Battery Separators Functionalized with Edge-Rich MoS2/C Hollow Microspheres for the Uniform Deposition of Li2S in High-Performance Lithium–Sulfur Batteries
Corresponding Author: Yongsheng Li
Nano-Micro Letters,
Vol. 11 (2019), Article Number: 43
Abstract
As promising energy storage systems, lithium–sulfur (Li–S) batteries have attracted significant attention because of their ultra-high energy densities. However, Li–S battery suffers problems related to the complex phase conversion that occurs during the charge–discharge process, particularly the deposition of solid Li2S from the liquid-phase polysulfides, which greatly limits its practical application. In this paper, edge-rich MoS2/C hollow microspheres (Edg-MoS2/C HMs) were designed and used to functionalize separator for Li–S battery, resulting in the uniform deposition of Li2S. The microspheres were fabricated through the facile hydrothermal treatment of MoO3–aniline nanowires and a subsequent carbonization process. The obtained Edg-MoS2/C HMs have a strong chemical absorption capability and high density of Li2S binding sites, and exhibit excellent electrocatalytic performance and can effectively hinder the polysulfide shuttle effect and guide the uniform nucleation and growth of Li2S. Furthermore, we demonstrate that the Edg-MoS2/C HMs can effectively regulate the deposition of Li2S and significantly improve the reversibility of the phase conversion of the active sulfur species, especially at high sulfur loadings and high C-rates. As a result, a cell containing a separator functionalized with Edg-MoS2/C HMs exhibited an initial discharge capacity of 935 mAh g−1 at 1.0 C and maintained a capacity of 494 mAh g−1 after 1000 cycles with a sulfur loading of 1.7 mg cm−2. Impressively, at a high sulfur loading of 6.1 mg cm−2 and high rate of 0.5 C, the cell still delivered a high reversible discharge capacity of 478 mAh g−1 after 300 cycles. This work provides fresh insights into energy storage systems related to complex phase conversions.
Highlights:
1 Edge-rich MoS2/C hollow microspheres (Edg-MoS2/C HMs) were fabricated through the simple hydrothermal treatment of MoO3–aniline nanowires and a subsequent carbonization process.
2 The Edg-MoS2/C HMs ensure the uniform deposition of Li2S on the matrix and the enhanced utilization of active edge sites.
3 The cell with an Edg-MoS2/C HM-functionalized separator displayed excellent electrochemical performance, with a high reversible discharge capacity of 478 mAh g−1 after 300 cycles at a high sulfur loading of 6.1 mg cm−2 and high rate of 0.5 C.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J. Lu, Z. Chen, Z. Ma, F. Pan, L.A. Curtiss, K. Amine, The role of nanotechnology in the development of battery materials for electric vehicles. Nat. Nanotechnol. 11, 1031–1038 (2016). https://doi.org/10.1038/nnano.2016.207
- Z.W. Seh, Y. Sun, Q. Zhang, Y. Cui, Designing high-energy lithium–sulfur batteries. Chem. Soc. Rev. 45(20), 5605–5634 (2016). https://doi.org/10.1039/C5CS00410A
- X. Liu, J.Q. Huang, Q. Zhang, L. Mai, Nanostructured metal oxides and sulfides for lithium-sulfur batteries. Adv. Mater. 29(20), 1601759 (2017). https://doi.org/10.1002/adma.201601759
- H. Wang, W. Zhang, J. Xu, Z. Guo, Advances in polar materials for lithium–sulfur batteries. Adv. Funct. Mater. 28(38), 1707520 (2018). https://doi.org/10.1002/adfm.201707520
- B. Li, H. Xu, Y. Ma, S. Yang, Harnessing the unique properties of 2D materials for advanced lithium–sulfur batteries. Nanoscale Horiz. 4(1), 77–98 (2019). https://doi.org/10.1039/C8NH00170G
- H.-J. Peng, J.-Q. Huang, X.-B. Cheng, Q. Zhang, Review on high-loading and high-energy lithium-sulfur batteries. Adv. Energy Mater. 7(24), 1700260 (2017). https://doi.org/10.1002/aenm.201700260
