Wafer-Scale Vertical 1D GaN Nanorods/2D MoS2/PEDOT:PSS for Piezophototronic Effect-Enhanced Self-Powered Flexible Photodetectors
Corresponding Author: Guoqiang Li
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 56
Abstract
van der Waals (vdW) heterostructures constructed by low-dimensional (0D, 1D, and 2D) materials are emerging as one of the most appealing systems in next-generation flexible photodetection. Currently, hand-stacked vdW-type photodetectors are not compatible with large-area-array fabrication and show unimpressive performance in self-powered mode. Herein, vertical 1D GaN nanorods arrays (NRAs)/2D MoS2/PEDOT:PSS in wafer scale have been proposed for self-powered flexible photodetectors arrays firstly. The as-integrated device without external bias under weak UV illumination exhibits a competitive responsivity of 1.47 A W−1 and a high detectivity of 1.2 × 1011 Jones, as well as a fast response speed of 54/71 µs, thanks to the strong light absorption of GaN NRAs and the efficient photogenerated carrier separation in type-II heterojunction. Notably, the strain-tunable photodetection performances of device have been demonstrated. Impressively, the device at − 0.78% strain and zero bias reveals a significantly enhanced photoresponse with a responsivity of 2.47 A W−1, a detectivity of 2.6 × 1011 Jones, and response times of 40/45 µs, which are superior to the state-of-the-art self-powered flexible photodetectors. This work presents a valuable avenue to prepare tunable vdWs heterostructures for self-powered flexible photodetection, which performs well in flexible sensors.
Highlights:
1 Vertical 1D GaN nanorod arrays/2D MoS2/PEDOT:PSS heterostructures in wafer scale have been fabricated for flexible photodetection firstly.
2 Self-powered flexible photodetector at compressive strain reveals a significantly enhanced photoresponse with a responsivity of 2.47 A W−1 and response times of 40/45 µs, which are superior to the state-of-the-art flexible devices.
3 This work not only provides a valuable strategy for the design and construction of tunable van der Waals heterostructures, but also opens a new opportunity for flexible sensors.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Z. Wang, G. Shen, Flexible optoelectronic sensors: status and prospects. Mater. Chem. Front. 7, 1496–1519 (2023). https://doi.org/10.1039/d2qm01319c
- G. Yang, J. Li, M. Wu, X. Yu, J. Yu, Recent advances in materials, structures, and applications of flexible photodetectors. Adv. Electron. Mater. 9, 2300340 (2023). https://doi.org/10.1002/aelm.202300340
- M. Peng, Z. Wen, X. Sun, Recent progress of flexible photodetectors based on low-dimensional II–VI semiconductors and their application in wearable electronics. Adv. Funct. Mater. 33, 2211548 (2023). https://doi.org/10.1002/adfm.202211548
- D. Wu, C. Guo, L. Zeng, X. Ren, Z. Shi et al., Phase-controlled van der Waals growth of wafer-scale 2D MoTe2 layers for integrated high-sensitivity broadband infrared photodetection. Light Sci. Appl. 12, 5 (2023). https://doi.org/10.1038/s41377-022-01047-5
- L. Zeng, D. Wu, J. Jie, X. Ren, X. Hu et al., van der Waals epitaxial growth of mosaic-like 2D platinum ditelluride layers for room-temperature mid-infrared photodetection up to 10.6 µm. Adv. Mater. 32, e2004412 (2020). https://doi.org/10.1002/adma.202004412
- D. Wu, M. Xu, L. Zeng, Z. Shi, Y. Tian et al., In situ fabrication of PdSe2/GaN Schottky junction for polarization-sensitive ultraviolet photodetection with high dichroic ratio. ACS Nano 16, 5545–5555 (2022). https://doi.org/10.1021/acsnano.1c10181
- M. Dai, H. Chen, R. Feng, W. Feng, Y. Hu et al., A dual-band multilayer InSe self-powered photodetector with high performance induced by surface plasmon resonance and asymmetric Schottky junction. ACS Nano 12, 8739–8747 (2018). https://doi.org/10.1021/acsnano.8b04931
- C. Thota, G. Murali, R. Dhanalakshmi, M. Reddeppa, N.-H. Bak et al., 2D MXene/1D GaN van der Waals heterojunction for self-powered UV photodetector. Appl. Phys. Lett. 122, 031102 (2023). https://doi.org/10.1063/5.0132756
