Water-Restrained Hydrogel Electrolytes with Repulsion-Driven Cationic Express Pathways for Durable Zinc-Ion Batteries
Corresponding Author: Wenjun Zhang
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 193
Abstract
The development of flexible zinc-ion batteries (ZIBs) faces a three-way trade-off among the ionic conductivity, Zn2+ mobility, and the electrochemical stability of hydrogel electrolytes. To address this challenge, we designed a cationic hydrogel named PAPTMA to holistically improve the reversibility of ZIBs. The long cationic branch chains in the polymeric matrix construct express pathways for rapid Zn2+ transport through an ionic repulsion mechanism, achieving simultaneously high Zn2+ transference number (0.79) and high ionic conductivity (28.7 mS cm−1). Additionally, the reactivity of water in the PAPTMA hydrogels is significantly inhibited, thus possessing a strong resistance to parasitic reactions. Mechanical characterization further reveals the superior tensile and adhesion strength of PAPTMA. Leveraging these properties, symmetric batteries employing PAPTMA hydrogel deliver exceeding 6000 h of reversible cycling at 1 mA cm−2 and maintain stable operation for 1000 h with a discharge of depth of 71%. When applied in 4 × 4 cm2 pouch cells with MnO2 as the cathode material, the device demonstrates remarkable operational stability and mechanical robustness through 150 cycles. This work presents an eclectic strategy for designing advanced hydrogels that combine high ionic conductivity, enhanced Zn2+ mobility, and strong resistance to parasitic reactions, paving the way for long-lasting flexible ZIBs.
Highlights:
1 A novel cationic hydrogel electrolyte is prepared to address a significant challenge of balancing the tripartite trade-offs of hydrogel properties.
2 Cationic express pathways enable fast and selective Zn2+ transport through dynamic ionic repulsion, achieving high ionic conductivity (28.7 mS cm−1) and Zn2+ transference number (0.79).
3 The hydrogel demonstrates exceptional cycling stability across − 15 to 60 °C, showcasing great potential for practical flexible battery applications.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S.W.D. Gourley, R. Brown, B.D. Adams, D. Higgins, Zinc-ion batteries for stationary energy storage. Joule 7, 1415–1436 (2023). https://doi.org/10.1016/j.joule.2023.06.007
- Y. Liang, Y. Yao, Designing modern aqueous batteries. Nat. Rev. Mater. 8, 109–122 (2023). https://doi.org/10.1038/s41578-022-00511-3
- A. Innocenti, D. Bresser, J. Garche, S. Passerini, A critical discussion of the current availability of lithium and zinc for use in batteries. Nat. Commun. 15, 4068 (2024). https://doi.org/10.1038/s41467-024-48368-0
- X. Yu, Z. Li, X. Wu, H. Zhang, Q. Zhao et al., Ten concerns of Zn metal anode for rechargeable aqueous zinc batteries. Joule 7, 1145–1175 (2023). https://doi.org/10.1016/j.joule.2023.05.004
- J. Xie, D. Lin, H. Lei, S. Wu, J. Li et al., Electrolyte and interphase engineering of aqueous batteries beyond “water-in-salt” strategy. Adv. Mater. 36, 2306508 (2023). https://doi.org/10.1002/adma.202306508
- Y. An, B. Xu, Y. Tian, H. Shen, Q. Man et al., Reversible Zn electrodeposition enabled by interfacial chemistry manipulation for high-energy anode-free Zn batteries. Mater. Today 70, 93–103 (2023). https://doi.org/10.1016/j.mattod.2023.09.008
