Cobalt Sulfide Confined in N-Doped Porous Branched Carbon Nanotubes for Lithium-Ion Batteries
Corresponding Author: Xueji Zhang
Nano-Micro Letters,
Vol. 11 (2019), Article Number: 29
Abstract
Lithium-ion batteries (LIBs) are considered new generation of large-scale energy-storage devices. However, LIBs suffer from a lack of desirable anode materials with excellent specific capacity and cycling stability. In this work, we design a novel hierarchical structure constructed by encapsulating cobalt sulfide nanowires within nitrogen-doped porous branched carbon nanotubes (NBNTs) for LIBs. The unique hierarchical Co9S8@NBNT electrode displayed a reversible specific capacity of 1310 mAh g−1 at a current density of 0.1 A g−1, and was able to maintain a stable reversible discharge capacity of 1109 mAh g−1 at a current density of 0.5 A g−1 with coulombic efficiency reaching almost 100% for 200 cycles. The excellent rate and cycling capabilities can be ascribed to the hierarchical porosity of the one-dimensional Co9S8@NBNT internetworks, the incorporation of nitrogen doping, and the carbon nanotube confinement of the active cobalt sulfide nanowires offering a proximate electron pathway for the isolated nanoparticles and shielding of the cobalt sulfide nanowires from pulverization over long cycling periods.
Highlights:
1 A novel hierarchical structure constructed by encapsulating cobalt sulfide nanowires within nitrogen-doped porous branched carbon nanotubes (NBNTs) is designed for lithium-ion batteries.
2 The unique hierarchical Co9S8@NBNT electrode displayed a reversible specific capacity of 1310 mAh g−1 at a current density of 0.1 A g−1.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J.M. Tarascon, M. Armand, Issues and challenges facing rechargeable lithium Batteries. Nature 414(6861), 359–367 (2001). https://doi.org/10.1038/35104644
- Y.P. Wang, Y.F. Zhang, J.R. Shi, X.Z. Kong, X.X. Cao, S.Q. Liang, G.Z. Cao, A.Q. Pan, Tin sulfide nanoparticles embedded in sulfur and nitrogen dual-doped mesoporous carbon fibers as high-performance anodes with battery-capacitive sodium storage. Energy Storage Mater. (2018). https://doi.org/10.1016/j.ensm.2018.08.014
- Y.P. Wang, Y.F. Zhang, J.R. Shi, A.Q. Pan, F. Jiang, S.Q. Liang, G.Z. Cao, S-doped porous carbon confined SnS nanospheres with enhanced electrochemical performance for sodium-ion batteries. J. Mater. Chem. A 6, 18286 (2018). https://doi.org/10.1039/C8TA06106H
- B. Yin, X.X. Cao, A.Q. Pan, Z.G. Luo, S. Dinesh, J.D. Lin, Y. Tang, S.Q. Liang, G.Z. Cao, Encapsulation of CoSx nanocrystals into N/S co-doped honeycomb-like 3D porous carbon for high-performance lithium storage. Adv. Sci. 5, 1800829 (2018). https://doi.org/10.1002/advs.201800829
- Z. Li, Q. He, X. Xu, Y. Zhao, X. Liu et al., A 3D nitrogen-doped graphene/TiN nanowires composite as a strong polysulfide anchor for lithium-sulfur batteries with enhanced rate performance and high areal capacity. Adv. Mater. 30(45), 1804089 (2018). https://doi.org/10.1002/adma.201804089
- J.X. Zhu, C.J. Tang, Z.C. Zhuang, C.W. Shi, N.R. Li, L. Zhou, L.Q. Mai, Porous and low-crystalline manganese silicate hollow spheres wired by graphene oxide for high-performance lithium and sodium storage. ACS Appl. Mater. Interfaces 9(29), 24584–24590 (2017). https://doi.org/10.1021/acsami.7b06088
