A Transparent Polymer-Composite Film for Window Energy Conservation
Corresponding Author: Yamin Pan
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 151
Abstract
As living standards improve, the energy consumption for regulating indoor temperature keeps increasing. Windows, in particular, enhance indoor brightness but also lead to increased energy loss, especially in sunny weather. Developing a product that can maintain indoor brightness while reducing energy consumption is a challenge. We developed a facile, spectrally selective transparent ultrahigh-molecular-weight polyethylene composite film to address this trade-off. It is based on a blend of antimony-doped tin oxide and then spin-coated hydrophobic fumed silica, achieving a high visible light transmittance (> 70%) and high shielding rates for ultraviolet (> 90%) and near-infrared (> 70%). When applied to the acrylic window of containers and placed outside, this film can cause a 10 °C temperature drop compared to a pure polymer film. Moreover, in building energy simulations, the annual energy savings could be between 14.1% ~ 31.9% per year. The development of energy-efficient and eco-friendly transparent films is crucial for reducing energy consumption and promoting sustainability in the window environment.
Highlights:
1 The resultant film offers high visible light transmittance (>70%) while effectively blocking UV (>90%) and NIR (>70%) radiation, addressing the balance between natural lighting and solar energy control.
2 Incorporating hydrophobic silica, it achieves high emissivity for radiative cooling, reducing indoor temperatures by up to 10 °C and achieving maximum additional cooling energy savings of 261 MJ m−2 per year.
3 Its superhydrophobic surface ensures excellent self-cleaning properties and durability, making it highly suitable for long-term outdoor applications.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S. Grynning, A. Gustavsen, B. Time, B. Jelle, Windows in the buildings of tomorrow: energy losers or energy gainers. Energy Build. 61, 185–192 (2013). https://doi.org/10.1016/j.enbuild.2013.02.029
- W. Hee, M. Alghoul, B. Bakhtyar, O. Elayeb, M. Shameri et al., The role of window glazing on daylighting and energy saving in buildings. Renew. Sust. Energ. Rev. 42, 323–343 (2015). https://doi.org/10.1016/j.rser.2014.09.020
- L. Perez-Lombard, J. Ortiz, C. Pout, A review on buildings energy consumption information. Energy Build. 40, 394–398 (2008). https://doi.org/10.1016/j.enbuild.2007.03.007
- R. Yin, P. Xu, P. Shen, Case study: energy savings from solar window film in two commercial buildings in Shanghai. Energy Build. 45, 132–140 (2011). https://doi.org/10.1016/j.enbuild.2011.10.062
- R. Kou, Y. Zhong, J. Kim, Q. Wang, M. Wang et al., Elevating low-emissivity film for lower thermal transmittance. Energy Build. 193, 69–77 (2019). https://doi.org/10.1016/j.enbuild.2019.03.033
- Z. Yi, Y. Lv, D. Xu, J. Xu, H. Qian et al., Energy saving analysis of a transparent radiative cooling film for buildings with roof glazing. Energy Built Environ. 2, 214–222 (2021). https://doi.org/10.1016/j.enbenv.2020.07.003
- S. Catalanotti, V. Cuomo, G. Piro, D. Ruggi, V. Silvestrini et al., The radiative cooling of selective surfaces. Sol. Energy 17, 83–89 (1975). https://doi.org/10.1016/0038-092X(75)90062-6
- A. Gentle, G. Smith, Radiative heat pumping from the earth using surface phonon resonant nanops. Nano Lett. 10, 373–379 (2010). https://doi.org/10.1021/nl903271d
- M. Kim, D. Lee, S. Son, Y. Yang, H. Lee et al., Visibly transparent radiative cooler under direct sunlight. Adv. Opt. Mater. 9, 2002226 (2021). https://doi.org/10.1002/adom.202002226