- X. Du, W. Tian, J. Pan, B. Hui, J. Sun et al., Piezo-phototronic effect promoted carrier separation in coaxial p-n junctions for self-powered photodetector. Nano Energy 92, 106694 (2022). https://doi.org/10.1016/j.nanoen.2021.106694
- D. Guo, Y. Su, H. Shi, P. Li, N. Zhao et al., Self-powered ultraviolet photodetector with superhigh photoresponsivity (3.05 A/W) based on the GaN/Sn: Ga2O3 pn junction. ACS Nano 12, 12827–12835 (2018). https://doi.org/10.1021/acsnano.8b07997
- Y. Zheng, Y. Li, X. Tang, W. Wang, G. Li, A self-powered high-performance UV photodetector based on core–shell GaN/MoO3–x nanorod array heterojunction. Adv. Optical Mater. 8, 2000197 (2020). https://doi.org/10.1002/adom.202000197
- L.-H. Zeng, S.-H. Lin, Z.-J. Li, Z.-X. Zhang, T.-F. Zhang et al., Photodetectors: fast, self-driven, air-stable, and broadband photodetector based on vertically aligned PtSe2/GaAs heterojunction. Adv. Funct. Mater. 28, 1870106 (2018). https://doi.org/10.1002/adfm.201870106
- D. Wu, J. Guo, J. Du, C. Xia, L. Zeng et al., Highly polarization-sensitive, broadband, self-powered photodetector based on graphene/PdSe2/germanium heterojunction. ACS Nano 13, 9907–9917 (2019). https://doi.org/10.1021/acsnano.9b03994
- P. Wang, Y. Lan, C. Huan, J. Luo, W. Cai et al., Recent progress on performance-enhancing strategies in flexible photodetectors: from structural engineering to flexible integration. Mater. Sci. Eng. R. Rep. 156, 100759 (2023). https://doi.org/10.1016/j.mser.2023.100759
- H. Peng, H. Li, E. Guo, T. Zhai, High-performance Te nanowires/MoS2/polyimine nanocomposite-based self-healable, recyclable and screen-printable flexible photodetector for image sensing. Adv. Funct. Mater. 34, 2314743 (2024). https://doi.org/10.1002/adfm.202314743
- J. Huo, G. Zou, Y. Xiao, T. Sun, B. Feng et al., High performance 1D–2D CuO/MoS2 photodetectors enhanced by femtosecond laser-induced contact engineering. Mater. Horiz. 10, 524–535 (2023). https://doi.org/10.1039/d2mh01088g
- Y. Zhang, Y. Xu, L. Gao, X. Liu, Y. Fu et al., MXene-based mixed-dimensional Schottky heterojunction towards self-powered flexible high-performance photodetector. Mater. Today Phys. 21, 100479 (2021). https://doi.org/10.1016/j.mtphys.2021.100479
- Y. Cheng, C. Li, J. Li, T. Li, Y. Sun et al., Highly-sensitive, flexible, and self-powered UV photodetectors based on perovskites Cs3Cu2I5/PEDOT:PSS heterostructure. IEEE Electron Device Lett. 43, 2137–2140 (2022). https://doi.org/10.1109/led.2022.3218647
- M. He, Z. Xu, C. Zhao, Y. Gao, K. Ke et al., Sn-based self-powered ultrafast perovskite photodetectors with highly crystalline order for flexible imaging applications. Adv. Funct. Mater. 33, 2300282 (2023). https://doi.org/10.1002/adfm.202300282
- M. Wang, H. Sun, F. Cao, W. Tian, L. Li, Moisture-triggered self-healing flexible perovskite photodetectors with excellent mechanical stability. Adv. Mater. 33, e2100625 (2021). https://doi.org/10.1002/adma.202100625
- Y. Zhao, F. Guo, R. Ding, W.F. Io, S.-Y. Pang et al., Piezo-phototronic effect in 2D α-In2Se3/WSe2 van der Waals heterostructure for photodetector with enhanced photoresponse. Adv. Optical Mater. 9, 2100864 (2021). https://doi.org/10.1002/adom.202100864
- J. Zhang, F. Liu, D. Liu, Y. Yin, M. Wang et al., Toward smart flexible self-powered near-UV photodetector of amorphous Ga2O3 nanosheet. Mater. Today Phys. 31, 100997 (2023). https://doi.org/10.1016/j.mtphys.2023.100997
- C.W. Jang, S.-H. Choi, Self-powered semitransparent/flexible doped-graphene/WS2 vertical-heterostructure photodetectors. J. Alloys Compd. 901, 163685 (2022). https://doi.org/10.1016/j.jallcom.2022.163685
- J. Du, Q. Liao, M. Hong, B. Liu, X. Zhang et al., Piezotronic effect on interfacial charge modulation in mixed-dimensional van der Waals heterostructure for ultrasensitive flexible photodetectors. Nano Energy 58, 85–93 (2019). https://doi.org/10.1016/j.nanoen.2019.01.024
