Binder-Free Immobilization of Photocatalyst on Membrane Surface for Efficient Photocatalytic H2O2 Production and Water Decontamination
Corresponding Author: Wen‑Wei Li
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 301
Abstract
In photocatalytic water treatment processes, the particulate photocatalysts are typically immobilized on membrane, through either chemical/physical loading onto the surface or directly embedding in the membrane matrix. However, these immobilization strategies inevitably compromise the interfacial mass diffusion and cause activity decline relative to the suspended catalyst. Here, we propose a binder-free surface immobilization strategy for fabrication of high-activity photocatalytic membrane. Through a simple dimethylformamide (DMF) treatment, the nanofibers of polyvinylidene fluoride membrane were softened and stretched, creating enlarged micropores to efficiently capture the photocatalyst. Subsequently, the nanofibers underwent shrinking during DMF evaporation, thus firmly strapping the photocatalyst microparticles on the membrane surface. This surface self-bounded photocatalytic membrane, with firmly bounded yet highly exposed photocatalyst, exhibited 4.2-fold higher efficiency in hydrogen peroxide (H2O2) photosynthesis than the matrix-embedded control, due to improved O2 accessibility and H2O2 diffusion. It even outperformed the suspension photocatalytic system attributed to alleviated H2O2 decomposition at the hydrophobic surface. When adopted for UV-based water treatment, the photocatalytic system exhibited tenfold faster micropollutants photodegradation than the catalyst-free control and demonstrated superior robustness for treating contaminated tap water, lake water and secondary wastewater effluent. This immobilization strategy can also be extended to the fabrication of other photocatalytic membranes with diverse catalyst types and membrane substrate. Overall, our work opens a facile avenue for fabrication of high-performance photocatalytic membranes, which may benefit advanced oxidation water purification application and beyond.
Highlights:
1 Polyvinylidene fluoride nanofibers were treated by dimethylformamide to create micropores on membrane surface.
2 Photocatalysts were firmly bounded by nanofibers during stretching and shrinking.
3 Particulate catalysts were fixed yet high exposed on the membrane surface.
4 Surface self-bounded photocatalytic membrane exhibited tenfold higher decontamination activity than embedded catalyst.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- G. Orive, U. Lertxundi, T. Brodin, P. Manning, Greening the pharmacy. Science 377(6603), 259–260 (2022). https://doi.org/10.1126/science.abp9554
- L. Xu, H. Zhang, P. Xiong, Q. Zhu, C. Liao et al., Occurrence, fate, and risk assessment of typical tetracycline antibiotics in the aquatic environment: a review. Sci. Total. Environ. 753, 141975 (2021). https://doi.org/10.1016/j.scitotenv.2020.141975
- M.S. Rahman, E.O. Adegoke, M.G. Pang, Drivers of owning more BPA. J. Hazard. Mater. 417, 126076 (2021). https://doi.org/10.1016/j.jhazmat.2021.126076
- J. Hu, Y. Lyu, H. Chen, S. Li, W. Sun, Suspect and nontarget screening reveal the underestimated risks of antibiotic transformation products in wastewater treatment plant effluents. Environ. Sci. Technol. 57(45), 17439–17451 (2023). https://doi.org/10.1021/acs.est.3c05008