- J.J. Chen, Z.Y. Mao, L.X. Zhang, D.J. Wang, R. Xu, L.-J. Bie, B.D. Fahlman, Nitrogen deficient graphitic carbon nitride with enhanced performance for lithium ion battery anodes. ACS Nano 11, 12650–12657 (2017). https://doi.org/10.1021/acsnano.7b07116
- J.Y. Liu, X.X. Li, J.R. Huang, J.J. Li, P. Zhou, J.H. Liu, X.J. Huang, Three-dimensional graphene-based nanocomposites for high energy density Li-ion batteries. J. Mater. Chem. A 5, 5977–5994 (2017). https://doi.org/10.1039/C7TA00448F
- J.J. Chen, Z.Y. Mao, L.X. Zhang, Y.H. Tang, D.J. Wang, L.J. Bie, B.D. Fahlman, Direct production of nitrogen-doped porous carbon from urea via magnesiothermic reduction. Carbon 130, 41–47 (2018). https://doi.org/10.1016/j.carbon.2017.12.125
- Y.T. Zhong, B. Li, S.M. Li, S.Y. Xu, Z.H. Pan, Q.M. Huang, L.D. Xing, C.S. Wang, W.S. Li, Bi nanoparticles anchored in N-doped porous carbon as anode of high energy density lithium ion battery. Nano-Micro Lett. 10, 56 (2018). https://doi.org/10.1007/s40820-018-0209-1
- Y. Wang, X. Zhang, P. Chen, H. Liao, S. Cheng, In situ preparation of CuS cathode with unique stability and high rate performance for lithium ion batteries. Electrochim. Acta 80, 264–268 (2012). https://doi.org/10.1016/j.electacta.2012.07.004
- X. Rui, H. Tan, Q. Yan, Nanostructured metal sulfides for energy storage. Nanoscale 6, 9889–9924 (2014). https://doi.org/10.1039/C4NR03057E
- X. Xu, W. Liu, Y. Kim, J. Cho, Nanostructured transition metal sulfides for lithium ion batteries: progress and challenges. Nano Today 9, 604–630 (2014). https://doi.org/10.1016/j.nantod.2014.09.005
- L. Zhang, L. Zhou, H.B. Wu, R. Xu, X.W. Lou, Unusual formation of single-crystal manganese sulfide microboxes co-mediated by the cubic crystal structure and shape. Angew. Chem. Int. Ed. 51, 7267–7270 (2012). https://doi.org/10.1002/anie.201202877
- A. Puglisi, S. Mondini, S. Cenedese, A.M. Ferretti, N. Santo, A. Ponti, Monodisperse octahedral α-MnS and MnO nanoparticles by the decomposition of manganese oleate in the presence of sulfur. Chem. Mater. 22, 2804–2813 (2010). https://doi.org/10.1021/cm903735e
- C.L. Dai, J.M. Lim, M.Q. Wang, L.Y. Hu, Y.M. Chen et al., Honeycomb-like spherical cathode host constructed from hollow metallic and polar Co9S8 tubules for advanced lithium–sulfur batteries. Adv. Funct. Mater. (2018). https://doi.org/10.1002/adfm.201704443
- C. Wu, J. Maier, Y. Yu, Generalizable synthesis of metal-sulfides/carbon hybrids with multiscale, hierarchically ordered structures as advanced electrodes for lithium storage. Adv. Mater. 28, 174–180 (2016). https://doi.org/10.1002/adma.201503969
- A. Eftekhari, Low voltage anode materials for lithium-ion batteries. Energy Storage Mater. 7, 157 (2017). https://doi.org/10.1016/j.ensm.2017.01.009
- G. Che, B.B. Lakshmi, E.R. Fisher, C.R. Martin, Carbon nanotubule membranes for electrochemical energy storage and production. Nature 393(6683), 346–349 (1998). https://doi.org/10.1038/30694
- E. Frackowiak, F. Beguin, Electrochemical storage of energy in carbon nanotubes and nanostructured carbons. Carbon 40(10), 1775–1787 (2002). https://doi.org/10.1016/S0008-6223(02)00045-3
