Stepwise Fabrication of Co-Embedded Porous Multichannel Carbon Nanofibers for High-Efficiency Oxygen Reduction
Corresponding Author: Yanyu Liang
Nano-Micro Letters,
Vol. 11 (2019), Article Number: 33
Abstract
A novel nonprecious metal material consisting of Co-embedded porous interconnected multichannel carbon nanofibers (Co/IMCCNFs) was rationally designed for oxygen reduction reaction (ORR) electrocatalysis. In the synthesis, ZnCo2O4 was employed to form interconnected mesoporous channels and provide highly active Co3O4/Co core–shell nanoparticle-based sites for the ORR. The IMC structure with a large synergistic effect of the N and Co active sites provided fast ORR electrocatalysis kinetics. The Co/IMCCNFs exhibited a high half-wave potential of 0.82 V (vs. reversible hydrogen electrode) and excellent stability with a current retention up to 88% after 12,000 cycles in a current–time test, which is only 55% for 30 wt% Pt/C.
Highlights:
1 An interconnected structure is developed by evaporation of zinc species using a ZnCo2O4 precursor as the cobalt resource, enabling communications between channels as well as homogeneous loading of active sites.
2 A shell structure of Co3O4 is formed on the surface of a zero-valent Co0 core during a stepwise carbothermic reduction of ZnCo2O4.
3 The Co-embedded multichannel carbon nanofibers exhibit not only a superior half-wave potential, but also an excellent durability compared to those of the commercial 30% Pt/C.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J. Liu, H. Mooney, V. Hull, S.J. Davis, J. Gaskell et al., Systems integration for global sustainability. Science 347(6225), 1258832 (2015). https://doi.org/10.1126/science.1258832
- A.L. Alm, Energy supply interruptions and national security. Science 211(4489), 1379–1385 (1981). https://doi.org/10.1126/science.211.4489.1379
- A.S. Aricò, P. Bruce, B. Scrosati, J.M. Tarascon, S.W. Van, Nanostructured materials for advanced energy conversion and storage devices. Nat. Mater. 4(5), 366–377 (2005). https://doi.org/10.1038/nmat1368
- G. Ren, G. Ma, C. Ning, Review of electrical energy storage system for vehicular applications. Renew. Sust. Energ. Rev. 41, 225–236 (2015). https://doi.org/10.1016/j.rser.2014.08.003
- J. Wang, H. Xin, D.L. Wang, Recent progress on mesoporous carbon materials for advanced energy conversion and storage. Part. Part. Syst. Charact. 31(5), 515–539 (2014). https://doi.org/10.1002/ppsc.201300315
- Z. Fang, C. Yuan, J. Zhu, W. Jie, X. Zhang, W.L. Xiong, Capacitors: Flexible films derived from electrospun carbon nanofibers incorporated with Co3O4 hollow nanoparticles as self-supported electrodes for electrochemical capacitors. Adv. Funct. Mater. 23(31), 3909–3915 (2013). https://doi.org/10.1002/adfm.201203844
- H. Chang, H. Wu, Graphene-based nanocomposites: preparation, functionalization, and energy and environmental applications. Energy Environ. Sci. 6(12), 3483–3507 (2013). https://doi.org/10.1039/c3ee42518e
- H. Yu, D. Deng, D. Zhou, W. Yuan, Q. Zhao, Y. Hua, S. Zhao, L. Huang, S. Xu, Ba2Ca(PO4)2:Eu2+ emission-tunable phosphor for solid-state lighting: luminescent properties and application as white light emitting diodes. J. Mater. Chem. C 1(35), 5577–5582 (2013). https://doi.org/10.1039/c3tc30998c