- W. Wang, C. Li, S. Liu, J. Zhang, D. Zhang et al., Flexible quasi-solid-state aqueous zinc-ion batteries: design principles, functionalization strategies, and applications. Adv. Energy Mater. 13, 2300250 (2023). https://doi.org/10.1002/aenm.202300250
- J. Li, A. Azizi, S. Zhou, S. Liu, C. Han et al., Hydrogel polymer electrolytes toward better zinc-ion batteries: a comprehensive review. eScience 5, 100294 (2024). https://doi.org/10.1016/j.esci.2024.100294
- G. Weng, X. Yang, Z. Wang, Y. Xu, R. Liu, Hydrogel electrolyte enabled high-performance flexible aqueous zinc ion energy storage systems toward wearable electronics. Small 19, 2303949 (2023). https://doi.org/10.1002/smll.202303949
- M.M. Baig, S.A. Khan, H. Ahmad, J. Liang, G. Zhu et al., 3D printing of hydrogels for flexible micro-supercapacitors. FlexMat 1, 79–99 (2024). https://doi.org/10.1002/flm2.14
- Y. An, Y. Tian, H. Shen, Q. Man, S. Xiong et al., Two-dimensional MXenes for flexible energy storage devices. Energy Environ. Sci. 16, 4191–4250 (2023). https://doi.org/10.1039/D3EE01841E
- M. Jiao, L. Dai, H.-R. Ren, M. Zhang, X. Xiao et al., A polarized gel electrolyte for wide-temperature flexible zinc-air batteries. Angew. Chem. Int. Ed. 62, e202301114 (2023). https://doi.org/10.1002/anie.202301114
- Q. Liu, Z. Yu, Q. Zhuang, J.-K. Kim, F. Kang et al., Anti-fatigue hydrogel electrolyte for all-flexible Zn-ion batteries. Adv. Mater. 35, e2300498 (2023). https://doi.org/10.1002/adma.202300498
- H. Wang, A. Zhou, Z. Hu, X. Hu, F. Zhang et al., Toward simultaneous dense zinc deposition and broken side-reaction loops in the Zn// V2O5 system. Angew. Chem. Int. Ed. 63, e202318928 (2024). https://doi.org/10.1002/anie.202318928
- Y. Shao, J. Zhao, W. Hu, Z. Xia, J. Luo et al., Regulating interfacial ion migration via wool keratin mediated biogel electrolyte toward robust flexible Zn-ion batteries. Small 18(10), e2107163 (2022). https://doi.org/10.1002/smll.202107163
- H. Peng, D. Wang, F. Zhang, L. Yang, X. Jiang et al., Improvements and challenges of hydrogel polymer electrolytes for advanced zinc anodes in aqueous zinc-ion batteries. ACS Nano 18, 21779–21803 (2024). https://doi.org/10.1021/acsnano.4c06502
- J.L. Yang, Z. Yu, J. Wu, J. Li, L. Chen et al., Hetero-polyionic hydrogels enable dendrites-free aqueous Zn-I2 batteries with fast kinetics. Adv. Mater. 35, e2306531 (2023). https://doi.org/10.1002/adma.202306531
- W. Zhang, F. Guo, H. Mi, Z.S. Wu, C. Ji et al., Kinetics-boosted effect enabled by zwitterionic hydrogel electrolyte for highly reversible zinc anode in zinc-ion hybrid micro-supercapacitors. Adv. Energy Mater. 12, 2202219 (2022). https://doi.org/10.1002/aenm.202202219
- M. Chen, J. Chen, W. Zhou, X. Han, Y. Yao et al., Realizing an all-round hydrogel electrolyte toward environmentally adaptive dendrite-free aqueous Zn-MnO2 batteries. Adv. Mater. 33, e2007559 (2021). https://doi.org/10.1002/adma.202007559
- Q. Fu, S. Hao, X. Zhang, H. Zhao, F. Xu et al., All-round supramolecular zwitterionic hydrogel electrolytes enabling environmentally adaptive dendrite-free aqueous zinc ion capacitors. Energy Environ. Sci. 16, 1291–1311 (2023). https://doi.org/10.1039/d2ee03793a
- S. Wang, X. Wu, C. Liu, L. He, S. Li et al., Hydrogen bond-induced elastic polyzwitterion electrolytes constructed by mussel-inspired autopolymerization for zinc-ion battery. Sci. China Chem. 67, 3438–3449 (2024). https://doi.org/10.1007/s11426-024-2133-1