- Y. Zhang, Y.-G. Zhao, F. Maqbool, Y. Hu, Removal of antibiotics pollutants in wastewater by UV-based advanced oxidation processes: Influence of water matrix components, processes optimization and application: a review. J. Water Process. Eng. 45, 102496 (2022). https://doi.org/10.1016/j.jwpe.2021.102496
- R. Wünsch, C. Mayer, J. Plattner, F. Eugster, R. Wülser et al., Micropollutants as internal probe compounds to assess UV fluence and hydroxyl radical exposure in UV/H2O2 treatment. Water Res. 195, 116940 (2021). https://doi.org/10.1016/j.watres.2021.116940
- Y.-H. Chuang, S. Chen, C.J. Chinn, W.A. Mitch, Comparing the UV/monochloramine and UV/free chlorine advanced oxidation processes (AOPs) to the UV/hydrogen peroxide AOP under scenarios relevant to potable reuse. Environ. Sci. Technol. 51(23), 13859–13868 (2017). https://doi.org/10.1021/acs.est.7b03570
- H. Li, Z. Wang, J. Geng, R. Song, X. Liu et al., Current advances in UV-based advanced oxidation processes for the abatement of fluoroquinolone antibiotics in wastewater. Chin. Chem. Lett. 36(4), 110138 (2025). https://doi.org/10.1016/j.cclet.2024.110138
- Y. Huang, Z. Qiang, Z. Sun, M. Li, Micropollutant degradation by UV/H2O2 in drinking water: facilitated prediction through combination of model simulation and portable measurement. Water Res. 221, 118794 (2022). https://doi.org/10.1016/j.watres.2022.118794
- Y.-X. Zhang, J.-L. Xiang, J.-J. Wang, H.-S. Du, T.-T. Wang et al., Ultraviolet-based synergistic processes for wastewater disinfection: a review. J. Hazard. Mater. 453, 131393 (2023). https://doi.org/10.1016/j.jhazmat.2023.131393
- Q. Zhao, N. Li, C. Liao, L. Tian, J. An et al., The UV/H2O2 process based on H2O2 in situ generation for water disinfection. J. Hazard. Mater. Lett. 2, 100020 (2021). https://doi.org/10.1016/j.hazl.2021.100020
- B.C. Kim, E. Jeong, E. Kim, S.W. Hong, Bio-organic–inorganic hybrid photocatalyst, TiO2 and glucose oxidase composite for enhancing antibacterial performance in aqueous environments. Appl. Catal. B Environ. 242, 194–201 (2019). https://doi.org/10.1016/j.apcatb.2018.09.102
- Y. Guo, X. Tong, N. Yang, Photocatalytic and electrocatalytic generation of hydrogen peroxide: principles, catalyst design and performance. Nano-Micro Lett. 15(1), 77 (2023). https://doi.org/10.1007/s40820-023-01052-2
- J. Chen, Q. Ma, X. Zheng, Y. Fang, J. Wang et al., Kinetically restrained oxygen reduction to hydrogen peroxide with nearly 100% selectivity. Nat. Commun. 13(1), 2808 (2022). https://doi.org/10.1038/s41467-022-30411-7
- X. Yang, Y. Pan, L. Ding, B. Wu, J. Wang et al., Polydopamine/graphite sheet electrode for highly efficient electrocatalytic hydrogen peroxide generation and bisphenol A removal. Chem. Eng. J. 454, 140026 (2023). https://doi.org/10.1016/j.cej.2022.140026
- C. Yang, H. Pang, X. Li, X. Zheng, T. Wei et al., Scalable electrocatalytic urea wastewater treatment coupled with hydrogen production by regulating adsorption behavior of urea molecule. Nano-Micro Lett. 17(1), 159 (2025). https://doi.org/10.1007/s40820-024-01585-0
- C. Zhao, Z. Ding, K. Zhang, Z. Du, H. Fang et al., Comprehensive chlorine suppression: advances in materials and system technologies for direct seawater electrolysis. Nano-Micro Lett. 17(1), 113 (2025). https://doi.org/10.1007/s40820-025-01653-z
