Bifunctional Electrocatalysts Based on Mo-Doped NiCoP Nanosheet Arrays for Overall Water Splitting
Corresponding Author: Junlei Qi
Nano-Micro Letters,
Vol. 11 (2019), Article Number: 55
Abstract
Rational design of efficient bifunctional electrocatalysts is highly imperative but still a challenge for overall water splitting. Herein, we construct novel freestanding Mo-doped NiCoP nanosheet arrays by the hydrothermal and phosphation processes, serving as bifunctional electrocatalysts for overall water splitting. Notably, Mo doping could effectively modulate the electronic structure of NiCoP, leading to the increased electroactive site and improved intrinsic activity of each site. Furthermore, an electrochemical activation strategy is proposed to form Mo-doped (Ni,Co)OOH to fully boost the electrocatalytic activities for oxygen evolution reaction. Benefiting from the unique freestanding structure and Mo doping, Mo-doped NiCoP and (Ni,Co)OOH show the remarkable electrochemical performances, which are competitive among current researches. In addition, an overall water splitting device assembled by both electrodes only requires a cell voltage of 1.61 V to reach a current density of 10 mA cm−2. Therefore, this work opens up new avenues for designing nonprecious bifunctional electrocatalysts by Mo doping and in situ electrochemical activation.
Highlights:
1 Freestanding Mo-doped NiCoP nanosheets are designed as bifunctional electrocatalysts for overall water splitting.
2 Remarkable electrocatalytic performances are achieved by Mo doping, where a low-water-splitting voltage of 1.61 V at 10 mA cm−2 is obtained.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Y. Zheng, Y. Jiao, A. Vasileff, S. Qiao, The hydrogen evolution reaction in alkaline solution: from theory, single crystal models, to practical electrocatalysts. Angew. Chem. Int. Ed. 57, 7568–7579 (2018). https://doi.org/10.1002/anie.201710556
- Y. Luo, L. Tang, U. Khan, Q. Yu, H. Cheng, X. Zou, B. Liu, Morphology and surface chemistry engineering toward pH-universal catalysts for hydrogen evolution at high current density. Nat. Commun. 10, 269 (2019). https://doi.org/10.1038/s41467-018-07792-9
- X. Liu, Y. Jiao, Y. Zheng, K. Devey, S. Qiao, A computational study on Pt and Ru dimers supported on graphene for the hydrogen evolution reaction: new insight into the alkaline mechanism. J. Mater. Chem. A 7, 3648–3654 (2019). https://doi.org/10.1039/C8TA11626A
- X. Zou, Y. Wu, Y. Liu, D. Liu, W. Li et al., In situ generation of bifunctional, efficient Fe-based catalysts from mackinawite iron sulfide for water splitting. Chem 4, 1–14 (2018). https://doi.org/10.1016/j.chempr.2018.02.023
- Q. Liang, L. Zhong, C. Du, Y. Luo, Y. Zheng, S. Li, Q. Yan, Achieving highly efficient electrocatalytic oxygen evolution with ultrathin 2D Fe-doped nickel thiophosphate nanosheets. Nano Energy 47, 257–265 (2018). https://doi.org/10.1016/j.nanoen.2018.02.048
- D. Strmcnik, P.P. Lopes, B. Genorio, V.R. Stamenkovic, N.M. Markovic, Design principles for hydrogen evolution reaction catalyst materials. Nano Energy 29, 29–36 (2016). https://doi.org/10.1016/j.nanoen.2016.04.017
