Integrated System of Solar Cells with Hierarchical NiCo2O4 Battery-Supercapacitor Hybrid Devices for Self-Driving Light-Emitting Diodes
Corresponding Author: Jianguo Lu
Nano-Micro Letters,
Vol. 11 (2019), Article Number: 42
Abstract
An integrated system has been provided with a-Si/H solar cells as energy conversion device, NiCo2O4 battery-supercapacitor hybrid (BSH) as energy storage device, and light emitting diodes (LEDs) as energy utilization device. By designing three-dimensional hierarchical NiCo2O4 arrays as faradic electrode, with capacitive electrode of active carbon (AC), BSHs were assembled with energy density of 16.6 Wh kg–1, power density of 7285 W kg–1, long-term stability with 100% retention after 15,000 cycles, and rather low self-discharge. The NiCo2O4//AC BSH was charged to 1.6 V in 1 s by solar cells and acted as reliable sources for powering LEDs. The integrated system is rational for operation, having an overall efficiency of 8.1% with storage efficiency of 74.24%. The integrated system demonstrates a stable solar power conversion, outstanding energy storage behavior, and reliable light emitting. Our study offers a precious strategy to design a self-driven integrated system for highly efficient energy utilization.
Highlights:
1 Integration of solar cells, BSHs, and LEDs was developed for energy conversion, storage, and utilization in one system.
2 NiCo2O4//AC BSHs were charged by a-Si/H solar cells for stably driving LEDs showing high performances.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- R. Liu, Y. Liu, H. Zou, T. Song, B. Sun, Integrated solar capacitors for energy conversion and storage. Nano Res. 10(5), 1545–1559 (2017). https://doi.org/10.1007/s12274-017-1450-5
- R. Liu, J. Wang, T. Sun, M. Wang, C. Wu et al., Silicon nanowire/polymer hybrid solar cell-supercapacitor: a self-charging power unit with a total efficiency of 10.5%. Nano Lett. 17(7), 4240–4247 (2017). https://doi.org/10.1021/acs.nanolett.7b01154
- M. Zhu, Y. Huang, Y. Huang, Z. Pei, Q. Xue, H. Li, H. Geng, C. Zhi, Capacitance enhancement in a semiconductor nanostructure-based supercapacitor by solar light and a self-powered supercapacitor–photodetector system. Adv. Funct. Mater. 26(25), 4481–4490 (2016). https://doi.org/10.1002/adfm.201601260
- M. Hassanalieragh, T. Soyata, A. Nadeau, G. Sharma, UR-SolarCap: an open source intelligent auto-wakeup solar energy harvesting system for supercapacitor-based energy buffering. IEEE Access 4, 542–557 (2016). https://doi.org/10.1109/access.2016.2519845
- X. Xu, S. Li, H. Zhang, Y. Shen, S.M. Zakeeruddin, M. Graetzel, Y.B. Cheng, M. Wang, A power pack based on organometallic perovskite solar cell and supercapacitor. ACS Nano 9(2), 1782–1787 (2015). https://doi.org/10.1021/nn506651m
- A.K. Shukla, S. Sampath, K. Vijayamohanan, Electrochemical supercapacitors: energy storage beyond batteries. Curr. Sci. 79(12), 1656–1661 (2000)
- J.M. Tarascon, M. Armand, Issues and challenges facing rechargeable lithium batteries. Nature 414(6861), 359–367 (2001). https://doi.org/10.1038/35104644
- M. Winter, R.J. Brodd, What are batteries, fuel cells, and supercapacitors? Chem. Rev. 104(10), 4245–4269 (2004). https://doi.org/10.1021/cr020730k
- W. Wang, Y. Yuan, J. Yang, L. Meng, H. Tang, Y. Zeng, Z. Ye, J. Lu, Hierarchical core–shell Co3O4/graphene hybrid fibers: potential electrodes for supercapacitors. J. Mater. Sci. 53(8), 6116–6123 (2018). https://doi.org/10.1007/s10853-017-1971-z
