.org/10.1038/s41467-021-22680-5
Y. van de Burgt, E. Lubberman, E.J. Fuller, S.T. Keene, G.C. Faria et al., A non-volatile organic electrochemical device as a low-voltage artificial synapse for neuromorphic computing. Nat. Mater. 16(4), 414–418 (2017). https://doi.org/10.1038/nmat4856
G.-X. Zhang, Z.-C. Zhang, X.-D. Chen, L. Kang, Y. Li et al., Broadband sensory networks with locally stored responsivities for neuromorphic machine vision. Sci. Adv. 9(37), eadi5104 (2023). https://doi.org/10.1126/sciadv.adi5104
Z. Long, X. Qiu, C.L.J. Chan, Z. Sun, Z. Yuan et al., A neuromorphic bionic eye with filter-free color vision using hemispherical perovskite nanowire array retina. Nat. Commun. 14(1), 1972 (2023). https://doi.org/10.1038/s41467-023-37581-y
Z. Zhang, X. Zhao, X. Zhang, X. Hou, X. Ma et al., In-sensor reservoir computing system for latent fingerprint recognition with deep ultraviolet photo-synapses and memristor array. Nat. Commun. 13(1), 6590 (2022). https://doi.org/10.1038/s41467-022-34230-8
G. Wu, X. Zhang, G. Feng, J. Wang, K. Zhou et al., Ferroelectric-defined reconfigurable homojunctions for in-memory sensing and computing. Nat. Mater. 22(12), 1499–1506 (2023). https://doi.org/10.1038/s41563-023-01676-0
J. Chen, Z. Zhou, B.J. Kim, Y. Zhou, Z. Wang et al., Optoelectronic graded neurons for bioinspired in-sensor motion perception. Nat. Nanotechnol. 18(8), 882–888 (2023). https://doi.org/10.1038/s41565-023-01379-2
X. Wu, S. Wang, W. Huang, Y. Dong, Z. Wang et al., Wearable in-sensor reservoir computing using optoelectronic polymers with through-space charge-transport characteristics for multi-task learning. Nat. Commun. 14(1), 468 (2023). https://doi.org/10.1038/s41467-023-36205-9
X. Yang, Z. Xiong, Y. Chen, Y. Ren, L. Zhou et al., A self-powered artificial retina perception system for image preprocessing based on photovoltaic devices and memristive arrays. Nano Energy 78, 105246 (2020). https://doi.org/10.1016/j.nanoen.2020.105246
Y. Lee, T.-W. Lee, Organic synapses for neuromorphic electronics: from brain-inspired computing to sensorimotor nervetronics. Acc. Chem. Res. 52(4), 964–974 (2019). https://doi.org/10.1021/acs.accounts.8b00553
C. Wan, P. Cai, M. Wang, Y. Qian, W. Huang et al., Artificial sensory memory. Adv. Mater. 32(15), 1902434 (2020). https://doi.org/10.1002/adma.201902434
S. Zhu, T. Xie, Z. Lv, Y.-B. Leng, Y.-Q. Zhang et al., Hierarchies in visual pathway: functions and inspired artificial vision. Adv. Mater. 36(6), 2301986 (2024). https://doi.org/10.1002/adma.202301986
J. Lee, B.H. Jeong, E. Kamaraj, D. Kim, H. Kim et al., Light-enhanced molecular polarity enabling multispectral color-cognitive memristor for neuromorphic visual system. Nat. Commun. 14(1), 5775 (2023). https://doi.org/10.1038/s41467-023-41419-y
C. Zhu, H. Liu, W. Wang, L. Xiang, J. Jiang et al., Optical synaptic devices with ultra-low power consumption for neuromorphic computing. Light Sci. Appl. 11(1), 337 (2022). https://doi.org/10.1038/s41377-022-01031-z
M. Lian, C. Gao, Z. Lin, L. Shan, C. Chen et al., Towards mixed physical node reservoir computing: light-emitting synaptic reservoir system with dual photoelectric output. Light Sci. Appl. 13(1), 179 (2024). https://doi.org/10.1038/s41377-024-01516-z
F. Cao, Z. Hu, T. Yan, E. Hong, X. Deng et al., A dual-functional perovskite-based photodetector and memristor for visual memory. Adv. Mater. 35(44), e2304550 (2023). https://doi.org/10.1002/adma.202304550
Y. Lin, W. Wang, R. Li, J. Kim, C. Zhang et al., Multifunctional optoelectronic memristor based on CeO2/MoS2 heterojunction for advanced artificial synapses and bionic visual system with nociceptive sensing. Nano Energy 121, 109267 (2024). https://doi.org/10.1016/j.nanoen.2024.109267