- H. Yuan, H.-J. Peng, B.-Q. Li, J. Xie, L. Kong et al., Conductive and catalytic triple-phase interfaces enabling uniform nucleation in high-rate lithium-sulfur batteries. Adv. Energy Mater. 9(1), 1802768 (2019). https://doi.org/10.1002/aenm.201802768
- G. Li, S. Wang, Y. Zhang, M. Li, Z. Chen, J. Lu, Revisiting the role of polysulfides in lithium–sulfur batteries. Adv. Mater. 30(22), 1705590 (2018). https://doi.org/10.1002/adma.201705590
- H.-J. Peng, G. Zhang, X. Chen, Z.-W. Zhang, W.-T. Xu, J.-Q. Huang, Q. Zhang, Enhanced electrochemical kinetics on conductive polar mediators for lithium–sulfur batteries. Angew. Chem. Int. Ed. 55(42), 12990–12995 (2016). https://doi.org/10.1002/anie.201605676
- L.C.H. Gerber, P.D. Frischmann, F.Y. Fan, S.E. Doris, X. Qu et al., Three-dimensional growth of Li2S in lithium–sulfur batteries promoted by a redox mediator. Nano Lett. 16(1), 549–554 (2016). https://doi.org/10.1021/acs.nanolett.5b04189
- F.Y. Fan, W.C. Carter, Y.M. Chiang, Mechanism and kinetics of Li2S precipitation in lithium-sulfur batteries. Adv. Mater. 27(35), 5203–5209 (2015). https://doi.org/10.1002/adma.201501559
- K. Mi, S. Chen, B. Xi, S. Kai, Y. Jiang, J. Feng, Y. Qian, S. Xiong, Sole chemical confinement of polysulfides on nonporous nitrogen/oxygen dual-doped carbon at the kilogram scale for lithium–sulfur batteries. Adv. Funct. Mater. 27(1), 1604265 (2017). https://doi.org/10.1002/adfm.201604265
- Y. Liu, G. Li, J. Fu, Z. Chen, X. Peng, Strings of porous carbon polyhedrons as self-standing cathode host for high-energy-density lithium–sulfur batteries. Angew. Chem. Int. Ed. 56(22), 6176–6180 (2017). https://doi.org/10.1002/anie.201700686
- Z. Li, B.Y. Guan, J. Zhang, X.W. Lou, A compact nanoconfined sulfur cathode for high-performance lithium-sulfur batteries. Joule 1(3), 576–587 (2017). https://doi.org/10.1016/j.joule.2017.06.003
- J.S. Lee, A. Manthiram, Hydroxylated N-doped carbon nanotube-sulfur composites as cathodes for high-performance lithium-sulfur batteries. J. Power Sources 343, 54–59 (2017). https://doi.org/10.1016/j.jpowsour.2017.01.049
- C. Jin, W. Zhang, Z. Zhuang, J. Wang, H. Huang et al., Enhanced sulfide chemisorption using boron and oxygen dually doped multi-walled carbon nanotubes for advanced lithium–sulfur batteries. J. Mater. Chem. A 5(2), 632–640 (2017). https://doi.org/10.1039/C6TA07620C
- H. Al Salem, G. Babu, C.V. Rao, L.M.R. Arava, Electrocatalytic polysulfide traps for controlling redox shuttle process of Li–S batteries. J. Am. Chem. Soc. 137(36), 11542–11545 (2015). https://doi.org/10.1021/jacs.5b04472
- Z. Sun, J. Zhang, L. Yin, G. Hu, R. Fang, H.-M. Cheng, F. Li, Conductive porous vanadium nitride/graphene composite as chemical anchor of polysulfides for lithium-sulfur batteries. Nat. Commun. 8, 14627 (2017). https://doi.org/10.1038/ncomms14627
- G. Zhou, L. Li, D.-W. Wang, X.-Y. Shan, S. Pei, F. Li, H.-M. Cheng, A flexible sulfur-graphene-polypropylene separator integrated electrode for advanced Li–S batteries. Adv. Mater. 27(4), 641–647 (2014). https://doi.org/10.1002/adma.201404210
- L. Tan, X. Li, Z. Wang, H. Guo, J. Wang, Lightweight reduced graphene oxide@MoS2 interlayer as polysulfide barrier for high-performance lithium–sulfur batteries. ACS Appl. Mater. Interfaces 10(4), 3707–3713 (2018). https://doi.org/10.1021/acsami.7b18645
- Z.Z. Pan, W. Lv, Y.B. He, Y. Zhao, G. Zhou et al., A nacre-like carbon nanotube sheet for high performance Li-polysulfide batteries with high sulfur loading. Adv. Sci. 5(6), 1800384 (2018). https://doi.org/10.1002/advs.201800384
- Q. Li, Y. Song, R. Xu, L. Zhang, J. Gao et al., Biotemplating growth of nepenthes-like N-doped graphene as a bifunctional polysulfide scavenger for Li-S batteries. ACS Nano 12(10), 10240–10250 (2018). https://doi.org/10.1021/acsnano.8b05246
- J. He, Y. Chen, A. Manthiram, Vertical Co9S8 hollow nanowall arrays grown on a celgard separator as a multifunctional polysulfide barrier for high-performance Li–S batteries. Energy Environ. Sci. 11(9), 2560–2568 (2018). https://doi.org/10.1039/c8ee00893k