- Y. Yuan, W. Wang, J. Yang, H. Tang, Z. Ye, Y. Zeng, J. Lu, Three-dimensional NiCo2O4@MnMoO4 core-shell nanoarrays for high-performance asymmetric supercapacitors. Langmuir 33(40), 10446–10454 (2017). https://doi.org/10.1021/acs.langmuir.7b01966
- J. Yang, Y. Yuan, W. Wang, H. Tang, Z. Ye, J. Lu, Interconnected Co0.85Se nanosheets as cathode materials for asymmetric supercapacitors. J. Power Sources 340(1), 6–13 (2017). https://doi.org/10.1016/j.jpowsour.2016.11.061
- X. Cheng, C. Lei, J. Yang, B. Yang, Z. Li, J. Lu, X. Zhang, L. Lei, Y. Hou, K.K. Ostrikov, Efficient electrocatalytic oxygen evolution at extremely high current density over 3D ultrasmall zero-valent iron-coupled nickel sulfide nanosheets. ChemElectroChem 5(24), 3866–3872 (2018). https://doi.org/10.1002/celc.201801104
- M.A. Deyab, Ionic liquid as an electrolyte additive for high performance lead-acid batteries. J. Power Sources 390(30), 176–180 (2018). https://doi.org/10.1016/j.jpowsour.2018.04.053
- J.-E. Jin, D. Jin, J. Shim, W. Shim, Enhancing reversible sulfation of PbO2 nanoparticles for extended lifetime in lead-acid batteries. J. Electrochem. Soc. 164(7), A1628–A1634 (2017). https://doi.org/10.1149/2.1291707jes
- E. Ahlberg, U. Palmqvist, N. Simic, R. Sjovall, Capacity loss in Ni-Cd pocket plate batteries. The origin of the second voltage plateau. J. Power Sources 85(2), 245–253 (2000). https://doi.org/10.1016/s0378-7753(99)00340-7
- M. Garcia-Plaza, D. Serrano-Jimenez, J. Eloy-Garcia Carrasco, J. Alonso-Martinez, A Ni–Cd battery model considering state of charge and hysteresis effects. J. Power Sources 275(1), 595–604 (2015). https://doi.org/10.1016/j.jpowsour.2014.11.031
- R.H. Milocco, B.E. Castro, State of charge estimation in Ni–MH rechargeable batteries. J. Power Sources 194(1), 558–567 (2009). https://doi.org/10.1016/j.jpowsour.2009.05.005
- P. Xiao, W. Gao, X. Qiu, W. Zhu, J. Sun, L. Chen, Thermal behaviors of Ni–MH batteries using a novel impedance spectroscopy. J. Power Sources 182(1), 377–382 (2008). https://doi.org/10.1016/j.jpowsour.2008.03.055
- K. Young, J. Koch, S. Yasuoka, H. Shen, L.A. Bendersky, Mn in misch-metal based superlattice metal hydride alloy—part 2 Ni/MH battery performance and failure mechanism. J. Power Sources 277(1), 433–442 (2015). https://doi.org/10.1016/j.jpowsour.2014.10.092
- A. Banerjee, Y. Shilina, B. Ziv, J.M. Ziegelbauer, S. Luski, D. Aurbach, I.C. Halalay, On the oxidation state of manganese ions in Li-ion battery electrolyte solutions. J. Am. Chem. Soc. 139(5), 1738–1741 (2017). https://doi.org/10.1021/jacs.6b10781
- T.-S. Wei, B.Y. Ahn, J. Grotto, J.A. Lewis, 3D printing of customized Li-ion batteries with thick electrodes. Adv. Mater. 30(16), 1703027 (2018). https://doi.org/10.1002/adma.201703027
- C. Yang, X. Ji, X. Fan, T. Gao, L. Suo et al., Flexible aqueous Li-ion battery with high energy and power densities. Adv. Mater. 29(44), 1701972 (2017). https://doi.org/10.1002/adma.201701972
- J. Zhang, Y. Xiang, M.I. Jamil, J. Lu, Q. Zhang, X. Zhan, F. Chen, Polymers/zeolite nanocomposite membranes with enhanced thermal and electrochemical performances for lithium-ion batteries. J. Membr. Sci. 564(15), 753–761 (2018). https://doi.org/10.1016/j.memsci.2018.07.056
