Nitrogen and Phosphorus Dual-Doped Multilayer Graphene as Universal Anode for Full Carbon-Based Lithium and Potassium Ion Capacitors
Corresponding Author: Dianxue Cao
Nano-Micro Letters,
Vol. 11 (2019), Article Number: 30
Abstract
Lithium/potassium ion capacitors (LICs/PICs) have been proposed to bridge the performance gap between high-energy batteries and high-power capacitors. However, their development is hindered by the choice, electrochemical performance, and preparation technique of the battery-type anode materials. Herein, a nitrogen and phosphorus dual-doped multilayer graphene (NPG) material is designed and synthesized through an arc discharge process, using low-cost graphite and solid nitrogen and phosphorus sources. When employed as the anode material, NPG exhibits high capacity, remarkable rate capability, and stable cycling performance in both lithium and potassium ion batteries. This excellent electrochemical performance is ascribed to the synergistic effect of nitrogen and phosphorus doping, which enhances the electrochemical conductivity, provides a higher number of ion storage sites, and leads to increased interlayer spacing. Full carbon-based NPG‖LiPF6‖active carbon (AC) LICs and NPG‖KPF6‖AC PICs are assembled and show excellent electrochemical performance, with competitive energy and power densities. This work provides a route for the large-scale production of dual-doped graphene as a universal anode material for high-performance alkali ion batteries and capacitors.
Highlights:
1 Nitrogen and phosphorus dual-doped multilayer graphene (NPG) was prepared by arc discharge process.
2 NPG exhibits good rate capability and stable cycling performance in both lithium and potassium ion batteries.
3 Full carbon-based lithium/potassium ion capacitors are assembled and show excellent electrochemical performance.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- T.B. Schon, B.T. McAllister, P.F. Li, D.S. Seferos, The rise of organic electrode materials for energy storage. Chem. Soc. Rev. 45(22), 6345–6404 (2016). https://doi.org/10.1039/C6CS00173D
- W. Tu, Y. Zhou, Z. Zou, Versatile graphene-promoting photocatalytic performance of semiconductors: basic principles, synthesis, solar energy conversion, and environmental applications. Adv. Funct. Mater. 23(40), 4996–5008 (2013). https://doi.org/10.1002/adfm.201203547
- Z. Jian, W. Luo, X. Ji, Carbon electrodes for K-ion batteries. J. Am. Chem. Soc. 137(36), 11566–11569 (2015). https://doi.org/10.1021/jacs.5b06809
- W. Zhang, J. Mao, S. Li, Z. Chen, Z.P. Guo, Phosphorus-based alloy materials for advanced potassium-ion battery anode. J. Am. Chem. Soc. 139(9), 3316–3319 (2017). https://doi.org/10.1021/jacs.6b12185
- L. Qie, W.M. Chen, H.H. Xu, X.Q. Xiong, Y. Jiang et al., Synthesis of functionalized 3D hierarchical porous carbon for high-performance supercapacitors. Energy Environ. Sci. 6(8), 2497–2504 (2013). https://doi.org/10.1039/c3ee41638k