- P. Hsu, A. Song, P. Catrysse, C. Liu, Y. Peng et al., Radiative human body cooling by nanoporous polyethylene textile. Science 353, 1019–1023 (2016). https://doi.org/10.1126/science.aaf5471
- T. Li, Y. Zhai, S. He, W. Gan, Z. Wei et al., A radiative cooling structural material. Science 364, 760–763 (2019). https://doi.org/10.1126/science.aau9101
- D. Lee, M. Go, S. Son, M. Kim, T. Badloe et al., Sub-ambient daytime radiative cooling by silica-coated porous anodic aluminum oxide. Nano Energy 79, 105426 (2021). https://doi.org/10.1016/j.nanoen.2020.105426
- D. Zhao, A. Aili, Y. Zhai, J. Lu, D. Kidd et al., Subambient cooling of water: toward real-world applications of daytime radiative cooling. Joule 3, 111–123 (2019). https://doi.org/10.1016/j.joule.2018.10.006
- Z. Xia, Z. Fang, Z. Zhang, K. Shi, Z. Meng, Easy way to achieve self-adaptive cooling of passive radiative materials. ACS Appl. Mater. Interfaces 12, 27241–27248 (2020). https://doi.org/10.1021/acsami.0c05803
- D. Chae, M. Kim, P. Jung, S. Son, J. Seo et al., Spectrally selective inorganic-based multilayer emitter for daytime radiative cooling. ACS Appl. Mater. Interfaces 12, 8073–8081 (2020). https://doi.org/10.1021/acsami.9b16742
- G. Whitworth, J. Jaramillo-Fernandez, J. Pariente, P. Garcia, A. Blanco et al., Simulations of micro-sphere/shell 2D silica photonic crystals for radiative cooling. Opt. Express 29, 16857–16866 (2021). https://doi.org/10.1364/OE.420989
- Z. Yang, H. Sun, Y. Xi, Y. Qi, Z. Mao et al., Bio-inspired structure using random, three-dimensional pores in the polymeric matrix for daytime radiative cooling. Sol. Energy Mater. Sol. Cells 227, 111101 (2021). https://doi.org/10.1016/j.solmat.2021.111101
- S. Jeong, C. Tso, Y. Wong, C. Chao, B. Huang, Daytime passive radiative cooling by ultra emissive bio-inspired polymeric surface. Sol. Energy Mater. Sol. 206, 110296 (2020). https://doi.org/10.1016/j.solmat.2019.110296
- M. Ono, K. Chen, W. Li, S. Fan, Self-adaptive radiative cooling based on phase change materials. Opt. Express 26, 777–787 (2018). https://doi.org/10.1364/OE.26.00A777
- Y. Peng, J. Chen, A. Song, P. Catrysse, P. Hsu et al., Nanoporous polyethylene microfibres for large-scale radiative cooling fabric. Nat. Sustain. 1, 105–112 (2018). https://doi.org/10.1038/s41893-018-0023-2
- L. Cai, Y. Peng, J. Xu, C. Zhou, C. Zhou et al., Temperature regulation in colored infrared-transparent polyethylene textiles. Joule 3, 1478–1486 (2019). https://doi.org/10.1016/j.joule.2019.03.015
- S. Son, Y. Liu, D. Chae, H. Lee, Cross-linked porous polymeric coating without a metal-reflective layer for sub-ambient radiative cooling. ACS Appl. Mater. Interfaces 12, 57832–57839 (2020). https://doi.org/10.1021/acsami.0c14792
- A. Leroy, B. Bhatia, C. Kelsall, A. Castillejo-Cuberos, H. Di Capua et al., High-performance subambient radiative cooling enabled by optically selective and thermally insulating polyethylene aerogel. Sci. Adv. 5, eaat9480 (2019)
- J. Mandal, Y. Fu, A. Overvig, M. Jia, K. Sun et al., Hierarchically porous polymer coatings for highly efficient passive daytime radiative cooling. Science 362, 315–318 (2018). https://doi.org/10.1126/science.aat9513
- K. Zhou, W. Li, B. Patel, R. Tao, Y. Chang et al., Three-dimensional printable nanoporous polymer matrix composites for daytime radiative cooling. Nano Lett. 21, 1493–1499 (2021). https://doi.org/10.1021/acs.nanolett.0c04810
- E. Blandre, R. Yalcin, K. Joulain, J. Drevillon, Microstructured surfaces for colored and non-colored sky radiative cooling. Opt. Express 28, 29703–29713 (2020). https://doi.org/10.1364/OE.401368