- C. Lei, F. Wang, J. Yang, X. Gao, X. Yu et al., Embedding Co2P nanoparticles in N-doped carbon nanotubes grown on porous carbon polyhedra for high-performance lithium-ion batteries. Ind. Eng. Chem. Res. 57(39), 13019–13025 (2018). https://doi.org/10.1021/acs.iecr.8b02036
- Y. Tong, Y. Xu, D. Chen, Y. Xie, L. Chen, M. Que, Y. Hou, Deformable and flexible electrospun nanofiber-supported cross-linked gel polymer electrolyte membranes for high safety lithium-ion batteries. RSC Adv. 7(37), 22728–22734 (2017). https://doi.org/10.1039/c7ra00112f
- M.J. Klein, G.M. Veith, A. Manthiram, Rational design of lithium-sulfur battery cathodes based on experimentally determined maximum active material thickness. J. Am. Chem. Soc. 139(27), 9229–9237 (2017). https://doi.org/10.1021/jacs.7b03380
- H. Qu, J. Zhang, A. Du, B. Chen, J. Chai et al., Multifunctional sandwich-structured electrolyte for high-performance lithium-sulfur batteries. Adv. Sci. 5(3), 1700503 (2018). https://doi.org/10.1002/advs.201700503
- J. Yan, X. Liu, B. Li, Capacity fade analysis of sulfur cathodes in lithium-sulfur batteries. Adv. Sci. 3(12), 1600101 (2016). https://doi.org/10.1002/advs.201600101
- N.B. Aetukuri, B.D. McCloskey, J.M. Garcia, L.E. Krupp, V. Viswanathan, A.C. Luntz, Solvating additives drive solution-mediated electrochemistry and enhance toroid growth in non-aqueous Li–O2 batteries. Nat. Chem. 7(1), 50–56 (2015). https://doi.org/10.1038/nchem.2132
- L. Wang, J. Pan, Y. Zhang, X. Cheng, L. Liu, H. Peng, A Li–air battery with ultralong cycle life in ambient air. Adv. Mater. 30(3), 1704378 (2018). https://doi.org/10.1002/adma.201704378
- P. Zhang, Y. Zhao, X. Zhang, Functional and stability orientation synthesis of materials and structures in aprotic Li–O2 batteries. Chem. Soc. Rev. 47(8), 2921–3004 (2018). https://doi.org/10.1039/c8cs00009c
- X. Hu, Z. Li, J. Chen, Flexible Li–CO2 batteries with liquid-free electrolyte. Angew. Chem. Int. Ed. 56(21), 5785–5789 (2017). https://doi.org/10.1002/anie.201701928
- S. Li, Y. Dong, J. Zhou, Y. Liu, J. Wang, X. Gao, Y. Han, P. Qi, B. Wang, Carbon dioxide in the cage: manganese metal-organic frameworks for high performance CO2 electrodes in Li–CO2 batteries. Energy Environ. Sci. 11(5), 1318–1325 (2018). https://doi.org/10.1039/c8ee00415c
- Y. Qiao, J. Yi, S. Wu, Y. Liu, S. Yang, P. He, H. Zhou, Li–CO2 electrochemistry: a new strategy for CO2 fixation and energy storage. Joule 1(2), 359–370 (2017). https://doi.org/10.1016/j.joule.2017.07.001
- H. Li, Y. Ding, H. Ha, Y. Shi, L. Peng, X. Zhang, C.J. Ellison, G. Yu, An all-stretchable-component sodium-ion full battery. Adv. Mater. 29(23), 1700898 (2017). https://doi.org/10.1002/adma.201700898
- C. Zhao, C. Yu, B. Qiu, S. Zhou, M. Zhang et al., Ultrahigh rate and long-life sodium-ion batteries enabled by engineered surface and near-surface reactions. Adv. Mater. 30(7), 1702486 (2018). https://doi.org/10.1002/adma.201702486
- H. Kim, J.C. Kim, M. Bianchini, D.-H. Seo, J. Rodriguez-Garcia, G. Ceder, Recent progress and perspective in electrode materials for K-ion batteries. Adv. Energy Mater. 8(9), 1702384 (2018). https://doi.org/10.1002/aenm.201702384
- X. Wu, D.P. Leonard, X. Ji, Emerging non-aqueous potassium-ion batteries: challenges and opportunities. Chem. Mater. 29(12), 5031–5042 (2017). https://doi.org/10.1021/acs.chemmater.7b01764