- Z. Qian, Y. Chen, Z. Tang, Z. Liu, X. Wang, Y. Tian, W. Gao, Hollow nanocages of NixCo1−xSe for efficient zinc–air batteries and overall water splitting. Nano-Micro Lett. 11, 28 (2019). https://doi.org/10.1007/s40820-019-0258-0
- S. Deng, K. Zhang, D. Xie, Y. Zhang, Y. Zhang et al., High-index-faceted Ni3S2 branch arrays as bifunctional electrocatalysts for efficient water splitting. Nano-Micro Lett. 11, 12 (2019). https://doi.org/10.1007/s40820-019-0242-8
- Y. Li, J. Yin, L. An, M. Lu, K. Sun et al., FeS2/CoS2 interface nanosheets as efficient bifunctional electrocatalyst for overall water splitting. Small 14, 1801070 (2018). https://doi.org/10.1002/smll.201801070
- Q. Zhao, J. Yang, M. Liu, R. Wang, G. Zhang et al., Tuning electronic push/pull of Ni-based hydroxides to enhance hydrogen and oxygen evolution reactions for water splitting. ACS Catal. 8, 5621–5629 (2018). https://doi.org/10.1021/acscatal.8b01567
- Q. Hu, X. Liu, B. Zhu, L. Fan, X. Chai et al., Crafting MoC2-doped bimetallic alloy nanoparticles encapsulated within N-doped graphene as roust bifunctional electrocatalysts for overall water splitting. Nano Energy 50, 212–219 (2018). https://doi.org/10.1016/j.nanoen.2018.05.033
- J. Zhang, X. Bai, T. Wang, W. Xiao, P. Xi, J. Wang, D. Gao, J. Wang, Bimetallic nickel cobalt sulfide as efficient electrocatalyst for Zn–air battery and water splitting. Nano-Micro Lett. 11, 2 (2019). https://doi.org/10.1007/s40820-018-0232-2
- J. Li, W. Xu, J. Luo, D. Zhou, D. Zhang, L. Wei, P. Xu, D. Yuan, Synthesis of 3D hexagram-like cobalt–manganese sulfides nanosheets grown on nickel foam: a bifunctional electrocatalyst for overall water splitting. Nano-Micro Lett. 10, 6 (2018). https://doi.org/10.1007/s40820-017-0160-6
- Y. Huang, X. Song, J. Deng, C. Zha, W. Huang, Y. Wu, Y. Li, Ultra-dispersed molybdenum phosphide and phosphosulfide nanoparticles on hierarchical carbonaceous scaffolds for hydrogen evolution electrocatalysis. Appl. Catal. B-Environ. 245, 656–661 (2019). https://doi.org/10.1016/j.apcatb.2019.01.034
- K. Liu, F. Wanng, P. He, T.A. Shifa, Z. Wang, Z. Cheng, X. Zhan, J. He, The role of active oxide species for electrochemical water oxidation on the surface of 3d-metal phosphides. Adv. Energy Mater. 8, 1703290 (2018). https://doi.org/10.1002/aenm.201703290
- H.F. Liang, A.N. Gandi, D.H. Anjum, X.B. Wang, U. Schwingenschlögl, H.N. Alshareef, Plasma-assisted synthesis of NiCoP for efficient overall water splitting. Nano Lett. 16, 7718–7725 (2016). https://doi.org/10.1021/acs.nanolett.6b03803
- L. Yang, Z. Guo, J. Huang, Y. Xi, R. Gao et al., Vertical growth of 2D amorphous FePO4 nanosheet on Ni foam: outer and inner structural design for superior water splitting. Adv. Mater. 29, 1704574 (2017). https://doi.org/10.1002/adma.201704574
- Y. Zhao, B. Jin, A. Vasileff, Y. Jiao, S. Qiao, Interfacial nickel nitride/sulfide as a bifunctional electrode for highly efficient overall water/seawater electrolysis. J. Mater. Chem. A 7, 8117–8121 (2019). https://doi.org/10.1039/c9ta01903k