- X. Chen, B. Jiang, D. Wang, G. Li, H. Wang et al., Gate-tunable the interface properties of GaAs–WSe2 (1D–2D) vdWs heterojunction for high-responsivity, self-powered photodetector. Appl. Phys. Lett. 118, 041102 (2021). https://doi.org/10.1063/5.0035275
- Y. Zhang, Y. Xu, J. Guo, X. Zhang, X. Liu et al., Designing of 0D/2D mixed-dimensional van der Waals heterojunction over ultrathin g-C3N4 for high-performance flexible self-powered photodetector. Chem. Eng. J. 420, 129556 (2021). https://doi.org/10.1016/j.cej.2021.129556
- X. Yu, X. Wang, F. Zhou, J. Qu, J. Song, 2D van der Waals heterojunction nanophotonic devices: from fabrication to performance. Adv. Funct. Mater. 31, 2104260 (2021). https://doi.org/10.1002/adfm.202104260
- D. Wu, J. Guo, C. Wang, X. Ren, Y. Chen et al., Ultrabroadband and high-detectivity photodetector based on WS2/Ge heterojunction through defect engineering and interface passivation. ACS Nano 15, 10119–10129 (2021). https://doi.org/10.1021/acsnano.1c02007
- L. Zeng, W. Han, X. Ren, X. Li, D. Wu et al., Uncooled mid-infrared sensing enabled by chip-integrated low-temperature-grown 2D PdTe2 Dirac semimetal. Nano Lett. 23, 8241–8248 (2023). https://doi.org/10.1021/acs.nanolett.3c02396
- Y. Zheng, W. Wang, Y. Li, J. Lan, Y. Xia et al., Self-integrated hybrid ultraviolet photodetectors based on the vertically aligned InGaN nanorod array assembly on graphene. ACS Appl. Mater. Interfaces 11, 13589–13597 (2019). https://doi.org/10.1021/acsami.9b00940
- J. Lin, Y. Yu, Z. Zhang, F. Gao, S. Liu et al., A novel approach for achieving high-efficiency photoelectrochemical water oxidation in InGaN nanorods grown on Si system: MXene nanosheets as multifunctional interfacial modifier. Adv. Funct. Mater. 30, 1910479 (2020). https://doi.org/10.1002/adfm.201910479
- Y. Zheng, B. Cao, X. Tang, Q. Wu, W. Wang et al., Vertical 1D/2D heterojunction architectures for self-powered photodetection application: GaN nanorods grown on transition metal dichalcogenides. ACS Nano 16, 2798–2810 (2022). https://doi.org/10.1021/acsnano.1c09791
- C.-P. Lee, K.-Y. Lai, C.-A. Lin, C.-T. Li, K.-C. Ho et al., A paper-based electrode using a graphene dot/PEDOT: PSS composite for flexible solar cells. Nano Energy 36, 260–267 (2017). https://doi.org/10.1016/j.nanoen.2017.04.044
- S. Li, Z. Liu, M. Zhang, L. Yang, Y. Guo et al., High-performance self-powered GaN/PEDOT: PSS hybrid heterojunction UV photodetector for optical communication. Sci. China Technol. Sci. 67, 608–615 (2024). https://doi.org/10.1007/s11431-023-2501-5
- K.S. Pasupuleti, M. Reddeppa, B.G. Park, K.R. Peta, J.E. Oh et al., Ag nanowire-plasmonic-assisted charge separation in hybrid heterojunctions of ppy-PEDOT: PSS/GaN nanorods for enhanced UV photodetection. ACS Appl. Mater. Interfaces 12, 54181–54190 (2020). https://doi.org/10.1021/acsami.0c16795
- Y. Zou, Z. Zhang, J. Yan, L. Lin, G. Huang et al., High-temperature flexible WSe2 photodetectors with ultrahigh photoresponsivity. Nat. Commun. 13, 4372 (2022). https://doi.org/10.1038/s41467-022-32062-0
- M.L. Shi, L. Chen, T.B. Zhang, J. Xu, H. Zhu et al., Top-down integration of molybdenum disulfide transistors with wafer-scale uniformity and layer controllability. Small (2017). https://doi.org/10.1002/smll.201603157
- D. De Fazio, D.G. Purdie, A.K. Ott, P. Braeuninger-Weimer, T. Khodkov et al., High-mobility, wet-transferred graphene grown by chemical vapor deposition. ACS Nano 13, 8926–8935 (2019). https://doi.org/10.1021/acsnano.9b02621
- X. Tang, Y. Zheng, B. Cao, Q. Wu, J. Liang et al., GaN nanowire/Nb-doped MoS2 nanoflake heterostructures for fast UV–visible photodetectors. ACS Appl. Nano Mater. 5, 4515–4523 (2022). https://doi.org/10.1021/acsanm.2c00761
- H. Wang, Z. Lin, Y. Lin, W. Wang, G. Li, High-performance GaN-based LEDs on Si substrates: the utility of ex situ low-temperature AlN template with optimal thickness. IEEE Trans. Electron Devices 64, 4540–4546 (2017). https://doi.org/10.1109/TED.2017.2753844
