Ultra-stable CsPbBr3 Perovskite Nanosheets for X-Ray Imaging Screen
Corresponding Author: Yuhai Zhang
Nano-Micro Letters,
Vol. 11 (2019), Article Number: 52
Abstract
Wet chemistry methods, including hot-injection and precipitation methods, have emerged as major synthetic routes for high-quality perovskite nanocrystals in backlit display and scintillation applications. However, low chemical yield hinders their upscale production for practical use. Meanwhile, the labile nature of halide-based perovskite poses a major challenge for long-term storage of perovskite nanocrystals. Herein, we report a green synthesis at room temperature for gram-scale production of CsPbBr3 nanosheets with minimum use of solvent, saving over 95% of the solvent for the unity mass nanocrystal production. The perovskite colloid exhibits record stability upon long-term storage for up to 8 months, preserving a photoluminescence quantum yield of 63% in solid state. Importantly, the colloidal nanosheets show self-assembly behavior upon slow solidification, generating a crack-free thin film in a large area. The uniform film was then demonstrated as an efficient scintillation screen for X-ray imaging. Our findings bring a scalable tool for synthesis of high-quality perovskite nanocrystals, which may inspire the industrial optoelectronic application of large-area perovskite film.
Highlights:
1 A gram-scale CsPbBr3 perovskite nanosheet colloid was synthesized by a green method at room temperature.
2 The perovskite nanosheet colloid shows uncompromised photoluminescence quantum yield upon storage for over 8 months.
3 A self-assembly crack-free thin film of the colloidal nanosheets demonstrated an efficient X-ray imaging screen.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Q.A. Akkerman, G. Rainò, M.V. Kovalenko, L. Manna, Genesis, challenges and opportunities for colloidal lead halide perovskite nanocrystals. Nat. Mater. 17, 394–405 (2018). https://doi.org/10.1038/s41563-018-0018-4
- J. Song, L. Xu, J. Li, J. Xue, Y. Dong, X. Li, H. Zeng, Monolayer and few-layer all-inorganic perovskites as a new family of two-dimensional semiconductors for printable optoelectronic devices. Adv. Mater. 28(24), 4861–4869 (2016). https://doi.org/10.1002/adma.201600225
- E. Alarousu, A.M. El-Zohry, J. Yin, A.A. Zhumekenov, C. Yang et al., Ultralong radiative states in hybrid perovskite crystals: compositions for submillimeter diffusion lengths. J. Phys. Chem. Lett. 8(18), 4386–4390 (2017). https://doi.org/10.1021/acs.jpclett.7b01922
- D. Shi, V. Adinolfi, R. Comin, M. Yuan, E. Alarousu et al., Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals. Science 347(6221), 519–522 (2015). https://doi.org/10.1126/science.aaa2725
- Y. Rong, Y. Hu, S. Ravishankar, H. Liu, X. Hou et al., Tunable hysteresis effect for perovskite solar cells. Energy Environ. Sci. 10(11), 2383–2391 (2017). https://doi.org/10.1039/C7EE02048A
- L. Meng, J. You, Y. Yang, Addressing the stability issue of perovskite solar cells for commercial applications. Nat. Commun. 9(1), 5265 (2018). https://doi.org/10.1038/s41467-018-07255-1