- S. Ye, Z. Shi, J. Feng, Y. Tong, G. Li, Activating CoOOH porous nanosheet arrays by partial iron substitution for efficient oxygen evolution reaction. Angew. Chem. Int. Ed. 57, 2672 (2018). https://doi.org/10.1002/anie.201712549
- Q. Hu, G. Li, X. Liu, B. Zhu, G. Li et al., Coupling pentlandite nanoparticles and dual-doped carbon networks to yield efficient and stable electrocatalysts for acid water oxidation. J. Mater. Chem. A 7, 461–468 (2019). https://doi.org/10.1039/c8ta09534e
- K.N. Dinh, X. Sun, Z. Dai, Y. Zheng, P. Zheng et al., O2 plasma and cation tuned nickel phosphide nanosheets for highly efficient overall water splitting. Nano Energy 54, 82–90 (2018). https://doi.org/10.1016/j.nanoen.2018.10.004
- J. Masa, S. Barwe, C. Andronescu, I. Sinev, A. Ruff et al., Low overpotential water splitting using cobalt-cobalt phosphide nanoparticles supported on nickel foam. ACS Energy Lett. 1, 1192–1198 (2016). https://doi.org/10.1021/acsenergylett.6b00532
- G. Zhang, G. Wang, Y. Liu, H. Liu, J. Qu, J. Li, Highly active and stable catalysts of phytic acid-derivative transition metal phosphides for full water splitting. J. Am. Chem. Soc. 138, 14686–14693 (2016). https://doi.org/10.1021/jacs.6b08491
- Y. Wu, X. Tao, Y. Qing, H. Xu, F. Yang et al., Cr-doped FeNi–P nanoparticles encapsulated into N-doped carbon nanotube as a robust bifunctional catalyst for efficient overall water splitting. Adv. Mater. 31, 1900178 (2019). https://doi.org/10.1002/adma.201900178
- C. Liu, G. Zhang, L. Yu, J. Qu, H. Liu, Oxygen doping to optimize atomic hydrogen binding energy on NiCoP for highly efficient hydrogen evolution. Small 14, 1800421 (2018). https://doi.org/10.1002/smll.201800421
- Q. Zhang, D. Yan, Z. Nie, X. Qiu, S. Wang et al., Iron-doped NiCoP porous nanosheet arrays as a highly efficient electrocatalyst for oxygen evolution reaction. ACS Appl. Energy Mater. 1, 571–579 (2018). https://doi.org/10.1021/acsaem.7b00143
- T. Bao, L. Song, S. Zhang, Synthesis of carbon quantum dot-doped NiCoP and enhanced electrocatalytic hydrogen evolution ability and mechanism. Chem. Eng. J. 351, 189–194 (2018). https://doi.org/10.1016/j.cej.2018.06.080
- Y. Jiang, Y. Lu, J. Lin, X. Wang, Z. Shen, A hierarchical MoP nanoflake array supported on Ni foam: a bifunctional electrocatalyst for overall water splitting. Small Methods 2, 1700369 (2018). https://doi.org/10.1002/smtd.201700369
- F. Hu, S. Zhu, S. Chen, Y. Li, L. Ma et al., Amorphous metallic NiFeP: a conductive bulk material achieving high activity for oxygen evolution reaction in both alkaline and acidic media. Adv. Mater. 29, 1606570 (2017). https://doi.org/10.1002/adma.201606570
- T. Wang, G. Nam, Y. Jin, X. Wang, P. Ren et al., NiFe (Oxy) hydroxides derived from NiFe disulfides as an efficient oxygen evolution catalyst for rechargeable Zn–air batteries: the effect of surface S residues. Adv. Mater. 30, 1800757 (2018). https://doi.org/10.1002/adma.201800757