- J. Bai, B.J. Xi, H.Z. Mao, Y. Lin, X.J. Ma, J.K. Feng, S.L. Xiong, One-step construction of N, P-codoped porous carbon sheets/CoP hybrids with enhanced lithium and potassium storage. Adv. Mater. 30(35), 1802310 (2018). https://doi.org/10.1002/adma.201802310
- Z. Pan, J. Ren, G. Guan, X. Fang, B. Wang et al., Synthesizing nitrogen-doped core–sheath carbon nanotube films for flexible lithium ion batteries. Adv. Energy Mater. 6(8), 1600271 (2016). https://doi.org/10.1002/aenm.201600271
- F. Zheng, Y. Yang, Q. Chen, High lithium anodic performance of highly nitrogen-doped porous carbon prepared from a metal-organic framework. Nat. Commun. 5, 5261 (2014). https://doi.org/10.1038/ncomms6261
- C. Zhang, X. Wang, Q. Liang, X. Liu, Q. Weng et al., Amorphous phosphorus/nitrogen-doped graphene paper for ultrastable sodium-ion batteries. Nano Lett. 16(3), 2054–2060 (2016). https://doi.org/10.1021/acs.nanolett.6b00057
- G.Y. Ma, K.S. Huang, J.S. Ma, Z.C. Ju, Z. Xing, Q.C. Zhuang, Phosphorus and oxygen dual-doped graphene as superior anode material for room-temperature potassium-ion batteries. J. Mater. Chem. A 5(17), 7854–7861 (2017). https://doi.org/10.1021/acs.nanolett.6b00057
- X.X. Gu, L.B. Xin, Y. Li, F. Dong, M. Fu, Y.L. Hou, Highly reversible Li–Se batteries with ultra-lightweight N, S-codoped graphene blocking layer. Nano-Micro Lett. 10(4), 59 (2018). https://doi.org/10.1007/s40820-018-0213-5
- X.L. Wang, G. Li, M.H. Seo, F.M. Hassan, M.A. Hoque, Z.W. Chen, Sulfur atoms bridging few-layered MoS2 with S-doped graphene enable highly robust anode for lithium-ion batteries. Adv. Energy Mater. 5(23), 1501106 (2015). https://doi.org/10.1002/aenm.201501106
- W. Ai, Z. Luo, J. Jiang, J. Zhu, Z. Du et al., Nitrogen and sulfur co-doped graphene: multifunctional electrode materials for high-performance Li-ion batteries and oxygen reduction reaction. Adv. Mater. 26(35), 6186–6192 (2015). https://doi.org/10.1002/adma.201401427
- C. Zhang, N. Mahmood, H. Yin, F. Liu, Y. Hou, Synthesis of phosphorus-doped graphene and its multifunctional applications for oxygen reduction reaction and lithium ion batteries. Adv. Mater. 25(35), 4932–4937 (2013). https://doi.org/10.1002/adma.201301870
- K.S. Subrahmanyam, L.S. Panchakarla, A. Govindaraj, C.N.R. Rao, Simple method of preparing graphene flakes by an arc-discharge method. J. Phys. Chem. C 113(11), 4257–4259 (2009). https://doi.org/10.1021/jp900791y
- N. Li, Z.Y. Wang, K.K. Zhao, Z.J. Shi, Z.N. Gu, S.K. Xu, Large scale synthesis of N-doped multi-layered graphene sheets by simple arc-discharge method. Carbon 48(1), 255–259 (2010). https://doi.org/10.1016/j.carbon.2009.09.013
- Z.S. Wu, W.C. Ren, L.B. Gao, J.P. Zhao, Z.P. Chen, Synthesis of graphene sheets with high electrical conductivity and good thermal stability by hydrogen arc discharge exfoliation. ACS Nano 3(2), 411–417 (2009). https://doi.org/10.1021/nn900020u
- I. Levchenko, O. Volotskova, A. Shashurin, Y. Raitses, K. Ostrikov, M. Keidar, The large-scale production of graphene flakes using magnetically-enhanced arc discharge between carbon electrodes. Carbon 48(15), 4570–4574 (2010). https://doi.org/10.1016/j.carbon.2010.07.055