- A.O. El-Ballouli, O.M. Bakr, O.F. Mohammed, Compositional, processing, and interfacial engineering of nanocrystal- and quantum-dot-based perovskite solar cells. Chem. Mater. (2019). https://doi.org/10.1021/acs.chemmater.9b01268
- M. Lu, X. Zhang, X. Bai, H. Wu, X. Shen et al., Spontaneous silver doping and surface passivation of CsPbI3 perovskite active layer enable light-emitting devices with an external quantum efficiency of 11.2%. ACS Energy Lett. 3, 1571–1577 (2018). https://doi.org/10.1021/acsenergylett.8b00835
- Q. Chen, J. Wu, X. Ou, B. Huang, J. Almutlaq et al., All-inorganic perovskite nanocrystal scintillators. Nature 561(7721), 88 (2018). https://doi.org/10.1038/s41586-018-0451-1
- Y. Pu, F. Cai, D. Wang, J.-X. Wang, J.-F. Chen, Colloidal synthesis of semiconductor quantum dots toward large-scale production: a review. Ind. Eng. Chem. Res. 57(6), 1790–1802 (2018). https://doi.org/10.1021/acs.iecr.7b04836
- Q.A. Akkerman, S. Park, E. Radicchi, F. Nunzi, E. Mosconi et al., Nearly monodisperse insulator Cs4PbX6 (X = Cl, Br, I) nanocrystals, their mixed halide compositions, and their transformation into CsPbX3 nanocrystals. Nano Lett. 17(3), 1924–1930 (2017). https://doi.org/10.1021/acs.nanolett.6b05262
- L. Protesescu, S. Yakunin, M.I. Bodnarchuk, F. Krieg, R. Caputo et al., Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett. 15(6), 3692–3696 (2015). https://doi.org/10.1021/nl5048779
- X. Li, Y. Wu, S. Zhang, B. Cai, Y. Gu, J. Song, H. Zeng, CsPbX3 quantum dots for lighting and displays: room-temperature synthesis, photoluminescence superiorities, underlying origins and white light-emitting diodes. Adv. Funct. Mater. 26(15), 2435–2445 (2016). https://doi.org/10.1002/adfm.201600109
- H. Yang, Y. Zhang, J. Pan, J. Yin, O.M. Bakr, O.F. Mohammed, Room-temperature engineering of all-inorganic perovskite nanocrsytals with different dimensionalities. Chem. Mater. 29(21), 8978–8982 (2017). https://doi.org/10.1021/acs.chemmater.7b04161
- Y. Zhang, M.I. Saidaminov, I. Dursun, H. Yang, B. Murali et al., Zero-dimensional Cs4PbBr 6 perovskite nanocrystals. J. Phys. Chem. Lett. 8(5), 961–965 (2017). https://doi.org/10.1021/acs.jpclett.7b00105
- D.N. Dirin, L. Protesescu, D. Trummer, I.V. Kochetygov, S. Yakunin, F. Krumeich, N.P. Stadie, M.V. Kovalenko, Harnessing defect-tolerance at the nanoscale: highly luminescent lead halide perovskite nanocrystals in mesoporous silica matrixes. Nano Lett. 16(9), 5866–5874 (2016). https://doi.org/10.1021/acs.nanolett.6b02688
- L. Protesescu, S. Yakunin, O. Nazarenko, D.N. Dirin, M.V. Kovalenko, Low-cost synthesis of highly luminescent colloidal lead halide perovskite nanocrystals by wet ball milling. ACS Appl. Nano Mater. 1(3), 1300–1308 (2018). https://doi.org/10.1021/acsanm.8b00038
- D.M. Jang, D.H. Kim, K. Park, J. Park, J.W. Lee, J.K. Song, Ultrasound synthesis of lead halide perovskite nanocrystals. J. Mater. Chem. C 4(45), 10625–10629 (2016). https://doi.org/10.1039/C6TC04213A
- S.N. Raja, Y. Bekenstein, M.A. Koc, S. Fischer, D. Zhang et al., Encapsulation of perovskite nanocrystals into macroscale polymer matrices: enhanced stability and polarization. ACS Appl. Mater. Interfaces 8(51), 35523–35533 (2016). https://doi.org/10.1021/acsami.6b09443