- M. Mazzucato, A. Facchin, M. Parnigotto, C. Durante, New and revised aspects of the electrochemical synthesis of hydrogen peroxide: from model electrocatalytic systems to scalable materials. ACS Catal. 14(9), 6369–6403 (2024). https://doi.org/10.1021/acscatal.4c01011
- P. Cao, X. Quan, X. Nie, K. Zhao, Y. Liu et al., Metal single-site catalyst design for electrocatalytic production of hydrogen peroxide at industrial-relevant currents. Nat. Commun. 14(1), 172 (2023). https://doi.org/10.1038/s41467-023-35839-z
- K. He, Z. Huang, C. Chen, C. Qiu, Y.L. Zhong et al., Exploring the roles of single atom in hydrogen peroxide photosynthesis. Nano-Micro Lett. 16(1), 23 (2023). https://doi.org/10.1007/s40820-023-01231-1
- Y. Yang, Y. Li, X. Ma, L. Xie, D. Lv et al., Direct Z-scheme WO3/covalent organic framework (COF) heterostructure for enhanced photocatalytic hydrogen peroxide production in water. Catal. Sci. Technol. 13(19), 5599–5609 (2023). https://doi.org/10.1039/d3cy00878a
- C. Chu, Z. Chen, D. Yao, X. Liu, M. Cai et al., Large-scale continuous and in situ photosynthesis of hydrogen peroxide by sulfur-functionalized polymer catalyst for water treatment. Angew. Chem. Int. Ed. 63(10), e202317214 (2024). https://doi.org/10.1002/anie.202317214
- M.A. Saflashkar, M. Homayoonfal, F. Davar, Achieving high separation of cephalexin in a photocatalytic membrane reactor: What is the best method for embedding catalyst within the polysulfone membrane structure? Chem. Eng. J. 450, 138150 (2022). https://doi.org/10.1016/j.cej.2022.138150
- M. Schröder, K. Kailasam, J. Borgmeyer, M. Neumann, A. Thomas et al., Hydrogen evolution reaction in a large-scale reactor using a carbon nitride photocatalyst under natural sunlight irradiation. Energy Technol. 3(10), 1014–1017 (2015). https://doi.org/10.1002/ente.201500142
- C. Chen, L. Fei, B. Wang, J. Xu, B. Li et al., MOF-based photocatalytic membrane for water purification: a review. Small 20(1), e2305066 (2024). https://doi.org/10.1002/smll.202305066
- M. Zhang, Y. Yang, X. An, L.-A. Hou, A critical review of g-C3N4-based photocatalytic membrane for water purification. Chem. Eng. J. 412, 128663 (2021). https://doi.org/10.1016/j.cej.2021.128663
- Y. Shi, J. Huang, G. Zeng, W. Cheng, J. Hu, Photocatalytic membrane in water purification: is it stepping closer to be driven by visible light? J. Membr. Sci. 584, 364–392 (2019). https://doi.org/10.1016/j.memsci.2019.04.078
- M.-Y. Yu, J. Wu, G. Yin, F.-Z. Jiao, Z.-Z. Yu et al., Dynamic regulation of hydrogen bonding networks and solvation structures for synergistic solar-thermal desalination of seawater and catalytic degradation of organic pollutants. Nano-Micro Lett. 17(1), 48 (2024). https://doi.org/10.1007/s40820-024-01544-9
- Y. Zhang, X. Huang, J. Yeom, A floatable piezo-photocatalytic platform based on semi-embedded ZnO nanowire array for high-performance water decontamination. Nano-Micro Lett. 11(1), 11 (2019). https://doi.org/10.1007/s40820-019-0241-9
- X. Zheng, R. Yanagi, Z. Pan, C. Zhou, T. Liu et al., Hydrogen peroxide photosynthesis from water and air using a scaled-up 1–m2 flow reactor. Chem Catal. 5(3), 101238 (2025). https://doi.org/10.1016/j.checat.2024.101238
- A. Molliet, S. Doninelli, L. Hong, B. Tran, M. Debas et al., Solvent dependent folding of an amphiphilic polyaramid. J. Am. Chem. Soc. 145(50), 27830–27837 (2023). https://doi.org/10.1021/jacs.3c11026