- Y. Chen, J. Mandal, W. Li, A. Smith-Washington, C. Tsai et al., Colored and paintable bilayer coatings with high solar-infrared reflectance for efficient cooling. Sci. Adv. 6, eaaz5413 (2020). https://doi.org/10.1126/sciadv.aaz5413
- G. Li, C. Guo, M. Yan, S. Liu, CsxWO3 nanorods: realization of full-spectrum-responsive photocatalytic activities from UV, visible to near-infrared region. Appl. Catal. B-Environ. 183, 142–148 (2016). https://doi.org/10.1016/j.apcatb.2015.10.039
- X. Wu, Y. Li, G. Zhang, H. Chen, J. Li et al., Photocatalytic CO2 conversion of M0.33WO3 directly from the air with high selectivity: insight into full spectrum-induced reaction. J. Am. Chem. Soc. 141, 5267–5274 (2019). https://doi.org/10.1021/jacs.8b12928
- W. Li, Y. Shi, K. Chen, L. Zhu, S. Fan, A comprehensive photonic approach for solar cell cooling. ACS Photonics 4, 774–782 (2017). https://doi.org/10.1021/acsphotonics.7b00089
- B. Zhao, M. Hu, X. Ao, G. Pei, Performance analysis of enhanced radiative cooling of solar cells based on a commercial silicon photovoltaic module. Sol. Energy 176, 248–255 (2018). https://doi.org/10.1016/j.solener.2018.10.043
- S. Gamage, E. Kang, C. Aakerlind, S. Sardar, J. Edberg et al., Transparent nanocellulose metamaterial enables controlled optical diffusion and radiative cooling. J. Mater. Chem. C 8, 11687–11694 (2020). https://doi.org/10.1039/D0TC01226B
- G. Wei, J. Ding, T. Zhang, F. Qiu, X. Yue et al., In situ fabrication of ZnO nanorods/Ag hybrid film with high mid-infrared reflectance for applications in energy efficient windows. Opt. Mater. 94, 322–329 (2019). https://doi.org/10.1016/j.optmat.2019.06.004
- Y. Zhai, Y. Ma, S. David, D. Zhao, R. Lou et al., Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling. Science 355, 1062–1066 (2017). https://doi.org/10.1126/science.aai7899
- Z. Zhou, X. Wang, Y. Ma, B. Hu, J. Zhou, Transparent polymer coatings for energy-efficient daytime window cooling. Cell Rep. Phys. Sci. 1, 100231 (2020). https://doi.org/10.1016/j.xcrp.2020.100231
- H. Huang, M. Ng, Y. Wu, L. Kong, Solvothermal synthesis of Sb:SnO2 nanops and IR shielding coating for smart window. Mater. Des. 88, 384–389 (2015). https://doi.org/10.1016/j.matdes.2015.09.013
- Y. Qi, X. Yin, J. Zhang, Transparent and heat-insulation plasticized polyvinyl chloride (PVC) thin film with solar spectrally selective property. Sol. Energy Mater. Sol. Cells 151, 30–35 (2015). https://doi.org/10.1016/j.solmat.2016.02.016
- S. Xue, G. Huang, Q. Chen, X. Wang, J. Fan et al., Personal thermal management by radiative cooling and heating. Nano-Micro Lett. 16, 153 (2024). https://doi.org/10.1007/s40820-024-01360-1
- Y. Jung, M. Kim, T. Kim, J. Ahn, J. Lee et al., Functional materials and innovative strategies for wearable thermal management applications. Nano-Micro Lett. 15, 160 (2023). https://doi.org/10.1007/s40820-023-01126-1
- J. Yang, K. Chan, H. Venkatesan, E. Kim, M. Adegun et al., Superinsulating BNNS/PVA composite aerogels with high solar reflectance for energy-efficient buildings. Nano-Micro Lett. 14, 54 (2022). https://doi.org/10.1007/s40820-022-00797-6
- M. Lian, W. Ding, S. Liu, Y. Wang, T. Zhu et al., Highly porous yet transparent mechanically flexible aerogels realizing solar-thermal regulatory cooling. Nano-Micro Lett. 16, 131 (2024). https://doi.org/10.1007/s40820-024-01356-x
- J. Dong, Y. Peng, Y. Zhang, Y. Chai, J. Long et al., Superelastic radiative cooling metafabric for comfortable epidermal electrophysiological monitoring. Nano-Micro Lett. 15, 181 (2023). https://doi.org/10.1007/s40820-023-01156-9