- L. Chen, J.L. Bao, X. Dong, D.G. Truhlar, Y. Wang, C. Wang, Y. Xia, Aqueous Mg-ion battery based on polyimide anode and prussian blue cathode. ACS Energy Lett. 2(5), 1115–1121 (2017). https://doi.org/10.1021/acsenergylett.7b00040
- B. Liu, T. Luo, G. Mu, X. Wang, D. Chen, G. Shen, Rechargeable Mg-ion batteries based on WSe2 nanowire cathodes. ACS Nano 7(9), 8051–8058 (2013). https://doi.org/10.1021/nn4032454
- M.C. Lin, M. Gong, B. Lu, Y. Wu, D.Y. Wang et al., An ultrafast rechargeable aluminium-ion battery. Nature 520(7547), 324–328 (2015). https://doi.org/10.1038/nature14340
- J. Xu, Y. Dou, Z. Wei, J. Ma, Y. Deng, Y. Li, H. Liu, S. Dou, Recent progress in graphite intercalation compounds for rechargeable metal (Li, Na, K, Al)-ion batteries. Adv. Sci. 4(10), 1700146 (2017). https://doi.org/10.1002/advs.201700146
- H. Li, C. Han, Y. Huang, Y. Huang, M. Zhu et al., An extremely safe and wearable solid-state zinc ion battery based on a hierarchical structured polymer electrolyte. Energy Environ. Sci. 11(4), 941–951 (2018). https://doi.org/10.1039/c7ee03232c
- C. Xu, B. Li, H. Du, F. Kang, Energetic zinc ion chemistry: the rechargeable zinc ion battery. Angew. Chem. Int. Ed. 51(4), 933–935 (2012). https://doi.org/10.1002/anie.201106307
- L. Chen, L. Zhang, X. Zhou, Z. Liu, Aqueous batteries based on mixed monovalence metal ions: a new battery family. Chemsuschem 7(8), 2295–2302 (2014). https://doi.org/10.1002/cssc.201402084
- W. Zuo, W. Zhu, D. Zhao, Y. Sun, Y. Li, J. Liu, X.W. Lou, Bismuth oxide: a versatile high-capacity electrode material for rechargeable aqueous metal-ion batteries. Energy Environ. Sci. 9(9), 2881–2891 (2016). https://doi.org/10.1039/c6ee01871h
- H. Kim, J. Hong, K.Y. Park, H. Kim, S.W. Kim, K. Kang, Aqueous rechargeable Li and Na ion batteries. Chem. Rev. 114(23), 11788–11827 (2014). https://doi.org/10.1021/cr500232y
- S. Santhanagopalan, Q. Guo, P. Ramadass, R.E. White, Review of models for predicting the cycling performance of lithium ion batteries. J. Power Sources 156(2), 620–628 (2006). https://doi.org/10.1016/j.jpowsour.2005.05.070
- L. Zhang, Y. Zhang, S. Huang, Y. Yuan, H. Li et al., Co3O4/Ni-based MOFs on carbon cloth for flexible alkaline battery-supercapacitor hybrid devices and near-infrared photocatalytic hydrogen evolution. Electrochim. Acta 281(10), 189–197 (2018). https://doi.org/10.1016/j.electacta.2018.05.162
- Y. Yuan, Y. Wu, T. Zhang, H. Tang, L. Meng, Y.-J. Zeng, Q. Zhang, Z. Ye, J. Lu, Integration of solar cells with hierarchical CoS nanonets hybrid supercapacitors for self-powered photodetection systems. J. Power Sources 404(15), 118–125 (2018). https://doi.org/10.1016/j.jpowsour.2018.09.101
- H. Tang, Y. Yuan, L. Meng, W. Wang, J. Lu, Y. Zeng, T. Huang, C. Gao, Low-resistance porous nanocellular MnSe electrodes for high-performance all-solid-state battery-supercapacitor hybrid devices. Adv. Mater. Technol. 3(7), 1800074 (2018). https://doi.org/10.1002/admt.201800074
- L. Meng, Y. Wu, T. Zhang, H. Tang, Y. Tian, Y. Yuan, Q. Zhang, Y. Zeng, J. Lu, Highly conductive NiSe2 nanostructures for all-solid-state battery-supercapacitor hybrid devices. J. Mater. Sci. 54(1), 571–581 (2018). https://doi.org/10.1007/s10853-018-2812-4
- Q. Jiang, J. Lu, J. Zhang, Y. Yuan, H. Cai et al., Texture surfaces and etching mechanism of ZnO:Al films by a neutral agent for solar cells. Sol. Energy Mater. Sol. Cells 130, 264–271 (2014). https://doi.org/10.1016/j.solmat.2014.07.024