- H. Wang, W. Zhang, H. Liu, Z. Guo, A strategy for configuration of an integrated flexible sulfur cathode for high-performance lithium-sulfur batteries. Angew. Chem. Int. Ed. 55(12), 3992–3996 (2016). https://doi.org/10.1002/anie.201511673
- H.J. Peng, Z.W. Zhang, J.Q. Huang, G. Zhang et al., A cooperative interface for highly efficient lithium-sulfur batteries. Adv. Mater. 28(43), 9551–9558 (2016). https://doi.org/10.1002/adma.201603401
- H.J. Peng, D.W. Wang, J.Q. Huang, X.B. Cheng, Z. Yuan, F. Wei, Q. Zhang, Janus separator of polypropylene-supported cellular graphene framework for sulfur cathodes with high utilization in lithium-sulfur batteries. Adv. Sci. 3(1), 1500268 (2016). https://doi.org/10.1002/advs.201500268
- J. Balach, T. Jaumann, M. Klose, S. Oswald, J. Eckert, L. Giebeler, Functional mesoporous carbon-coated separator for long-life, high-energy lithium-sulfur batteries. Adv. Funct. Mater. 25(33), 5285–5291 (2015). https://doi.org/10.1002/adfm.201502251
- S.-H. Chung, A. Manthiram, Bifunctional separator with a light-weight carbon-coating for dynamically and statically stable lithium-sulfur batteries. Adv. Funct. Mater. 24(33), 5299–5306 (2014). https://doi.org/10.1002/adfm.201400845
- F. Qin, X. Wang, K. Zhang, J. Fang, J. Li, Y. Lai, High areal capacity cathode and electrolyte reservoir render practical Li-S batteries. Nano Energy 38(38), 137–146 (2017). https://doi.org/10.1016/j.nanoen.2017.05.037
- S.S. Zhang, Liquid electrolyte lithium/sulfur battery: fundamental chemistry, problems, and solutions. J. Power Sources 231, 153–162 (2013). https://doi.org/10.1016/j.jpowsour.2012.12.102
- X. Liang, Z. Wen, Y. Liu, M. Wu, J. Jin, H. Zhang, X. Wu, Improved cycling performances of lithium sulfur batteries with LiNO3-modified electrolyte. J. Power Sources 196(22), 9839–9843 (2011). https://doi.org/10.1016/j.jpowsour.2011.08.027
- Z.A. Ghazi, X. He, A.M. Khattak, N.A. Khan, B. Liang et al., MoS2/celgard separator as efficient polysulfide barrier for long-life lithium–sulfur batteries. Adv. Mater. 29(21), 1606817 (2017). https://doi.org/10.1002/adma.201606817
- W. Cai, G. Li, K. Zhang, G. Xiao, C. Wang, K. Ye, Z. Chen, Y. Zhu, Y. Qian, Conductive nanocrystalline niobium carbide as high-efficiency polysulfides tamer for lithium-sulfur batteries. Adv. Funct. Mater. 28(2), 1704865 (2018). https://doi.org/10.1002/adfm.201704865
- L. Zhang, X. Chen, F. Wan, Z. Niu, Y. Wang, Q. Zhang, J. Chen, Enhanced electrochemical kinetics and polysulfide traps of indium nitride for highly stable lithium-sulfur batteries. ACS Nano 12(9), 9578–9586 (2018). https://doi.org/10.1021/acsnano.8b05466
- Y. Zhong, L. Yin, P. He, W. Liu, Z. Wu, H. Wang, Surface chemistry in cobalt phosphide-stabilized lithium–sulfur batteries. J. Am. Chem. Soc. 140(4), 1455–1459 (2018). https://doi.org/10.1021/jacs.7b11434
- H. Yuan, X. Chen, G. Zhou, W. Zhang, J. Luo et al., Efficient activation of Li2S by transition metal phosphides nanoparticles for highly stable lithium–sulfur batteries. ACS Energy Lett. 2(7), 1711–1719 (2017). https://doi.org/10.1021/acsenergylett.7b00465
- J. Zhang, Y. Shi, Y. Ding, L. Peng, W. Zhang, G. Yu, A conductive molecular framework derived Li2S/N, P-codoped carbon cathode for advanced lithium–sulfur batteries. Adv. Energy Mater. 7(14), 1602876 (2017). https://doi.org/10.1002/aenm.201602876
- D. Su, M. Cortie, G. Wang, Fabrication of N-doped graphene–carbon nanotube hybrids from prussian blue for lithium–sulfur batteries. Adv. Energy Mater. 7(8), 1602014 (2017). https://doi.org/10.1002/aenm.201602014
- R. Fang, S. Zhao, Z. Sun, D.-W. Wang, R. Amal, S. Wang, H.-M. Cheng, F. Li, Polysulfide immobilization and conversion on a conductive polar MoC@MoOx material for lithium-sulfur batteries. Energy Storage Mater. 10, 56–61 (2018). https://doi.org/10.1016/j.ensm.2017.08.005