- D. Liu, Q. Lu, Y. Luo, X. Sun, A.M. Asiri, NiCo2S4 nanowires array as an efficient bifunctional electrocatalyst for full water splitting with superior activity. Nanoscale 7, 15122–15126 (2015). https://doi.org/10.1039/C5NR04064G
- Z. Zhang, X. Ma, J. Tang, Porous NiMoO4−x/MoO2 hybrids as highly effective electrocatalysts for the water splitting reaction. J. Mater. Chem. A 6, 12361–12369 (2018). https://doi.org/10.1039/C8TA03047B
- Z. Wang, H. Liu, R. Ge, X. Ren, J. Ren, D. Yang, L. Zhang, X. Sun, Phosphorus-doped Co3O4 nanowire array: a highly efficient bifunctional electrocatalyst for overall water splitting. ACS Catal. 8, 2236–2241 (2018). https://doi.org/10.1021/acscatal.7b03594
- Y. Pan, Y. Liu, J. Zhao, K. Yang, J. Liang et al., Monodispersed nickel phosphide nanocrystals with different phases: synthesis, characterization and electrocatalytic properties for hydrogen evolution. J. Mater. Chem. A 3, 1656–1665 (2015). https://doi.org/10.1039/C4TA04867A
- C. Du, L. Yang, F. Yang, G. Cheng, W. Luo, Nest-like NiCoP for highly efficient overall water splitting. ACS Catal. 7, 4131–4137 (2017). https://doi.org/10.1021/acscatal.7b00662
- E. Hu, Y. Feng, J. Nai, D. Zhao, Y. Hu, X.W. Lou, Construction of hierarchical Ni–Co–P hollow nanobricks with oriented nanosheets for efficient overall water splitting. Energy Environ. Sci. 11, 872–880 (2018). https://doi.org/10.1039/C8EE00076J
- C. Tang, R. Zhang, W. Lu, Z. Wang, D. Liu et al., Energy-saving electrolytic hydrogen generation: Ni2P nanoarray as a high-performance non-noble-metal electrocatalyst. Angew. Chem. Int. Ed. 129, 860–864 (2017). https://doi.org/10.1002/ange.201608899
- Y. Sun, K. Xu, Z. Wei, H. Li, T. Zhang et al., Strong electronic interaction in dual-cation-incorporated NiSe2 nanosheets with lattice distortion for highly efficient overall water splitting. Adv. Mater. 30, 1802121 (2018). https://doi.org/10.1002/adma.201802121
- Z. Cui, Y. Ge, H. Chu, R. Baines, P. Dong et al., Controlled synthesis of Mo-doped Ni3S2 nano-rods: an efficient and stable electro-catalyst for water splitting. J. Mater. Chem. A 5, 1595–1602 (2017). https://doi.org/10.1039/c6ta09853cJ
- H. Liu, Q. He, H. Jiang, Y. Lin, Y. Zhang, M. Habib, S. Chen, L. Song, Electronic structure reconfiguration toward pyrite NiS2 via engineered heteroatom defect boosting overall water splitting. ACS Nano 11, 11574–11583 (2017). https://doi.org/10.1021/acsnano.7b06501
- Y. Sun, L. Hang, Q. Shen, T. Zhang, H. Li, X. Zhang, X. Lyu, Y. Li, Mo doped Ni2P nanowire arrays: an efficient electrocatalyst for the hydrogen evolution reaction with enhanced activity at all pH values. Nanoscale 9, 16674–16679 (2017). https://doi.org/10.1039/c7nr03515b
- J. Greeley, T.F. Jaramillo, J. Bonde, I. Chorkendorff, J.K. Nørskov, Computational high-throughput screening of electrocatalytic materials for hydrogen evolution. Nat. Mater. 5, 909–913 (2006). https://doi.org/10.1142/9789814317665_0041
- H. Jin, J. Wang, D. Su, Z. Wei, Z. Pang, Y. Wang, In situ cobalt–cobalt oxide/N-doped carbon hybrids as superior bifunctional electrocatalysts for hydrogen and oxygen evolution. J. Am. Chem. Soc. 137, 2688–2694 (2015). https://doi.org/10.1021/ja5127165