- Z. Zhou, X. Gao, J. Yan, D. Song, M. Morinaga, A first-principles study of lithium absorption in boron- or nitrogen-doped single-walled carbon nanotubes. Carbon 42(12–13), 2677–2682 (2004). https://doi.org/10.1016/j.carbon.2004.06.019
- S.W. Kim, D.H. Seo, H. Gwon, J. Kim, K. Kang, Fabrication of FeF3 nanoflowers on CNT branches and their application to high power lithium rechargeable batteries. Adv. Mater. 22(46), 5260–5264 (2010). https://doi.org/10.1002/adma.201002879
- S.-H. Lee, V. Sridhar, J.-H. Jung, K. Karthikeyan, Y.-S. Lee, R. Mukherjee, N. Koratkar, I.-K. Oh, Graphene–nanotube–iron hierarchical nanostructure as lithium ion battery anode. ACS Nano 7(5), 4242–4251 (2013). https://doi.org/10.1021/nn4007253
- B.J. Landi, M.J. Ganter, C.D. Cress, R.A. DiLeo, R.P. Raffaelle, Carbon nanotubes for lithium ion batteries. Energy Environ. Sci. 2, 638–654 (2009). https://doi.org/10.1039/B904116H
- P. Bhattacharya, M. Kota, D.H. Suh, K.C. Roh, H.S. Park, Biomimetic spider-web-like composites for enhanced rate capability and cycle life of lithium ion battery anodes. Adv. Energy Mater. 7, 1700331 (2017). https://doi.org/10.1002/aenm.201700331
- H.B. Wu, G. Zhang, L. Yu, X.W. Lou, One-dimensional metal oxide–carbon hybrid nanostructures for electrochemical energy storage. Nanoscale Horiz. 1, 27–40 (2016). https://doi.org/10.1039/C5NH00023H
- Y. Zhou, J. Tian, H. Xu, J. Yang, Y. Qian, VS4 nanoparticles rooted by a C-coated MWCNTs as an advanced anode material in lithium ion batteries. Energy Storage Mater. 6, 149–156 (2017). https://doi.org/10.1016/j.ensm.2016.10.010
- D.L. Chao, P. Liang, Z. Chen, L.Y. Bai, H. Shen et al., Pseudocapacitive Na-ion storage boosts highrate and areal capacity of self-branched 2D layered metal chalcogenide nano arrays. ACS Nano 10, 10211–10219 (2016). https://doi.org/10.1021/acsnano.6b05566
- J. Xie, S. Liu, G. Cao, T. Zhu, X. Zhao, Self-assembly of CoS2/graphene nanoarchitecture by a facile one-pot route and its improved electrochemical Li storage properties. Nano Energy 2, 49–56 (2013). https://doi.org/10.1016/j.nanoen.2012.07.010
- W. Lv, Z. Li, Y. Deng, Q.H. Yang, F. Kang, Graphene-based materials for electrochemical energy storage devices: opportunities and challenges. Energy Storage Mater. 2, 107–138 (2016). https://doi.org/10.1016/j.ensm.2015.10.002
- X. Xu, S. Ji, M. Gu, J. Liu, In situ synthesis of mns hollow microspheres on reduced graphene oxide sheets as high-capacity and long-life anodes for Li- and Na-ion batteries. ACS Appl. Mater. Interfaces 7, 20957–20964 (2015). https://doi.org/10.1021/acsami.5b06590
- M.S. Park, G.X. Wang, Y.M. Kang, D. Wexler, S.X. Dou, H.K. Liu, Preparation and electrochemical properties of SnO2 nanowires for application in lithium-ion batteries. Angew. Chem. Int. Ed. 46, 750–753 (2007). https://doi.org/10.1002/anie.200603309
- C.K. Chan, H. Peng, G. Liu, K. McIlwrath, X.F. Zhang, R.A. Huggins, Y. Cui, High performance lithium battery anodes using silicon nanowires. Nat. Nanotechnol. 3, 31–35 (2008). https://doi.org/10.1038/nnano.2007.411
- Y.S. Zhou, Y.C. Zhu, G.H. Du, B.S. Xu, Single-step synthesis of cobalt sulfide nanowires encapsulated within carbon nanotubes. J. Nanosci. Nanotechnol. 13, 6934–6939 (2013). https://doi.org/10.1166/jnn.2013.7758