- P. Zou, Y. Sui, H. Zhan, C. Wang, H.L. Xin et al., Polymorph evolution mechanisms and regulation strategies of lithium metal anode under multiphysical fields. Chem. Rev. 121, 5986–6056 (2021). https://doi.org/10.1021/acs.chemrev.0c01100
- S.D. Pu, B. Hu, Z. Li, Y. Yuan, C. Gong et al., Decoupling, quantifying, and restoring aging-induced Zn-anode losses in rechargeable aqueous zinc batteries. Joule 7, 366–379 (2023). https://doi.org/10.1016/j.joule.2023.01.010
- H. Xia, G. Xu, X. Cao, C. Miao, H. Zhang et al., Single-ion-conducting hydrogel electrolytes based on slide-ring pseudo-polyrotaxane for ultralong-cycling flexible zinc-ion batteries. Adv. Mater. 35, e2301996 (2023). https://doi.org/10.1002/adma.202301996
- J.-L. Yang, P. Yang, T. Xiao, H.J. Fan, Designing single-ion conductive electrolytes for aqueous zinc batteries. Matter 7, 1928–1949 (2024). https://doi.org/10.1016/j.matt.2024.03.014
- Y. Wang, Q. Li, H. Hong, S. Yang, R. Zhang et al., Lean-water hydrogel electrolyte for zinc ion batteries. Nat. Commun. 14, 3890 (2023). https://doi.org/10.1038/s41467-023-39634-8
- K. Deng, Q. Zeng, D. Wang, Z. Liu, Z. Qiu et al., Single-ion conducting gel polymer electrolytes: design, preparation and application. J. Mater. Chem. A 8, 1557–1577 (2020). https://doi.org/10.1039/C9TA11178F
- C.Y. Chan, Z. Wang, Y. Li, H. Yu, B. Fei et al., Single-ion conducting double-network hydrogel electrolytes for long cycling zinc-ion batteries. ACS Appl. Mater. Interfaces 13, 30594–30602 (2021). https://doi.org/10.1021/acsami.1c05941
- S.K. Nemani, R.K. Annavarapu, B. Mohammadian, A. Raiyan, J. Heil et al., Surface modification of polymers: methods and applications. Adv. Mater. Interfaces 5, 1801247 (2018). https://doi.org/10.1002/admi.201801247
- N. Sahiner, S. Demirci, M. Sahiner, S. Yilmaz, H. Al-Lohedan, The use of superporous p(3-acrylamidopropyl)trimethyl ammonium chloride cryogels for removal of toxic arsenate anions. J. Environ. Manag. 152, 66–74 (2015). https://doi.org/10.1016/j.jenvman.2015.01.023
- M. Constantin, I. Mihalcea, I. Oanea, V. Harabagiu, G. Fundueanu, Studies on graft copolymerization of 3-acrylamidopropyl trimethylammonium chloride on pullulan. Carbohydr. Polym. 84, 926–932 (2011). https://doi.org/10.1016/j.carbpol.2010.12.043
- M.M. El Sayed, Production of polymer hydrogel composites and their applications. J. Polym. Environ. 31, 2855–2879 (2023). https://doi.org/10.1007/s10924-023-02796-z
- P.G. Bruce, C.A. Vincent, Steady state current flow in solid binary electrolyte cells. J. Electroanal. Chem. Interfacial Electrochem. 225, 1–17 (1987). https://doi.org/10.1016/0022-0728(87)80001-3
- K. Zhu, J. Luo, D. Zhang, N. Wang, S. Pan et al., Molecular engineering enables hydrogel electrolyte with ionic hopping migration and self-healability toward dendrite-free zinc-metal anodes. Adv. Mater. 36, 2311082 (2024). https://doi.org/10.1002/adma.202311082
- L. Hong, X. Wu, Y.S. Liu, C. Yu, Y. Liu et al., Self-adapting and self-healing hydrogel interface with fast Zn2+ transport kinetics for highly reversible Zn anodes. Adv. Funct. Mater. 33, 2300952 (2023). https://doi.org/10.1002/adfm.202300952
- V. Bocharova, A.P. Sokolov, Perspectives for polymer electrolytes: a view from fundamentals of ionic conductivity. Macromolecules 53, 4141–4157 (2020). https://doi.org/10.1021/acs.macromol.9b02742