- Z. Lin, H. Wang, S. Chen, Y. Lin, M. Yang et al., Achieving high-performance blue GaN-based light-emitting diodes by energy band modification on AlxInyGa1–x–yN electron blocking layer. IEEE Trans. Electron Devices 64, 472–480 (2017). https://doi.org/10.1109/TED.2016.2637407
- T. Zheng, P. Valencia-Acuna, P. Zereshki, K.M. Beech, L. Deng et al., Thickness-dependent interlayer charge transfer in MoSe2/MoS2 heterostructures studied by femtosecond transient absorption measurements. ACS Appl. Mater. Interfaces 13, 6489–6495 (2021). https://doi.org/10.1021/acsami.0c18268
- D. Ruzmetov, K. Zhang, G. Stan, B. Kalanyan, G.R. Bhimanapati et al., Vertical 2D/3D semiconductor heterostructures based on epitaxial molybdenum disulfide and gallium nitride. ACS Nano 10, 3580–3588 (2016). https://doi.org/10.1021/acsnano.5b08008
- K.-G. Zhou, F. Withers, Y. Cao, S. Hu, G. Yu et al., Raman modes of MoS2 used as fingerprint of van der Waals interactions in 2-D crystal-based heterostructures. ACS Nano 8, 9914–9924 (2014). https://doi.org/10.1021/nn5042703
- Y. Liu, D. Chen, G. Wei, Z. Lin, A. He et al., Temperature-dependent ultraviolet Raman scattering and anomalous Raman phenomenon of AlGaN/GaN heterostructure. Opt. Express 27, 4781–4788 (2019). https://doi.org/10.1364/OE.27.004781
- Y. Peng, J. Lu, D. Peng, W. Ma, F. Li et al., Dynamically modulated GaN whispering gallery lasing mode for strain sensor. Adv. Funct. Mater. 29, 1905051 (2019). https://doi.org/10.1002/adfm.201905051
- M. Tangi, P. Mishra, T.K. Ng, M.N. Hedhili, B. Janjua et al., Publisher’s Note: “Determination of band offsets at GaN/single-layer MoS2 heterojunction” [Appl. Phys. Lett. 109, 032104 (2016)]. Appl. Phys. Lett. 109, 079901 (2016). https://doi.org/10.1063/1.4961440
- J. Lin, Z. Zhang, J. Chai, B. Cao, X. Deng et al., Highly efficient InGaN nanorods photoelectrode by constructing Z-scheme charge transfer system for unbiased water splitting. Small 17, e2006666 (2021). https://doi.org/10.1002/smll.202006666
- G. Deokar, D. Vignaud, R. Arenal, P. Louette, J.-F. Colomer, Synthesis and characterization of MoS2 nanosheets. Nanotechnology 27, 075604 (2016). https://doi.org/10.1088/0957-4484/27/7/075604
- B. Lyu, S. Im, H. Jing, S. Lee, S.H. Kim et al., Work function engineering of electrohydrodynamic-jet-printed PEDOT:PSS electrodes for high-performance printed electronics. ACS Appl. Mater. Interfaces 12, 17799–17805 (2020). https://doi.org/10.1021/acsami.0c02580
- B. Liu, Q. Liao, X. Zhang, J. Du, Y. Ou et al., Strain-engineered van der Waals interfaces of mixed-dimensional heterostructure arrays. ACS Nano 13, 9057–9066 (2019). https://doi.org/10.1021/acsnano.9b03239
- A.K. Ganguli, A. Das, S. Manchala, S. Tiwari, Design of nanostructured materials for photocatalysis and photoelectrochemical aplications. J. Indian Chem. Soc. 97, 2525–2532 (2020)
- S. Bettis Homan, V.K. Sangwan, I. Balla, H. Bergeron, E.A. Weiss et al., Ultrafast exciton dissociation and long-lived charge separation in a photovoltaic pentacene-MoS2 van der Waals heterojunction. Nano Lett. 17, 164–169 (2017). https://doi.org/10.1021/acs.nanolett.6b03704
- P. Jian, X. Cai, Y. Zhao, D. Li, Z. Zhang et al., Large-scale synthesis and exciton dynamics of monolayer MoS2 on differently doped GaN substrates. Nanophotonics 12, 4475–4484 (2023). https://doi.org/10.1515/nanoph-2023-0503
- M.C. Schwinn, S. Rafiq, C. Lee, M.P. Bland, T.W. Song et al., Charge transfer dynamics and interlayer exciton formation in MoS2/VOPc mixed dimensional heterojunction. J. Chem. Phys. 157, 184701 (2022). https://doi.org/10.1063/5.0107791
- Y.-Y. Yue, Z. Wang, L. Wang, H.-Y. Wang, Y. Chen et al., Many-p induced band renormalization processes in few- and mono-layer MoS2. Nanotechnology 32, 135208 (2021). https://doi.org/10.1088/1361-6528/abcfec
- X. Zhang, X. Wu, X. Liu, G. Chen, Y. Wang et al., Heterostructural CsPbX3-PbS (X = Cl, Br, I) quantum dots with tunable vis–NIR dual emission. J. Am. Chem. Soc. 142, 4464–4471 (2020). https://doi.org/10.1021/jacs.9b13681