- D. Yu, Y. Xue, L. Dai, Vertically aligned carbon nanotube arrays Co-doped with phosphorus and nitrogen as efficient metal-free electrocatalysts for oxygen reduction. J. Phys. Chem. Lett. 3(19), 2863 (2012). https://doi.org/10.1021/jz3011833
- Y. Zhou, S. Xi, J. Wang, S. Sun, C. Wei, Z. Feng, Y. Du, Z.J. Xu, Revealing the dominant chemistry for oxygen reduction reaction on small oxide nanoparticles. ACS Catal. 8(1), 673–677 (2017). https://doi.org/10.1021/acscatal.7b03864
- Q. Wang, Y. Lei, Z. Chen, N. Wu, Y. Wang, B. Wang, Y. Wang, Fe/Fe3C@C nanoparticles encapsulated in N-doped graphene–CNTs framework as an efficient bifunctional oxygen electrocatalyst for robust rechargeable Zn–air batteries. J. Mater. Chem. A 6(2), 516–526 (2018). https://doi.org/10.1039/C7TA08423D
- Q. Wang, Y. Ji, Y. Lei, Y. Wang, Y. Wang, Y. Li, S. Wang, Pyridinic-N-dominated doped defective graphene as a superior oxygen electrocatalyst for ultrahigh-energy-density Zn–air batteries. ACS Energy Lett. 3(5), 1183–1191 (2018). https://doi.org/10.1021/acsenergylett.8b00303
- Z. Chen, Q. Wang, X. Zhang, Y. Lei, W. Hu, Y. Luo, Y. Wang, N-doped defective carbon with trace Co for efficient rechargeable liquid electrolyte-/all-solid-state Zn-air batteries. Sci. Bull. 63(9), 548–555 (2018). https://doi.org/10.1016/j.scib.2018.04.003
- Y. Zhou, S. Sun, S. Xi, Y. Duan, T. Sritharan, Y. Du, Z.J. Xu, Superexchange effects on oxygen reduction activity of edge-sharing [CoxMn1−xO6] octahedra in spinel oxide. Adv. Mater. 30(11), 1705407 (2018). https://doi.org/10.1002/adma.201705407
- S. Ci, S. Mao, Y. Hou, S. Cui, H. Kim, R. Ren, Z. Wen, J. Chen, Rational design of mesoporous NiFe-alloy-based hybrids for oxygen conversion electrocatalysis. J. Mater. Chem. A 3(15), 7986–7993 (2015). https://doi.org/10.1039/C5TA00894H
- Y. Lei, Q. Shi, C. Han, B. Wang, N. Wu, H. Wang, Y. Wang, N-doped graphene grown on silk cocoon-derived interconnected carbon fibers for oxygen reduction reaction and photocatalytic hydrogen production. Nano Res. 9(8), 2498–2509 (2016). https://doi.org/10.1007/s12274-016-1136-4
- H. Yuan, Y. Hou, I. Abu-Reesh, J. Chen, Z. He, Oxygen reduction reaction catalysts used in microbial fuel cells for energy-efficient wastewater treatment: A review. Mater. Horiz. 3(5), 382–401 (2016). https://doi.org/10.1039/C6MH00093B
- J. Li, S. Mao, Y. Hou, L. Lei, C. Yuan, 3D edge-enriched Fe3C@C nanocrystals with a core–shell structure grown on reduced graphene oxide networks for efficient oxygen reduction reaction. Chemsuschem 11(18), 3292–3298 (2018). https://doi.org/10.1002/cssc.201801084
- L. Zhao, Q. Wang, X. Zhang, C. Deng, Z. Li, Y. Lei, M. Zhu, Combined electron and structure manipulation on Fe-containing n-doped carbon nanotubes to boost bifunctional oxygen electrocatalysis. ACS Appl. Mater. Interfaces 10(42), 35888–35895 (2018). https://doi.org/10.1021/acsami.8b09197
- Q. Wang, Y. Lei, Y. Zhu, H. Wang, J. Feng et al., Edge defect engineering of nitrogen-doped carbon for oxygen electrocatalysts in Zn–air batteries. ACS Appl. Mater. Interfaces 10(35), 29448–29456 (2018). https://doi.org/10.1021/acsami.8b07863
- L. Yang, S. Jiang, Y. Zhao, L. Zhu, S. Chen et al., Boron-doped carbon nanotubes as metal-free electrocatalysts for the oxygen reduction reaction. Angew. Chem. Int. Ed. 50(31), 7132–7135 (2011). https://doi.org/10.1002/anie.201101287