- H. Wang, Q. Zhang, H. Yao, Z. Liang, H.W. Lee, P.C. Hsu, G. Zheng, Y. Cui, High electrochemical selectivity of edge versus terrace sites in two-dimensional layered MoS2 materials. Nano Lett. 14(12), 7138–7144 (2014). https://doi.org/10.1021/nl503730c
- M. Zhao, H.-J. Peng, Z.-W. Zhang, B.-Q. Li, X. Chen et al., Activating inert metallic compounds for high-rate lithium–sulfur batteries through in situ etching of extrinsic metal. Angew. Chem. Int. Ed. 131(12), 3819–3823 (2019). https://doi.org/10.1002/ange.201812062
- Z.-W. Zhang, H.-J. Peng, M. Zhao, J.-Q. Huang, Heterogeneous/homogeneous mediators for high-energy-density lithium–sulfur batteries: progress and prospects. Adv. Funct. Mater. 28(38), 1707536 (2018). https://doi.org/10.1002/adfm.201707536
- L. Kong, B.-Q. Li, H.-J. Peng, R. Zhang, J. Xie, J.-Q. Huang, Q. Zhang, Porphyrin-derived graphene-based nanosheets enabling strong polysulfide chemisorption and rapid kinetics in lithium–sulfur batteries. Adv. Energy Mater. 8(20), 1800849 (2018). https://doi.org/10.1002/aenm.201800849
- H. Yuan, H.-J. Peng, J.-Q. Huang, Q. Zhang, Sulfur redox reactions at working interfaces in lithium–sulfur batteries: a perspective. Adv. Mater. Interfaces 6(4), 1802046 (2019). https://doi.org/10.1002/admi.201802046
- Q. Gao, S. Wang, H. Fang, J. Weng, Y. Zhang, J. Mao, Y. Tang, One-dimensional growth of MoOx-based organic–inorganic hybrid nanowires with tunable photochromic properties. J. Mater. Chem. 22(11), 4709–4715 (2012). https://doi.org/10.1039/C2JM15443A
- J. Pu, Z. Shen, J. Zheng, W. Wu, C. Zhu, Q. Zhou, H. Zhang, F. Pan, Multifunctional Co3S4@sulfur nanotubes for enhanced lithium-sulfur battery performance. Nano Energy 37, 7–14 (2017). https://doi.org/10.1016/j.nanoen.2017.05.009
- T. Chen, L. Ma, B. Cheng, R. Chen, Y. Hu et al., Metallic and polar Co9S8 inlaid carbon hollow nanopolyhedra as efficient polysulfide mediator for lithium–sulfur batteries. Nano Energy 38, 239–248 (2017). https://doi.org/10.1016/j.nanoen.2017.05.064
- H. Jin Fan, M. Knez, R. Scholz, K. Nielsch, E. Pippel, D. Hesse, M. Zacharias, U. Gösele, Monocrystalline spinel nanotube fabrication based on the kirkendall effect. Nat. Mater. 5, 627–631 (2006). https://doi.org/10.1038/nmat1673
- H. Jiang, D. Ren, H. Wang, Y. Hu, S. Guo, H. Yuan, P. Hu, L. Zhang, C. Li, 2D monolayer MoS2–carbon interoverlapped superstructure: engineering ideal atomic interface for lithium ion storage. Adv. Mater. 27(24), 3687–3695 (2015). https://doi.org/10.1002/adma.201501059
- J. Wu, Z. Lu, K. Li, J. Cui, S. Yao et al., Hierarchical MoS2/carbon microspheres as long-life and high-rate anodes for sodium-ion batteries. J. Mater. Chem. A 6(14), 5668–5677 (2018). https://doi.org/10.1039/C7TA11119C
- J. Zhu, Y. Ge, D. Kim, Y. Lu, C. Chen, M. Jiang, X. Zhang, A novel separator coated by carbon for achieving exceptional high performance lithium-sulfur batteries. Nano Energy 20, 176–184 (2016). https://doi.org/10.1016/j.nanoen.2015.12.022
- Y. Zhao, M. Liu, W. Lv, Y.-B. He, C. Wang, Q. Yun, B. Li, F. Kang, Q.-H. Yang, Dense coating of Li4Ti5O12 and graphene mixture on the separator to produce long cycle life of lithium-sulfur battery. Nano Energy 30(30), 1–8 (2016). https://doi.org/10.1016/j.nanoen.2016.09.030
- J.-Q. Huang, Q. Zhang, H.-J. Peng, X.-Y. Liu, W.-Z. Qian, F. Wei, Ionic shield for polysulfides towards highly-stable lithium–sulfur batteries. Energy Environ. Sci. 7(1), 347–353 (2014). https://doi.org/10.1039/C3EE42223B
- L. Yan, N. Luo, W. Kong, S. Luo, H. Wu et al., Enhanced performance of lithium-sulfur batteries with an ultrathin and lightweight MoS2/carbon nanotube interlayer. J. Power Sources 389, 169–177 (2018). https://doi.org/10.1016/j.jpowsour.2018.04.015