- J. Wang, J. Liu, B. Zhang, F. Cheng, Y. Ruan et al., Stabilizing the oxygen vacancies and promoting water-oxidation kinetics in cobalt oxides by lower valence-state doping. Nano Energy 53, 144–151 (2018). https://doi.org/10.1016/j.nanoen.2018.08.022
- L. Hou, Y. Shi, C. Wu, Y. Zhang, Y. Ma et al., Monodisperse metallic NiCoSe2 hollow sub-microspheres: formation process, intrinsic charge-storage mechanism, and appealing pseudocapacitance as highly conductive electrode for electrochemical supercapacitors. Adv. Funct. Mater. 28, 1705921 (2018). https://doi.org/10.1002/adfm.201705921
- C.Z. Yuan, J.Y. Li, L.R. Hou, X.G. Zhang, L.F. Shen, X.W. Lou, Ultrathin mesoporous NiCo2O4 nanosheets supported on Ni foam as advanced electrodes for supercapacitors. Adv. Funct. Mater. 22, 4592 (2012). https://doi.org/10.1002/adfm.201200994
References
Y. Zheng, Y. Jiao, A. Vasileff, S. Qiao, The hydrogen evolution reaction in alkaline solution: from theory, single crystal models, to practical electrocatalysts. Angew. Chem. Int. Ed. 57, 7568–7579 (2018). https://doi.org/10.1002/anie.201710556
Y. Luo, L. Tang, U. Khan, Q. Yu, H. Cheng, X. Zou, B. Liu, Morphology and surface chemistry engineering toward pH-universal catalysts for hydrogen evolution at high current density. Nat. Commun. 10, 269 (2019). https://doi.org/10.1038/s41467-018-07792-9
X. Liu, Y. Jiao, Y. Zheng, K. Devey, S. Qiao, A computational study on Pt and Ru dimers supported on graphene for the hydrogen evolution reaction: new insight into the alkaline mechanism. J. Mater. Chem. A 7, 3648–3654 (2019). https://doi.org/10.1039/C8TA11626A
X. Zou, Y. Wu, Y. Liu, D. Liu, W. Li et al., In situ generation of bifunctional, efficient Fe-based catalysts from mackinawite iron sulfide for water splitting. Chem 4, 1–14 (2018). https://doi.org/10.1016/j.chempr.2018.02.023
Q. Liang, L. Zhong, C. Du, Y. Luo, Y. Zheng, S. Li, Q. Yan, Achieving highly efficient electrocatalytic oxygen evolution with ultrathin 2D Fe-doped nickel thiophosphate nanosheets. Nano Energy 47, 257–265 (2018). https://doi.org/10.1016/j.nanoen.2018.02.048
D. Strmcnik, P.P. Lopes, B. Genorio, V.R. Stamenkovic, N.M. Markovic, Design principles for hydrogen evolution reaction catalyst materials. Nano Energy 29, 29–36 (2016). https://doi.org/10.1016/j.nanoen.2016.04.017
Z. Qian, Y. Chen, Z. Tang, Z. Liu, X. Wang, Y. Tian, W. Gao, Hollow nanocages of NixCo1−xSe for efficient zinc–air batteries and overall water splitting. Nano-Micro Lett. 11, 28 (2019). https://doi.org/10.1007/s40820-019-0258-0
S. Deng, K. Zhang, D. Xie, Y. Zhang, Y. Zhang et al., High-index-faceted Ni3S2 branch arrays as bifunctional electrocatalysts for efficient water splitting. Nano-Micro Lett. 11, 12 (2019). https://doi.org/10.1007/s40820-019-0242-8
Y. Li, J. Yin, L. An, M. Lu, K. Sun et al., FeS2/CoS2 interface nanosheets as efficient bifunctional electrocatalyst for overall water splitting. Small 14, 1801070 (2018). https://doi.org/10.1002/smll.201801070