- S. Wang, E. Iyyamperumal, A. Roy, Y. Xue, D. Yu, L. Dai, Vertically aligned bcn nanotubes as efficient metal-free electrocatalysts for the oxygen reduction reaction: a synergetic effect by co-doping with boron and nitrogen. Angew. Chem. Int. Ed. 50(49), 11756–11760 (2011). https://doi.org/10.1002/anie.201105204
- D. Yu, Q. Zhang, L. Dai, Highly efficient metal-free growth of nitrogen-doped single-walled carbon nanotubes on plasma-etched substrates for oxygen reduction. J. Am. Chem. Soc. 132(43), 15127 (2010). https://doi.org/10.1021/ja105617z
- W. Xiong, D.U. Feng, Y. Liu, P. Albert, S. Michael, T.S. Ramakrishnan, L. Dai, L.I. Jiang, 3D carbon nanotube structures used as high performance catalyst for oxygen reduction reaction. J. Am. Chem. Soc. 132(45), 15839–15841 (2010). https://doi.org/10.1021/ja104425h
- Y. Tang, B.L. Allen, D.R. Kauffman, A. Star, Electrocatalytic activity of nitrogen-doped carbon nanotube cups. J. Am. Chem. Soc. 131(37), 13200–13201 (2009). https://doi.org/10.1021/ja904595t
- Y.X. Zhou, H.B. Yao, Y. Wang, H.L. Liu, M.R. Gao, P.K. Shen, S.H. Yu, Hierarchical hollow Co9S8 microspheres: solvothermal synthesis, magnetic, electrochemical, and electrocatalytic properties. Chemistry 16(39), 12000–12007 (2010). https://doi.org/10.1002/chem.200903263
- C. Kim, Y.I. Jeong, B.T.N. Ngoc, K.S. Yang, M. Kojima, Y.A. Kim, M. Endo, J.W. Lee, Synthesis and characterization of porous carbon nanofibers with hollow cores through the thermal treatment of electrospun copolymeric nanofiber webs. Small 3(1), 91–95 (2010). https://doi.org/10.1002/smll.200600243
- L. Zhen, T.Z. Jin, M.C. Yu, L. Ju, W.L. Xiong, Pie-like electrode design for high-energy density lithium–sulfur batteries. Nat. Commun. 6, 8850 (2015). https://doi.org/10.1038/ncomms9850
- D. Guo, R. Shibuya, C. Akiba, S. Saji, T. Kondo, J. Nakamura, Active sites of nitrogen-doped carbon materials for oxygen reduction reaction clarified using model catalysts. Science 351(6271), 361–365 (2016). https://doi.org/10.1126/science.aad0832
- Y. Zhao, Q. Lai, Y. Wang, J. Zhu, Y.Y. Liang, Interconnected hierarchically porous Fe, N-codoped carbon nanofibers as efficient oxygen reduction catalysts for Zn-air batteries. ACS Appl. Mater. Interfaces 9(19), 7b01712 (2017). https://doi.org/10.1021/acsami.7b01712
- P. Zelenay, High-performance electrocatalysts for oxygen reduction derived from polyaniline, iron, and cobalt. Science 332(6028), 443–447 (2011). https://doi.org/10.1126/science.1200832
- J. Liu, T. Wei, J. Zhao, Y. Huang, H. Deng et al., Multifunctional aptamer-based nanoparticles for targeted drug delivery to circumvent cancer resistance. Biomaterials 91, 44 (2016). https://doi.org/10.1016/j.biomaterials.2016.03.013
- Z.K. Yang, L. Lin, A.W. Xu, 2d nanoporous Fe − N/C nanosheets as highly efficient non-platinum electrocatalysts for oxygen reduction reaction in Zn-air battery. Small 12(41), 5710–5719 (2016). https://doi.org/10.1002/smll.201601887
- L. Lai, J.R. Potts, D. Zhan, L. Wang, C.K. Poh et al., Exploration of the active center structure of nitrogen-doped graphene-based catalysts for oxygen reduction reaction. Energy Environ. Sci. 5(7), 7936–7942 (2012). https://doi.org/10.1039/c2ee21802j
- H. Kong, J. Song, J. Jang, One-step fabrication of magnetic gamma-Fe2O3/polyrhodanine nanoparticles using in situ chemical oxidation polymerization and their antibacterial properties. Chem. Commun. 46(36), 6735–6737 (2010). https://doi.org/10.1039/c0cc00736f