- A.C. Ferrari, J. Robertson, Interpretation of raman spectra of disordered and amorphous carbon. Phys. Rev. B 61(20), 14095–14107 (2000). https://doi.org/10.1103/PhysRevB.61.14095
- A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett. 9(1), 30–35 (2009). https://doi.org/10.1021/nl801827v
- Y.P. Wu, B. Wang, Y.F. Ma, Y. Huang, N. Li, F. Zhang, Y.S. Chen, Preparation of nitrogen- and phosphorous co-doped carbon microspheres and their superior performance as anode in sodium-ion batteries. Nano Res. 3(9), 661–669 (2010). https://doi.org/10.1007/s12274-010-0027-3
- S. Nie, L. Liu, J.F. Liu, J.J. Xie, Y. Zhang et al., Nitrogen-doped TiO2–C composite nanofibers with high-capacity and long-cycle life as anode materials for sodium-ion batteries. Nano-Micro Lett. 10(4), 71 (2018). https://doi.org/10.1007/s40820-018-0225-1
- X.L. Ma, G.Q. Ning, C.L. Qi, C.G. Xu, J.S. Gao, Phosphorus and nitrogen dual-doped few-layered porous graphene: a high-performance anode material for lithium-ion batteries. ACS Appl. Mater. Interfaces 6(16), 14415–14422 (2014). https://doi.org/10.1021/am503692g
- H.B. Wang, C.J. Zhang, Z.H. Liu, L. Wang, P.X. Han et al., Nitrogen-doped graphene nanosheets with excellent lithium storage properties. J. Mater. Chem. 21(14), 5430–5434 (2011). https://doi.org/10.1039/c1jm00049g
- M.S. Kim, J.-H. Ryu, Y.R.Lim Deepika, I.W. Nah et al., Langmuir–Blodgett artificial solid-electrolyte interphases for practical lithium metal batteries. Nat. Energy 3, 889–898 (2018). https://doi.org/10.1038/s41560-018-0237-6
- E.H. Kim, Y. Jung, Effects of phosphorus content and operating temperature on the electrochemical performance of phosphorus-doped soft carbons. Carbon Lett. 15(4), 277–281 (2014). https://doi.org/10.5714/CL.2014.15.4.277
- H.C. Tao, Y. Xiong, S.L. Du, Y.Q. Zhang, X.L. Yang, L.L. Zhang, Interwoven N and P dual-doped hollow carbon fibers/graphitic carbon nitride: an ultrahigh capacity and rate anode for Li and Na ion batteries. Carbon 122, 54–63 (2017). https://doi.org/10.1016/j.carbon.2017.06.040
- Y.Z. Fang, R. Hu, D.X. Cao, K. Zhu, MXene-derived TiO2/reduced graphene oxide composite with an enhanced capacitive capacity for Li-ion and K-ion batteries. J. Mater. Chem. A 7, 5363–5372 (2019). https://doi.org/10.1039/C8TA12069B
- Y. Jin, S. Li, A. Kushima, X. Zheng, Y. Sun et al., Self-healing SEI enables full-cell cycling of a silicon-majority anode with a coulombic efficiency exceeding 99.9%. Energy Environ. Sci. 10(2), 580–592 (2017). https://doi.org/10.1039/C6EE02685K
- J.L. Yang, Z.C. Ju, Y. Jiang, Z. Xing, B.J. Xi, J.K. Feng, S.L. Xiong, Enhanced capacity and rate capability of nitrogen/oxygen dual-doped hard carbon in capacitive potassium-ion storage. Adv. Mater. 30(4), 1700104 (2018). https://doi.org/10.1002/adma.201700104
- Q. Zhang, J.F. Mao, W.K. Pang, T. Zheng, V. Sencadas, Y.Z. Chen, Y.J. Liu, Z.P. Guo, Boosting the potassium storage performance of alloy-based anode materials via electrolyte salt chemistry. Adv. Energy Mater. 8(15), 1703288 (2018). https://doi.org/10.1002/aenm.201703288