- X.A. Jeanbourquin, A. Rahmanudin, X. Yu, M. Johnson, N. Guijarro et al., Amorphous ternary charge-cascade molecules for bulk heterojunction photovoltaics. ACS Appl. Mater. Interfaces 9, 27825–27831 (2017). https://doi.org/10.1021/acsami.7b04983
- B. Cao, Q. Liu, Y. Zheng, X. Tang, J. Chai et al., Wafer-scale InN/In2S3 core–shell nanorod array for ultrafast self-powered photodetection. Adv. Funct. Mater. 32, 2110715 (2022). https://doi.org/10.1002/adfm.202110715
- W. Song, J. Chen, Z. Li, X. Fang, Self-powered MXene/GaN van der Waals heterojunction ultraviolet photodiodes with superhigh efficiency and stable current outputs. Adv. Mater. 33, e2101059 (2021). https://doi.org/10.1002/adma.202101059
- L.-H. Zeng, D. Wu, S.-H. Lin, C. Xie, H.-Y. Yuan et al., Controlled synthesis of 2D palladium diselenide for sensitive photodetector applications. Adv. Funct. Mater. 29, 1806878 (2019). https://doi.org/10.1002/adfm.201806878
- Z.R. Zytkiewicz, P. Dluzewski, J. Borysiuk, M. Sobanska, K. Klosek et al., Properties of GaN nanocolumns grown by plasma - assisted MBE on Si (111) substrates. Acta Phys. Pol. A 120, A-15-A-16 (2011). https://doi.org/10.1269/aphyspola.120.a-15
- Y. Peng, J. Lu, X. Wang, W. Ma, M. Que et al., Self-powered high-performance flexible GaN/ZnO heterostructure UV photodetectors with piezo-phototronic effect enhanced photoresponse. Nano Energy 94, 106945 (2022). https://doi.org/10.1016/j.nanoen.2022.106945
- X. Ma, S. Fu, J. Ding, M. Liu, A. Bian et al., Robust interlayer exciton in WS2/MoSe2 van der Waals heterostructure under high pressure. Nano Lett. 21, 8035–8042 (2021). https://doi.org/10.1021/acs.nanolett.1c02281
- R. Pan, J. Kang, Y. Li, Z. Zhang, R. Li et al., Highly enhanced photoluminescence of monolayer MoS2 in plasmonic hybrids with double-layer stacked Ag nanops. ACS Appl. Mater. Interfaces 14, 12495–12503 (2022). https://doi.org/10.1021/acsami.1c21960
- X. He, H. Li, Z. Zhu, Z. Dai, Y. Yang et al., Strain engineering in monolayer WS2, MoS2, and the WS2/MoS2 heterostructure. Appl. Phys. Lett. 109, 173105 (2016). https://doi.org/10.1063/1.4966218
- S. Sarkar, S. Goswami, M. Trushin, S. Saha, M. Panahandeh-Fard et al., Polaronic trions at the MoS2/SrTiO3 interface. Adv. Mater. 31, e1903569 (2019). https://doi.org/10.1002/adma.201903569
- H. Li, A.W. Contryman, X. Qian, S.M. Ardakani, Y. Gong et al., Optoelectronic crystal of artificial atoms in strain-textured molybdenum disulphide. Nat. Commun. 6, 7381 (2015). https://doi.org/10.1038/ncomms8381
- Y. Li, N. Stolte, B. Li, H. Li, G. Cheng et al., Interface charge-transfer induced intralayer excited-state biexcitons in graphene/WS2 van der Waals heterostructures. Nanoscale 11, 13552–13557 (2019). https://doi.org/10.1039/c9nr02862e
- C. Pan, J. Zhai, Z.L. Wang, Piezotronics and piezo-phototronics of third generation semiconductor nanowires. Chem. Rev. 119, 9303–9359 (2019). https://doi.org/10.1021/acs.chemrev.8b00599
- S.F. Leung, K.T. Ho, P.K. Kung, V.K.S. Hsiao, H.N. Alshareef et al., A self-powered and flexible organometallic halide perovskite photodetector with very high detectivity. Adv. Mater. 30, 1704611 (2018). https://doi.org/10.1002/adma.201704611
- I. Medhaug, J.A. Olseth, J. Reuder, UV radiation and skin cancer in Norway. J. Photochem. Photobiol. B Biol. 96, 232–241 (2009). https://doi.org/10.1016/j.jphotobiol.2009.06.011
References
Z. Wang, G. Shen, Flexible optoelectronic sensors: status and prospects. Mater. Chem. Front. 7, 1496–1519 (2023). https://doi.org/10.1039/d2qm01319c
G. Yang, J. Li, M. Wu, X. Yu, J. Yu, Recent advances in materials, structures, and applications of flexible photodetectors. Adv. Electron. Mater. 9, 2300340 (2023). https://doi.org/10.1002/aelm.202300340
M. Peng, Z. Wen, X. Sun, Recent progress of flexible photodetectors based on low-dimensional II–VI semiconductors and their application in wearable electronics. Adv. Funct. Mater. 33, 2211548 (2023). https://doi.org/10.1002/adfm.202211548
D. Wu, C. Guo, L. Zeng, X. Ren, Z. Shi et al., Phase-controlled van der Waals growth of wafer-scale 2D MoTe2 layers for integrated high-sensitivity broadband infrared photodetection. Light Sci. Appl. 12, 5 (2023). https://doi.org/10.1038/s41377-022-01047-5
