Regulating Water Transport Paths on Porous Transport Layer by Hydrophilic Patterning for Highly Efficient Unitized Regenerative Fuel Cells
Corresponding Author: Tae‑Ho Kim
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 189
Abstract
While unitized regenerative fuel cells (URFCs) are promising for renewable energy storage, their efficient operation requires simultaneous water management and gas transport, which is challenging from the standpoint of water management. Herein, a novel approach is introduced for examining the alignment hydrophilic pattern of a Ti porous transport layer (PTL) with the flow field of a bipolar plate (BP). UV/ozone patterning and is employed to impart amphiphilic characteristics to the hydrophobic silanized Ti PTL, enabling low-cost and scalable fabrication. The hydrophilic pattern and its alignment with the BP are comprehensively analyzed using electrochemical methods and computational simulations. Notably, the serpentine-patterned (SP) Ti PTL, wherein the hydrophilic channel is directly aligned with the serpentine flow field of the BP, effectively enhances oxygen removal in the water electrolyzer (WE) mode and mitigates water flooding in the fuel cell (FC) mode, ensuring uninterrupted water and gas flow. Further, URFCs with SP configuration exhibit remarkable performance in the WE and FC modes, achieving a significantly improved round-trip efficiency of 25.7% at 2 A cm−2.
Highlights:
1 Novel amphiphilic patterned titanium porous transport layers (PTLs) significantly enhance the round-trip efficiency of unitized regenerative fuel cells (URFCs), achieving an impressive round-trip efficiency of 25.7% at a current density of 2 A cm-2.
2 The serpentine configuration of the patterned PTL excels in both fuel cell (FC) and water electrolyzer modes, resulting in a sevenfold increase in current density in FC mode compared to URFCs using hydrophilic pristine Ti PTLs.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- B. Paul, J. Andrews, PEM unitised reversible/regenerative hydrogen fuel cell systems: state of the art and technical challenges. Renew. Sustain. Energy Rev. 79, 585–599 (2017). https://doi.org/10.1016/j.rser.2017.05.112
- S. Koohi-Kamali, V.V. Tyagi, N.A. Rahim, N.L. Panwar, H. Mokhlis, Emergence of energy storage technologies as the solution for reliable operation of smart power systems: a review. Renew. Sustain. Energy Rev. 25, 135–165 (2013). https://doi.org/10.1016/j.rser.2013.03.056
- T.M. Gür, Review of electrical energy storage technologies, materials and systems: challenges and prospects for large-scale grid storage. Energy Environ. Sci. 11, 2696–2767 (2018). https://doi.org/10.1039/C8EE01419A
- R. Cozzolino, D. Chiappini, L. Tribioli, Off-grid PV/URFC power plant fueled with biogas from food waste: an energetic and economic analysis. Energy 219, 119537 (2021). https://doi.org/10.1016/j.energy.2020.119537
- M. Klingenhof, P. Hauke, S. Brückner, S. Dresp, E. Wolf et al., Modular design of highly active unitized reversible fuel cell electrocatalysts. ACS Energy Lett. 6, 177–183 (2021). https://doi.org/10.1021/acsenergylett.0c02203
- J.W.D. Ng, M. Tang, T.F. Jaramillo, A carbon-free, precious-metal-free, high-performance O2 electrode for regenerative fuel cells and metal–air batteries. Energy Environ. Sci. 7, 2017–2024 (2014). https://doi.org/10.1039/C3EE44059A