- S. Wang, S. Xiao, S. Li, C. Liu, H. Cai et al., Organic cationic-coordinated perfluoropolymer electrolytes with strong Li+-solvent interaction for solid state Li-metal batteries. Angew. Chem. Int. Ed. 63, e202412434 (2024). https://doi.org/10.1002/anie.202412434
- W. Chen, T. Dong, Y. Xiang, Y. Qian, X. Zhao et al., Ionic crosslinking-induced nanochannels: nanophase separation for ion transport promotion. Adv. Mater. 34, e2108410 (2022). https://doi.org/10.1002/adma.202108410
- K. Huang, X. Zeng, D. Zhang, Y. Wang, M. Lan et al., Tailoring crystallization zinc hydroxide sulfates growth towards stable zinc deposition chemistry. Nano Res. 17, 5243–5250 (2024). https://doi.org/10.1007/s12274-024-6479-7
- B.A. Kolesov, Hydrogen bonds: Raman spectroscopic study. Int. J. Mol. Sci. 22, 5380 (2021). https://doi.org/10.3390/ijms22105380
- C. Li, X. Zhu, D. Wang, S. Yang, R. Zhang et al., Fine tuning water states in hydrogels for high voltage aqueous batteries. ACS Nano 18, 3101–3114 (2024). https://doi.org/10.1021/acsnano.3c08398
- Y. Wang, X. Yang, G. Nian, Z. Suo, Strength and toughness of adhesion of soft materials measured in lap shear. J. Mech. Phys. Solids 143, 103988 (2020). https://doi.org/10.1016/j.jmps.2020.103988
- F. Zou, A. Manthiram, A review of the design of advanced binders for high-performance batteries. Adv. Energy Mater. 10, 2002508 (2020). https://doi.org/10.1002/aenm.202002508
- D. Lin, D. Shi, A. Zhu, C. Yang, T. Zhang et al., Self-adaptive hierarchical hosts with switchable repulsive shielding for dendrite-free zinc-ion batteries. Adv. Energy Mater. 14, 2304535 (2024). https://doi.org/10.1002/aenm.202304535
- T. Hepel, Effect of surface diffusion in electrodeposition of fractal structures. J. Electrochem. Soc. 134, 2685–2690 (1987). https://doi.org/10.1149/1.2100272
- X. Zhang, J. Li, Y. Liu, B. Lu, S. Liang et al., Single [0001]-oriented zinc metal anode enables sustainable zinc batteries. Nat. Commun. 15, 2735 (2024). https://doi.org/10.1038/s41467-024-47101-1
- Q. Li, A. Chen, D. Wang, Y. Zhao, X. Wang et al., Tailoring the metal electrode morphology via electrochemical protocol optimization for long-lasting aqueous zinc batteries. Nat. Commun. 13, 3699 (2022). https://doi.org/10.1038/s41467-022-31461-7
- H. Zhang, X. Gan, Y. Yan, J. Zhou, A sustainable dual cross-linked cellulose hydrogel electrolyte for high-performance zinc-metal batteries. Nano-Micro Lett. 16, 106 (2024). https://doi.org/10.1007/s40820-024-01329-0
- B.D. Adams, J. Zheng, X. Ren, W. Xu, J.G. Zhang, Accurate determination of coulombic efficiency for lithium metal anodes and lithium metal batteries. Adv. Energy Mater. 8, 1702097 (2018). https://doi.org/10.1002/aenm.201702097
- L. Ma, S. Chen, X. Li, A. Chen, B. Dong et al., Liquid-free all-solid-state zinc batteries and encapsulation-free flexible batteries enabled by in situ constructed polymer electrolyte. Angew. Chem. Int. Ed. 59, 23836–23844 (2020). https://doi.org/10.1002/anie.202011788
References
S.W.D. Gourley, R. Brown, B.D. Adams, D. Higgins, Zinc-ion batteries for stationary energy storage. Joule 7, 1415–1436 (2023). https://doi.org/10.1016/j.joule.2023.06.007
Y. Liang, Y. Yao, Designing modern aqueous batteries. Nat. Rev. Mater. 8, 109–122 (2023). https://doi.org/10.1038/s41578-022-00511-3
A. Innocenti, D. Bresser, J. Garche, S. Passerini, A critical discussion of the current availability of lithium and zinc for use in batteries. Nat. Commun. 15, 4068 (2024). https://doi.org/10.1038/s41467-024-48368-0