- Y. Li, W. Zhou, H. Wang, L. Xie, Y. Liang et al., An oxygen reduction electrocatalyst based on carbon nanotube-graphene complexes. Nat. Nanotechnol. 7(6), 394 (2012). https://doi.org/10.1038/nnano.2012.72
- Q.L. Zhu, W. Xia, T. Akita, R. Zou, Q. Xu, Metal-organic framework-derived honeycomb-like open porous nanostructures as precious-metal-free catalysts for highly efficient oxygen electroreduction. Adv. Mater. 28(30), 6391–6398 (2016). https://doi.org/10.1002/adma.201600979
- J. Wu, H.W. Park, A. Yu, D. Higgins, Z. Chen, Facile synthesis and evaluation of nanofibrous iron–carbon based non-precious oxygen reduction reaction catalysts for Li–O2 battery applications. J. Phys. Chem. C 116(17), 9427–9432 (2012). https://doi.org/10.1021/jp301644e
- B. Zhang, F. Kang, J.M. Tarascon, J.K. Kim, Recent advances in electrospun carbon nanofibers and their application in electrochemical energy storage. Prog. Mater Sci. 76, 319–380 (2015). https://doi.org/10.1016/j.pmatsci.2015.08.002
- Q. Lai, L. Zheng, Y. Liang, J. He, J. Zhao, J. Chen, Metal–organic-framework-derived Fe-N/C electrocatalyst with five-coordinated Fe-Nx sites for advanced oxygen reduction in acid media. ACS Catal. 7(3), 1655–1663 (2017). https://doi.org/10.1021/acscatal.6b02966
- Q. Li, R. Cao, J. Cho, G. Wu, Nanocarbon electrocatalysts for oxygen reduction in alkaline media for advanced energy conversion and storage. Adv. Energy Mater. 4(6), 201301415 (2014). https://doi.org/10.1002/aenm.201301415
- C. Bingfei, G.M. Veith, J.C. Neuefeind, R.R. Adzic, P.G. Khalifah, Cheminform abstract: mixed close-packed cobalt molybdenum nitrides as non-noble metal electrocatalysts for the hydrogen evolution reaction. Cheminform 45(17), 19186 (2014). https://doi.org/10.1021/ja4081056
- D. Kong, J.J. Cha, H. Wang, H.R. Lee, C. Yi, First-row transition metal dichalcogenide catalysts for hydrogen evolution reaction. Energy Environ. Sci. 6(12), 3553–3558 (2013). https://doi.org/10.1039/c3ee42413h
- Y.-F. Xu, M.-R. Gao, Y.-R. Zheng, J. Jiang, S.-H. Yu, Nickel/nickel(ii) oxide nanoparticles anchored onto cobalt(iv) diselenide nanobelts for the electrochemical production of hydrogen. Angew. Chem. Int. Ed. 125(33), 8708–8712 (2013). https://doi.org/10.1002/ange.201303495
- X. Li, H. Wang, J.T. Robinson, H. Sanchez, G. Diankov, H. Dai, Simultaneous nitrogen doping and reduction of graphene oxide. J. Am. Chem. Soc. 131(43), 15939–15944 (2009). https://doi.org/10.1021/ja907098f
- Z.H. Sheng, L. Shao, J.J. Chen, W.J. Bao, F.B. Wang, X.H. Xia, Catalyst-free synthesis of nitrogen-doped graphene via thermal annealing graphite oxide with melamine and its excellent electrocatalysis. ACS Nano 5(6), 4350 (2011). https://doi.org/10.1021/nn103584t
- L. Wang, A. Ambrosi, M. Pumera, “Metal-free” catalytic oxygen reduction reaction on heteroatom- doped graphene is caused by trace metal impurities. Angew. Chem. Int. Ed. 52(51), 13479 (2013). https://doi.org/10.1002/anie.201309814
- Q. Wang, Z.Y. Zhou, Y.J. Lai, Y. You, J.G. Liu et al., Phenylenediamine-based FeN(x)/C catalyst with high activity for oxygen reduction in acid medium and its active-site probing. J. Am. Chem. Soc. 136(31), 10882–10885 (2014). https://doi.org/10.1021/ja505777v