- X. Wang, X. Han, M. Lim, N. Singh, C.L. Gan, M. Jan, P.S. Lee, Nickel cobalt oxide-single wall carbon nanotube composite material for superior cycling stability and high-performance supercapacitor application. J. Phys. Chem. C 116(23), 12448–12454 (2012). https://doi.org/10.1021/jp3028353
- D. Weingarth, A.F. Schmitz, R. Kotz, Cycle versus volgate hold—Which is the better stability test for electrochemical double layer capacitors? J. Power Sources 225, 84–88 (2013). https://doi.org/10.1016/j.jpowsour.2012.10.019
- M. Vijayakumar, D.S. Rohita, T.N. Rao, M. Karthik, Electrode mass ration impact on electrochemical capacitor performance. Electrochim. Acta 298, 347–359 (2019). https://doi.org/10.1016/j.electacta.2018.12.034
References
R. Liu, Y. Liu, H. Zou, T. Song, B. Sun, Integrated solar capacitors for energy conversion and storage. Nano Res. 10(5), 1545–1559 (2017). https://doi.org/10.1007/s12274-017-1450-5
R. Liu, J. Wang, T. Sun, M. Wang, C. Wu et al., Silicon nanowire/polymer hybrid solar cell-supercapacitor: a self-charging power unit with a total efficiency of 10.5%. Nano Lett. 17(7), 4240–4247 (2017). https://doi.org/10.1021/acs.nanolett.7b01154
M. Zhu, Y. Huang, Y. Huang, Z. Pei, Q. Xue, H. Li, H. Geng, C. Zhi, Capacitance enhancement in a semiconductor nanostructure-based supercapacitor by solar light and a self-powered supercapacitor–photodetector system. Adv. Funct. Mater. 26(25), 4481–4490 (2016). https://doi.org/10.1002/adfm.201601260
M. Hassanalieragh, T. Soyata, A. Nadeau, G. Sharma, UR-SolarCap: an open source intelligent auto-wakeup solar energy harvesting system for supercapacitor-based energy buffering. IEEE Access 4, 542–557 (2016). https://doi.org/10.1109/access.2016.2519845
X. Xu, S. Li, H. Zhang, Y. Shen, S.M. Zakeeruddin, M. Graetzel, Y.B. Cheng, M. Wang, A power pack based on organometallic perovskite solar cell and supercapacitor. ACS Nano 9(2), 1782–1787 (2015). https://doi.org/10.1021/nn506651m
A.K. Shukla, S. Sampath, K. Vijayamohanan, Electrochemical supercapacitors: energy storage beyond batteries. Curr. Sci. 79(12), 1656–1661 (2000)
J.M. Tarascon, M. Armand, Issues and challenges facing rechargeable lithium batteries. Nature 414(6861), 359–367 (2001). https://doi.org/10.1038/35104644
M. Winter, R.J. Brodd, What are batteries, fuel cells, and supercapacitors? Chem. Rev. 104(10), 4245–4269 (2004). https://doi.org/10.1021/cr020730k
W. Wang, Y. Yuan, J. Yang, L. Meng, H. Tang, Y. Zeng, Z. Ye, J. Lu, Hierarchical core–shell Co3O4/graphene hybrid fibers: potential electrodes for supercapacitors. J. Mater. Sci. 53(8), 6116–6123 (2018). https://doi.org/10.1007/s10853-017-1971-z
Y. Yuan, W. Wang, J. Yang, H. Tang, Z. Ye, Y. Zeng, J. Lu, Three-dimensional NiCo2O4@MnMoO4 core-shell nanoarrays for high-performance asymmetric supercapacitors. Langmuir 33(40), 10446–10454 (2017). https://doi.org/10.1021/acs.langmuir.7b01966
J. Yang, Y. Yuan, W. Wang, H. Tang, Z. Ye, J. Lu, Interconnected Co0.85Se nanosheets as cathode materials for asymmetric supercapacitors. J. Power Sources 340(1), 6–13 (2017). https://doi.org/10.1016/j.jpowsour.2016.11.061