- F. Mitlitsky, B. Myers, A.H. Weisberg, Regenerative fuel cell systems. Energy Fuels 12, 56–71 (1998). https://doi.org/10.1021/ef970151w
- W. Smith, The role of fuel cells in energy storage. J. Power Sources 86, 74–83 (2000). https://doi.org/10.1016/S0378-7753(99)00485-1
- I. Vincent, E.-C. Lee, H.-M. Kim, Solutions to the water flooding problem for unitized regenerative fuel cells: status and perspectives. RSC Adv. 10, 16844–16860 (2020). https://doi.org/10.1039/d0ra00434k
- T. Sadhasivam, K. Dhanabalan, S.-H. Roh, T.-H. Kim, K.-W. Park et al., A comprehensive review on unitized regenerative fuel cells: crucial challenges and developments. Int. J. Hydrog. Energy 42, 4415–4433 (2017). https://doi.org/10.1016/j.ijhydene.2016.10.140
- W.H. Lee, H. Kim, Optimization of electrode structure to suppress electrochemical carbon corrosion of gas diffusion layer for unitized regenerative fuel cell. J. Electrochem. Soc. 161, F729–F733 (2014). https://doi.org/10.1149/2.071406jes
- T. Sadhasivam, S.-H. Roh, T.-H. Kim, K.-W. Park, H.-Y. Jung, Graphitized carbon as an efficient mesoporous layer for unitized regenerative fuel cells. Int. J. Hydrog. Energy 41, 18226–18230 (2016). https://doi.org/10.1016/j.ijhydene.2016.08.092
- J. Pettersson, B. Ramsey, D. Harrison, A review of the latest developments in electrodes for unitised regenerative polymer electrolyte fuel cells. J. Power Sources 157, 28–34 (2006). https://doi.org/10.1016/j.jpowsour.2006.01.059
- T.L. Doan, H.E. Lee, S.S.H. Shah, M. Kim, C.-H. Kim et al., A review of the porous transport layer in polymer electrolyte membrane water electrolysis. Int. J. Energy Res. 45, 14207–14220 (2021). https://doi.org/10.1002/er.6739
- C.M. Hwang, M. Ishida, H. Ito, T. Maeda, A. Nakano et al., Effect of titanium powder loading in gas diffusion layer of a polymer electrolyte unitized reversible fuel cell. J. Power Sources 202, 108–113 (2012). https://doi.org/10.1016/j.jpowsour.2011.11.041
- A. Lim, J.S. Lee, S. Lee, S.Y. Lee, H.-J. Kim et al., Polymer electrolyte membrane unitized regenerative fuel cells: operational considerations for achieving high round trip efficiency at low catalyst loading. Appl. Catal. B Environ. 297, 120458 (2021). https://doi.org/10.1016/j.apcatb.2021.120458
- X. Zhuo, S. Sui, J. Zhang, Electrode structure optimization combined with water feeding modes for Bi-functional unitized regenerative fuel cells. Int. J. Hydrog. Energy 38, 4792–4797 (2013). https://doi.org/10.1016/j.ijhydene.2013.01.137
- T. Ioroi, T. Oku, K. Yasuda, N. Kumagai, Y. Miyazaki, Influence of PTFE coating on gas diffusion backing for unitized regenerative polymer electrolyte fuel cells. J. Power Sources 124, 385–389 (2003). https://doi.org/10.1016/S0378-7753(03)00795-X
- T. Ioroi, K. Yasuda, Z. Siroma, N. Fujiwara, Y. Miyazaki, Thin film electrocatalyst layer for unitized regenerative polymer electrolyte fuel cells. J. Power Sources 112, 583–587 (2002). https://doi.org/10.1016/S0378-7753(02)00466-4
- C.M. Hwang, M. Ishida, H. Ito, T. Maeda, A. Nakano et al., Influence of properties of gas diffusion layers on the performance of polymer electrolyte-based unitized reversible fuel cells. Int. J. Hydrog. Energy 36, 1740–1753 (2011). https://doi.org/10.1016/j.ijhydene.2010.10.091