- S. Gonzalez-Carrero, L. Francés-Soriano, M. González-Béjar, S. Agouram, R.E. Galian, J. Pérez-Prieto, The luminescence of CH3NH3PbBr 3 perovskite nanoparticles crests the summit and their photostability under wet conditions is enhanced. Small 12(38), 5245–5250 (2016). https://doi.org/10.1002/smll.201600209
- W. Chen, J. Hao, W. Hu, Z. Zang, X. Tang, L. Fang, T. Niu, M. Zhou, Enhanced stability and tunable photoluminescence in perovskite CsPbX3/ZnS quantum dot heterostructure. Small 13(21), 1604085 (2017). https://doi.org/10.1002/smll.201604085
- M. Meyns, M. Perálvarez, A. Heuer-Jungemann, W. Hertog, M. Ibáñez et al., Polymer-enhanced stability of inorganic perovskite nanocrystals and their application in color conversion LEDs. ACS Appl. Mater. Interfaces 8(30), 19579–19586 (2016). https://doi.org/10.1021/acsami.6b02529
- F. Di Stasio, S. Christodoulou, N. Huo, G. Konstantatos, Near-unity photoluminescence quantum yield in CsPbBr 3 nanocrystal solid-state films via post-synthesis treatment with lead bromide. Chem. Mater. 29(18), 7663–7667 (2017). https://doi.org/10.1021/acs.chemmater.7b02834
- Y. Zhang, R. Sun, X. Ou, K. Fu, Q. Chen et al., Metal halide perovskite nanosheet for x-ray high-resolution scintillation imaging screens. ACS Nano 13(2), 2520–2525 (2019). https://doi.org/10.1021/acsnano.8b09484
- J. De Roo, M. Ibáñez, P. Geiregat, G. Nedelcu, W. Walravens et al., Highly dynamic ligand binding and light absorption coefficient of cesium lead bromide perovskite nanocrystals. ACS Nano 10(2), 2071–2081 (2016). https://doi.org/10.1126/science.aag2700
- A. Swarnkar, A.R. Marshall, E.M. Sanehira, B.D. Chernomordik, D.T. Moore, J.A. Christians, T. Chakrabarti, J.M. Luther, Quantum dot–induced phase stabilization of -CsPbI3 perovskite for high-efficiency photovoltaics. Science 354(6308), 92–95 (2016). https://doi.org/10.1126/science.aag2700
- I. Lignos, L. Protesescu, D.B. Emiroglu, R.M. Maceiczyk, S. Schneider, M.V. Kovalenko, A.J. deMello, Unveiling the shape evolution and halide-ion-segregation in blue emitting formamidinium lead halide perovskite nanocrystals using an automated microfluidic platform. Nano Lett. 18(2), 1246–1252 (2018). https://doi.org/10.1021/acs.nanolett.7b04838
- Y. Tong, E. Bladt, M.F. Aygüler, A. Manzi, K.Z. Milowska et al., Highly luminescent cesium lead halide perovskite nanocrystals with tunable composition and thickness by ultrasonication. Angew. Chem. Int. Ed. 55(44), 13887–13892 (2016). https://doi.org/10.1002/anie.201605909
- F. Nippert, S.Y. Karpov, G. Callsen, B. Galler, T. Kure et al., Temperature-dependent recombination coefficients in ingan light-emitting diodes: hole localization, auger processes, and the green gap. Appl. Phys. Lett. 109(16), 161103 (2016). https://doi.org/10.1063/1.4965298
- X. Zhang, W. Wang, B. Xu, S. Liu, H. Dai et al., Thin film perovskite light-emitting diode based on cspbbr3 powders and interfacial engineering. Nano Energy 37, 40–45 (2017). https://doi.org/10.1016/j.nanoen.2017.05.005