X. Yu, Z. Li, X. Wu, H. Zhang, Q. Zhao et al., Ten concerns of Zn metal anode for rechargeable aqueous zinc batteries. Joule 7, 1145–1175 (2023). https://doi.org/10.1016/j.joule.2023.05.004
J. Xie, D. Lin, H. Lei, S. Wu, J. Li et al., Electrolyte and interphase engineering of aqueous batteries beyond “water-in-salt” strategy. Adv. Mater. 36, 2306508 (2023). https://doi.org/10.1002/adma.202306508
Y. An, B. Xu, Y. Tian, H. Shen, Q. Man et al., Reversible Zn electrodeposition enabled by interfacial chemistry manipulation for high-energy anode-free Zn batteries. Mater. Today 70, 93–103 (2023). https://doi.org/10.1016/j.mattod.2023.09.008
W. Wang, C. Li, S. Liu, J. Zhang, D. Zhang et al., Flexible quasi-solid-state aqueous zinc-ion batteries: design principles, functionalization strategies, and applications. Adv. Energy Mater. 13, 2300250 (2023). https://doi.org/10.1002/aenm.202300250
J. Li, A. Azizi, S. Zhou, S. Liu, C. Han et al., Hydrogel polymer electrolytes toward better zinc-ion batteries: a comprehensive review. eScience 5, 100294 (2024). https://doi.org/10.1016/j.esci.2024.100294
G. Weng, X. Yang, Z. Wang, Y. Xu, R. Liu, Hydrogel electrolyte enabled high-performance flexible aqueous zinc ion energy storage systems toward wearable electronics. Small 19, 2303949 (2023). https://doi.org/10.1002/smll.202303949
M.M. Baig, S.A. Khan, H. Ahmad, J. Liang, G. Zhu et al., 3D printing of hydrogels for flexible micro-supercapacitors. FlexMat 1, 79–99 (2024). https://doi.org/10.1002/flm2.14
Y. An, Y. Tian, H. Shen, Q. Man, S. Xiong et al., Two-dimensional MXenes for flexible energy storage devices. Energy Environ. Sci. 16, 4191–4250 (2023). https://doi.org/10.1039/D3EE01841E
M. Jiao, L. Dai, H.-R. Ren, M. Zhang, X. Xiao et al., A polarized gel electrolyte for wide-temperature flexible zinc-air batteries. Angew. Chem. Int. Ed. 62, e202301114 (2023). https://doi.org/10.1002/anie.202301114
Q. Liu, Z. Yu, Q. Zhuang, J.-K. Kim, F. Kang et al., Anti-fatigue hydrogel electrolyte for all-flexible Zn-ion batteries. Adv. Mater. 35, e2300498 (2023). https://doi.org/10.1002/adma.202300498
H. Wang, A. Zhou, Z. Hu, X. Hu, F. Zhang et al., Toward simultaneous dense zinc deposition and broken side-reaction loops in the Zn// V2O5 system. Angew. Chem. Int. Ed. 63, e202318928 (2024). https://doi.org/10.1002/anie.202318928
Y. Shao, J. Zhao, W. Hu, Z. Xia, J. Luo et al., Regulating interfacial ion migration via wool keratin mediated biogel electrolyte toward robust flexible Zn-ion batteries. Small 18(10), e2107163 (2022). https://doi.org/10.1002/smll.202107163
H. Peng, D. Wang, F. Zhang, L. Yang, X. Jiang et al., Improvements and challenges of hydrogel polymer electrolytes for advanced zinc anodes in aqueous zinc-ion batteries. ACS Nano 18, 21779–21803 (2024). https://doi.org/10.1021/acsnano.4c06502
J.L. Yang, Z. Yu, J. Wu, J. Li, L. Chen et al., Hetero-polyionic hydrogels enable dendrites-free aqueous Zn-I2 batteries with fast kinetics. Adv. Mater. 35, e2306531 (2023). https://doi.org/10.1002/adma.202306531
W. Zhang, F. Guo, H. Mi, Z.S. Wu, C. Ji et al., Kinetics-boosted effect enabled by zwitterionic hydrogel electrolyte for highly reversible zinc anode in zinc-ion hybrid micro-supercapacitors. Adv. Energy Mater. 12, 2202219 (2022). https://doi.org/10.1002/aenm.202202219
M. Chen, J. Chen, W. Zhou, X. Han, Y. Yao et al., Realizing an all-round hydrogel electrolyte toward environmentally adaptive dendrite-free aqueous Zn-MnO2 batteries. Adv. Mater. 33, e2007559 (2021). https://doi.org/10.1002/adma.202007559