- H. Ito, K. Abe, M. Ishida, C.M. Hwang, A. Nakano, Effect of through-plane polytetrafluoroethylene distribution in a gas diffusion layer on a polymer electrolyte unitized reversible fuel cell. Int. J. Hydrog. Energy 40, 16556–16565 (2015). https://doi.org/10.1016/j.ijhydene.2015.09.102
- Y.N. Regmi, X. Peng, J.C. Fornaciari, M. Wei, D.J. Myers et al., A low temperature unitized regenerative fuel cell realizing 60% round trip efficiency and 10,000 cycles of durability for energy storage applications. Energy Environ. Sci. 13, 2096–2105 (2020). https://doi.org/10.1039/C9EE03626A
- A. Lim, H.Y. Jeong, Y. Lim, J.Y. Kim, H.Y. Park et al., Amphiphilic Ti porous transport layer for highly effective PEM unitized regenerative fuel cells. Sci. Adv. 7, eabf7866 (2021). https://doi.org/10.1126/sciadv.abf7866
- S.K. Babu, A. Yilmaz, M.A. Uddin, J. LaManna, E. Baltic et al., A goldilocks approach to water management: hydrochannel porous transport layers for unitized reversible fuel cells. Adv. Energy Mater. 13, 2203952 (2023). https://doi.org/10.1002/aenm.202203952
- F.M. Wisser, B. Schumm, G. Mondin, J. Grothe, S. Kaskel, Precursor strategies for metallic nano- and micropatterns using soft lithography. J. Mater. Chem. C 3, 2717–2731 (2015). https://doi.org/10.1039/C4TC02418D
- R. Sharma, S. Gyergyek, S.M. Andersen, Critical thinking on baseline corrections for electrochemical surface area (ECSA) determination of Pt/C through H-adsorption/H-desorption regions of a cyclic voltammogram. Appl. Catal. B Environ. 311, 121351 (2022). https://doi.org/10.1016/j.apcatb.2022.121351
- S.G. Bratsch, Standard electrode potentials and temperature coefficients in water at 298.15 K. J. Phys. Chem. Ref. Data 18, 1–21 (1989). https://doi.org/10.1063/1.555839
- S. Park, J.-W. Lee, B.N. Popov, Effect of PTFE content in microporous layer on water management in PEM fuel cells. J. Power Sources 177, 457–463 (2008). https://doi.org/10.1016/j.jpowsour.2007.11.055
- S.M. Lee, S. Oh, S.T. Chang, Highly transparent, flexible conductors and heaters based on metal nanomesh structures manufactured using an all-water-based solution process. ACS Appl. Mater. Interfaces 11, 4541–4550 (2019). https://doi.org/10.1021/acsami.8b17415
- S.M. Lee, S.K. Song, S. Yoon, D.S. Chung, S.T. Chang, Liquid thin film dewetting-driven micropatterning of reduced graphene oxide electrodes for high performance OFETs. J. Mater. Chem. C 7, 153–160 (2019). https://doi.org/10.1039/C8TC03981J
- J.C. Cruz, V. Baglio, S. Siracusano, R. Ornelas, L.G. Arriaga et al., Nanosized Pt/IrO2 electrocatalyst prepared by modified polyol method for application as dual function oxygen electrode in unitized regenerative fuel cells. Int. J. Hydrog. Energy 37, 5508–5517 (2012). https://doi.org/10.1016/j.ijhydene.2011.12.153
- P. Gayen, X. Liu, C. He, S. Saha, V.K. Ramani, Bidirectional energy & fuel production using RTO-supported-Pt–IrO2 loaded fixed polarity unitized regenerative fuel cells. Sustain. Energy Fuels 5, 2734–2746 (2021). https://doi.org/10.1039/d1se00103e
- A. Lim, J. Kim, H.J. Lee, H.-J. Kim, S.J. Yoo et al., Low-loading IrO2 supported on Pt for catalysis of PEM water electrolysis and regenerative fuel cells. Appl. Catal. B Environ. 272, 118955 (2020). https://doi.org/10.1016/j.apcatb.2020.118955
- X. Peng, Z. Taie, J. Liu, Y. Zhang, X. Peng et al., Hierarchical electrode design of highly efficient and stable unitized regenerative fuel cells (URFCs) for long-term energy storage. Energy Environ. Sci. 13, 4872–4881 (2020). https://doi.org/10.1039/D0EE03244A