- P. Guo, D. Liu, Z. Liu, X. Shang, Q. Liu, D. He, Dual functional MoS2/graphene interlayer as an efficient polysulfide barrier for advanced lithium-sulfur batteries. Electrochim. Acta 256, 28–36 (2017). https://doi.org/10.1016/j.electacta.2017.10.003
- P. Han, S.-H. Chung, A. Manthiram, Thin-layered molybdenum disulfide nanoparticles as an effective polysulfide mediator in lithium–sulfur batteries. ACS Appl. Mater. Interfaces 10(27), 23122–23130 (2018). https://doi.org/10.1021/acsami.8b05397
- J. He, L. Luo, Y. Chen, A. Manthiram, Yolk–shelled C@Fe3O4 nanoboxes as efficient sulfur hosts for high-performance lithium–sulfur batteries. Adv. Mater. 29(34), 1702707 (2017). https://doi.org/10.1002/adma.201702707
- J. Wu, H. Zeng, X. Li, X. Xiang, Y. Liao, Z. Xue, Y. Ye, X. Xie, Ultralight layer-by-layer self-assembled MoS2-polymer modified separator for simultaneously trapping polysulfides and suppressing lithium dendrites. Adv. Energy Mater. 8(35), 1802430 (2018). https://doi.org/10.1002/aenm.201802430
- Z. Yuan, H.J. Peng, T.Z. Hou, J.Q. Huang, C.M. Chen et al., Powering lithium-sulfur battery performance by propelling polysulfide redox at sulfiphilic hosts. Nano Lett. 16(1), 519–527 (2016). https://doi.org/10.1021/acs.nanolett.5b04166
- M. Fantauzzi, B. Elsener, D. Atzei, A. Rigoldi, A. Rossi, Exploiting XPS for the identification of sulfides and polysulfides. RSC Adv. 5(93), 75953–75963 (2015). https://doi.org/10.1039/C5RA14915K
References
J. Lu, Z. Chen, Z. Ma, F. Pan, L.A. Curtiss, K. Amine, The role of nanotechnology in the development of battery materials for electric vehicles. Nat. Nanotechnol. 11, 1031–1038 (2016). https://doi.org/10.1038/nnano.2016.207
Z.W. Seh, Y. Sun, Q. Zhang, Y. Cui, Designing high-energy lithium–sulfur batteries. Chem. Soc. Rev. 45(20), 5605–5634 (2016). https://doi.org/10.1039/C5CS00410A
X. Liu, J.Q. Huang, Q. Zhang, L. Mai, Nanostructured metal oxides and sulfides for lithium-sulfur batteries. Adv. Mater. 29(20), 1601759 (2017). https://doi.org/10.1002/adma.201601759
H. Wang, W. Zhang, J. Xu, Z. Guo, Advances in polar materials for lithium–sulfur batteries. Adv. Funct. Mater. 28(38), 1707520 (2018). https://doi.org/10.1002/adfm.201707520
B. Li, H. Xu, Y. Ma, S. Yang, Harnessing the unique properties of 2D materials for advanced lithium–sulfur batteries. Nanoscale Horiz. 4(1), 77–98 (2019). https://doi.org/10.1039/C8NH00170G
H.-J. Peng, J.-Q. Huang, X.-B. Cheng, Q. Zhang, Review on high-loading and high-energy lithium-sulfur batteries. Adv. Energy Mater. 7(24), 1700260 (2017). https://doi.org/10.1002/aenm.201700260
H. Yuan, H.-J. Peng, B.-Q. Li, J. Xie, L. Kong et al., Conductive and catalytic triple-phase interfaces enabling uniform nucleation in high-rate lithium-sulfur batteries. Adv. Energy Mater. 9(1), 1802768 (2019). https://doi.org/10.1002/aenm.201802768
G. Li, S. Wang, Y. Zhang, M. Li, Z. Chen, J. Lu, Revisiting the role of polysulfides in lithium–sulfur batteries. Adv. Mater. 30(22), 1705590 (2018). https://doi.org/10.1002/adma.201705590
H.-J. Peng, G. Zhang, X. Chen, Z.-W. Zhang, W.-T. Xu, J.-Q. Huang, Q. Zhang, Enhanced electrochemical kinetics on conductive polar mediators for lithium–sulfur batteries. Angew. Chem. Int. Ed. 55(42), 12990–12995 (2016). https://doi.org/10.1002/anie.201605676
L.C.H. Gerber, P.D. Frischmann, F.Y. Fan, S.E. Doris, X. Qu et al., Three-dimensional growth of Li2S in lithium–sulfur batteries promoted by a redox mediator. Nano Lett. 16(1), 549–554 (2016). https://doi.org/10.1021/acs.nanolett.5b04189
F.Y. Fan, W.C. Carter, Y.M. Chiang, Mechanism and kinetics of Li2S precipitation in lithium-sulfur batteries. Adv. Mater. 27(35), 5203–5209 (2015). https://doi.org/10.1002/adma.201501559
K. Mi, S. Chen, B. Xi, S. Kai, Y. Jiang, J. Feng, Y. Qian, S. Xiong, Sole chemical confinement of polysulfides on nonporous nitrogen/oxygen dual-doped carbon at the kilogram scale for lithium–sulfur batteries. Adv. Funct. Mater. 27(1), 1604265 (2017). https://doi.org/10.1002/adfm.201604265