L. Zeng, D. Wu, J. Jie, X. Ren, X. Hu et al., van der Waals epitaxial growth of mosaic-like 2D platinum ditelluride layers for room-temperature mid-infrared photodetection up to 10.6 µm. Adv. Mater. 32, e2004412 (2020). https://doi.org/10.1002/adma.202004412
D. Wu, M. Xu, L. Zeng, Z. Shi, Y. Tian et al., In situ fabrication of PdSe2/GaN Schottky junction for polarization-sensitive ultraviolet photodetection with high dichroic ratio. ACS Nano 16, 5545–5555 (2022). https://doi.org/10.1021/acsnano.1c10181
M. Dai, H. Chen, R. Feng, W. Feng, Y. Hu et al., A dual-band multilayer InSe self-powered photodetector with high performance induced by surface plasmon resonance and asymmetric Schottky junction. ACS Nano 12, 8739–8747 (2018). https://doi.org/10.1021/acsnano.8b04931
C. Thota, G. Murali, R. Dhanalakshmi, M. Reddeppa, N.-H. Bak et al., 2D MXene/1D GaN van der Waals heterojunction for self-powered UV photodetector. Appl. Phys. Lett. 122, 031102 (2023). https://doi.org/10.1063/5.0132756
X. Du, W. Tian, J. Pan, B. Hui, J. Sun et al., Piezo-phototronic effect promoted carrier separation in coaxial p-n junctions for self-powered photodetector. Nano Energy 92, 106694 (2022). https://doi.org/10.1016/j.nanoen.2021.106694
D. Guo, Y. Su, H. Shi, P. Li, N. Zhao et al., Self-powered ultraviolet photodetector with superhigh photoresponsivity (3.05 A/W) based on the GaN/Sn: Ga2O3 pn junction. ACS Nano 12, 12827–12835 (2018). https://doi.org/10.1021/acsnano.8b07997
Y. Zheng, Y. Li, X. Tang, W. Wang, G. Li, A self-powered high-performance UV photodetector based on core–shell GaN/MoO3–x nanorod array heterojunction. Adv. Optical Mater. 8, 2000197 (2020). https://doi.org/10.1002/adom.202000197
L.-H. Zeng, S.-H. Lin, Z.-J. Li, Z.-X. Zhang, T.-F. Zhang et al., Photodetectors: fast, self-driven, air-stable, and broadband photodetector based on vertically aligned PtSe2/GaAs heterojunction. Adv. Funct. Mater. 28, 1870106 (2018). https://doi.org/10.1002/adfm.201870106
D. Wu, J. Guo, J. Du, C. Xia, L. Zeng et al., Highly polarization-sensitive, broadband, self-powered photodetector based on graphene/PdSe2/germanium heterojunction. ACS Nano 13, 9907–9917 (2019). https://doi.org/10.1021/acsnano.9b03994
P. Wang, Y. Lan, C. Huan, J. Luo, W. Cai et al., Recent progress on performance-enhancing strategies in flexible photodetectors: from structural engineering to flexible integration. Mater. Sci. Eng. R. Rep. 156, 100759 (2023). https://doi.org/10.1016/j.mser.2023.100759
H. Peng, H. Li, E. Guo, T. Zhai, High-performance Te nanowires/MoS2/polyimine nanocomposite-based self-healable, recyclable and screen-printable flexible photodetector for image sensing. Adv. Funct. Mater. 34, 2314743 (2024). https://doi.org/10.1002/adfm.202314743
J. Huo, G. Zou, Y. Xiao, T. Sun, B. Feng et al., High performance 1D–2D CuO/MoS2 photodetectors enhanced by femtosecond laser-induced contact engineering. Mater. Horiz. 10, 524–535 (2023). https://doi.org/10.1039/d2mh01088g
Y. Zhang, Y. Xu, L. Gao, X. Liu, Y. Fu et al., MXene-based mixed-dimensional Schottky heterojunction towards self-powered flexible high-performance photodetector. Mater. Today Phys. 21, 100479 (2021). https://doi.org/10.1016/j.mtphys.2021.100479
Y. Cheng, C. Li, J. Li, T. Li, Y. Sun et al., Highly-sensitive, flexible, and self-powered UV photodetectors based on perovskites Cs3Cu2I5/PEDOT:PSS heterostructure. IEEE Electron Device Lett. 43, 2137–2140 (2022). https://doi.org/10.1109/led.2022.3218647
M. He, Z. Xu, C. Zhao, Y. Gao, K. Ke et al., Sn-based self-powered ultrafast perovskite photodetectors with highly crystalline order for flexible imaging applications. Adv. Funct. Mater. 33, 2300282 (2023). https://doi.org/10.1002/adfm.202300282
M. Wang, H. Sun, F. Cao, W. Tian, L. Li, Moisture-triggered self-healing flexible perovskite photodetectors with excellent mechanical stability. Adv. Mater. 33, e2100625 (2021). https://doi.org/10.1002/adma.202100625