- A. Rocha, R.B. Ferreira, D.S. Falcão, A.M.F.R. Pinto, Experimental study on a unitized regenerative fuel cell operated in constant electrode mode: effect of cell design and operating conditions. Renew. Energy 215, 118870 (2023). https://doi.org/10.1016/j.renene.2023.05.128
- J. You, S.M. Lee, H.-S. Eom, S.T. Chang, Highly transparent conducting electrodes based on a grid structure of silver nanowires. Coatings 11, 30 (2021). https://doi.org/10.3390/coatings11010030
- Z. Kang, S.M. Alia, J.L. Young, G. Bender, Effects of various parameters of different porous transport layers in proton exchange membrane water electrolysis. Electrochim. Acta 354, 136641 (2020). https://doi.org/10.1016/j.electacta.2020.136641
- H. Li, T. Fujigaya, H. Nakajima, A. Inada, K. Ito, Optimum structural properties for an anode current collector used in a polymer electrolyte membrane water electrolyzer operated at the boiling point of water. J. Power Sources 332, 16–23 (2016). https://doi.org/10.1016/j.jpowsour.2016.09.086
- D. Kiuchi, H. Matsushima, Y. Fukunaka, K. Kuribayashi, Ohmic resistance measurement of bubble froth layer in water electrolysis under microgravity. J. Electrochem. Soc. 153, E138 (2006). https://doi.org/10.1149/1.2207008
- B.E. Bongenaar-Schlenter, L.J.J. Janssen, S.J.D. Van Stralen, E. Barendrecht, The effect of the gas void distribution on the ohmic resistance during water electrolytes. J. Appl. Electrochem. 15, 537–548 (1985). https://doi.org/10.1007/BF01059295
- G. Sakuma, Y. Fukunaka, H. Matsushima, Nucleation and growth of electrolytic gas bubbles under microgravity. Int. J. Hydrog. Energy 39, 7638–7645 (2014). https://doi.org/10.1016/j.ijhydene.2014.03.059
- M. Najjari, F. Khemili, S. Ben Nasrallah, The effects of the cathode flooding on the transient responses of a PEM fuel cell, Renew. Energy 33, 1824–1831 (2008). https://doi.org/10.1016/j.renene.2007.10.003
- M. Geng, Z. Duan, Prediction of oxygen solubility in pure water and brines up to high temperatures and pressures. Geochim. Cosmochim. Acta 74, 5631–5640 (2010). https://doi.org/10.1016/j.gca.2010.06.034
- R. Omrani, B. Shabani, Review of gas diffusion layer for proton exchange membrane-based technologies with a focus on unitised regenerative fuel cells. Int. J. Hydrog. Energy 44, 3834–3860 (2019). https://doi.org/10.1016/j.ijhydene.2018.12.120
- S. Park, J.-W. Lee, B.N. Popov, A review of gas diffusion layer in PEM fuel cells: materials and designs. Int. J. Hydrog. Energy 37, 5850–5865 (2012). https://doi.org/10.1016/j.ijhydene.2011.12.148
- C. Chan, N. Zamel, X. Li, J. Shen, Experimental measurement of effective diffusion coefficient of gas diffusion layer/microporous layer in PEM fuel cells. Electrochim. Acta 65, 13–21 (2012). https://doi.org/10.1016/j.electacta.2011.12.110
- Y. Wang, Porous-media flow fields for polymer electrolyte fuel cells. J. Electrochem. Soc. 156, B1134 (2009). https://doi.org/10.1149/1.3183785
- I. Bae, B. Kim, D.-Y. Kim, H. Kim, K.-H. Oh, In-plane 2-D patterning of microporous layer by inkjet printing for water management of polymer electrolyte fuel cell. Renew. Energy 146, 960–967 (2020). https://doi.org/10.1016/j.renene.2019.07.003