Y. Liu, G. Li, J. Fu, Z. Chen, X. Peng, Strings of porous carbon polyhedrons as self-standing cathode host for high-energy-density lithium–sulfur batteries. Angew. Chem. Int. Ed. 56(22), 6176–6180 (2017). https://doi.org/10.1002/anie.201700686
Z. Li, B.Y. Guan, J. Zhang, X.W. Lou, A compact nanoconfined sulfur cathode for high-performance lithium-sulfur batteries. Joule 1(3), 576–587 (2017). https://doi.org/10.1016/j.joule.2017.06.003
J.S. Lee, A. Manthiram, Hydroxylated N-doped carbon nanotube-sulfur composites as cathodes for high-performance lithium-sulfur batteries. J. Power Sources 343, 54–59 (2017). https://doi.org/10.1016/j.jpowsour.2017.01.049
C. Jin, W. Zhang, Z. Zhuang, J. Wang, H. Huang et al., Enhanced sulfide chemisorption using boron and oxygen dually doped multi-walled carbon nanotubes for advanced lithium–sulfur batteries. J. Mater. Chem. A 5(2), 632–640 (2017). https://doi.org/10.1039/C6TA07620C
H. Al Salem, G. Babu, C.V. Rao, L.M.R. Arava, Electrocatalytic polysulfide traps for controlling redox shuttle process of Li–S batteries. J. Am. Chem. Soc. 137(36), 11542–11545 (2015). https://doi.org/10.1021/jacs.5b04472
Z. Sun, J. Zhang, L. Yin, G. Hu, R. Fang, H.-M. Cheng, F. Li, Conductive porous vanadium nitride/graphene composite as chemical anchor of polysulfides for lithium-sulfur batteries. Nat. Commun. 8, 14627 (2017). https://doi.org/10.1038/ncomms14627
G. Zhou, L. Li, D.-W. Wang, X.-Y. Shan, S. Pei, F. Li, H.-M. Cheng, A flexible sulfur-graphene-polypropylene separator integrated electrode for advanced Li–S batteries. Adv. Mater. 27(4), 641–647 (2014). https://doi.org/10.1002/adma.201404210
L. Tan, X. Li, Z. Wang, H. Guo, J. Wang, Lightweight reduced graphene oxide@MoS2 interlayer as polysulfide barrier for high-performance lithium–sulfur batteries. ACS Appl. Mater. Interfaces 10(4), 3707–3713 (2018). https://doi.org/10.1021/acsami.7b18645
Z.Z. Pan, W. Lv, Y.B. He, Y. Zhao, G. Zhou et al., A nacre-like carbon nanotube sheet for high performance Li-polysulfide batteries with high sulfur loading. Adv. Sci. 5(6), 1800384 (2018). https://doi.org/10.1002/advs.201800384
Q. Li, Y. Song, R. Xu, L. Zhang, J. Gao et al., Biotemplating growth of nepenthes-like N-doped graphene as a bifunctional polysulfide scavenger for Li-S batteries. ACS Nano 12(10), 10240–10250 (2018). https://doi.org/10.1021/acsnano.8b05246
J. He, Y. Chen, A. Manthiram, Vertical Co9S8 hollow nanowall arrays grown on a celgard separator as a multifunctional polysulfide barrier for high-performance Li–S batteries. Energy Environ. Sci. 11(9), 2560–2568 (2018). https://doi.org/10.1039/c8ee00893k
H. Wang, W. Zhang, H. Liu, Z. Guo, A strategy for configuration of an integrated flexible sulfur cathode for high-performance lithium-sulfur batteries. Angew. Chem. Int. Ed. 55(12), 3992–3996 (2016). https://doi.org/10.1002/anie.201511673
H.J. Peng, Z.W. Zhang, J.Q. Huang, G. Zhang et al., A cooperative interface for highly efficient lithium-sulfur batteries. Adv. Mater. 28(43), 9551–9558 (2016). https://doi.org/10.1002/adma.201603401
H.J. Peng, D.W. Wang, J.Q. Huang, X.B. Cheng, Z. Yuan, F. Wei, Q. Zhang, Janus separator of polypropylene-supported cellular graphene framework for sulfur cathodes with high utilization in lithium-sulfur batteries. Adv. Sci. 3(1), 1500268 (2016). https://doi.org/10.1002/advs.201500268
J. Balach, T. Jaumann, M. Klose, S. Oswald, J. Eckert, L. Giebeler, Functional mesoporous carbon-coated separator for long-life, high-energy lithium-sulfur batteries. Adv. Funct. Mater. 25(33), 5285–5291 (2015). https://doi.org/10.1002/adfm.201502251
S.-H. Chung, A. Manthiram, Bifunctional separator with a light-weight carbon-coating for dynamically and statically stable lithium-sulfur batteries. Adv. Funct. Mater. 24(33), 5299–5306 (2014). https://doi.org/10.1002/adfm.201400845