Q. Zhao, J. Yang, M. Liu, R. Wang, G. Zhang et al., Tuning electronic push/pull of Ni-based hydroxides to enhance hydrogen and oxygen evolution reactions for water splitting. ACS Catal. 8, 5621–5629 (2018). https://doi.org/10.1021/acscatal.8b01567
Q. Hu, X. Liu, B. Zhu, L. Fan, X. Chai et al., Crafting MoC2-doped bimetallic alloy nanoparticles encapsulated within N-doped graphene as roust bifunctional electrocatalysts for overall water splitting. Nano Energy 50, 212–219 (2018). https://doi.org/10.1016/j.nanoen.2018.05.033
J. Zhang, X. Bai, T. Wang, W. Xiao, P. Xi, J. Wang, D. Gao, J. Wang, Bimetallic nickel cobalt sulfide as efficient electrocatalyst for Zn–air battery and water splitting. Nano-Micro Lett. 11, 2 (2019). https://doi.org/10.1007/s40820-018-0232-2
J. Li, W. Xu, J. Luo, D. Zhou, D. Zhang, L. Wei, P. Xu, D. Yuan, Synthesis of 3D hexagram-like cobalt–manganese sulfides nanosheets grown on nickel foam: a bifunctional electrocatalyst for overall water splitting. Nano-Micro Lett. 10, 6 (2018). https://doi.org/10.1007/s40820-017-0160-6
Y. Huang, X. Song, J. Deng, C. Zha, W. Huang, Y. Wu, Y. Li, Ultra-dispersed molybdenum phosphide and phosphosulfide nanoparticles on hierarchical carbonaceous scaffolds for hydrogen evolution electrocatalysis. Appl. Catal. B-Environ. 245, 656–661 (2019). https://doi.org/10.1016/j.apcatb.2019.01.034
K. Liu, F. Wanng, P. He, T.A. Shifa, Z. Wang, Z. Cheng, X. Zhan, J. He, The role of active oxide species for electrochemical water oxidation on the surface of 3d-metal phosphides. Adv. Energy Mater. 8, 1703290 (2018). https://doi.org/10.1002/aenm.201703290
H.F. Liang, A.N. Gandi, D.H. Anjum, X.B. Wang, U. Schwingenschlögl, H.N. Alshareef, Plasma-assisted synthesis of NiCoP for efficient overall water splitting. Nano Lett. 16, 7718–7725 (2016). https://doi.org/10.1021/acs.nanolett.6b03803
L. Yang, Z. Guo, J. Huang, Y. Xi, R. Gao et al., Vertical growth of 2D amorphous FePO4 nanosheet on Ni foam: outer and inner structural design for superior water splitting. Adv. Mater. 29, 1704574 (2017). https://doi.org/10.1002/adma.201704574
Y. Zhao, B. Jin, A. Vasileff, Y. Jiao, S. Qiao, Interfacial nickel nitride/sulfide as a bifunctional electrode for highly efficient overall water/seawater electrolysis. J. Mater. Chem. A 7, 8117–8121 (2019). https://doi.org/10.1039/c9ta01903k
S. Ye, Z. Shi, J. Feng, Y. Tong, G. Li, Activating CoOOH porous nanosheet arrays by partial iron substitution for efficient oxygen evolution reaction. Angew. Chem. Int. Ed. 57, 2672 (2018). https://doi.org/10.1002/anie.201712549
Q. Hu, G. Li, X. Liu, B. Zhu, G. Li et al., Coupling pentlandite nanoparticles and dual-doped carbon networks to yield efficient and stable electrocatalysts for acid water oxidation. J. Mater. Chem. A 7, 461–468 (2019). https://doi.org/10.1039/c8ta09534e
K.N. Dinh, X. Sun, Z. Dai, Y. Zheng, P. Zheng et al., O2 plasma and cation tuned nickel phosphide nanosheets for highly efficient overall water splitting. Nano Energy 54, 82–90 (2018). https://doi.org/10.1016/j.nanoen.2018.10.004