- P. Kúš, A. Ostroverkh, I. Khalakhan, R. Fiala, Y. Kosto et al., Magnetron sputtered thin-film vertically segmented Pt-Ir catalyst supported on TiC for anode side of proton exchange membrane unitized regenerative fuel cells. Int. J. Hydrog. Energy 44, 16087–16098 (2019). https://doi.org/10.1016/j.ijhydene.2019.04.216
- S. Siracusano, V. Baglio, S.A. Grigoriev, L. Merlo, V.N. Fateev et al., The influence of iridium chemical oxidation state on the performance and durability of oxygen evolution catalysts in PEM electrolysis. J. Power Sources 366, 105–114 (2017). https://doi.org/10.1016/j.jpowsour.2017.09.020
- S. Cherevko, A.R. Zeradjanin, A.A. Topalov, N. Kulyk, I. Katsounaros et al., Dissolution of noble metals during oxygen evolution in acidic media. ChemCatChem 6, 2219–2223 (2014). https://doi.org/10.1002/cctc.201402194
- G.C. da Silva, K.J.J. Mayrhofer, E.A. Ticianelli, S. Cherevko, Dissolution stability: the major challenge in the regenerative fuel cells bifunctional catalysis. J. Electrochem. Soc. 165, F1376–F1384 (2018). https://doi.org/10.1149/2.1201816jes
References
B. Paul, J. Andrews, PEM unitised reversible/regenerative hydrogen fuel cell systems: state of the art and technical challenges. Renew. Sustain. Energy Rev. 79, 585–599 (2017). https://doi.org/10.1016/j.rser.2017.05.112
S. Koohi-Kamali, V.V. Tyagi, N.A. Rahim, N.L. Panwar, H. Mokhlis, Emergence of energy storage technologies as the solution for reliable operation of smart power systems: a review. Renew. Sustain. Energy Rev. 25, 135–165 (2013). https://doi.org/10.1016/j.rser.2013.03.056
T.M. Gür, Review of electrical energy storage technologies, materials and systems: challenges and prospects for large-scale grid storage. Energy Environ. Sci. 11, 2696–2767 (2018). https://doi.org/10.1039/C8EE01419A
R. Cozzolino, D. Chiappini, L. Tribioli, Off-grid PV/URFC power plant fueled with biogas from food waste: an energetic and economic analysis. Energy 219, 119537 (2021). https://doi.org/10.1016/j.energy.2020.119537
M. Klingenhof, P. Hauke, S. Brückner, S. Dresp, E. Wolf et al., Modular design of highly active unitized reversible fuel cell electrocatalysts. ACS Energy Lett. 6, 177–183 (2021). https://doi.org/10.1021/acsenergylett.0c02203
J.W.D. Ng, M. Tang, T.F. Jaramillo, A carbon-free, precious-metal-free, high-performance O2 electrode for regenerative fuel cells and metal–air batteries. Energy Environ. Sci. 7, 2017–2024 (2014). https://doi.org/10.1039/C3EE44059A
F. Mitlitsky, B. Myers, A.H. Weisberg, Regenerative fuel cell systems. Energy Fuels 12, 56–71 (1998). https://doi.org/10.1021/ef970151w
W. Smith, The role of fuel cells in energy storage. J. Power Sources 86, 74–83 (2000). https://doi.org/10.1016/S0378-7753(99)00485-1
I. Vincent, E.-C. Lee, H.-M. Kim, Solutions to the water flooding problem for unitized regenerative fuel cells: status and perspectives. RSC Adv. 10, 16844–16860 (2020). https://doi.org/10.1039/d0ra00434k
T. Sadhasivam, K. Dhanabalan, S.-H. Roh, T.-H. Kim, K.-W. Park et al., A comprehensive review on unitized regenerative fuel cells: crucial challenges and developments. Int. J. Hydrog. Energy 42, 4415–4433 (2017). https://doi.org/10.1016/j.ijhydene.2016.10.140
W.H. Lee, H. Kim, Optimization of electrode structure to suppress electrochemical carbon corrosion of gas diffusion layer for unitized regenerative fuel cell. J. Electrochem. Soc. 161, F729–F733 (2014). https://doi.org/10.1149/2.071406jes