F. Qin, X. Wang, K. Zhang, J. Fang, J. Li, Y. Lai, High areal capacity cathode and electrolyte reservoir render practical Li-S batteries. Nano Energy 38(38), 137–146 (2017). https://doi.org/10.1016/j.nanoen.2017.05.037
S.S. Zhang, Liquid electrolyte lithium/sulfur battery: fundamental chemistry, problems, and solutions. J. Power Sources 231, 153–162 (2013). https://doi.org/10.1016/j.jpowsour.2012.12.102
X. Liang, Z. Wen, Y. Liu, M. Wu, J. Jin, H. Zhang, X. Wu, Improved cycling performances of lithium sulfur batteries with LiNO3-modified electrolyte. J. Power Sources 196(22), 9839–9843 (2011). https://doi.org/10.1016/j.jpowsour.2011.08.027
Z.A. Ghazi, X. He, A.M. Khattak, N.A. Khan, B. Liang et al., MoS2/celgard separator as efficient polysulfide barrier for long-life lithium–sulfur batteries. Adv. Mater. 29(21), 1606817 (2017). https://doi.org/10.1002/adma.201606817
W. Cai, G. Li, K. Zhang, G. Xiao, C. Wang, K. Ye, Z. Chen, Y. Zhu, Y. Qian, Conductive nanocrystalline niobium carbide as high-efficiency polysulfides tamer for lithium-sulfur batteries. Adv. Funct. Mater. 28(2), 1704865 (2018). https://doi.org/10.1002/adfm.201704865
L. Zhang, X. Chen, F. Wan, Z. Niu, Y. Wang, Q. Zhang, J. Chen, Enhanced electrochemical kinetics and polysulfide traps of indium nitride for highly stable lithium-sulfur batteries. ACS Nano 12(9), 9578–9586 (2018). https://doi.org/10.1021/acsnano.8b05466
Y. Zhong, L. Yin, P. He, W. Liu, Z. Wu, H. Wang, Surface chemistry in cobalt phosphide-stabilized lithium–sulfur batteries. J. Am. Chem. Soc. 140(4), 1455–1459 (2018). https://doi.org/10.1021/jacs.7b11434
H. Yuan, X. Chen, G. Zhou, W. Zhang, J. Luo et al., Efficient activation of Li2S by transition metal phosphides nanoparticles for highly stable lithium–sulfur batteries. ACS Energy Lett. 2(7), 1711–1719 (2017). https://doi.org/10.1021/acsenergylett.7b00465
J. Zhang, Y. Shi, Y. Ding, L. Peng, W. Zhang, G. Yu, A conductive molecular framework derived Li2S/N, P-codoped carbon cathode for advanced lithium–sulfur batteries. Adv. Energy Mater. 7(14), 1602876 (2017). https://doi.org/10.1002/aenm.201602876
D. Su, M. Cortie, G. Wang, Fabrication of N-doped graphene–carbon nanotube hybrids from prussian blue for lithium–sulfur batteries. Adv. Energy Mater. 7(8), 1602014 (2017). https://doi.org/10.1002/aenm.201602014
R. Fang, S. Zhao, Z. Sun, D.-W. Wang, R. Amal, S. Wang, H.-M. Cheng, F. Li, Polysulfide immobilization and conversion on a conductive polar MoC@MoOx material for lithium-sulfur batteries. Energy Storage Mater. 10, 56–61 (2018). https://doi.org/10.1016/j.ensm.2017.08.005
H. Wang, Q. Zhang, H. Yao, Z. Liang, H.W. Lee, P.C. Hsu, G. Zheng, Y. Cui, High electrochemical selectivity of edge versus terrace sites in two-dimensional layered MoS2 materials. Nano Lett. 14(12), 7138–7144 (2014). https://doi.org/10.1021/nl503730c
M. Zhao, H.-J. Peng, Z.-W. Zhang, B.-Q. Li, X. Chen et al., Activating inert metallic compounds for high-rate lithium–sulfur batteries through in situ etching of extrinsic metal. Angew. Chem. Int. Ed. 131(12), 3819–3823 (2019). https://doi.org/10.1002/ange.201812062
Z.-W. Zhang, H.-J. Peng, M. Zhao, J.-Q. Huang, Heterogeneous/homogeneous mediators for high-energy-density lithium–sulfur batteries: progress and prospects. Adv. Funct. Mater. 28(38), 1707536 (2018). https://doi.org/10.1002/adfm.201707536
L. Kong, B.-Q. Li, H.-J. Peng, R. Zhang, J. Xie, J.-Q. Huang, Q. Zhang, Porphyrin-derived graphene-based nanosheets enabling strong polysulfide chemisorption and rapid kinetics in lithium–sulfur batteries. Adv. Energy Mater. 8(20), 1800849 (2018). https://doi.org/10.1002/aenm.201800849
H. Yuan, H.-J. Peng, J.-Q. Huang, Q. Zhang, Sulfur redox reactions at working interfaces in lithium–sulfur batteries: a perspective. Adv. Mater. Interfaces 6(4), 1802046 (2019). https://doi.org/10.1002/admi.201802046