- L. Lin, Q. Zhu, A.W. Xu, Noble-metal-free Fe-N/C catalyst for highly efficient oxygen reduction reaction under both alkaline and acidic conditions. J. Am. Chem. Soc. 136(31), 11027–11033 (2014). https://doi.org/10.1021/ja504696r
- Z.-S. Wu, S. Yang, Y. Sun, K. Parvez, X. Feng, K. Müllen, 3D nitrogen-doped graphene aerogel-supported Fe3O4 nanoparticles as efficient electrocatalysts for the oxygen reduction reaction. J. Am. Chem. Soc. 134(22), 9082–9085 (2012). https://doi.org/10.1021/ja3030565
- I. Roche, E. Chaînet, M. Chateneták, J. Vondr, Carbon-supported manganese oxide nanoparticles as electrocatalysts for the oxygen reduction reaction (ORR) in alkaline medium: Physical characterizations and ORR mechanism. J. Phys. Chem. C 111(3), 1434–1443 (2008). https://doi.org/10.1021/jp0647986
References
J. Liu, H. Mooney, V. Hull, S.J. Davis, J. Gaskell et al., Systems integration for global sustainability. Science 347(6225), 1258832 (2015). https://doi.org/10.1126/science.1258832
A.L. Alm, Energy supply interruptions and national security. Science 211(4489), 1379–1385 (1981). https://doi.org/10.1126/science.211.4489.1379
A.S. Aricò, P. Bruce, B. Scrosati, J.M. Tarascon, S.W. Van, Nanostructured materials for advanced energy conversion and storage devices. Nat. Mater. 4(5), 366–377 (2005). https://doi.org/10.1038/nmat1368
G. Ren, G. Ma, C. Ning, Review of electrical energy storage system for vehicular applications. Renew. Sust. Energ. Rev. 41, 225–236 (2015). https://doi.org/10.1016/j.rser.2014.08.003
J. Wang, H. Xin, D.L. Wang, Recent progress on mesoporous carbon materials for advanced energy conversion and storage. Part. Part. Syst. Charact. 31(5), 515–539 (2014). https://doi.org/10.1002/ppsc.201300315
Z. Fang, C. Yuan, J. Zhu, W. Jie, X. Zhang, W.L. Xiong, Capacitors: Flexible films derived from electrospun carbon nanofibers incorporated with Co3O4 hollow nanoparticles as self-supported electrodes for electrochemical capacitors. Adv. Funct. Mater. 23(31), 3909–3915 (2013). https://doi.org/10.1002/adfm.201203844
H. Chang, H. Wu, Graphene-based nanocomposites: preparation, functionalization, and energy and environmental applications. Energy Environ. Sci. 6(12), 3483–3507 (2013). https://doi.org/10.1039/c3ee42518e
H. Yu, D. Deng, D. Zhou, W. Yuan, Q. Zhao, Y. Hua, S. Zhao, L. Huang, S. Xu, Ba2Ca(PO4)2:Eu2+ emission-tunable phosphor for solid-state lighting: luminescent properties and application as white light emitting diodes. J. Mater. Chem. C 1(35), 5577–5582 (2013). https://doi.org/10.1039/c3tc30998c
D. Yu, Y. Xue, L. Dai, Vertically aligned carbon nanotube arrays Co-doped with phosphorus and nitrogen as efficient metal-free electrocatalysts for oxygen reduction. J. Phys. Chem. Lett. 3(19), 2863 (2012). https://doi.org/10.1021/jz3011833
Y. Zhou, S. Xi, J. Wang, S. Sun, C. Wei, Z. Feng, Y. Du, Z.J. Xu, Revealing the dominant chemistry for oxygen reduction reaction on small oxide nanoparticles. ACS Catal. 8(1), 673–677 (2017). https://doi.org/10.1021/acscatal.7b03864
Q. Wang, Y. Lei, Z. Chen, N. Wu, Y. Wang, B. Wang, Y. Wang, Fe/Fe3C@C nanoparticles encapsulated in N-doped graphene–CNTs framework as an efficient bifunctional oxygen electrocatalyst for robust rechargeable Zn–air batteries. J. Mater. Chem. A 6(2), 516–526 (2018). https://doi.org/10.1039/C7TA08423D