T. Sadhasivam, S.-H. Roh, T.-H. Kim, K.-W. Park, H.-Y. Jung, Graphitized carbon as an efficient mesoporous layer for unitized regenerative fuel cells. Int. J. Hydrog. Energy 41, 18226–18230 (2016). https://doi.org/10.1016/j.ijhydene.2016.08.092
J. Pettersson, B. Ramsey, D. Harrison, A review of the latest developments in electrodes for unitised regenerative polymer electrolyte fuel cells. J. Power Sources 157, 28–34 (2006). https://doi.org/10.1016/j.jpowsour.2006.01.059
T.L. Doan, H.E. Lee, S.S.H. Shah, M. Kim, C.-H. Kim et al., A review of the porous transport layer in polymer electrolyte membrane water electrolysis. Int. J. Energy Res. 45, 14207–14220 (2021). https://doi.org/10.1002/er.6739
C.M. Hwang, M. Ishida, H. Ito, T. Maeda, A. Nakano et al., Effect of titanium powder loading in gas diffusion layer of a polymer electrolyte unitized reversible fuel cell. J. Power Sources 202, 108–113 (2012). https://doi.org/10.1016/j.jpowsour.2011.11.041
A. Lim, J.S. Lee, S. Lee, S.Y. Lee, H.-J. Kim et al., Polymer electrolyte membrane unitized regenerative fuel cells: operational considerations for achieving high round trip efficiency at low catalyst loading. Appl. Catal. B Environ. 297, 120458 (2021). https://doi.org/10.1016/j.apcatb.2021.120458
X. Zhuo, S. Sui, J. Zhang, Electrode structure optimization combined with water feeding modes for Bi-functional unitized regenerative fuel cells. Int. J. Hydrog. Energy 38, 4792–4797 (2013). https://doi.org/10.1016/j.ijhydene.2013.01.137
T. Ioroi, T. Oku, K. Yasuda, N. Kumagai, Y. Miyazaki, Influence of PTFE coating on gas diffusion backing for unitized regenerative polymer electrolyte fuel cells. J. Power Sources 124, 385–389 (2003). https://doi.org/10.1016/S0378-7753(03)00795-X
T. Ioroi, K. Yasuda, Z. Siroma, N. Fujiwara, Y. Miyazaki, Thin film electrocatalyst layer for unitized regenerative polymer electrolyte fuel cells. J. Power Sources 112, 583–587 (2002). https://doi.org/10.1016/S0378-7753(02)00466-4
C.M. Hwang, M. Ishida, H. Ito, T. Maeda, A. Nakano et al., Influence of properties of gas diffusion layers on the performance of polymer electrolyte-based unitized reversible fuel cells. Int. J. Hydrog. Energy 36, 1740–1753 (2011). https://doi.org/10.1016/j.ijhydene.2010.10.091
H. Ito, K. Abe, M. Ishida, C.M. Hwang, A. Nakano, Effect of through-plane polytetrafluoroethylene distribution in a gas diffusion layer on a polymer electrolyte unitized reversible fuel cell. Int. J. Hydrog. Energy 40, 16556–16565 (2015). https://doi.org/10.1016/j.ijhydene.2015.09.102
Y.N. Regmi, X. Peng, J.C. Fornaciari, M. Wei, D.J. Myers et al., A low temperature unitized regenerative fuel cell realizing 60% round trip efficiency and 10,000 cycles of durability for energy storage applications. Energy Environ. Sci. 13, 2096–2105 (2020). https://doi.org/10.1039/C9EE03626A
A. Lim, H.Y. Jeong, Y. Lim, J.Y. Kim, H.Y. Park et al., Amphiphilic Ti porous transport layer for highly effective PEM unitized regenerative fuel cells. Sci. Adv. 7, eabf7866 (2021). https://doi.org/10.1126/sciadv.abf7866
S.K. Babu, A. Yilmaz, M.A. Uddin, J. LaManna, E. Baltic et al., A goldilocks approach to water management: hydrochannel porous transport layers for unitized reversible fuel cells. Adv. Energy Mater. 13, 2203952 (2023). https://doi.org/10.1002/aenm.202203952