Y. Zhao, F. Guo, R. Ding, W.F. Io, S.-Y. Pang et al., Piezo-phototronic effect in 2D α-In2Se3/WSe2 van der Waals heterostructure for photodetector with enhanced photoresponse. Adv. Optical Mater. 9, 2100864 (2021). https://doi.org/10.1002/adom.202100864
J. Zhang, F. Liu, D. Liu, Y. Yin, M. Wang et al., Toward smart flexible self-powered near-UV photodetector of amorphous Ga2O3 nanosheet. Mater. Today Phys. 31, 100997 (2023). https://doi.org/10.1016/j.mtphys.2023.100997
C.W. Jang, S.-H. Choi, Self-powered semitransparent/flexible doped-graphene/WS2 vertical-heterostructure photodetectors. J. Alloys Compd. 901, 163685 (2022). https://doi.org/10.1016/j.jallcom.2022.163685
J. Du, Q. Liao, M. Hong, B. Liu, X. Zhang et al., Piezotronic effect on interfacial charge modulation in mixed-dimensional van der Waals heterostructure for ultrasensitive flexible photodetectors. Nano Energy 58, 85–93 (2019). https://doi.org/10.1016/j.nanoen.2019.01.024
X. Chen, B. Jiang, D. Wang, G. Li, H. Wang et al., Gate-tunable the interface properties of GaAs–WSe2 (1D–2D) vdWs heterojunction for high-responsivity, self-powered photodetector. Appl. Phys. Lett. 118, 041102 (2021). https://doi.org/10.1063/5.0035275
Y. Zhang, Y. Xu, J. Guo, X. Zhang, X. Liu et al., Designing of 0D/2D mixed-dimensional van der Waals heterojunction over ultrathin g-C3N4 for high-performance flexible self-powered photodetector. Chem. Eng. J. 420, 129556 (2021). https://doi.org/10.1016/j.cej.2021.129556
X. Yu, X. Wang, F. Zhou, J. Qu, J. Song, 2D van der Waals heterojunction nanophotonic devices: from fabrication to performance. Adv. Funct. Mater. 31, 2104260 (2021). https://doi.org/10.1002/adfm.202104260
D. Wu, J. Guo, C. Wang, X. Ren, Y. Chen et al., Ultrabroadband and high-detectivity photodetector based on WS2/Ge heterojunction through defect engineering and interface passivation. ACS Nano 15, 10119–10129 (2021). https://doi.org/10.1021/acsnano.1c02007
L. Zeng, W. Han, X. Ren, X. Li, D. Wu et al., Uncooled mid-infrared sensing enabled by chip-integrated low-temperature-grown 2D PdTe2 Dirac semimetal. Nano Lett. 23, 8241–8248 (2023). https://doi.org/10.1021/acs.nanolett.3c02396
Y. Zheng, W. Wang, Y. Li, J. Lan, Y. Xia et al., Self-integrated hybrid ultraviolet photodetectors based on the vertically aligned InGaN nanorod array assembly on graphene. ACS Appl. Mater. Interfaces 11, 13589–13597 (2019). https://doi.org/10.1021/acsami.9b00940
J. Lin, Y. Yu, Z. Zhang, F. Gao, S. Liu et al., A novel approach for achieving high-efficiency photoelectrochemical water oxidation in InGaN nanorods grown on Si system: MXene nanosheets as multifunctional interfacial modifier. Adv. Funct. Mater. 30, 1910479 (2020). https://doi.org/10.1002/adfm.201910479
Y. Zheng, B. Cao, X. Tang, Q. Wu, W. Wang et al., Vertical 1D/2D heterojunction architectures for self-powered photodetection application: GaN nanorods grown on transition metal dichalcogenides. ACS Nano 16, 2798–2810 (2022). https://doi.org/10.1021/acsnano.1c09791
C.-P. Lee, K.-Y. Lai, C.-A. Lin, C.-T. Li, K.-C. Ho et al., A paper-based electrode using a graphene dot/PEDOT: PSS composite for flexible solar cells. Nano Energy 36, 260–267 (2017). https://doi.org/10.1016/j.nanoen.2017.04.044
S. Li, Z. Liu, M. Zhang, L. Yang, Y. Guo et al., High-performance self-powered GaN/PEDOT: PSS hybrid heterojunction UV photodetector for optical communication. Sci. China Technol. Sci. 67, 608–615 (2024). https://doi.org/10.1007/s11431-023-2501-5
K.S. Pasupuleti, M. Reddeppa, B.G. Park, K.R. Peta, J.E. Oh et al., Ag nanowire-plasmonic-assisted charge separation in hybrid heterojunctions of ppy-PEDOT: PSS/GaN nanorods for enhanced UV photodetection. ACS Appl. Mater. Interfaces 12, 54181–54190 (2020). https://doi.org/10.1021/acsami.0c16795
Y. Zou, Z. Zhang, J. Yan, L. Lin, G. Huang et al., High-temperature flexible WSe2 photodetectors with ultrahigh photoresponsivity. Nat. Commun. 13, 4372 (2022). https://doi.org/10.1038/s41467-022-32062-0