- Q.A. Akkerman, S.G. Motti, A.R.S. Kandada, E. Mosconi, V. D’Innocenzo et al., Solution synthesis approach to colloidal cesium lead halide perovskite nanoplatelets with monolayer-level thickness control. J. Am. Chem. Soc. 138(3), 1010–1016 (2016). https://doi.org/10.1021/jacs.5b12124
- G. Rainò, M.A. Becker, M.I. Bodnarchuk, R.F. Mahrt, M.V. Kovalenko, T. Stöferle, Superfluorescence from lead halide perovskite quantum dot superlattices. Nature 1804, 01873 (2018). https://doi.org/10.1038/s41586-018-0683-0
- C. de Weerd, L. Gomez, H. Zhang, W.J. Buma, G. Nedelcu, M.V. Kovalenko, T. Gregorkiewicz, Energy transfer between inorganic perovskite nanocrystals. J. Phys. Chem. C 120(24), 13310–13315 (2016). https://doi.org/10.1021/acs.jpcc.6b04768
- I. Majoul, Y. Jia, R. Duden, Practical Fluorescence Resonance Energy Transfer or Molecular Nanobioscopy of Living Cells (Springer, Berlin, 2006), pp. 788–808
References
Q.A. Akkerman, G. Rainò, M.V. Kovalenko, L. Manna, Genesis, challenges and opportunities for colloidal lead halide perovskite nanocrystals. Nat. Mater. 17, 394–405 (2018). https://doi.org/10.1038/s41563-018-0018-4
J. Song, L. Xu, J. Li, J. Xue, Y. Dong, X. Li, H. Zeng, Monolayer and few-layer all-inorganic perovskites as a new family of two-dimensional semiconductors for printable optoelectronic devices. Adv. Mater. 28(24), 4861–4869 (2016). https://doi.org/10.1002/adma.201600225
E. Alarousu, A.M. El-Zohry, J. Yin, A.A. Zhumekenov, C. Yang et al., Ultralong radiative states in hybrid perovskite crystals: compositions for submillimeter diffusion lengths. J. Phys. Chem. Lett. 8(18), 4386–4390 (2017). https://doi.org/10.1021/acs.jpclett.7b01922
D. Shi, V. Adinolfi, R. Comin, M. Yuan, E. Alarousu et al., Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals. Science 347(6221), 519–522 (2015). https://doi.org/10.1126/science.aaa2725
Y. Rong, Y. Hu, S. Ravishankar, H. Liu, X. Hou et al., Tunable hysteresis effect for perovskite solar cells. Energy Environ. Sci. 10(11), 2383–2391 (2017). https://doi.org/10.1039/C7EE02048A
L. Meng, J. You, Y. Yang, Addressing the stability issue of perovskite solar cells for commercial applications. Nat. Commun. 9(1), 5265 (2018). https://doi.org/10.1038/s41467-018-07255-1
A.O. El-Ballouli, O.M. Bakr, O.F. Mohammed, Compositional, processing, and interfacial engineering of nanocrystal- and quantum-dot-based perovskite solar cells. Chem. Mater. (2019). https://doi.org/10.1021/acs.chemmater.9b01268
M. Lu, X. Zhang, X. Bai, H. Wu, X. Shen et al., Spontaneous silver doping and surface passivation of CsPbI3 perovskite active layer enable light-emitting devices with an external quantum efficiency of 11.2%. ACS Energy Lett. 3, 1571–1577 (2018). https://doi.org/10.1021/acsenergylett.8b00835
Q. Chen, J. Wu, X. Ou, B. Huang, J. Almutlaq et al., All-inorganic perovskite nanocrystal scintillators. Nature 561(7721), 88 (2018). https://doi.org/10.1038/s41586-018-0451-1
Y. Pu, F. Cai, D. Wang, J.-X. Wang, J.-F. Chen, Colloidal synthesis of semiconductor quantum dots toward large-scale production: a review. Ind. Eng. Chem. Res. 57(6), 1790–1802 (2018). https://doi.org/10.1021/acs.iecr.7b04836