J. Masa, S. Barwe, C. Andronescu, I. Sinev, A. Ruff et al., Low overpotential water splitting using cobalt-cobalt phosphide nanoparticles supported on nickel foam. ACS Energy Lett. 1, 1192–1198 (2016). https://doi.org/10.1021/acsenergylett.6b00532
G. Zhang, G. Wang, Y. Liu, H. Liu, J. Qu, J. Li, Highly active and stable catalysts of phytic acid-derivative transition metal phosphides for full water splitting. J. Am. Chem. Soc. 138, 14686–14693 (2016). https://doi.org/10.1021/jacs.6b08491
Y. Wu, X. Tao, Y. Qing, H. Xu, F. Yang et al., Cr-doped FeNi–P nanoparticles encapsulated into N-doped carbon nanotube as a robust bifunctional catalyst for efficient overall water splitting. Adv. Mater. 31, 1900178 (2019). https://doi.org/10.1002/adma.201900178
C. Liu, G. Zhang, L. Yu, J. Qu, H. Liu, Oxygen doping to optimize atomic hydrogen binding energy on NiCoP for highly efficient hydrogen evolution. Small 14, 1800421 (2018). https://doi.org/10.1002/smll.201800421
Q. Zhang, D. Yan, Z. Nie, X. Qiu, S. Wang et al., Iron-doped NiCoP porous nanosheet arrays as a highly efficient electrocatalyst for oxygen evolution reaction. ACS Appl. Energy Mater. 1, 571–579 (2018). https://doi.org/10.1021/acsaem.7b00143
T. Bao, L. Song, S. Zhang, Synthesis of carbon quantum dot-doped NiCoP and enhanced electrocatalytic hydrogen evolution ability and mechanism. Chem. Eng. J. 351, 189–194 (2018). https://doi.org/10.1016/j.cej.2018.06.080
Y. Jiang, Y. Lu, J. Lin, X. Wang, Z. Shen, A hierarchical MoP nanoflake array supported on Ni foam: a bifunctional electrocatalyst for overall water splitting. Small Methods 2, 1700369 (2018). https://doi.org/10.1002/smtd.201700369
F. Hu, S. Zhu, S. Chen, Y. Li, L. Ma et al., Amorphous metallic NiFeP: a conductive bulk material achieving high activity for oxygen evolution reaction in both alkaline and acidic media. Adv. Mater. 29, 1606570 (2017). https://doi.org/10.1002/adma.201606570
T. Wang, G. Nam, Y. Jin, X. Wang, P. Ren et al., NiFe (Oxy) hydroxides derived from NiFe disulfides as an efficient oxygen evolution catalyst for rechargeable Zn–air batteries: the effect of surface S residues. Adv. Mater. 30, 1800757 (2018). https://doi.org/10.1002/adma.201800757
D. Liu, Q. Lu, Y. Luo, X. Sun, A.M. Asiri, NiCo2S4 nanowires array as an efficient bifunctional electrocatalyst for full water splitting with superior activity. Nanoscale 7, 15122–15126 (2015). https://doi.org/10.1039/C5NR04064G
Z. Zhang, X. Ma, J. Tang, Porous NiMoO4−x/MoO2 hybrids as highly effective electrocatalysts for the water splitting reaction. J. Mater. Chem. A 6, 12361–12369 (2018). https://doi.org/10.1039/C8TA03047B
Z. Wang, H. Liu, R. Ge, X. Ren, J. Ren, D. Yang, L. Zhang, X. Sun, Phosphorus-doped Co3O4 nanowire array: a highly efficient bifunctional electrocatalyst for overall water splitting. ACS Catal. 8, 2236–2241 (2018). https://doi.org/10.1021/acscatal.7b03594
Y. Pan, Y. Liu, J. Zhao, K. Yang, J. Liang et al., Monodispersed nickel phosphide nanocrystals with different phases: synthesis, characterization and electrocatalytic properties for hydrogen evolution. J. Mater. Chem. A 3, 1656–1665 (2015). https://doi.org/10.1039/C4TA04867A