F.M. Wisser, B. Schumm, G. Mondin, J. Grothe, S. Kaskel, Precursor strategies for metallic nano- and micropatterns using soft lithography. J. Mater. Chem. C 3, 2717–2731 (2015). https://doi.org/10.1039/C4TC02418D
R. Sharma, S. Gyergyek, S.M. Andersen, Critical thinking on baseline corrections for electrochemical surface area (ECSA) determination of Pt/C through H-adsorption/H-desorption regions of a cyclic voltammogram. Appl. Catal. B Environ. 311, 121351 (2022). https://doi.org/10.1016/j.apcatb.2022.121351
S.G. Bratsch, Standard electrode potentials and temperature coefficients in water at 298.15 K. J. Phys. Chem. Ref. Data 18, 1–21 (1989). https://doi.org/10.1063/1.555839
S. Park, J.-W. Lee, B.N. Popov, Effect of PTFE content in microporous layer on water management in PEM fuel cells. J. Power Sources 177, 457–463 (2008). https://doi.org/10.1016/j.jpowsour.2007.11.055
S.M. Lee, S. Oh, S.T. Chang, Highly transparent, flexible conductors and heaters based on metal nanomesh structures manufactured using an all-water-based solution process. ACS Appl. Mater. Interfaces 11, 4541–4550 (2019). https://doi.org/10.1021/acsami.8b17415
S.M. Lee, S.K. Song, S. Yoon, D.S. Chung, S.T. Chang, Liquid thin film dewetting-driven micropatterning of reduced graphene oxide electrodes for high performance OFETs. J. Mater. Chem. C 7, 153–160 (2019). https://doi.org/10.1039/C8TC03981J
J.C. Cruz, V. Baglio, S. Siracusano, R. Ornelas, L.G. Arriaga et al., Nanosized Pt/IrO2 electrocatalyst prepared by modified polyol method for application as dual function oxygen electrode in unitized regenerative fuel cells. Int. J. Hydrog. Energy 37, 5508–5517 (2012). https://doi.org/10.1016/j.ijhydene.2011.12.153
P. Gayen, X. Liu, C. He, S. Saha, V.K. Ramani, Bidirectional energy & fuel production using RTO-supported-Pt–IrO2 loaded fixed polarity unitized regenerative fuel cells. Sustain. Energy Fuels 5, 2734–2746 (2021). https://doi.org/10.1039/d1se00103e
A. Lim, J. Kim, H.J. Lee, H.-J. Kim, S.J. Yoo et al., Low-loading IrO2 supported on Pt for catalysis of PEM water electrolysis and regenerative fuel cells. Appl. Catal. B Environ. 272, 118955 (2020). https://doi.org/10.1016/j.apcatb.2020.118955
X. Peng, Z. Taie, J. Liu, Y. Zhang, X. Peng et al., Hierarchical electrode design of highly efficient and stable unitized regenerative fuel cells (URFCs) for long-term energy storage. Energy Environ. Sci. 13, 4872–4881 (2020). https://doi.org/10.1039/D0EE03244A
A. Rocha, R.B. Ferreira, D.S. Falcão, A.M.F.R. Pinto, Experimental study on a unitized regenerative fuel cell operated in constant electrode mode: effect of cell design and operating conditions. Renew. Energy 215, 118870 (2023). https://doi.org/10.1016/j.renene.2023.05.128
J. You, S.M. Lee, H.-S. Eom, S.T. Chang, Highly transparent conducting electrodes based on a grid structure of silver nanowires. Coatings 11, 30 (2021). https://doi.org/10.3390/coatings11010030
Z. Kang, S.M. Alia, J.L. Young, G. Bender, Effects of various parameters of different porous transport layers in proton exchange membrane water electrolysis. Electrochim. Acta 354, 136641 (2020). https://doi.org/10.1016/j.electacta.2020.136641
H. Li, T. Fujigaya, H. Nakajima, A. Inada, K. Ito, Optimum structural properties for an anode current collector used in a polymer electrolyte membrane water electrolyzer operated at the boiling point of water. J. Power Sources 332, 16–23 (2016). https://doi.org/10.1016/j.jpowsour.2016.09.086