Q.A. Akkerman, S. Park, E. Radicchi, F. Nunzi, E. Mosconi et al., Nearly monodisperse insulator Cs4PbX6 (X = Cl, Br, I) nanocrystals, their mixed halide compositions, and their transformation into CsPbX3 nanocrystals. Nano Lett. 17(3), 1924–1930 (2017). https://doi.org/10.1021/acs.nanolett.6b05262
L. Protesescu, S. Yakunin, M.I. Bodnarchuk, F. Krieg, R. Caputo et al., Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett. 15(6), 3692–3696 (2015). https://doi.org/10.1021/nl5048779
X. Li, Y. Wu, S. Zhang, B. Cai, Y. Gu, J. Song, H. Zeng, CsPbX3 quantum dots for lighting and displays: room-temperature synthesis, photoluminescence superiorities, underlying origins and white light-emitting diodes. Adv. Funct. Mater. 26(15), 2435–2445 (2016). https://doi.org/10.1002/adfm.201600109
H. Yang, Y. Zhang, J. Pan, J. Yin, O.M. Bakr, O.F. Mohammed, Room-temperature engineering of all-inorganic perovskite nanocrsytals with different dimensionalities. Chem. Mater. 29(21), 8978–8982 (2017). https://doi.org/10.1021/acs.chemmater.7b04161
Y. Zhang, M.I. Saidaminov, I. Dursun, H. Yang, B. Murali et al., Zero-dimensional Cs4PbBr 6 perovskite nanocrystals. J. Phys. Chem. Lett. 8(5), 961–965 (2017). https://doi.org/10.1021/acs.jpclett.7b00105
D.N. Dirin, L. Protesescu, D. Trummer, I.V. Kochetygov, S. Yakunin, F. Krumeich, N.P. Stadie, M.V. Kovalenko, Harnessing defect-tolerance at the nanoscale: highly luminescent lead halide perovskite nanocrystals in mesoporous silica matrixes. Nano Lett. 16(9), 5866–5874 (2016). https://doi.org/10.1021/acs.nanolett.6b02688
L. Protesescu, S. Yakunin, O. Nazarenko, D.N. Dirin, M.V. Kovalenko, Low-cost synthesis of highly luminescent colloidal lead halide perovskite nanocrystals by wet ball milling. ACS Appl. Nano Mater. 1(3), 1300–1308 (2018). https://doi.org/10.1021/acsanm.8b00038
D.M. Jang, D.H. Kim, K. Park, J. Park, J.W. Lee, J.K. Song, Ultrasound synthesis of lead halide perovskite nanocrystals. J. Mater. Chem. C 4(45), 10625–10629 (2016). https://doi.org/10.1039/C6TC04213A
S.N. Raja, Y. Bekenstein, M.A. Koc, S. Fischer, D. Zhang et al., Encapsulation of perovskite nanocrystals into macroscale polymer matrices: enhanced stability and polarization. ACS Appl. Mater. Interfaces 8(51), 35523–35533 (2016). https://doi.org/10.1021/acsami.6b09443
S. Gonzalez-Carrero, L. Francés-Soriano, M. González-Béjar, S. Agouram, R.E. Galian, J. Pérez-Prieto, The luminescence of CH3NH3PbBr 3 perovskite nanoparticles crests the summit and their photostability under wet conditions is enhanced. Small 12(38), 5245–5250 (2016). https://doi.org/10.1002/smll.201600209
W. Chen, J. Hao, W. Hu, Z. Zang, X. Tang, L. Fang, T. Niu, M. Zhou, Enhanced stability and tunable photoluminescence in perovskite CsPbX3/ZnS quantum dot heterostructure. Small 13(21), 1604085 (2017). https://doi.org/10.1002/smll.201604085
M. Meyns, M. Perálvarez, A. Heuer-Jungemann, W. Hertog, M. Ibáñez et al., Polymer-enhanced stability of inorganic perovskite nanocrystals and their application in color conversion LEDs. ACS Appl. Mater. Interfaces 8(30), 19579–19586 (2016). https://doi.org/10.1021/acsami.6b02529