- E. Runnerstrom, A. Llordes, S. Lounis, D. Milliron, Nanostructured electrochromic smart windows: traditional materials and NIR-selective plasmonic nanocrystals. Chem. Commun. 50, 10555–10572 (2014). https://doi.org/10.1039/C4CC03109A
- C. Lin, K. Li, M. Li, B. Dopphoopha, J. Zheng et al., Pushing radiative cooling technology to real applications. Adv. Mater. 36, 2409738 (2024). https://doi.org/10.1002/adma.202409738
- J. Jeevahan, M. Chandrasekaran, G. Joseph, R. Durairaj, G. Mageshwaran, Superhydrophobic surfaces: a review on fundamentals, applications, and challenges. J. Coat. Technol. Res. 15, 231–250 (2018). https://doi.org/10.1007/s11998-017-0011-x
- W. Zhang, J. Gao, Y. Deng, L. Peng, P. Yi et al., Tunable superhydrophobicity from 3D hierarchically nano-wrinkled micro-pyramidal architectures. Adv. Funct. Mater. 31, 2101068 (2021). https://doi.org/10.1002/adfm.202101068
- X. Liu, T. Tyler, T. Starr, A. Starr, N. Jokerst et al., Taming the blackbody with infrared metamaterials as selective thermal emitters. Phys. Rev. Lett. 107, 045901 (2011). https://doi.org/10.1103/physrevlett.107.045901
References
S. Grynning, A. Gustavsen, B. Time, B. Jelle, Windows in the buildings of tomorrow: energy losers or energy gainers. Energy Build. 61, 185–192 (2013). https://doi.org/10.1016/j.enbuild.2013.02.029
W. Hee, M. Alghoul, B. Bakhtyar, O. Elayeb, M. Shameri et al., The role of window glazing on daylighting and energy saving in buildings. Renew. Sust. Energ. Rev. 42, 323–343 (2015). https://doi.org/10.1016/j.rser.2014.09.020
L. Perez-Lombard, J. Ortiz, C. Pout, A review on buildings energy consumption information. Energy Build. 40, 394–398 (2008). https://doi.org/10.1016/j.enbuild.2007.03.007
R. Yin, P. Xu, P. Shen, Case study: energy savings from solar window film in two commercial buildings in Shanghai. Energy Build. 45, 132–140 (2011). https://doi.org/10.1016/j.enbuild.2011.10.062
R. Kou, Y. Zhong, J. Kim, Q. Wang, M. Wang et al., Elevating low-emissivity film for lower thermal transmittance. Energy Build. 193, 69–77 (2019). https://doi.org/10.1016/j.enbuild.2019.03.033
Z. Yi, Y. Lv, D. Xu, J. Xu, H. Qian et al., Energy saving analysis of a transparent radiative cooling film for buildings with roof glazing. Energy Built Environ. 2, 214–222 (2021). https://doi.org/10.1016/j.enbenv.2020.07.003
S. Catalanotti, V. Cuomo, G. Piro, D. Ruggi, V. Silvestrini et al., The radiative cooling of selective surfaces. Sol. Energy 17, 83–89 (1975). https://doi.org/10.1016/0038-092X(75)90062-6
A. Gentle, G. Smith, Radiative heat pumping from the earth using surface phonon resonant nanops. Nano Lett. 10, 373–379 (2010). https://doi.org/10.1021/nl903271d
M. Kim, D. Lee, S. Son, Y. Yang, H. Lee et al., Visibly transparent radiative cooler under direct sunlight. Adv. Opt. Mater. 9, 2002226 (2021). https://doi.org/10.1002/adom.202002226
P. Hsu, A. Song, P. Catrysse, C. Liu, Y. Peng et al., Radiative human body cooling by nanoporous polyethylene textile. Science 353, 1019–1023 (2016). https://doi.org/10.1126/science.aaf5471
T. Li, Y. Zhai, S. He, W. Gan, Z. Wei et al., A radiative cooling structural material. Science 364, 760–763 (2019). https://doi.org/10.1126/science.aau9101
D. Lee, M. Go, S. Son, M. Kim, T. Badloe et al., Sub-ambient daytime radiative cooling by silica-coated porous anodic aluminum oxide. Nano Energy 79, 105426 (2021). https://doi.org/10.1016/j.nanoen.2020.105426
D. Zhao, A. Aili, Y. Zhai, J. Lu, D. Kidd et al., Subambient cooling of water: toward real-world applications of daytime radiative cooling. Joule 3, 111–123 (2019). https://doi.org/10.1016/j.joule.2018.10.006
Z. Xia, Z. Fang, Z. Zhang, K. Shi, Z. Meng, Easy way to achieve self-adaptive cooling of passive radiative materials. ACS Appl. Mater. Interfaces 12, 27241–27248 (2020). https://doi.org/10.1021/acsami.0c05803