Q. Fu, S. Hao, X. Zhang, H. Zhao, F. Xu et al., All-round supramolecular zwitterionic hydrogel electrolytes enabling environmentally adaptive dendrite-free aqueous zinc ion capacitors. Energy Environ. Sci. 16, 1291–1311 (2023). https://doi.org/10.1039/d2ee03793a
S. Wang, X. Wu, C. Liu, L. He, S. Li et al., Hydrogen bond-induced elastic polyzwitterion electrolytes constructed by mussel-inspired autopolymerization for zinc-ion battery. Sci. China Chem. 67, 3438–3449 (2024). https://doi.org/10.1007/s11426-024-2133-1
P. Zou, Y. Sui, H. Zhan, C. Wang, H.L. Xin et al., Polymorph evolution mechanisms and regulation strategies of lithium metal anode under multiphysical fields. Chem. Rev. 121, 5986–6056 (2021). https://doi.org/10.1021/acs.chemrev.0c01100
S.D. Pu, B. Hu, Z. Li, Y. Yuan, C. Gong et al., Decoupling, quantifying, and restoring aging-induced Zn-anode losses in rechargeable aqueous zinc batteries. Joule 7, 366–379 (2023). https://doi.org/10.1016/j.joule.2023.01.010
H. Xia, G. Xu, X. Cao, C. Miao, H. Zhang et al., Single-ion-conducting hydrogel electrolytes based on slide-ring pseudo-polyrotaxane for ultralong-cycling flexible zinc-ion batteries. Adv. Mater. 35, e2301996 (2023). https://doi.org/10.1002/adma.202301996
J.-L. Yang, P. Yang, T. Xiao, H.J. Fan, Designing single-ion conductive electrolytes for aqueous zinc batteries. Matter 7, 1928–1949 (2024). https://doi.org/10.1016/j.matt.2024.03.014
Y. Wang, Q. Li, H. Hong, S. Yang, R. Zhang et al., Lean-water hydrogel electrolyte for zinc ion batteries. Nat. Commun. 14, 3890 (2023). https://doi.org/10.1038/s41467-023-39634-8
K. Deng, Q. Zeng, D. Wang, Z. Liu, Z. Qiu et al., Single-ion conducting gel polymer electrolytes: design, preparation and application. J. Mater. Chem. A 8, 1557–1577 (2020). https://doi.org/10.1039/C9TA11178F
C.Y. Chan, Z. Wang, Y. Li, H. Yu, B. Fei et al., Single-ion conducting double-network hydrogel electrolytes for long cycling zinc-ion batteries. ACS Appl. Mater. Interfaces 13, 30594–30602 (2021). https://doi.org/10.1021/acsami.1c05941
S.K. Nemani, R.K. Annavarapu, B. Mohammadian, A. Raiyan, J. Heil et al., Surface modification of polymers: methods and applications. Adv. Mater. Interfaces 5, 1801247 (2018). https://doi.org/10.1002/admi.201801247
N. Sahiner, S. Demirci, M. Sahiner, S. Yilmaz, H. Al-Lohedan, The use of superporous p(3-acrylamidopropyl)trimethyl ammonium chloride cryogels for removal of toxic arsenate anions. J. Environ. Manag. 152, 66–74 (2015). https://doi.org/10.1016/j.jenvman.2015.01.023
M. Constantin, I. Mihalcea, I. Oanea, V. Harabagiu, G. Fundueanu, Studies on graft copolymerization of 3-acrylamidopropyl trimethylammonium chloride on pullulan. Carbohydr. Polym. 84, 926–932 (2011). https://doi.org/10.1016/j.carbpol.2010.12.043
M.M. El Sayed, Production of polymer hydrogel composites and their applications. J. Polym. Environ. 31, 2855–2879 (2023). https://doi.org/10.1007/s10924-023-02796-z
P.G. Bruce, C.A. Vincent, Steady state current flow in solid binary electrolyte cells. J. Electroanal. Chem. Interfacial Electrochem. 225, 1–17 (1987). https://doi.org/10.1016/0022-0728(87)80001-3
K. Zhu, J. Luo, D. Zhang, N. Wang, S. Pan et al., Molecular engineering enables hydrogel electrolyte with ionic hopping migration and self-healability toward dendrite-free zinc-metal anodes. Adv. Mater. 36, 2311082 (2024). https://doi.org/10.1002/adma.202311082