D. Kiuchi, H. Matsushima, Y. Fukunaka, K. Kuribayashi, Ohmic resistance measurement of bubble froth layer in water electrolysis under microgravity. J. Electrochem. Soc. 153, E138 (2006). https://doi.org/10.1149/1.2207008
B.E. Bongenaar-Schlenter, L.J.J. Janssen, S.J.D. Van Stralen, E. Barendrecht, The effect of the gas void distribution on the ohmic resistance during water electrolytes. J. Appl. Electrochem. 15, 537–548 (1985). https://doi.org/10.1007/BF01059295
G. Sakuma, Y. Fukunaka, H. Matsushima, Nucleation and growth of electrolytic gas bubbles under microgravity. Int. J. Hydrog. Energy 39, 7638–7645 (2014). https://doi.org/10.1016/j.ijhydene.2014.03.059
M. Najjari, F. Khemili, S. Ben Nasrallah, The effects of the cathode flooding on the transient responses of a PEM fuel cell, Renew. Energy 33, 1824–1831 (2008). https://doi.org/10.1016/j.renene.2007.10.003
M. Geng, Z. Duan, Prediction of oxygen solubility in pure water and brines up to high temperatures and pressures. Geochim. Cosmochim. Acta 74, 5631–5640 (2010). https://doi.org/10.1016/j.gca.2010.06.034
R. Omrani, B. Shabani, Review of gas diffusion layer for proton exchange membrane-based technologies with a focus on unitised regenerative fuel cells. Int. J. Hydrog. Energy 44, 3834–3860 (2019). https://doi.org/10.1016/j.ijhydene.2018.12.120
S. Park, J.-W. Lee, B.N. Popov, A review of gas diffusion layer in PEM fuel cells: materials and designs. Int. J. Hydrog. Energy 37, 5850–5865 (2012). https://doi.org/10.1016/j.ijhydene.2011.12.148
C. Chan, N. Zamel, X. Li, J. Shen, Experimental measurement of effective diffusion coefficient of gas diffusion layer/microporous layer in PEM fuel cells. Electrochim. Acta 65, 13–21 (2012). https://doi.org/10.1016/j.electacta.2011.12.110
Y. Wang, Porous-media flow fields for polymer electrolyte fuel cells. J. Electrochem. Soc. 156, B1134 (2009). https://doi.org/10.1149/1.3183785
I. Bae, B. Kim, D.-Y. Kim, H. Kim, K.-H. Oh, In-plane 2-D patterning of microporous layer by inkjet printing for water management of polymer electrolyte fuel cell. Renew. Energy 146, 960–967 (2020). https://doi.org/10.1016/j.renene.2019.07.003
P. Kúš, A. Ostroverkh, I. Khalakhan, R. Fiala, Y. Kosto et al., Magnetron sputtered thin-film vertically segmented Pt-Ir catalyst supported on TiC for anode side of proton exchange membrane unitized regenerative fuel cells. Int. J. Hydrog. Energy 44, 16087–16098 (2019). https://doi.org/10.1016/j.ijhydene.2019.04.216
S. Siracusano, V. Baglio, S.A. Grigoriev, L. Merlo, V.N. Fateev et al., The influence of iridium chemical oxidation state on the performance and durability of oxygen evolution catalysts in PEM electrolysis. J. Power Sources 366, 105–114 (2017). https://doi.org/10.1016/j.jpowsour.2017.09.020
S. Cherevko, A.R. Zeradjanin, A.A. Topalov, N. Kulyk, I. Katsounaros et al., Dissolution of noble metals during oxygen evolution in acidic media. ChemCatChem 6, 2219–2223 (2014). https://doi.org/10.1002/cctc.201402194
G.C. da Silva, K.J.J. Mayrhofer, E.A. Ticianelli, S. Cherevko, Dissolution stability: the major challenge in the regenerative fuel cells bifunctional catalysis. J. Electrochem. Soc. 165, F1376–F1384 (2018). https://doi.org/10.1149/2.1201816jes