D. Chae, M. Kim, P. Jung, S. Son, J. Seo et al., Spectrally selective inorganic-based multilayer emitter for daytime radiative cooling. ACS Appl. Mater. Interfaces 12, 8073–8081 (2020). https://doi.org/10.1021/acsami.9b16742
G. Whitworth, J. Jaramillo-Fernandez, J. Pariente, P. Garcia, A. Blanco et al., Simulations of micro-sphere/shell 2D silica photonic crystals for radiative cooling. Opt. Express 29, 16857–16866 (2021). https://doi.org/10.1364/OE.420989
Z. Yang, H. Sun, Y. Xi, Y. Qi, Z. Mao et al., Bio-inspired structure using random, three-dimensional pores in the polymeric matrix for daytime radiative cooling. Sol. Energy Mater. Sol. Cells 227, 111101 (2021). https://doi.org/10.1016/j.solmat.2021.111101
S. Jeong, C. Tso, Y. Wong, C. Chao, B. Huang, Daytime passive radiative cooling by ultra emissive bio-inspired polymeric surface. Sol. Energy Mater. Sol. 206, 110296 (2020). https://doi.org/10.1016/j.solmat.2019.110296
M. Ono, K. Chen, W. Li, S. Fan, Self-adaptive radiative cooling based on phase change materials. Opt. Express 26, 777–787 (2018). https://doi.org/10.1364/OE.26.00A777
Y. Peng, J. Chen, A. Song, P. Catrysse, P. Hsu et al., Nanoporous polyethylene microfibres for large-scale radiative cooling fabric. Nat. Sustain. 1, 105–112 (2018). https://doi.org/10.1038/s41893-018-0023-2
L. Cai, Y. Peng, J. Xu, C. Zhou, C. Zhou et al., Temperature regulation in colored infrared-transparent polyethylene textiles. Joule 3, 1478–1486 (2019). https://doi.org/10.1016/j.joule.2019.03.015
S. Son, Y. Liu, D. Chae, H. Lee, Cross-linked porous polymeric coating without a metal-reflective layer for sub-ambient radiative cooling. ACS Appl. Mater. Interfaces 12, 57832–57839 (2020). https://doi.org/10.1021/acsami.0c14792
A. Leroy, B. Bhatia, C. Kelsall, A. Castillejo-Cuberos, H. Di Capua et al., High-performance subambient radiative cooling enabled by optically selective and thermally insulating polyethylene aerogel. Sci. Adv. 5, eaat9480 (2019)
J. Mandal, Y. Fu, A. Overvig, M. Jia, K. Sun et al., Hierarchically porous polymer coatings for highly efficient passive daytime radiative cooling. Science 362, 315–318 (2018). https://doi.org/10.1126/science.aat9513
K. Zhou, W. Li, B. Patel, R. Tao, Y. Chang et al., Three-dimensional printable nanoporous polymer matrix composites for daytime radiative cooling. Nano Lett. 21, 1493–1499 (2021). https://doi.org/10.1021/acs.nanolett.0c04810
E. Blandre, R. Yalcin, K. Joulain, J. Drevillon, Microstructured surfaces for colored and non-colored sky radiative cooling. Opt. Express 28, 29703–29713 (2020). https://doi.org/10.1364/OE.401368
Y. Chen, J. Mandal, W. Li, A. Smith-Washington, C. Tsai et al., Colored and paintable bilayer coatings with high solar-infrared reflectance for efficient cooling. Sci. Adv. 6, eaaz5413 (2020). https://doi.org/10.1126/sciadv.aaz5413
G. Li, C. Guo, M. Yan, S. Liu, CsxWO3 nanorods: realization of full-spectrum-responsive photocatalytic activities from UV, visible to near-infrared region. Appl. Catal. B-Environ. 183, 142–148 (2016). https://doi.org/10.1016/j.apcatb.2015.10.039
X. Wu, Y. Li, G. Zhang, H. Chen, J. Li et al., Photocatalytic CO2 conversion of M0.33WO3 directly from the air with high selectivity: insight into full spectrum-induced reaction. J. Am. Chem. Soc. 141, 5267–5274 (2019). https://doi.org/10.1021/jacs.8b12928
W. Li, Y. Shi, K. Chen, L. Zhu, S. Fan, A comprehensive photonic approach for solar cell cooling. ACS Photonics 4, 774–782 (2017). https://doi.org/10.1021/acsphotonics.7b00089