C. Du, L. Yang, F. Yang, G. Cheng, W. Luo, Nest-like NiCoP for highly efficient overall water splitting. ACS Catal. 7, 4131–4137 (2017). https://doi.org/10.1021/acscatal.7b00662
E. Hu, Y. Feng, J. Nai, D. Zhao, Y. Hu, X.W. Lou, Construction of hierarchical Ni–Co–P hollow nanobricks with oriented nanosheets for efficient overall water splitting. Energy Environ. Sci. 11, 872–880 (2018). https://doi.org/10.1039/C8EE00076J
C. Tang, R. Zhang, W. Lu, Z. Wang, D. Liu et al., Energy-saving electrolytic hydrogen generation: Ni2P nanoarray as a high-performance non-noble-metal electrocatalyst. Angew. Chem. Int. Ed. 129, 860–864 (2017). https://doi.org/10.1002/ange.201608899
Y. Sun, K. Xu, Z. Wei, H. Li, T. Zhang et al., Strong electronic interaction in dual-cation-incorporated NiSe2 nanosheets with lattice distortion for highly efficient overall water splitting. Adv. Mater. 30, 1802121 (2018). https://doi.org/10.1002/adma.201802121
Z. Cui, Y. Ge, H. Chu, R. Baines, P. Dong et al., Controlled synthesis of Mo-doped Ni3S2 nano-rods: an efficient and stable electro-catalyst for water splitting. J. Mater. Chem. A 5, 1595–1602 (2017). https://doi.org/10.1039/c6ta09853cJ
H. Liu, Q. He, H. Jiang, Y. Lin, Y. Zhang, M. Habib, S. Chen, L. Song, Electronic structure reconfiguration toward pyrite NiS2 via engineered heteroatom defect boosting overall water splitting. ACS Nano 11, 11574–11583 (2017). https://doi.org/10.1021/acsnano.7b06501
Y. Sun, L. Hang, Q. Shen, T. Zhang, H. Li, X. Zhang, X. Lyu, Y. Li, Mo doped Ni2P nanowire arrays: an efficient electrocatalyst for the hydrogen evolution reaction with enhanced activity at all pH values. Nanoscale 9, 16674–16679 (2017). https://doi.org/10.1039/c7nr03515b
J. Greeley, T.F. Jaramillo, J. Bonde, I. Chorkendorff, J.K. Nørskov, Computational high-throughput screening of electrocatalytic materials for hydrogen evolution. Nat. Mater. 5, 909–913 (2006). https://doi.org/10.1142/9789814317665_0041
H. Jin, J. Wang, D. Su, Z. Wei, Z. Pang, Y. Wang, In situ cobalt–cobalt oxide/N-doped carbon hybrids as superior bifunctional electrocatalysts for hydrogen and oxygen evolution. J. Am. Chem. Soc. 137, 2688–2694 (2015). https://doi.org/10.1021/ja5127165
J. Wang, J. Liu, B. Zhang, F. Cheng, Y. Ruan et al., Stabilizing the oxygen vacancies and promoting water-oxidation kinetics in cobalt oxides by lower valence-state doping. Nano Energy 53, 144–151 (2018). https://doi.org/10.1016/j.nanoen.2018.08.022
L. Hou, Y. Shi, C. Wu, Y. Zhang, Y. Ma et al., Monodisperse metallic NiCoSe2 hollow sub-microspheres: formation process, intrinsic charge-storage mechanism, and appealing pseudocapacitance as highly conductive electrode for electrochemical supercapacitors. Adv. Funct. Mater. 28, 1705921 (2018). https://doi.org/10.1002/adfm.201705921
C.Z. Yuan, J.Y. Li, L.R. Hou, X.G. Zhang, L.F. Shen, X.W. Lou, Ultrathin mesoporous NiCo2O4 nanosheets supported on Ni foam as advanced electrodes for supercapacitors. Adv. Funct. Mater. 22, 4592 (2012). https://doi.org/10.1002/adfm.201200994