- Y. Matsumura, S. Wang, J. Mondori, Mechanism leading to irreversible capacity loss in Li ion rechargeable batteries. J. Electrochem. Soc. 142, 2914 (1995). https://doi.org/10.1149/1.2048665
- Y.Q. Chang, H. Li, L. Wu, T.H. Lu, Irreversible capacity loss of graphite electrode in lithium-ion batteries. J. Power Sources 68, 187 (1991). https://doi.org/10.1016/S0378-7753(96)02549-9
- F. Zheng, Y. Yang, Q. Chen, High lithium anodic performance of highly nitrogen-doped porous carbon prepared from a metal-organic framework. Nat. Commun. 5, 5261 (2014). https://doi.org/10.1038/ncomms6261
- J.R. Dahn, T. Zheng, Y. Liu, J.S. Xue, Mechanisms for lithium insertion in carbonaceous materials. Science 270, 590–593 (1995). https://doi.org/10.1126/science.270.5236.590
- X.K. Kong, Q.W. Chen, Improved performance of graphene doped with pyridinic N for Li-ion battery: a density functional theory model. Phys. Chem. Chem. Phys. 15, 12982–12987 (2013). https://doi.org/10.1039/C3CP51987B
References
J.M. Tarascon, M. Armand, Issues and challenges facing rechargeable lithium Batteries. Nature 414(6861), 359–367 (2001). https://doi.org/10.1038/35104644
Y.P. Wang, Y.F. Zhang, J.R. Shi, X.Z. Kong, X.X. Cao, S.Q. Liang, G.Z. Cao, A.Q. Pan, Tin sulfide nanoparticles embedded in sulfur and nitrogen dual-doped mesoporous carbon fibers as high-performance anodes with battery-capacitive sodium storage. Energy Storage Mater. (2018). https://doi.org/10.1016/j.ensm.2018.08.014
Y.P. Wang, Y.F. Zhang, J.R. Shi, A.Q. Pan, F. Jiang, S.Q. Liang, G.Z. Cao, S-doped porous carbon confined SnS nanospheres with enhanced electrochemical performance for sodium-ion batteries. J. Mater. Chem. A 6, 18286 (2018). https://doi.org/10.1039/C8TA06106H
B. Yin, X.X. Cao, A.Q. Pan, Z.G. Luo, S. Dinesh, J.D. Lin, Y. Tang, S.Q. Liang, G.Z. Cao, Encapsulation of CoSx nanocrystals into N/S co-doped honeycomb-like 3D porous carbon for high-performance lithium storage. Adv. Sci. 5, 1800829 (2018). https://doi.org/10.1002/advs.201800829
Z. Li, Q. He, X. Xu, Y. Zhao, X. Liu et al., A 3D nitrogen-doped graphene/TiN nanowires composite as a strong polysulfide anchor for lithium-sulfur batteries with enhanced rate performance and high areal capacity. Adv. Mater. 30(45), 1804089 (2018). https://doi.org/10.1002/adma.201804089
J.X. Zhu, C.J. Tang, Z.C. Zhuang, C.W. Shi, N.R. Li, L. Zhou, L.Q. Mai, Porous and low-crystalline manganese silicate hollow spheres wired by graphene oxide for high-performance lithium and sodium storage. ACS Appl. Mater. Interfaces 9(29), 24584–24590 (2017). https://doi.org/10.1021/acsami.7b06088
J.J. Chen, Z.Y. Mao, L.X. Zhang, D.J. Wang, R. Xu, L.-J. Bie, B.D. Fahlman, Nitrogen deficient graphitic carbon nitride with enhanced performance for lithium ion battery anodes. ACS Nano 11, 12650–12657 (2017). https://doi.org/10.1021/acsnano.7b07116
J.Y. Liu, X.X. Li, J.R. Huang, J.J. Li, P. Zhou, J.H. Liu, X.J. Huang, Three-dimensional graphene-based nanocomposites for high energy density Li-ion batteries. J. Mater. Chem. A 5, 5977–5994 (2017). https://doi.org/10.1039/C7TA00448F
J.J. Chen, Z.Y. Mao, L.X. Zhang, Y.H. Tang, D.J. Wang, L.J. Bie, B.D. Fahlman, Direct production of nitrogen-doped porous carbon from urea via magnesiothermic reduction. Carbon 130, 41–47 (2018). https://doi.org/10.1016/j.carbon.2017.12.125