Q. Wang, Y. Ji, Y. Lei, Y. Wang, Y. Wang, Y. Li, S. Wang, Pyridinic-N-dominated doped defective graphene as a superior oxygen electrocatalyst for ultrahigh-energy-density Zn–air batteries. ACS Energy Lett. 3(5), 1183–1191 (2018). https://doi.org/10.1021/acsenergylett.8b00303
Z. Chen, Q. Wang, X. Zhang, Y. Lei, W. Hu, Y. Luo, Y. Wang, N-doped defective carbon with trace Co for efficient rechargeable liquid electrolyte-/all-solid-state Zn-air batteries. Sci. Bull. 63(9), 548–555 (2018). https://doi.org/10.1016/j.scib.2018.04.003
Y. Zhou, S. Sun, S. Xi, Y. Duan, T. Sritharan, Y. Du, Z.J. Xu, Superexchange effects on oxygen reduction activity of edge-sharing [CoxMn1−xO6] octahedra in spinel oxide. Adv. Mater. 30(11), 1705407 (2018). https://doi.org/10.1002/adma.201705407
S. Ci, S. Mao, Y. Hou, S. Cui, H. Kim, R. Ren, Z. Wen, J. Chen, Rational design of mesoporous NiFe-alloy-based hybrids for oxygen conversion electrocatalysis. J. Mater. Chem. A 3(15), 7986–7993 (2015). https://doi.org/10.1039/C5TA00894H
Y. Lei, Q. Shi, C. Han, B. Wang, N. Wu, H. Wang, Y. Wang, N-doped graphene grown on silk cocoon-derived interconnected carbon fibers for oxygen reduction reaction and photocatalytic hydrogen production. Nano Res. 9(8), 2498–2509 (2016). https://doi.org/10.1007/s12274-016-1136-4
H. Yuan, Y. Hou, I. Abu-Reesh, J. Chen, Z. He, Oxygen reduction reaction catalysts used in microbial fuel cells for energy-efficient wastewater treatment: A review. Mater. Horiz. 3(5), 382–401 (2016). https://doi.org/10.1039/C6MH00093B
J. Li, S. Mao, Y. Hou, L. Lei, C. Yuan, 3D edge-enriched Fe3C@C nanocrystals with a core–shell structure grown on reduced graphene oxide networks for efficient oxygen reduction reaction. Chemsuschem 11(18), 3292–3298 (2018). https://doi.org/10.1002/cssc.201801084
L. Zhao, Q. Wang, X. Zhang, C. Deng, Z. Li, Y. Lei, M. Zhu, Combined electron and structure manipulation on Fe-containing n-doped carbon nanotubes to boost bifunctional oxygen electrocatalysis. ACS Appl. Mater. Interfaces 10(42), 35888–35895 (2018). https://doi.org/10.1021/acsami.8b09197
Q. Wang, Y. Lei, Y. Zhu, H. Wang, J. Feng et al., Edge defect engineering of nitrogen-doped carbon for oxygen electrocatalysts in Zn–air batteries. ACS Appl. Mater. Interfaces 10(35), 29448–29456 (2018). https://doi.org/10.1021/acsami.8b07863
L. Yang, S. Jiang, Y. Zhao, L. Zhu, S. Chen et al., Boron-doped carbon nanotubes as metal-free electrocatalysts for the oxygen reduction reaction. Angew. Chem. Int. Ed. 50(31), 7132–7135 (2011). https://doi.org/10.1002/anie.201101287
S. Wang, E. Iyyamperumal, A. Roy, Y. Xue, D. Yu, L. Dai, Vertically aligned bcn nanotubes as efficient metal-free electrocatalysts for the oxygen reduction reaction: a synergetic effect by co-doping with boron and nitrogen. Angew. Chem. Int. Ed. 50(49), 11756–11760 (2011). https://doi.org/10.1002/anie.201105204
D. Yu, Q. Zhang, L. Dai, Highly efficient metal-free growth of nitrogen-doped single-walled carbon nanotubes on plasma-etched substrates for oxygen reduction. J. Am. Chem. Soc. 132(43), 15127 (2010). https://doi.org/10.1021/ja105617z
W. Xiong, D.U. Feng, Y. Liu, P. Albert, S. Michael, T.S. Ramakrishnan, L. Dai, L.I. Jiang, 3D carbon nanotube structures used as high performance catalyst for oxygen reduction reaction. J. Am. Chem. Soc. 132(45), 15839–15841 (2010). https://doi.org/10.1021/ja104425h