T.-Y. Wang, J.-L. Meng, Q.-X. Li, Z.-Y. He, H. Zhu et al., Reconfigurable optoelectronic memristor for in-sensor computing applications. Nano Energy 89, 106291 (2021). https://doi.org/10.1016/j.nanoen.2021.106291
Z. Zhao, Z. Wang, J. Xu, P. Zhao, J. Wang et al., High photoresponsivity and fast response speed ferroelectric photomemristor for artificial visual system application. Adv. Funct. Mater. 34(45), 2406666 (2024). https://doi.org/10.1002/adfm.202406666
S. Feng, J. Li, L. Feng, Z. Liu, J. Wang et al., Dual-mode conversion of photodetector and neuromorphic vision sensor via bias voltage regulation on a single device. Adv. Mater. 35(49), 2308090 (2023). https://doi.org/10.1002/adma.202308090
X. Duan, Z. Cao, K. Gao, W. Yan, S. Sun et al., Memristor-based neuromorphic chips. Adv. Mater. 36(14), 2310704 (2024). https://doi.org/10.1002/adma.202310704
J. Zeng, B. Zhao, Y. Liu, T. Xu, W. Jiang et al., Linear weight update synaptic responses in ferrimagnetic neuromorphic devices. Adv. Electron. Mater. 11(5), 2400591 (2025). https://doi.org/10.1002/aelm.202400591
S.-O. Park, T. Park, H. Jeong, S. Hong, S. Seo et al., Linear conductance update improvement of CMOS-compatible second-order memristors for fast and energy-efficient training of a neural network using a memristor crossbar array. Nanoscale Horiz. 8(10), 1366–1376 (2023). https://doi.org/10.1039/D3NH00121K
K. He, C. Wang, Y. He, J. Su, X. Chen, Artificial neuron devices. Chem. Rev. 123(23), 13796–13865 (2023). https://doi.org/10.1021/acs.chemrev.3c00527
H. Tan, G. Liu, X. Zhu, H. Yang, B. Chen et al., An optoelectronic resistive switching memory with integrated demodulating and arithmetic functions. Adv. Mater. 27(17), 2797–2803 (2015). https://doi.org/10.1002/adma.201500039
H. Tan, G. Liu, H. Yang, X. Yi, L. Pan et al., Light-gated memristor with integrated logic and memory functions. ACS Nano 11(11), 11298–11305 (2017). https://doi.org/10.1021/acsnano.7b05762
J. Jiang, W. Xiao, X. Li, Y. Zhao, Z. Qin et al., Hardware-level image recognition system based on ZnO photo-synapse array with the self-denoising function. Adv. Funct. Mater. 34(19), 2313507 (2024). https://doi.org/10.1002/adfm.202313507
G. Indiveri, E. Chicca, R. Douglas, A VLSI array of low-power spiking neurons and bistable synapses with spike-timing dependent plasticity. IEEE Trans. Neural Netw. 17(1), 211–221 (2006). https://doi.org/10.1109/TNN.2005.860850
V. Krishnamurthi, T. Ahmed, M. Mohiuddin, A. Zavabeti, N. Pillai et al., A visible-blind photodetector and artificial optoelectronic synapse using liquid-metal exfoliated ZnO nanosheets. Adv. Opt. Mater. 9(16), 2100449 (2021). https://doi.org/10.1002/adom.202100449
Y. Sun, L. Qian, D. Xie, Y. Lin, M. Sun et al., Photoelectric synaptic plasticity realized by 2D perovskite. Adv. Funct. Mater. 29(28), 1902538 (2019). https://doi.org/10.1002/adfm.201902538
P. Li, M. Zhang, Q. Zhou, Q. Zhang, D. Xie et al., Reconfigurable optoelectronic transistors for multimodal recognition. Nat. Commun. 15(1), 3257 (2024). https://doi.org/10.1038/s41467-024-47580-2
Y. Wang, Z. Lv, J. Chen, Z. Wang, Y. Zhou et al., Photonic synapses based on inorganic perovskite quantum dots for neuromorphic computing. Adv. Mater. 30(38), 1802883 (2018). https://doi.org/10.1002/adma.201802883
J. Zeng, Y. Chen, J. Liu, T. Xu, L. Fang et al., Ferrimagnet-based neuromorphic device mimicking the ventral visual pathway for high-accuracy target recognition. ACS Appl. Mater. Interfaces 16(43), 59088–59095 (2024). https://doi.org/10.1021/acsami.4c13405