Y.T. Zhong, B. Li, S.M. Li, S.Y. Xu, Z.H. Pan, Q.M. Huang, L.D. Xing, C.S. Wang, W.S. Li, Bi nanoparticles anchored in N-doped porous carbon as anode of high energy density lithium ion battery. Nano-Micro Lett. 10, 56 (2018). https://doi.org/10.1007/s40820-018-0209-1
Y. Wang, X. Zhang, P. Chen, H. Liao, S. Cheng, In situ preparation of CuS cathode with unique stability and high rate performance for lithium ion batteries. Electrochim. Acta 80, 264–268 (2012). https://doi.org/10.1016/j.electacta.2012.07.004
X. Rui, H. Tan, Q. Yan, Nanostructured metal sulfides for energy storage. Nanoscale 6, 9889–9924 (2014). https://doi.org/10.1039/C4NR03057E
X. Xu, W. Liu, Y. Kim, J. Cho, Nanostructured transition metal sulfides for lithium ion batteries: progress and challenges. Nano Today 9, 604–630 (2014). https://doi.org/10.1016/j.nantod.2014.09.005
L. Zhang, L. Zhou, H.B. Wu, R. Xu, X.W. Lou, Unusual formation of single-crystal manganese sulfide microboxes co-mediated by the cubic crystal structure and shape. Angew. Chem. Int. Ed. 51, 7267–7270 (2012). https://doi.org/10.1002/anie.201202877
A. Puglisi, S. Mondini, S. Cenedese, A.M. Ferretti, N. Santo, A. Ponti, Monodisperse octahedral α-MnS and MnO nanoparticles by the decomposition of manganese oleate in the presence of sulfur. Chem. Mater. 22, 2804–2813 (2010). https://doi.org/10.1021/cm903735e
C.L. Dai, J.M. Lim, M.Q. Wang, L.Y. Hu, Y.M. Chen et al., Honeycomb-like spherical cathode host constructed from hollow metallic and polar Co9S8 tubules for advanced lithium–sulfur batteries. Adv. Funct. Mater. (2018). https://doi.org/10.1002/adfm.201704443
C. Wu, J. Maier, Y. Yu, Generalizable synthesis of metal-sulfides/carbon hybrids with multiscale, hierarchically ordered structures as advanced electrodes for lithium storage. Adv. Mater. 28, 174–180 (2016). https://doi.org/10.1002/adma.201503969
A. Eftekhari, Low voltage anode materials for lithium-ion batteries. Energy Storage Mater. 7, 157 (2017). https://doi.org/10.1016/j.ensm.2017.01.009
G. Che, B.B. Lakshmi, E.R. Fisher, C.R. Martin, Carbon nanotubule membranes for electrochemical energy storage and production. Nature 393(6683), 346–349 (1998). https://doi.org/10.1038/30694
E. Frackowiak, F. Beguin, Electrochemical storage of energy in carbon nanotubes and nanostructured carbons. Carbon 40(10), 1775–1787 (2002). https://doi.org/10.1016/S0008-6223(02)00045-3
Z. Zhou, X. Gao, J. Yan, D. Song, M. Morinaga, A first-principles study of lithium absorption in boron- or nitrogen-doped single-walled carbon nanotubes. Carbon 42(12–13), 2677–2682 (2004). https://doi.org/10.1016/j.carbon.2004.06.019
S.W. Kim, D.H. Seo, H. Gwon, J. Kim, K. Kang, Fabrication of FeF3 nanoflowers on CNT branches and their application to high power lithium rechargeable batteries. Adv. Mater. 22(46), 5260–5264 (2010). https://doi.org/10.1002/adma.201002879
S.-H. Lee, V. Sridhar, J.-H. Jung, K. Karthikeyan, Y.-S. Lee, R. Mukherjee, N. Koratkar, I.-K. Oh, Graphene–nanotube–iron hierarchical nanostructure as lithium ion battery anode. ACS Nano 7(5), 4242–4251 (2013). https://doi.org/10.1021/nn4007253
B.J. Landi, M.J. Ganter, C.D. Cress, R.A. DiLeo, R.P. Raffaelle, Carbon nanotubes for lithium ion batteries. Energy Environ. Sci. 2, 638–654 (2009). https://doi.org/10.1039/B904116H