Q. Gao, S. Wang, H. Fang, J. Weng, Y. Zhang, J. Mao, Y. Tang, One-dimensional growth of MoOx-based organic–inorganic hybrid nanowires with tunable photochromic properties. J. Mater. Chem. 22(11), 4709–4715 (2012). https://doi.org/10.1039/C2JM15443A
J. Pu, Z. Shen, J. Zheng, W. Wu, C. Zhu, Q. Zhou, H. Zhang, F. Pan, Multifunctional Co3S4@sulfur nanotubes for enhanced lithium-sulfur battery performance. Nano Energy 37, 7–14 (2017). https://doi.org/10.1016/j.nanoen.2017.05.009
T. Chen, L. Ma, B. Cheng, R. Chen, Y. Hu et al., Metallic and polar Co9S8 inlaid carbon hollow nanopolyhedra as efficient polysulfide mediator for lithium–sulfur batteries. Nano Energy 38, 239–248 (2017). https://doi.org/10.1016/j.nanoen.2017.05.064
H. Jin Fan, M. Knez, R. Scholz, K. Nielsch, E. Pippel, D. Hesse, M. Zacharias, U. Gösele, Monocrystalline spinel nanotube fabrication based on the kirkendall effect. Nat. Mater. 5, 627–631 (2006). https://doi.org/10.1038/nmat1673
H. Jiang, D. Ren, H. Wang, Y. Hu, S. Guo, H. Yuan, P. Hu, L. Zhang, C. Li, 2D monolayer MoS2–carbon interoverlapped superstructure: engineering ideal atomic interface for lithium ion storage. Adv. Mater. 27(24), 3687–3695 (2015). https://doi.org/10.1002/adma.201501059
J. Wu, Z. Lu, K. Li, J. Cui, S. Yao et al., Hierarchical MoS2/carbon microspheres as long-life and high-rate anodes for sodium-ion batteries. J. Mater. Chem. A 6(14), 5668–5677 (2018). https://doi.org/10.1039/C7TA11119C
J. Zhu, Y. Ge, D. Kim, Y. Lu, C. Chen, M. Jiang, X. Zhang, A novel separator coated by carbon for achieving exceptional high performance lithium-sulfur batteries. Nano Energy 20, 176–184 (2016). https://doi.org/10.1016/j.nanoen.2015.12.022
Y. Zhao, M. Liu, W. Lv, Y.-B. He, C. Wang, Q. Yun, B. Li, F. Kang, Q.-H. Yang, Dense coating of Li4Ti5O12 and graphene mixture on the separator to produce long cycle life of lithium-sulfur battery. Nano Energy 30(30), 1–8 (2016). https://doi.org/10.1016/j.nanoen.2016.09.030
J.-Q. Huang, Q. Zhang, H.-J. Peng, X.-Y. Liu, W.-Z. Qian, F. Wei, Ionic shield for polysulfides towards highly-stable lithium–sulfur batteries. Energy Environ. Sci. 7(1), 347–353 (2014). https://doi.org/10.1039/C3EE42223B
L. Yan, N. Luo, W. Kong, S. Luo, H. Wu et al., Enhanced performance of lithium-sulfur batteries with an ultrathin and lightweight MoS2/carbon nanotube interlayer. J. Power Sources 389, 169–177 (2018). https://doi.org/10.1016/j.jpowsour.2018.04.015
P. Guo, D. Liu, Z. Liu, X. Shang, Q. Liu, D. He, Dual functional MoS2/graphene interlayer as an efficient polysulfide barrier for advanced lithium-sulfur batteries. Electrochim. Acta 256, 28–36 (2017). https://doi.org/10.1016/j.electacta.2017.10.003
P. Han, S.-H. Chung, A. Manthiram, Thin-layered molybdenum disulfide nanoparticles as an effective polysulfide mediator in lithium–sulfur batteries. ACS Appl. Mater. Interfaces 10(27), 23122–23130 (2018). https://doi.org/10.1021/acsami.8b05397
J. He, L. Luo, Y. Chen, A. Manthiram, Yolk–shelled C@Fe3O4 nanoboxes as efficient sulfur hosts for high-performance lithium–sulfur batteries. Adv. Mater. 29(34), 1702707 (2017). https://doi.org/10.1002/adma.201702707
J. Wu, H. Zeng, X. Li, X. Xiang, Y. Liao, Z. Xue, Y. Ye, X. Xie, Ultralight layer-by-layer self-assembled MoS2-polymer modified separator for simultaneously trapping polysulfides and suppressing lithium dendrites. Adv. Energy Mater. 8(35), 1802430 (2018). https://doi.org/10.1002/aenm.201802430
Z. Yuan, H.J. Peng, T.Z. Hou, J.Q. Huang, C.M. Chen et al., Powering lithium-sulfur battery performance by propelling polysulfide redox at sulfiphilic hosts. Nano Lett. 16(1), 519–527 (2016). https://doi.org/10.1021/acs.nanolett.5b04166
M. Fantauzzi, B. Elsener, D. Atzei, A. Rigoldi, A. Rossi, Exploiting XPS for the identification of sulfides and polysulfides. RSC Adv. 5(93), 75953–75963 (2015). https://doi.org/10.1039/C5RA14915K