- H. Li, S. Xu, B. Wang, Z. Tian, Z. Xu et al., A new insight into the effects of DMF solvent activation on the polyamide layers of nanofiltration membranes by molecular simulation. J. Membr. Sci. 718, 123667 (2025). https://doi.org/10.1016/j.memsci.2024.123667
- T. Liu, Z. Pan, K. Kato, J.J.M. Vequizo, R. Yanagi et al., A general interfacial-energetics-tuning strategy for enhanced artificial photosynthesis. Nat. Commun. 13(1), 7783 (2022). https://doi.org/10.1038/s41467-022-35502-z
- M. Jin, Z. Liang, Y. Huang, M. Zhang, H. Fu et al., Boosting enzyme-like activities via atomization of cerium for tumor microenvironment-responsive cascade therapy. J. Am. Chem. Soc. 146(49), 34092–34106 (2024). https://doi.org/10.1021/jacs.4c13573
- Z. Qiang, W. Li, M. Li, J.R. Bolton, J. Qu, Inspection of feasible calibration conditions for UV radiometer detectors with the KI/KIO3 actinometer. Photochem. Photobiol. 91(1), 68–73 (2015). https://doi.org/10.1111/php.12356
- M. Li, F. Liu, Z. Ma, W. Liu, J. Liang et al., Different mechanisms for E. coli disinfection and BPA degradation by CeO2-AgI under visible light irradiation. Chem. Eng. J. 371, 750–758 (2019)
- X. Qiu, S. Yang, M. Dzakpasu, X. Li, D. Ding et al., Attenuation of BPA degradation by SO4 − in a system of peroxymonosulfate coupled with Mn/Fe MOF-templated catalysts and its synergism with Cl− and bicarbonate. Chem. Eng. J. 372, 605–615 (2019). https://doi.org/10.1016/j.cej.2019.04.175
- Y. Liu, S. Liu, M. Chen, Y. Bai, Y. Liu et al., Enhanced TC degradation by persulfate activation with carbon-coated CuFe2O4: The radical and non-radical co-dominant mechanism, DFT calculations and toxicity evaluation. J. Hazard. Mater. 461, 132417 (2024). https://doi.org/10.1016/j.jhazmat.2023.132417
- H. Hou, X. Zeng, X. Zhang, Production of hydrogen peroxide by photocatalytic processes. Angew. Chem. Int. Ed. 59(40), 17356–17376 (2020). https://doi.org/10.1002/anie.201911609
- M. Sun, X. Wang, Y. Li, H. Pan, M. Murugananthan et al., Bifunctional Pd-Ox center at the liquid–solid–gas triphase interface for H2O2 photosynthesis. ACS Catal. 12(4), 2138–2149 (2022). https://doi.org/10.1021/acscatal.1c05324
- Y. Li, Z. Pei, D. Luan, X.W.D. Lou, Triple-phase photocatalytic H2O2 production on a Janus fiber membrane with asymmetric hydrophobicity. J. Am. Chem. Soc. 146(5), 3343–3351 (2024). https://doi.org/10.1021/jacs.3c12465
- Y. Chen, L. Zhang, In-situ synchronous photoelectrosynthesis of H2O2/HClO green disinfectant with a S-scheme heterojunction bifunctional In2S3/MnIn2S4 photoelectrocatalyst. Appl. Catal. B Environ. Energy 347, 123768 (2024). https://doi.org/10.1016/j.apcatb.2024.123768
- L. Cui, M. Sun, Z. Zhang, An efficient, green, and residual oxidant-free wastewater treatment technique enabled by coupling a dual-cathode heterogeneous electro-Fenton process and UV radiation in tandem. Green Chem. 25(16), 6315–6326 (2023). https://doi.org/10.1039/D3GC01653F
- Q. Yi, J. Ji, B. Shen, C. Dong, J. Liu et al., Singlet oxygen triggered by superoxide radicals in a molybdenum cocatalytic Fenton reaction with enhanced REDOX activity in the environment. Environ. Sci. Technol. 53(16), 9725–9733 (2019). https://doi.org/10.1021/acs.est.9b01676
- S. Gao, C. Guo, J. Lv, Q. Wang, Y. Zhang et al., A novel 3D hollow magnetic Fe3O4/BiOI heterojunction with enhanced photocatalytic performance for bisphenol A degradation. Chem. Eng. J. 307, 1055–1065 (2017). https://doi.org/10.1016/j.cej.2016.09.032