P. Bhattacharya, M. Kota, D.H. Suh, K.C. Roh, H.S. Park, Biomimetic spider-web-like composites for enhanced rate capability and cycle life of lithium ion battery anodes. Adv. Energy Mater. 7, 1700331 (2017). https://doi.org/10.1002/aenm.201700331
H.B. Wu, G. Zhang, L. Yu, X.W. Lou, One-dimensional metal oxide–carbon hybrid nanostructures for electrochemical energy storage. Nanoscale Horiz. 1, 27–40 (2016). https://doi.org/10.1039/C5NH00023H
Y. Zhou, J. Tian, H. Xu, J. Yang, Y. Qian, VS4 nanoparticles rooted by a C-coated MWCNTs as an advanced anode material in lithium ion batteries. Energy Storage Mater. 6, 149–156 (2017). https://doi.org/10.1016/j.ensm.2016.10.010
D.L. Chao, P. Liang, Z. Chen, L.Y. Bai, H. Shen et al., Pseudocapacitive Na-ion storage boosts highrate and areal capacity of self-branched 2D layered metal chalcogenide nano arrays. ACS Nano 10, 10211–10219 (2016). https://doi.org/10.1021/acsnano.6b05566
J. Xie, S. Liu, G. Cao, T. Zhu, X. Zhao, Self-assembly of CoS2/graphene nanoarchitecture by a facile one-pot route and its improved electrochemical Li storage properties. Nano Energy 2, 49–56 (2013). https://doi.org/10.1016/j.nanoen.2012.07.010
W. Lv, Z. Li, Y. Deng, Q.H. Yang, F. Kang, Graphene-based materials for electrochemical energy storage devices: opportunities and challenges. Energy Storage Mater. 2, 107–138 (2016). https://doi.org/10.1016/j.ensm.2015.10.002
X. Xu, S. Ji, M. Gu, J. Liu, In situ synthesis of mns hollow microspheres on reduced graphene oxide sheets as high-capacity and long-life anodes for Li- and Na-ion batteries. ACS Appl. Mater. Interfaces 7, 20957–20964 (2015). https://doi.org/10.1021/acsami.5b06590
M.S. Park, G.X. Wang, Y.M. Kang, D. Wexler, S.X. Dou, H.K. Liu, Preparation and electrochemical properties of SnO2 nanowires for application in lithium-ion batteries. Angew. Chem. Int. Ed. 46, 750–753 (2007). https://doi.org/10.1002/anie.200603309
C.K. Chan, H. Peng, G. Liu, K. McIlwrath, X.F. Zhang, R.A. Huggins, Y. Cui, High performance lithium battery anodes using silicon nanowires. Nat. Nanotechnol. 3, 31–35 (2008). https://doi.org/10.1038/nnano.2007.411
Y.S. Zhou, Y.C. Zhu, G.H. Du, B.S. Xu, Single-step synthesis of cobalt sulfide nanowires encapsulated within carbon nanotubes. J. Nanosci. Nanotechnol. 13, 6934–6939 (2013). https://doi.org/10.1166/jnn.2013.7758
Y. Matsumura, S. Wang, J. Mondori, Mechanism leading to irreversible capacity loss in Li ion rechargeable batteries. J. Electrochem. Soc. 142, 2914 (1995). https://doi.org/10.1149/1.2048665
Y.Q. Chang, H. Li, L. Wu, T.H. Lu, Irreversible capacity loss of graphite electrode in lithium-ion batteries. J. Power Sources 68, 187 (1991). https://doi.org/10.1016/S0378-7753(96)02549-9
F. Zheng, Y. Yang, Q. Chen, High lithium anodic performance of highly nitrogen-doped porous carbon prepared from a metal-organic framework. Nat. Commun. 5, 5261 (2014). https://doi.org/10.1038/ncomms6261
J.R. Dahn, T. Zheng, Y. Liu, J.S. Xue, Mechanisms for lithium insertion in carbonaceous materials. Science 270, 590–593 (1995). https://doi.org/10.1126/science.270.5236.590
X.K. Kong, Q.W. Chen, Improved performance of graphene doped with pyridinic N for Li-ion battery: a density functional theory model. Phys. Chem. Chem. Phys. 15, 12982–12987 (2013). https://doi.org/10.1039/C3CP51987B