X. Cheng, C. Lei, J. Yang, B. Yang, Z. Li, J. Lu, X. Zhang, L. Lei, Y. Hou, K.K. Ostrikov, Efficient electrocatalytic oxygen evolution at extremely high current density over 3D ultrasmall zero-valent iron-coupled nickel sulfide nanosheets. ChemElectroChem 5(24), 3866–3872 (2018). https://doi.org/10.1002/celc.201801104
M.A. Deyab, Ionic liquid as an electrolyte additive for high performance lead-acid batteries. J. Power Sources 390(30), 176–180 (2018). https://doi.org/10.1016/j.jpowsour.2018.04.053
J.-E. Jin, D. Jin, J. Shim, W. Shim, Enhancing reversible sulfation of PbO2 nanoparticles for extended lifetime in lead-acid batteries. J. Electrochem. Soc. 164(7), A1628–A1634 (2017). https://doi.org/10.1149/2.1291707jes
E. Ahlberg, U. Palmqvist, N. Simic, R. Sjovall, Capacity loss in Ni-Cd pocket plate batteries. The origin of the second voltage plateau. J. Power Sources 85(2), 245–253 (2000). https://doi.org/10.1016/s0378-7753(99)00340-7
M. Garcia-Plaza, D. Serrano-Jimenez, J. Eloy-Garcia Carrasco, J. Alonso-Martinez, A Ni–Cd battery model considering state of charge and hysteresis effects. J. Power Sources 275(1), 595–604 (2015). https://doi.org/10.1016/j.jpowsour.2014.11.031
R.H. Milocco, B.E. Castro, State of charge estimation in Ni–MH rechargeable batteries. J. Power Sources 194(1), 558–567 (2009). https://doi.org/10.1016/j.jpowsour.2009.05.005
P. Xiao, W. Gao, X. Qiu, W. Zhu, J. Sun, L. Chen, Thermal behaviors of Ni–MH batteries using a novel impedance spectroscopy. J. Power Sources 182(1), 377–382 (2008). https://doi.org/10.1016/j.jpowsour.2008.03.055
K. Young, J. Koch, S. Yasuoka, H. Shen, L.A. Bendersky, Mn in misch-metal based superlattice metal hydride alloy—part 2 Ni/MH battery performance and failure mechanism. J. Power Sources 277(1), 433–442 (2015). https://doi.org/10.1016/j.jpowsour.2014.10.092
A. Banerjee, Y. Shilina, B. Ziv, J.M. Ziegelbauer, S. Luski, D. Aurbach, I.C. Halalay, On the oxidation state of manganese ions in Li-ion battery electrolyte solutions. J. Am. Chem. Soc. 139(5), 1738–1741 (2017). https://doi.org/10.1021/jacs.6b10781
T.-S. Wei, B.Y. Ahn, J. Grotto, J.A. Lewis, 3D printing of customized Li-ion batteries with thick electrodes. Adv. Mater. 30(16), 1703027 (2018). https://doi.org/10.1002/adma.201703027
C. Yang, X. Ji, X. Fan, T. Gao, L. Suo et al., Flexible aqueous Li-ion battery with high energy and power densities. Adv. Mater. 29(44), 1701972 (2017). https://doi.org/10.1002/adma.201701972
J. Zhang, Y. Xiang, M.I. Jamil, J. Lu, Q. Zhang, X. Zhan, F. Chen, Polymers/zeolite nanocomposite membranes with enhanced thermal and electrochemical performances for lithium-ion batteries. J. Membr. Sci. 564(15), 753–761 (2018). https://doi.org/10.1016/j.memsci.2018.07.056
C. Lei, F. Wang, J. Yang, X. Gao, X. Yu et al., Embedding Co2P nanoparticles in N-doped carbon nanotubes grown on porous carbon polyhedra for high-performance lithium-ion batteries. Ind. Eng. Chem. Res. 57(39), 13019–13025 (2018). https://doi.org/10.1021/acs.iecr.8b02036
Y. Tong, Y. Xu, D. Chen, Y. Xie, L. Chen, M. Que, Y. Hou, Deformable and flexible electrospun nanofiber-supported cross-linked gel polymer electrolyte membranes for high safety lithium-ion batteries. RSC Adv. 7(37), 22728–22734 (2017). https://doi.org/10.1039/c7ra00112f
M.J. Klein, G.M. Veith, A. Manthiram, Rational design of lithium-sulfur battery cathodes based on experimentally determined maximum active material thickness. J. Am. Chem. Soc. 139(27), 9229–9237 (2017). https://doi.org/10.1021/jacs.7b03380