- O. Bechambi, S. Sayadi, W. Najjar, Photocatalytic degradation of bisphenol A in the presence of C-doped ZnO: effect of operational parameters and photodegradation mechanism. J. Ind. Eng. Chem. 32, 201–210 (2015). https://doi.org/10.1016/j.jiec.2015.08.017
- J. Niu, H.-Z. Lin, S.-G. Jiang, X. Chen, K.-C. Wu et al., Comparison of effect of chitin, chitosan, chitosan oligosaccharide and N-acetyl-d-glucosamine on growth performance, antioxidant defenses and oxidative stress status of Penaeus monodon. Aquaculture 372, 1–8 (2013). https://doi.org/10.1016/j.aquaculture.2012.10.021
- X. Li, Y. Qiu, Z. Zhu, H. Zhang, D. Yin, Novel recyclable Z-scheme g-C3N4/carbon nanotubes/Bi25FeO40 heterostructure with enhanced visible-light photocatalytic performance towards tetracycline degradation. Chem. Eng. J. 429, 132130 (2022). https://doi.org/10.1016/j.cej.2021.132130
- Y. Liu, H. Liu, C. Wang, H. Sun, L. Wang, An observed “sandwich” framework mediated via sulfate ions as electron shuttle for efficient electro-oxidation of organic pollutants. Water Res. 274, 123139 (2025). https://doi.org/10.1016/j.watres.2025.123139
- J. Gao, R.F. Nunes, K. O’Shea, G.L. Saylor, L. Bu et al., UV/Sodium percarbonate for bisphenol A treatment in water: Impact of water quality parameters on the formation of reactive radicals. Water Res. 219, 118457 (2022). https://doi.org/10.1016/j.watres.2022.118457
References
G. Orive, U. Lertxundi, T. Brodin, P. Manning, Greening the pharmacy. Science 377(6603), 259–260 (2022). https://doi.org/10.1126/science.abp9554
L. Xu, H. Zhang, P. Xiong, Q. Zhu, C. Liao et al., Occurrence, fate, and risk assessment of typical tetracycline antibiotics in the aquatic environment: a review. Sci. Total. Environ. 753, 141975 (2021). https://doi.org/10.1016/j.scitotenv.2020.141975
M.S. Rahman, E.O. Adegoke, M.G. Pang, Drivers of owning more BPA. J. Hazard. Mater. 417, 126076 (2021). https://doi.org/10.1016/j.jhazmat.2021.126076
J. Hu, Y. Lyu, H. Chen, S. Li, W. Sun, Suspect and nontarget screening reveal the underestimated risks of antibiotic transformation products in wastewater treatment plant effluents. Environ. Sci. Technol. 57(45), 17439–17451 (2023). https://doi.org/10.1021/acs.est.3c05008
Y. Zhang, Y.-G. Zhao, F. Maqbool, Y. Hu, Removal of antibiotics pollutants in wastewater by UV-based advanced oxidation processes: Influence of water matrix components, processes optimization and application: a review. J. Water Process. Eng. 45, 102496 (2022). https://doi.org/10.1016/j.jwpe.2021.102496
R. Wünsch, C. Mayer, J. Plattner, F. Eugster, R. Wülser et al., Micropollutants as internal probe compounds to assess UV fluence and hydroxyl radical exposure in UV/H2O2 treatment. Water Res. 195, 116940 (2021). https://doi.org/10.1016/j.watres.2021.116940
Y.-H. Chuang, S. Chen, C.J. Chinn, W.A. Mitch, Comparing the UV/monochloramine and UV/free chlorine advanced oxidation processes (AOPs) to the UV/hydrogen peroxide AOP under scenarios relevant to potable reuse. Environ. Sci. Technol. 51(23), 13859–13868 (2017). https://doi.org/10.1021/acs.est.7b03570
H. Li, Z. Wang, J. Geng, R. Song, X. Liu et al., Current advances in UV-based advanced oxidation processes for the abatement of fluoroquinolone antibiotics in wastewater. Chin. Chem. Lett. 36(4), 110138 (2025). https://doi.org/10.1016/j.cclet.2024.110138
Y. Huang, Z. Qiang, Z. Sun, M. Li, Micropollutant degradation by UV/H2O2 in drinking water: facilitated prediction through combination of model simulation and portable measurement. Water Res. 221, 118794 (2022). https://doi.org/10.1016/j.watres.2022.118794