Y. Tang, B.L. Allen, D.R. Kauffman, A. Star, Electrocatalytic activity of nitrogen-doped carbon nanotube cups. J. Am. Chem. Soc. 131(37), 13200–13201 (2009). https://doi.org/10.1021/ja904595t
Y.X. Zhou, H.B. Yao, Y. Wang, H.L. Liu, M.R. Gao, P.K. Shen, S.H. Yu, Hierarchical hollow Co9S8 microspheres: solvothermal synthesis, magnetic, electrochemical, and electrocatalytic properties. Chemistry 16(39), 12000–12007 (2010). https://doi.org/10.1002/chem.200903263
C. Kim, Y.I. Jeong, B.T.N. Ngoc, K.S. Yang, M. Kojima, Y.A. Kim, M. Endo, J.W. Lee, Synthesis and characterization of porous carbon nanofibers with hollow cores through the thermal treatment of electrospun copolymeric nanofiber webs. Small 3(1), 91–95 (2010). https://doi.org/10.1002/smll.200600243
L. Zhen, T.Z. Jin, M.C. Yu, L. Ju, W.L. Xiong, Pie-like electrode design for high-energy density lithium–sulfur batteries. Nat. Commun. 6, 8850 (2015). https://doi.org/10.1038/ncomms9850
D. Guo, R. Shibuya, C. Akiba, S. Saji, T. Kondo, J. Nakamura, Active sites of nitrogen-doped carbon materials for oxygen reduction reaction clarified using model catalysts. Science 351(6271), 361–365 (2016). https://doi.org/10.1126/science.aad0832
Y. Zhao, Q. Lai, Y. Wang, J. Zhu, Y.Y. Liang, Interconnected hierarchically porous Fe, N-codoped carbon nanofibers as efficient oxygen reduction catalysts for Zn-air batteries. ACS Appl. Mater. Interfaces 9(19), 7b01712 (2017). https://doi.org/10.1021/acsami.7b01712
P. Zelenay, High-performance electrocatalysts for oxygen reduction derived from polyaniline, iron, and cobalt. Science 332(6028), 443–447 (2011). https://doi.org/10.1126/science.1200832
J. Liu, T. Wei, J. Zhao, Y. Huang, H. Deng et al., Multifunctional aptamer-based nanoparticles for targeted drug delivery to circumvent cancer resistance. Biomaterials 91, 44 (2016). https://doi.org/10.1016/j.biomaterials.2016.03.013
Z.K. Yang, L. Lin, A.W. Xu, 2d nanoporous Fe − N/C nanosheets as highly efficient non-platinum electrocatalysts for oxygen reduction reaction in Zn-air battery. Small 12(41), 5710–5719 (2016). https://doi.org/10.1002/smll.201601887
L. Lai, J.R. Potts, D. Zhan, L. Wang, C.K. Poh et al., Exploration of the active center structure of nitrogen-doped graphene-based catalysts for oxygen reduction reaction. Energy Environ. Sci. 5(7), 7936–7942 (2012). https://doi.org/10.1039/c2ee21802j
H. Kong, J. Song, J. Jang, One-step fabrication of magnetic gamma-Fe2O3/polyrhodanine nanoparticles using in situ chemical oxidation polymerization and their antibacterial properties. Chem. Commun. 46(36), 6735–6737 (2010). https://doi.org/10.1039/c0cc00736f
Y. Li, W. Zhou, H. Wang, L. Xie, Y. Liang et al., An oxygen reduction electrocatalyst based on carbon nanotube-graphene complexes. Nat. Nanotechnol. 7(6), 394 (2012). https://doi.org/10.1038/nnano.2012.72
Q.L. Zhu, W. Xia, T. Akita, R. Zou, Q. Xu, Metal-organic framework-derived honeycomb-like open porous nanostructures as precious-metal-free catalysts for highly efficient oxygen electroreduction. Adv. Mater. 28(30), 6391–6398 (2016). https://doi.org/10.1002/adma.201600979
J. Wu, H.W. Park, A. Yu, D. Higgins, Z. Chen, Facile synthesis and evaluation of nanofibrous iron–carbon based non-precious oxygen reduction reaction catalysts for Li–O2 battery applications. J. Phys. Chem. C 116(17), 9427–9432 (2012). https://doi.org/10.1021/jp301644e