H. Qu, J. Zhang, A. Du, B. Chen, J. Chai et al., Multifunctional sandwich-structured electrolyte for high-performance lithium-sulfur batteries. Adv. Sci. 5(3), 1700503 (2018). https://doi.org/10.1002/advs.201700503
J. Yan, X. Liu, B. Li, Capacity fade analysis of sulfur cathodes in lithium-sulfur batteries. Adv. Sci. 3(12), 1600101 (2016). https://doi.org/10.1002/advs.201600101
N.B. Aetukuri, B.D. McCloskey, J.M. Garcia, L.E. Krupp, V. Viswanathan, A.C. Luntz, Solvating additives drive solution-mediated electrochemistry and enhance toroid growth in non-aqueous Li–O2 batteries. Nat. Chem. 7(1), 50–56 (2015). https://doi.org/10.1038/nchem.2132
L. Wang, J. Pan, Y. Zhang, X. Cheng, L. Liu, H. Peng, A Li–air battery with ultralong cycle life in ambient air. Adv. Mater. 30(3), 1704378 (2018). https://doi.org/10.1002/adma.201704378
P. Zhang, Y. Zhao, X. Zhang, Functional and stability orientation synthesis of materials and structures in aprotic Li–O2 batteries. Chem. Soc. Rev. 47(8), 2921–3004 (2018). https://doi.org/10.1039/c8cs00009c
X. Hu, Z. Li, J. Chen, Flexible Li–CO2 batteries with liquid-free electrolyte. Angew. Chem. Int. Ed. 56(21), 5785–5789 (2017). https://doi.org/10.1002/anie.201701928
S. Li, Y. Dong, J. Zhou, Y. Liu, J. Wang, X. Gao, Y. Han, P. Qi, B. Wang, Carbon dioxide in the cage: manganese metal-organic frameworks for high performance CO2 electrodes in Li–CO2 batteries. Energy Environ. Sci. 11(5), 1318–1325 (2018). https://doi.org/10.1039/c8ee00415c
Y. Qiao, J. Yi, S. Wu, Y. Liu, S. Yang, P. He, H. Zhou, Li–CO2 electrochemistry: a new strategy for CO2 fixation and energy storage. Joule 1(2), 359–370 (2017). https://doi.org/10.1016/j.joule.2017.07.001
H. Li, Y. Ding, H. Ha, Y. Shi, L. Peng, X. Zhang, C.J. Ellison, G. Yu, An all-stretchable-component sodium-ion full battery. Adv. Mater. 29(23), 1700898 (2017). https://doi.org/10.1002/adma.201700898
C. Zhao, C. Yu, B. Qiu, S. Zhou, M. Zhang et al., Ultrahigh rate and long-life sodium-ion batteries enabled by engineered surface and near-surface reactions. Adv. Mater. 30(7), 1702486 (2018). https://doi.org/10.1002/adma.201702486
H. Kim, J.C. Kim, M. Bianchini, D.-H. Seo, J. Rodriguez-Garcia, G. Ceder, Recent progress and perspective in electrode materials for K-ion batteries. Adv. Energy Mater. 8(9), 1702384 (2018). https://doi.org/10.1002/aenm.201702384
X. Wu, D.P. Leonard, X. Ji, Emerging non-aqueous potassium-ion batteries: challenges and opportunities. Chem. Mater. 29(12), 5031–5042 (2017). https://doi.org/10.1021/acs.chemmater.7b01764
L. Chen, J.L. Bao, X. Dong, D.G. Truhlar, Y. Wang, C. Wang, Y. Xia, Aqueous Mg-ion battery based on polyimide anode and prussian blue cathode. ACS Energy Lett. 2(5), 1115–1121 (2017). https://doi.org/10.1021/acsenergylett.7b00040
B. Liu, T. Luo, G. Mu, X. Wang, D. Chen, G. Shen, Rechargeable Mg-ion batteries based on WSe2 nanowire cathodes. ACS Nano 7(9), 8051–8058 (2013). https://doi.org/10.1021/nn4032454
M.C. Lin, M. Gong, B. Lu, Y. Wu, D.Y. Wang et al., An ultrafast rechargeable aluminium-ion battery. Nature 520(7547), 324–328 (2015). https://doi.org/10.1038/nature14340
J. Xu, Y. Dou, Z. Wei, J. Ma, Y. Deng, Y. Li, H. Liu, S. Dou, Recent progress in graphite intercalation compounds for rechargeable metal (Li, Na, K, Al)-ion batteries. Adv. Sci. 4(10), 1700146 (2017). https://doi.org/10.1002/advs.201700146