Y.-X. Zhang, J.-L. Xiang, J.-J. Wang, H.-S. Du, T.-T. Wang et al., Ultraviolet-based synergistic processes for wastewater disinfection: a review. J. Hazard. Mater. 453, 131393 (2023). https://doi.org/10.1016/j.jhazmat.2023.131393
Q. Zhao, N. Li, C. Liao, L. Tian, J. An et al., The UV/H2O2 process based on H2O2 in situ generation for water disinfection. J. Hazard. Mater. Lett. 2, 100020 (2021). https://doi.org/10.1016/j.hazl.2021.100020
B.C. Kim, E. Jeong, E. Kim, S.W. Hong, Bio-organic–inorganic hybrid photocatalyst, TiO2 and glucose oxidase composite for enhancing antibacterial performance in aqueous environments. Appl. Catal. B Environ. 242, 194–201 (2019). https://doi.org/10.1016/j.apcatb.2018.09.102
Y. Guo, X. Tong, N. Yang, Photocatalytic and electrocatalytic generation of hydrogen peroxide: principles, catalyst design and performance. Nano-Micro Lett. 15(1), 77 (2023). https://doi.org/10.1007/s40820-023-01052-2
J. Chen, Q. Ma, X. Zheng, Y. Fang, J. Wang et al., Kinetically restrained oxygen reduction to hydrogen peroxide with nearly 100% selectivity. Nat. Commun. 13(1), 2808 (2022). https://doi.org/10.1038/s41467-022-30411-7
X. Yang, Y. Pan, L. Ding, B. Wu, J. Wang et al., Polydopamine/graphite sheet electrode for highly efficient electrocatalytic hydrogen peroxide generation and bisphenol A removal. Chem. Eng. J. 454, 140026 (2023). https://doi.org/10.1016/j.cej.2022.140026
C. Yang, H. Pang, X. Li, X. Zheng, T. Wei et al., Scalable electrocatalytic urea wastewater treatment coupled with hydrogen production by regulating adsorption behavior of urea molecule. Nano-Micro Lett. 17(1), 159 (2025). https://doi.org/10.1007/s40820-024-01585-0
C. Zhao, Z. Ding, K. Zhang, Z. Du, H. Fang et al., Comprehensive chlorine suppression: advances in materials and system technologies for direct seawater electrolysis. Nano-Micro Lett. 17(1), 113 (2025). https://doi.org/10.1007/s40820-025-01653-z
M. Mazzucato, A. Facchin, M. Parnigotto, C. Durante, New and revised aspects of the electrochemical synthesis of hydrogen peroxide: from model electrocatalytic systems to scalable materials. ACS Catal. 14(9), 6369–6403 (2024). https://doi.org/10.1021/acscatal.4c01011
P. Cao, X. Quan, X. Nie, K. Zhao, Y. Liu et al., Metal single-site catalyst design for electrocatalytic production of hydrogen peroxide at industrial-relevant currents. Nat. Commun. 14(1), 172 (2023). https://doi.org/10.1038/s41467-023-35839-z
K. He, Z. Huang, C. Chen, C. Qiu, Y.L. Zhong et al., Exploring the roles of single atom in hydrogen peroxide photosynthesis. Nano-Micro Lett. 16(1), 23 (2023). https://doi.org/10.1007/s40820-023-01231-1
Y. Yang, Y. Li, X. Ma, L. Xie, D. Lv et al., Direct Z-scheme WO3/covalent organic framework (COF) heterostructure for enhanced photocatalytic hydrogen peroxide production in water. Catal. Sci. Technol. 13(19), 5599–5609 (2023). https://doi.org/10.1039/d3cy00878a
C. Chu, Z. Chen, D. Yao, X. Liu, M. Cai et al., Large-scale continuous and in situ photosynthesis of hydrogen peroxide by sulfur-functionalized polymer catalyst for water treatment. Angew. Chem. Int. Ed. 63(10), e202317214 (2024). https://doi.org/10.1002/anie.202317214