- H. Gao, T.F. Zhou, Y. Zheng, Q. Zhang, Y.Q. Liu, J. Chen, H.K. Liu, Z.P. Guo, CoS quantum dot nanoclusters for high-energy potassium-ion batteries. Adv. Funct. Mater. 27(43), 1702634 (2017). https://doi.org/10.1002/adfm.201702634
- Y.J. Liu, Z. Tai, Q. Zhang, H.Q. Wang, W.K. Pang, H.K. Liu, K. Konstantinov, Z.P. Guo, A new energy storage system: rechargeable potassium–selenium battery. Nano Energy 35, 36–43 (2017). https://doi.org/10.1016/j.nanoen.2017.03.029
- H. L. Wang, C. M. B. Holt, Z. Li, X. H. Tan, B. S. Amirkhiz, Z. W. Xu, B. C. Olsen, T. Stephenson, D. Mitlin, Graphene–nickel cobaltite nanocomposite asymmetrical supercapacitor with commercial level mass loading. Nano Res. 5(9), 605–617 (2012). https://doi.org/10.1007/s12274-012-0246-x
- J. Yin, L. Qi, H.Y. Wang, Sodium titanate nanotubes as negative electrode materials for sodium-ion capacitors. ACS Appl. Mater. Interfaces 4(5), 2762–2768 (2012). https://doi.org/10.1021/am300385r
- V. Khomenko, E. Raymundo-Piñero, F. Béguin, High-energy density graphite/AC capacitor in organic electrolyte. J. Power Sources 177(2), 643–651 (2008). https://doi.org/10.1016/j.jpowsour.2007.11.101
- H. Kim, M.-Y. Cho, M.-H. Kim, K.-Y. Park, H. Gwon, Y. Lee, K.C. Roh, K. Kang, A novel high-energy hybrid supercapacitor with an anatase TiO2-reduced graphene oxide anode and an activated carbon cathode. Adv. Energy Mater. 3(11), 1500–1506 (2013). https://doi.org/10.1002/aenm.201300467
- H.S. Li, L.L. Peng, Y. Zhu, X.G. Zhang, G.H. Yu, Achieving high-energy-high-power density in a flexible quasi-solid-state sodium ion capacitor. Nano Lett. 16(9), 5938–5943 (2016). https://doi.org/10.1021/acs.nanolett.6b02932
- X.Z. Sun, X. Zhang, H.T. Zhang, N.S. Xu, K. Wang, Y.W. Ma, High performance lithium-ion hybrid capacitors with pre-lithiated hard carbon anodes and bifunctional cathode electrodes. J. Power Sources 270, 318–325 (2014). https://doi.org/10.1016/j.jpowsour.2014.07.146
- X.L. Yu, C.Z. Zhan, R.T. Lv, Y. Bai, Y.X. Lin et al., Ultrahigh-rate and high-density lithium-ion capacitors through hybriding nitrogen-enriched hierarchical porous carbon cathode with prelithiated microcrystalline graphite anode. Nano Energy 15, 43–45 (2015). https://doi.org/10.1016/j.nanoen.2015.03.001
- Z. Chen, Y. Yuan, H.H. Zhou, X.L. Wang, Z.H. Gan, F.S. Wang, Y.F. Lu, 3D nanocomposite architectures from carbon-nanotube-threaded nanocrystals for high-performance electrochemical energy storage. Adv. Mater. 26(2), 339–345 (2014). https://doi.org/10.1002/adma.201303317
References
T.B. Schon, B.T. McAllister, P.F. Li, D.S. Seferos, The rise of organic electrode materials for energy storage. Chem. Soc. Rev. 45(22), 6345–6404 (2016). https://doi.org/10.1039/C6CS00173D
W. Tu, Y. Zhou, Z. Zou, Versatile graphene-promoting photocatalytic performance of semiconductors: basic principles, synthesis, solar energy conversion, and environmental applications. Adv. Funct. Mater. 23(40), 4996–5008 (2013). https://doi.org/10.1002/adfm.201203547
Z. Jian, W. Luo, X. Ji, Carbon electrodes for K-ion batteries. J. Am. Chem. Soc. 137(36), 11566–11569 (2015). https://doi.org/10.1021/jacs.5b06809