B. Zhang, F. Kang, J.M. Tarascon, J.K. Kim, Recent advances in electrospun carbon nanofibers and their application in electrochemical energy storage. Prog. Mater Sci. 76, 319–380 (2015). https://doi.org/10.1016/j.pmatsci.2015.08.002
Q. Lai, L. Zheng, Y. Liang, J. He, J. Zhao, J. Chen, Metal–organic-framework-derived Fe-N/C electrocatalyst with five-coordinated Fe-Nx sites for advanced oxygen reduction in acid media. ACS Catal. 7(3), 1655–1663 (2017). https://doi.org/10.1021/acscatal.6b02966
Q. Li, R. Cao, J. Cho, G. Wu, Nanocarbon electrocatalysts for oxygen reduction in alkaline media for advanced energy conversion and storage. Adv. Energy Mater. 4(6), 201301415 (2014). https://doi.org/10.1002/aenm.201301415
C. Bingfei, G.M. Veith, J.C. Neuefeind, R.R. Adzic, P.G. Khalifah, Cheminform abstract: mixed close-packed cobalt molybdenum nitrides as non-noble metal electrocatalysts for the hydrogen evolution reaction. Cheminform 45(17), 19186 (2014). https://doi.org/10.1021/ja4081056
D. Kong, J.J. Cha, H. Wang, H.R. Lee, C. Yi, First-row transition metal dichalcogenide catalysts for hydrogen evolution reaction. Energy Environ. Sci. 6(12), 3553–3558 (2013). https://doi.org/10.1039/c3ee42413h
Y.-F. Xu, M.-R. Gao, Y.-R. Zheng, J. Jiang, S.-H. Yu, Nickel/nickel(ii) oxide nanoparticles anchored onto cobalt(iv) diselenide nanobelts for the electrochemical production of hydrogen. Angew. Chem. Int. Ed. 125(33), 8708–8712 (2013). https://doi.org/10.1002/ange.201303495
X. Li, H. Wang, J.T. Robinson, H. Sanchez, G. Diankov, H. Dai, Simultaneous nitrogen doping and reduction of graphene oxide. J. Am. Chem. Soc. 131(43), 15939–15944 (2009). https://doi.org/10.1021/ja907098f
Z.H. Sheng, L. Shao, J.J. Chen, W.J. Bao, F.B. Wang, X.H. Xia, Catalyst-free synthesis of nitrogen-doped graphene via thermal annealing graphite oxide with melamine and its excellent electrocatalysis. ACS Nano 5(6), 4350 (2011). https://doi.org/10.1021/nn103584t
L. Wang, A. Ambrosi, M. Pumera, “Metal-free” catalytic oxygen reduction reaction on heteroatom- doped graphene is caused by trace metal impurities. Angew. Chem. Int. Ed. 52(51), 13479 (2013). https://doi.org/10.1002/anie.201309814
Q. Wang, Z.Y. Zhou, Y.J. Lai, Y. You, J.G. Liu et al., Phenylenediamine-based FeN(x)/C catalyst with high activity for oxygen reduction in acid medium and its active-site probing. J. Am. Chem. Soc. 136(31), 10882–10885 (2014). https://doi.org/10.1021/ja505777v
L. Lin, Q. Zhu, A.W. Xu, Noble-metal-free Fe-N/C catalyst for highly efficient oxygen reduction reaction under both alkaline and acidic conditions. J. Am. Chem. Soc. 136(31), 11027–11033 (2014). https://doi.org/10.1021/ja504696r
Z.-S. Wu, S. Yang, Y. Sun, K. Parvez, X. Feng, K. Müllen, 3D nitrogen-doped graphene aerogel-supported Fe3O4 nanoparticles as efficient electrocatalysts for the oxygen reduction reaction. J. Am. Chem. Soc. 134(22), 9082–9085 (2012). https://doi.org/10.1021/ja3030565
I. Roche, E. Chaînet, M. Chateneták, J. Vondr, Carbon-supported manganese oxide nanoparticles as electrocatalysts for the oxygen reduction reaction (ORR) in alkaline medium: Physical characterizations and ORR mechanism. J. Phys. Chem. C 111(3), 1434–1443 (2008). https://doi.org/10.1021/jp0647986