M.A. Saflashkar, M. Homayoonfal, F. Davar, Achieving high separation of cephalexin in a photocatalytic membrane reactor: What is the best method for embedding catalyst within the polysulfone membrane structure? Chem. Eng. J. 450, 138150 (2022). https://doi.org/10.1016/j.cej.2022.138150
M. Schröder, K. Kailasam, J. Borgmeyer, M. Neumann, A. Thomas et al., Hydrogen evolution reaction in a large-scale reactor using a carbon nitride photocatalyst under natural sunlight irradiation. Energy Technol. 3(10), 1014–1017 (2015). https://doi.org/10.1002/ente.201500142
C. Chen, L. Fei, B. Wang, J. Xu, B. Li et al., MOF-based photocatalytic membrane for water purification: a review. Small 20(1), e2305066 (2024). https://doi.org/10.1002/smll.202305066
M. Zhang, Y. Yang, X. An, L.-A. Hou, A critical review of g-C3N4-based photocatalytic membrane for water purification. Chem. Eng. J. 412, 128663 (2021). https://doi.org/10.1016/j.cej.2021.128663
Y. Shi, J. Huang, G. Zeng, W. Cheng, J. Hu, Photocatalytic membrane in water purification: is it stepping closer to be driven by visible light? J. Membr. Sci. 584, 364–392 (2019). https://doi.org/10.1016/j.memsci.2019.04.078
M.-Y. Yu, J. Wu, G. Yin, F.-Z. Jiao, Z.-Z. Yu et al., Dynamic regulation of hydrogen bonding networks and solvation structures for synergistic solar-thermal desalination of seawater and catalytic degradation of organic pollutants. Nano-Micro Lett. 17(1), 48 (2024). https://doi.org/10.1007/s40820-024-01544-9
Y. Zhang, X. Huang, J. Yeom, A floatable piezo-photocatalytic platform based on semi-embedded ZnO nanowire array for high-performance water decontamination. Nano-Micro Lett. 11(1), 11 (2019). https://doi.org/10.1007/s40820-019-0241-9
X. Zheng, R. Yanagi, Z. Pan, C. Zhou, T. Liu et al., Hydrogen peroxide photosynthesis from water and air using a scaled-up 1–m2 flow reactor. Chem Catal. 5(3), 101238 (2025). https://doi.org/10.1016/j.checat.2024.101238
A. Molliet, S. Doninelli, L. Hong, B. Tran, M. Debas et al., Solvent dependent folding of an amphiphilic polyaramid. J. Am. Chem. Soc. 145(50), 27830–27837 (2023). https://doi.org/10.1021/jacs.3c11026
H. Li, S. Xu, B. Wang, Z. Tian, Z. Xu et al., A new insight into the effects of DMF solvent activation on the polyamide layers of nanofiltration membranes by molecular simulation. J. Membr. Sci. 718, 123667 (2025). https://doi.org/10.1016/j.memsci.2024.123667
T. Liu, Z. Pan, K. Kato, J.J.M. Vequizo, R. Yanagi et al., A general interfacial-energetics-tuning strategy for enhanced artificial photosynthesis. Nat. Commun. 13(1), 7783 (2022). https://doi.org/10.1038/s41467-022-35502-z
M. Jin, Z. Liang, Y. Huang, M. Zhang, H. Fu et al., Boosting enzyme-like activities via atomization of cerium for tumor microenvironment-responsive cascade therapy. J. Am. Chem. Soc. 146(49), 34092–34106 (2024). https://doi.org/10.1021/jacs.4c13573
Z. Qiang, W. Li, M. Li, J.R. Bolton, J. Qu, Inspection of feasible calibration conditions for UV radiometer detectors with the KI/KIO3 actinometer. Photochem. Photobiol. 91(1), 68–73 (2015). https://doi.org/10.1111/php.12356
M. Li, F. Liu, Z. Ma, W. Liu, J. Liang et al., Different mechanisms for E. coli disinfection and BPA degradation by CeO2-AgI under visible light irradiation. Chem. Eng. J. 371, 750–758 (2019)
X. Qiu, S. Yang, M. Dzakpasu, X. Li, D. Ding et al., Attenuation of BPA degradation by SO4 − in a system of peroxymonosulfate coupled with Mn/Fe MOF-templated catalysts and its synergism with Cl− and bicarbonate. Chem. Eng. J. 372, 605–615 (2019). https://doi.org/10.1016/j.cej.2019.04.175