L. Hong, X. Wu, Y.S. Liu, C. Yu, Y. Liu et al., Self-adapting and self-healing hydrogel interface with fast Zn2+ transport kinetics for highly reversible Zn anodes. Adv. Funct. Mater. 33, 2300952 (2023). https://doi.org/10.1002/adfm.202300952
V. Bocharova, A.P. Sokolov, Perspectives for polymer electrolytes: a view from fundamentals of ionic conductivity. Macromolecules 53, 4141–4157 (2020). https://doi.org/10.1021/acs.macromol.9b02742
S. Wang, S. Xiao, S. Li, C. Liu, H. Cai et al., Organic cationic-coordinated perfluoropolymer electrolytes with strong Li+-solvent interaction for solid state Li-metal batteries. Angew. Chem. Int. Ed. 63, e202412434 (2024). https://doi.org/10.1002/anie.202412434
W. Chen, T. Dong, Y. Xiang, Y. Qian, X. Zhao et al., Ionic crosslinking-induced nanochannels: nanophase separation for ion transport promotion. Adv. Mater. 34, e2108410 (2022). https://doi.org/10.1002/adma.202108410
K. Huang, X. Zeng, D. Zhang, Y. Wang, M. Lan et al., Tailoring crystallization zinc hydroxide sulfates growth towards stable zinc deposition chemistry. Nano Res. 17, 5243–5250 (2024). https://doi.org/10.1007/s12274-024-6479-7
B.A. Kolesov, Hydrogen bonds: Raman spectroscopic study. Int. J. Mol. Sci. 22, 5380 (2021). https://doi.org/10.3390/ijms22105380
C. Li, X. Zhu, D. Wang, S. Yang, R. Zhang et al., Fine tuning water states in hydrogels for high voltage aqueous batteries. ACS Nano 18, 3101–3114 (2024). https://doi.org/10.1021/acsnano.3c08398
Y. Wang, X. Yang, G. Nian, Z. Suo, Strength and toughness of adhesion of soft materials measured in lap shear. J. Mech. Phys. Solids 143, 103988 (2020). https://doi.org/10.1016/j.jmps.2020.103988
F. Zou, A. Manthiram, A review of the design of advanced binders for high-performance batteries. Adv. Energy Mater. 10, 2002508 (2020). https://doi.org/10.1002/aenm.202002508
D. Lin, D. Shi, A. Zhu, C. Yang, T. Zhang et al., Self-adaptive hierarchical hosts with switchable repulsive shielding for dendrite-free zinc-ion batteries. Adv. Energy Mater. 14, 2304535 (2024). https://doi.org/10.1002/aenm.202304535
T. Hepel, Effect of surface diffusion in electrodeposition of fractal structures. J. Electrochem. Soc. 134, 2685–2690 (1987). https://doi.org/10.1149/1.2100272
X. Zhang, J. Li, Y. Liu, B. Lu, S. Liang et al., Single [0001]-oriented zinc metal anode enables sustainable zinc batteries. Nat. Commun. 15, 2735 (2024). https://doi.org/10.1038/s41467-024-47101-1
Q. Li, A. Chen, D. Wang, Y. Zhao, X. Wang et al., Tailoring the metal electrode morphology via electrochemical protocol optimization for long-lasting aqueous zinc batteries. Nat. Commun. 13, 3699 (2022). https://doi.org/10.1038/s41467-022-31461-7
H. Zhang, X. Gan, Y. Yan, J. Zhou, A sustainable dual cross-linked cellulose hydrogel electrolyte for high-performance zinc-metal batteries. Nano-Micro Lett. 16, 106 (2024). https://doi.org/10.1007/s40820-024-01329-0
B.D. Adams, J. Zheng, X. Ren, W. Xu, J.G. Zhang, Accurate determination of coulombic efficiency for lithium metal anodes and lithium metal batteries. Adv. Energy Mater. 8, 1702097 (2018). https://doi.org/10.1002/aenm.201702097
L. Ma, S. Chen, X. Li, A. Chen, B. Dong et al., Liquid-free all-solid-state zinc batteries and encapsulation-free flexible batteries enabled by in situ constructed polymer electrolyte. Angew. Chem. Int. Ed. 59, 23836–23844 (2020). https://doi.org/10.1002/anie.202011788