W. Zhang, J. Mao, S. Li, Z. Chen, Z.P. Guo, Phosphorus-based alloy materials for advanced potassium-ion battery anode. J. Am. Chem. Soc. 139(9), 3316–3319 (2017). https://doi.org/10.1021/jacs.6b12185
L. Qie, W.M. Chen, H.H. Xu, X.Q. Xiong, Y. Jiang et al., Synthesis of functionalized 3D hierarchical porous carbon for high-performance supercapacitors. Energy Environ. Sci. 6(8), 2497–2504 (2013). https://doi.org/10.1039/c3ee41638k
J. Bai, B.J. Xi, H.Z. Mao, Y. Lin, X.J. Ma, J.K. Feng, S.L. Xiong, One-step construction of N, P-codoped porous carbon sheets/CoP hybrids with enhanced lithium and potassium storage. Adv. Mater. 30(35), 1802310 (2018). https://doi.org/10.1002/adma.201802310
Z. Pan, J. Ren, G. Guan, X. Fang, B. Wang et al., Synthesizing nitrogen-doped core–sheath carbon nanotube films for flexible lithium ion batteries. Adv. Energy Mater. 6(8), 1600271 (2016). https://doi.org/10.1002/aenm.201600271
F. Zheng, Y. Yang, Q. Chen, High lithium anodic performance of highly nitrogen-doped porous carbon prepared from a metal-organic framework. Nat. Commun. 5, 5261 (2014). https://doi.org/10.1038/ncomms6261
C. Zhang, X. Wang, Q. Liang, X. Liu, Q. Weng et al., Amorphous phosphorus/nitrogen-doped graphene paper for ultrastable sodium-ion batteries. Nano Lett. 16(3), 2054–2060 (2016). https://doi.org/10.1021/acs.nanolett.6b00057
G.Y. Ma, K.S. Huang, J.S. Ma, Z.C. Ju, Z. Xing, Q.C. Zhuang, Phosphorus and oxygen dual-doped graphene as superior anode material for room-temperature potassium-ion batteries. J. Mater. Chem. A 5(17), 7854–7861 (2017). https://doi.org/10.1021/acs.nanolett.6b00057
X.X. Gu, L.B. Xin, Y. Li, F. Dong, M. Fu, Y.L. Hou, Highly reversible Li–Se batteries with ultra-lightweight N, S-codoped graphene blocking layer. Nano-Micro Lett. 10(4), 59 (2018). https://doi.org/10.1007/s40820-018-0213-5
X.L. Wang, G. Li, M.H. Seo, F.M. Hassan, M.A. Hoque, Z.W. Chen, Sulfur atoms bridging few-layered MoS2 with S-doped graphene enable highly robust anode for lithium-ion batteries. Adv. Energy Mater. 5(23), 1501106 (2015). https://doi.org/10.1002/aenm.201501106
W. Ai, Z. Luo, J. Jiang, J. Zhu, Z. Du et al., Nitrogen and sulfur co-doped graphene: multifunctional electrode materials for high-performance Li-ion batteries and oxygen reduction reaction. Adv. Mater. 26(35), 6186–6192 (2015). https://doi.org/10.1002/adma.201401427
C. Zhang, N. Mahmood, H. Yin, F. Liu, Y. Hou, Synthesis of phosphorus-doped graphene and its multifunctional applications for oxygen reduction reaction and lithium ion batteries. Adv. Mater. 25(35), 4932–4937 (2013). https://doi.org/10.1002/adma.201301870
K.S. Subrahmanyam, L.S. Panchakarla, A. Govindaraj, C.N.R. Rao, Simple method of preparing graphene flakes by an arc-discharge method. J. Phys. Chem. C 113(11), 4257–4259 (2009). https://doi.org/10.1021/jp900791y
N. Li, Z.Y. Wang, K.K. Zhao, Z.J. Shi, Z.N. Gu, S.K. Xu, Large scale synthesis of N-doped multi-layered graphene sheets by simple arc-discharge method. Carbon 48(1), 255–259 (2010). https://doi.org/10.1016/j.carbon.2009.09.013