Y. Liu, S. Liu, M. Chen, Y. Bai, Y. Liu et al., Enhanced TC degradation by persulfate activation with carbon-coated CuFe2O4: The radical and non-radical co-dominant mechanism, DFT calculations and toxicity evaluation. J. Hazard. Mater. 461, 132417 (2024). https://doi.org/10.1016/j.jhazmat.2023.132417
H. Hou, X. Zeng, X. Zhang, Production of hydrogen peroxide by photocatalytic processes. Angew. Chem. Int. Ed. 59(40), 17356–17376 (2020). https://doi.org/10.1002/anie.201911609
M. Sun, X. Wang, Y. Li, H. Pan, M. Murugananthan et al., Bifunctional Pd-Ox center at the liquid–solid–gas triphase interface for H2O2 photosynthesis. ACS Catal. 12(4), 2138–2149 (2022). https://doi.org/10.1021/acscatal.1c05324
Y. Li, Z. Pei, D. Luan, X.W.D. Lou, Triple-phase photocatalytic H2O2 production on a Janus fiber membrane with asymmetric hydrophobicity. J. Am. Chem. Soc. 146(5), 3343–3351 (2024). https://doi.org/10.1021/jacs.3c12465
Y. Chen, L. Zhang, In-situ synchronous photoelectrosynthesis of H2O2/HClO green disinfectant with a S-scheme heterojunction bifunctional In2S3/MnIn2S4 photoelectrocatalyst. Appl. Catal. B Environ. Energy 347, 123768 (2024). https://doi.org/10.1016/j.apcatb.2024.123768
L. Cui, M. Sun, Z. Zhang, An efficient, green, and residual oxidant-free wastewater treatment technique enabled by coupling a dual-cathode heterogeneous electro-Fenton process and UV radiation in tandem. Green Chem. 25(16), 6315–6326 (2023). https://doi.org/10.1039/D3GC01653F
Q. Yi, J. Ji, B. Shen, C. Dong, J. Liu et al., Singlet oxygen triggered by superoxide radicals in a molybdenum cocatalytic Fenton reaction with enhanced REDOX activity in the environment. Environ. Sci. Technol. 53(16), 9725–9733 (2019). https://doi.org/10.1021/acs.est.9b01676
S. Gao, C. Guo, J. Lv, Q. Wang, Y. Zhang et al., A novel 3D hollow magnetic Fe3O4/BiOI heterojunction with enhanced photocatalytic performance for bisphenol A degradation. Chem. Eng. J. 307, 1055–1065 (2017). https://doi.org/10.1016/j.cej.2016.09.032
O. Bechambi, S. Sayadi, W. Najjar, Photocatalytic degradation of bisphenol A in the presence of C-doped ZnO: effect of operational parameters and photodegradation mechanism. J. Ind. Eng. Chem. 32, 201–210 (2015). https://doi.org/10.1016/j.jiec.2015.08.017
J. Niu, H.-Z. Lin, S.-G. Jiang, X. Chen, K.-C. Wu et al., Comparison of effect of chitin, chitosan, chitosan oligosaccharide and N-acetyl-d-glucosamine on growth performance, antioxidant defenses and oxidative stress status of Penaeus monodon. Aquaculture 372, 1–8 (2013). https://doi.org/10.1016/j.aquaculture.2012.10.021
X. Li, Y. Qiu, Z. Zhu, H. Zhang, D. Yin, Novel recyclable Z-scheme g-C3N4/carbon nanotubes/Bi25FeO40 heterostructure with enhanced visible-light photocatalytic performance towards tetracycline degradation. Chem. Eng. J. 429, 132130 (2022). https://doi.org/10.1016/j.cej.2021.132130
Y. Liu, H. Liu, C. Wang, H. Sun, L. Wang, An observed “sandwich” framework mediated via sulfate ions as electron shuttle for efficient electro-oxidation of organic pollutants. Water Res. 274, 123139 (2025). https://doi.org/10.1016/j.watres.2025.123139
J. Gao, R.F. Nunes, K. O’Shea, G.L. Saylor, L. Bu et al., UV/Sodium percarbonate for bisphenol A treatment in water: Impact of water quality parameters on the formation of reactive radicals. Water Res. 219, 118457 (2022). https://doi.org/10.1016/j.watres.2022.118457