H. Li, C. Han, Y. Huang, Y. Huang, M. Zhu et al., An extremely safe and wearable solid-state zinc ion battery based on a hierarchical structured polymer electrolyte. Energy Environ. Sci. 11(4), 941–951 (2018). https://doi.org/10.1039/c7ee03232c
C. Xu, B. Li, H. Du, F. Kang, Energetic zinc ion chemistry: the rechargeable zinc ion battery. Angew. Chem. Int. Ed. 51(4), 933–935 (2012). https://doi.org/10.1002/anie.201106307
L. Chen, L. Zhang, X. Zhou, Z. Liu, Aqueous batteries based on mixed monovalence metal ions: a new battery family. Chemsuschem 7(8), 2295–2302 (2014). https://doi.org/10.1002/cssc.201402084
W. Zuo, W. Zhu, D. Zhao, Y. Sun, Y. Li, J. Liu, X.W. Lou, Bismuth oxide: a versatile high-capacity electrode material for rechargeable aqueous metal-ion batteries. Energy Environ. Sci. 9(9), 2881–2891 (2016). https://doi.org/10.1039/c6ee01871h
H. Kim, J. Hong, K.Y. Park, H. Kim, S.W. Kim, K. Kang, Aqueous rechargeable Li and Na ion batteries. Chem. Rev. 114(23), 11788–11827 (2014). https://doi.org/10.1021/cr500232y
S. Santhanagopalan, Q. Guo, P. Ramadass, R.E. White, Review of models for predicting the cycling performance of lithium ion batteries. J. Power Sources 156(2), 620–628 (2006). https://doi.org/10.1016/j.jpowsour.2005.05.070
L. Zhang, Y. Zhang, S. Huang, Y. Yuan, H. Li et al., Co3O4/Ni-based MOFs on carbon cloth for flexible alkaline battery-supercapacitor hybrid devices and near-infrared photocatalytic hydrogen evolution. Electrochim. Acta 281(10), 189–197 (2018). https://doi.org/10.1016/j.electacta.2018.05.162
Y. Yuan, Y. Wu, T. Zhang, H. Tang, L. Meng, Y.-J. Zeng, Q. Zhang, Z. Ye, J. Lu, Integration of solar cells with hierarchical CoS nanonets hybrid supercapacitors for self-powered photodetection systems. J. Power Sources 404(15), 118–125 (2018). https://doi.org/10.1016/j.jpowsour.2018.09.101
H. Tang, Y. Yuan, L. Meng, W. Wang, J. Lu, Y. Zeng, T. Huang, C. Gao, Low-resistance porous nanocellular MnSe electrodes for high-performance all-solid-state battery-supercapacitor hybrid devices. Adv. Mater. Technol. 3(7), 1800074 (2018). https://doi.org/10.1002/admt.201800074
L. Meng, Y. Wu, T. Zhang, H. Tang, Y. Tian, Y. Yuan, Q. Zhang, Y. Zeng, J. Lu, Highly conductive NiSe2 nanostructures for all-solid-state battery-supercapacitor hybrid devices. J. Mater. Sci. 54(1), 571–581 (2018). https://doi.org/10.1007/s10853-018-2812-4
Q. Jiang, J. Lu, J. Zhang, Y. Yuan, H. Cai et al., Texture surfaces and etching mechanism of ZnO:Al films by a neutral agent for solar cells. Sol. Energy Mater. Sol. Cells 130, 264–271 (2014). https://doi.org/10.1016/j.solmat.2014.07.024
X. Wang, X. Han, M. Lim, N. Singh, C.L. Gan, M. Jan, P.S. Lee, Nickel cobalt oxide-single wall carbon nanotube composite material for superior cycling stability and high-performance supercapacitor application. J. Phys. Chem. C 116(23), 12448–12454 (2012). https://doi.org/10.1021/jp3028353
D. Weingarth, A.F. Schmitz, R. Kotz, Cycle versus volgate hold—Which is the better stability test for electrochemical double layer capacitors? J. Power Sources 225, 84–88 (2013). https://doi.org/10.1016/j.jpowsour.2012.10.019
M. Vijayakumar, D.S. Rohita, T.N. Rao, M. Karthik, Electrode mass ration impact on electrochemical capacitor performance. Electrochim. Acta 298, 347–359 (2019). https://doi.org/10.1016/j.electacta.2018.12.034