Z.S. Wu, W.C. Ren, L.B. Gao, J.P. Zhao, Z.P. Chen, Synthesis of graphene sheets with high electrical conductivity and good thermal stability by hydrogen arc discharge exfoliation. ACS Nano 3(2), 411–417 (2009). https://doi.org/10.1021/nn900020u
I. Levchenko, O. Volotskova, A. Shashurin, Y. Raitses, K. Ostrikov, M. Keidar, The large-scale production of graphene flakes using magnetically-enhanced arc discharge between carbon electrodes. Carbon 48(15), 4570–4574 (2010). https://doi.org/10.1016/j.carbon.2010.07.055
A.C. Ferrari, J. Robertson, Interpretation of raman spectra of disordered and amorphous carbon. Phys. Rev. B 61(20), 14095–14107 (2000). https://doi.org/10.1103/PhysRevB.61.14095
A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett. 9(1), 30–35 (2009). https://doi.org/10.1021/nl801827v
Y.P. Wu, B. Wang, Y.F. Ma, Y. Huang, N. Li, F. Zhang, Y.S. Chen, Preparation of nitrogen- and phosphorous co-doped carbon microspheres and their superior performance as anode in sodium-ion batteries. Nano Res. 3(9), 661–669 (2010). https://doi.org/10.1007/s12274-010-0027-3
S. Nie, L. Liu, J.F. Liu, J.J. Xie, Y. Zhang et al., Nitrogen-doped TiO2–C composite nanofibers with high-capacity and long-cycle life as anode materials for sodium-ion batteries. Nano-Micro Lett. 10(4), 71 (2018). https://doi.org/10.1007/s40820-018-0225-1
X.L. Ma, G.Q. Ning, C.L. Qi, C.G. Xu, J.S. Gao, Phosphorus and nitrogen dual-doped few-layered porous graphene: a high-performance anode material for lithium-ion batteries. ACS Appl. Mater. Interfaces 6(16), 14415–14422 (2014). https://doi.org/10.1021/am503692g
H.B. Wang, C.J. Zhang, Z.H. Liu, L. Wang, P.X. Han et al., Nitrogen-doped graphene nanosheets with excellent lithium storage properties. J. Mater. Chem. 21(14), 5430–5434 (2011). https://doi.org/10.1039/c1jm00049g
M.S. Kim, J.-H. Ryu, Y.R.Lim Deepika, I.W. Nah et al., Langmuir–Blodgett artificial solid-electrolyte interphases for practical lithium metal batteries. Nat. Energy 3, 889–898 (2018). https://doi.org/10.1038/s41560-018-0237-6
E.H. Kim, Y. Jung, Effects of phosphorus content and operating temperature on the electrochemical performance of phosphorus-doped soft carbons. Carbon Lett. 15(4), 277–281 (2014). https://doi.org/10.5714/CL.2014.15.4.277
H.C. Tao, Y. Xiong, S.L. Du, Y.Q. Zhang, X.L. Yang, L.L. Zhang, Interwoven N and P dual-doped hollow carbon fibers/graphitic carbon nitride: an ultrahigh capacity and rate anode for Li and Na ion batteries. Carbon 122, 54–63 (2017). https://doi.org/10.1016/j.carbon.2017.06.040
Y.Z. Fang, R. Hu, D.X. Cao, K. Zhu, MXene-derived TiO2/reduced graphene oxide composite with an enhanced capacitive capacity for Li-ion and K-ion batteries. J. Mater. Chem. A 7, 5363–5372 (2019). https://doi.org/10.1039/C8TA12069B
Y. Jin, S. Li, A. Kushima, X. Zheng, Y. Sun et al., Self-healing SEI enables full-cell cycling of a silicon-majority anode with a coulombic efficiency exceeding 99.9%. Energy Environ. Sci. 10(2), 580–592 (2017). https://doi.org/10.1039/C6EE02685K