B. Zhao, M. Hu, X. Ao, G. Pei, Performance analysis of enhanced radiative cooling of solar cells based on a commercial silicon photovoltaic module. Sol. Energy 176, 248–255 (2018). https://doi.org/10.1016/j.solener.2018.10.043
S. Gamage, E. Kang, C. Aakerlind, S. Sardar, J. Edberg et al., Transparent nanocellulose metamaterial enables controlled optical diffusion and radiative cooling. J. Mater. Chem. C 8, 11687–11694 (2020). https://doi.org/10.1039/D0TC01226B
G. Wei, J. Ding, T. Zhang, F. Qiu, X. Yue et al., In situ fabrication of ZnO nanorods/Ag hybrid film with high mid-infrared reflectance for applications in energy efficient windows. Opt. Mater. 94, 322–329 (2019). https://doi.org/10.1016/j.optmat.2019.06.004
Y. Zhai, Y. Ma, S. David, D. Zhao, R. Lou et al., Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling. Science 355, 1062–1066 (2017). https://doi.org/10.1126/science.aai7899
Z. Zhou, X. Wang, Y. Ma, B. Hu, J. Zhou, Transparent polymer coatings for energy-efficient daytime window cooling. Cell Rep. Phys. Sci. 1, 100231 (2020). https://doi.org/10.1016/j.xcrp.2020.100231
H. Huang, M. Ng, Y. Wu, L. Kong, Solvothermal synthesis of Sb:SnO2 nanops and IR shielding coating for smart window. Mater. Des. 88, 384–389 (2015). https://doi.org/10.1016/j.matdes.2015.09.013
Y. Qi, X. Yin, J. Zhang, Transparent and heat-insulation plasticized polyvinyl chloride (PVC) thin film with solar spectrally selective property. Sol. Energy Mater. Sol. Cells 151, 30–35 (2015). https://doi.org/10.1016/j.solmat.2016.02.016
S. Xue, G. Huang, Q. Chen, X. Wang, J. Fan et al., Personal thermal management by radiative cooling and heating. Nano-Micro Lett. 16, 153 (2024). https://doi.org/10.1007/s40820-024-01360-1
Y. Jung, M. Kim, T. Kim, J. Ahn, J. Lee et al., Functional materials and innovative strategies for wearable thermal management applications. Nano-Micro Lett. 15, 160 (2023). https://doi.org/10.1007/s40820-023-01126-1
J. Yang, K. Chan, H. Venkatesan, E. Kim, M. Adegun et al., Superinsulating BNNS/PVA composite aerogels with high solar reflectance for energy-efficient buildings. Nano-Micro Lett. 14, 54 (2022). https://doi.org/10.1007/s40820-022-00797-6
M. Lian, W. Ding, S. Liu, Y. Wang, T. Zhu et al., Highly porous yet transparent mechanically flexible aerogels realizing solar-thermal regulatory cooling. Nano-Micro Lett. 16, 131 (2024). https://doi.org/10.1007/s40820-024-01356-x
J. Dong, Y. Peng, Y. Zhang, Y. Chai, J. Long et al., Superelastic radiative cooling metafabric for comfortable epidermal electrophysiological monitoring. Nano-Micro Lett. 15, 181 (2023). https://doi.org/10.1007/s40820-023-01156-9
E. Runnerstrom, A. Llordes, S. Lounis, D. Milliron, Nanostructured electrochromic smart windows: traditional materials and NIR-selective plasmonic nanocrystals. Chem. Commun. 50, 10555–10572 (2014). https://doi.org/10.1039/C4CC03109A
C. Lin, K. Li, M. Li, B. Dopphoopha, J. Zheng et al., Pushing radiative cooling technology to real applications. Adv. Mater. 36, 2409738 (2024). https://doi.org/10.1002/adma.202409738
J. Jeevahan, M. Chandrasekaran, G. Joseph, R. Durairaj, G. Mageshwaran, Superhydrophobic surfaces: a review on fundamentals, applications, and challenges. J. Coat. Technol. Res. 15, 231–250 (2018). https://doi.org/10.1007/s11998-017-0011-x
W. Zhang, J. Gao, Y. Deng, L. Peng, P. Yi et al., Tunable superhydrophobicity from 3D hierarchically nano-wrinkled micro-pyramidal architectures. Adv. Funct. Mater. 31, 2101068 (2021). https://doi.org/10.1002/adfm.202101068
X. Liu, T. Tyler, T. Starr, A. Starr, N. Jokerst et al., Taming the blackbody with infrared metamaterials as selective thermal emitters. Phys. Rev. Lett. 107, 045901 (2011). https://doi.org/10.1103/physrevlett.107.045901