F. Di Stasio, S. Christodoulou, N. Huo, G. Konstantatos, Near-unity photoluminescence quantum yield in CsPbBr 3 nanocrystal solid-state films via post-synthesis treatment with lead bromide. Chem. Mater. 29(18), 7663–7667 (2017). https://doi.org/10.1021/acs.chemmater.7b02834
Y. Zhang, R. Sun, X. Ou, K. Fu, Q. Chen et al., Metal halide perovskite nanosheet for x-ray high-resolution scintillation imaging screens. ACS Nano 13(2), 2520–2525 (2019). https://doi.org/10.1021/acsnano.8b09484
J. De Roo, M. Ibáñez, P. Geiregat, G. Nedelcu, W. Walravens et al., Highly dynamic ligand binding and light absorption coefficient of cesium lead bromide perovskite nanocrystals. ACS Nano 10(2), 2071–2081 (2016). https://doi.org/10.1126/science.aag2700
A. Swarnkar, A.R. Marshall, E.M. Sanehira, B.D. Chernomordik, D.T. Moore, J.A. Christians, T. Chakrabarti, J.M. Luther, Quantum dot–induced phase stabilization of -CsPbI3 perovskite for high-efficiency photovoltaics. Science 354(6308), 92–95 (2016). https://doi.org/10.1126/science.aag2700
I. Lignos, L. Protesescu, D.B. Emiroglu, R.M. Maceiczyk, S. Schneider, M.V. Kovalenko, A.J. deMello, Unveiling the shape evolution and halide-ion-segregation in blue emitting formamidinium lead halide perovskite nanocrystals using an automated microfluidic platform. Nano Lett. 18(2), 1246–1252 (2018). https://doi.org/10.1021/acs.nanolett.7b04838
Y. Tong, E. Bladt, M.F. Aygüler, A. Manzi, K.Z. Milowska et al., Highly luminescent cesium lead halide perovskite nanocrystals with tunable composition and thickness by ultrasonication. Angew. Chem. Int. Ed. 55(44), 13887–13892 (2016). https://doi.org/10.1002/anie.201605909
F. Nippert, S.Y. Karpov, G. Callsen, B. Galler, T. Kure et al., Temperature-dependent recombination coefficients in ingan light-emitting diodes: hole localization, auger processes, and the green gap. Appl. Phys. Lett. 109(16), 161103 (2016). https://doi.org/10.1063/1.4965298
X. Zhang, W. Wang, B. Xu, S. Liu, H. Dai et al., Thin film perovskite light-emitting diode based on cspbbr3 powders and interfacial engineering. Nano Energy 37, 40–45 (2017). https://doi.org/10.1016/j.nanoen.2017.05.005
Q.A. Akkerman, S.G. Motti, A.R.S. Kandada, E. Mosconi, V. D’Innocenzo et al., Solution synthesis approach to colloidal cesium lead halide perovskite nanoplatelets with monolayer-level thickness control. J. Am. Chem. Soc. 138(3), 1010–1016 (2016). https://doi.org/10.1021/jacs.5b12124
G. Rainò, M.A. Becker, M.I. Bodnarchuk, R.F. Mahrt, M.V. Kovalenko, T. Stöferle, Superfluorescence from lead halide perovskite quantum dot superlattices. Nature 1804, 01873 (2018). https://doi.org/10.1038/s41586-018-0683-0
C. de Weerd, L. Gomez, H. Zhang, W.J. Buma, G. Nedelcu, M.V. Kovalenko, T. Gregorkiewicz, Energy transfer between inorganic perovskite nanocrystals. J. Phys. Chem. C 120(24), 13310–13315 (2016). https://doi.org/10.1021/acs.jpcc.6b04768
I. Majoul, Y. Jia, R. Duden, Practical Fluorescence Resonance Energy Transfer or Molecular Nanobioscopy of Living Cells (Springer, Berlin, 2006), pp. 788–808