J.L. Yang, Z.C. Ju, Y. Jiang, Z. Xing, B.J. Xi, J.K. Feng, S.L. Xiong, Enhanced capacity and rate capability of nitrogen/oxygen dual-doped hard carbon in capacitive potassium-ion storage. Adv. Mater. 30(4), 1700104 (2018). https://doi.org/10.1002/adma.201700104
Q. Zhang, J.F. Mao, W.K. Pang, T. Zheng, V. Sencadas, Y.Z. Chen, Y.J. Liu, Z.P. Guo, Boosting the potassium storage performance of alloy-based anode materials via electrolyte salt chemistry. Adv. Energy Mater. 8(15), 1703288 (2018). https://doi.org/10.1002/aenm.201703288
H. Gao, T.F. Zhou, Y. Zheng, Q. Zhang, Y.Q. Liu, J. Chen, H.K. Liu, Z.P. Guo, CoS quantum dot nanoclusters for high-energy potassium-ion batteries. Adv. Funct. Mater. 27(43), 1702634 (2017). https://doi.org/10.1002/adfm.201702634
Y.J. Liu, Z. Tai, Q. Zhang, H.Q. Wang, W.K. Pang, H.K. Liu, K. Konstantinov, Z.P. Guo, A new energy storage system: rechargeable potassium–selenium battery. Nano Energy 35, 36–43 (2017). https://doi.org/10.1016/j.nanoen.2017.03.029
H. L. Wang, C. M. B. Holt, Z. Li, X. H. Tan, B. S. Amirkhiz, Z. W. Xu, B. C. Olsen, T. Stephenson, D. Mitlin, Graphene–nickel cobaltite nanocomposite asymmetrical supercapacitor with commercial level mass loading. Nano Res. 5(9), 605–617 (2012). https://doi.org/10.1007/s12274-012-0246-x
J. Yin, L. Qi, H.Y. Wang, Sodium titanate nanotubes as negative electrode materials for sodium-ion capacitors. ACS Appl. Mater. Interfaces 4(5), 2762–2768 (2012). https://doi.org/10.1021/am300385r
V. Khomenko, E. Raymundo-Piñero, F. Béguin, High-energy density graphite/AC capacitor in organic electrolyte. J. Power Sources 177(2), 643–651 (2008). https://doi.org/10.1016/j.jpowsour.2007.11.101
H. Kim, M.-Y. Cho, M.-H. Kim, K.-Y. Park, H. Gwon, Y. Lee, K.C. Roh, K. Kang, A novel high-energy hybrid supercapacitor with an anatase TiO2-reduced graphene oxide anode and an activated carbon cathode. Adv. Energy Mater. 3(11), 1500–1506 (2013). https://doi.org/10.1002/aenm.201300467
H.S. Li, L.L. Peng, Y. Zhu, X.G. Zhang, G.H. Yu, Achieving high-energy-high-power density in a flexible quasi-solid-state sodium ion capacitor. Nano Lett. 16(9), 5938–5943 (2016). https://doi.org/10.1021/acs.nanolett.6b02932
X.Z. Sun, X. Zhang, H.T. Zhang, N.S. Xu, K. Wang, Y.W. Ma, High performance lithium-ion hybrid capacitors with pre-lithiated hard carbon anodes and bifunctional cathode electrodes. J. Power Sources 270, 318–325 (2014). https://doi.org/10.1016/j.jpowsour.2014.07.146
X.L. Yu, C.Z. Zhan, R.T. Lv, Y. Bai, Y.X. Lin et al., Ultrahigh-rate and high-density lithium-ion capacitors through hybriding nitrogen-enriched hierarchical porous carbon cathode with prelithiated microcrystalline graphite anode. Nano Energy 15, 43–45 (2015). https://doi.org/10.1016/j.nanoen.2015.03.001
Z. Chen, Y. Yuan, H.H. Zhou, X.L. Wang, Z.H. Gan, F.S. Wang, Y.F. Lu, 3D nanocomposite architectures from carbon-nanotube-threaded nanocrystals for high-performance electrochemical energy storage. Adv. Mater. 26(2), 339–345 (2014). https://doi.org/10.1002/adma.201303317