M.L. Shi, L. Chen, T.B. Zhang, J. Xu, H. Zhu et al., Top-down integration of molybdenum disulfide transistors with wafer-scale uniformity and layer controllability. Small (2017). https://doi.org/10.1002/smll.201603157
D. De Fazio, D.G. Purdie, A.K. Ott, P. Braeuninger-Weimer, T. Khodkov et al., High-mobility, wet-transferred graphene grown by chemical vapor deposition. ACS Nano 13, 8926–8935 (2019). https://doi.org/10.1021/acsnano.9b02621
X. Tang, Y. Zheng, B. Cao, Q. Wu, J. Liang et al., GaN nanowire/Nb-doped MoS2 nanoflake heterostructures for fast UV–visible photodetectors. ACS Appl. Nano Mater. 5, 4515–4523 (2022). https://doi.org/10.1021/acsanm.2c00761
H. Wang, Z. Lin, Y. Lin, W. Wang, G. Li, High-performance GaN-based LEDs on Si substrates: the utility of ex situ low-temperature AlN template with optimal thickness. IEEE Trans. Electron Devices 64, 4540–4546 (2017). https://doi.org/10.1109/TED.2017.2753844
Z. Lin, H. Wang, S. Chen, Y. Lin, M. Yang et al., Achieving high-performance blue GaN-based light-emitting diodes by energy band modification on AlxInyGa1–x–yN electron blocking layer. IEEE Trans. Electron Devices 64, 472–480 (2017). https://doi.org/10.1109/TED.2016.2637407
T. Zheng, P. Valencia-Acuna, P. Zereshki, K.M. Beech, L. Deng et al., Thickness-dependent interlayer charge transfer in MoSe2/MoS2 heterostructures studied by femtosecond transient absorption measurements. ACS Appl. Mater. Interfaces 13, 6489–6495 (2021). https://doi.org/10.1021/acsami.0c18268
D. Ruzmetov, K. Zhang, G. Stan, B. Kalanyan, G.R. Bhimanapati et al., Vertical 2D/3D semiconductor heterostructures based on epitaxial molybdenum disulfide and gallium nitride. ACS Nano 10, 3580–3588 (2016). https://doi.org/10.1021/acsnano.5b08008
K.-G. Zhou, F. Withers, Y. Cao, S. Hu, G. Yu et al., Raman modes of MoS2 used as fingerprint of van der Waals interactions in 2-D crystal-based heterostructures. ACS Nano 8, 9914–9924 (2014). https://doi.org/10.1021/nn5042703
Y. Liu, D. Chen, G. Wei, Z. Lin, A. He et al., Temperature-dependent ultraviolet Raman scattering and anomalous Raman phenomenon of AlGaN/GaN heterostructure. Opt. Express 27, 4781–4788 (2019). https://doi.org/10.1364/OE.27.004781
Y. Peng, J. Lu, D. Peng, W. Ma, F. Li et al., Dynamically modulated GaN whispering gallery lasing mode for strain sensor. Adv. Funct. Mater. 29, 1905051 (2019). https://doi.org/10.1002/adfm.201905051
M. Tangi, P. Mishra, T.K. Ng, M.N. Hedhili, B. Janjua et al., Publisher’s Note: “Determination of band offsets at GaN/single-layer MoS2 heterojunction” [Appl. Phys. Lett. 109, 032104 (2016)]. Appl. Phys. Lett. 109, 079901 (2016). https://doi.org/10.1063/1.4961440
J. Lin, Z. Zhang, J. Chai, B. Cao, X. Deng et al., Highly efficient InGaN nanorods photoelectrode by constructing Z-scheme charge transfer system for unbiased water splitting. Small 17, e2006666 (2021). https://doi.org/10.1002/smll.202006666
G. Deokar, D. Vignaud, R. Arenal, P. Louette, J.-F. Colomer, Synthesis and characterization of MoS2 nanosheets. Nanotechnology 27, 075604 (2016). https://doi.org/10.1088/0957-4484/27/7/075604
B. Lyu, S. Im, H. Jing, S. Lee, S.H. Kim et al., Work function engineering of electrohydrodynamic-jet-printed PEDOT:PSS electrodes for high-performance printed electronics. ACS Appl. Mater. Interfaces 12, 17799–17805 (2020). https://doi.org/10.1021/acsami.0c02580
B. Liu, Q. Liao, X. Zhang, J. Du, Y. Ou et al., Strain-engineered van der Waals interfaces of mixed-dimensional heterostructure arrays. ACS Nano 13, 9057–9066 (2019). https://doi.org/10.1021/acsnano.9b03239
A.K. Ganguli, A. Das, S. Manchala, S. Tiwari, Design of nanostructured materials for photocatalysis and photoelectrochemical aplications. J. Indian Chem. Soc. 97, 2525–2532 (2020)
S. Bettis Homan, V.K. Sangwan, I. Balla, H. Bergeron, E.A. Weiss et al., Ultrafast exciton dissociation and long-lived charge separation in a photovoltaic pentacene-MoS2 van der Waals heterojunction. Nano Lett. 17, 164–169 (2017). https://doi.org/10.1021/acs.nanolett.6b03704
P. Jian, X. Cai, Y. Zhao, D. Li, Z. Zhang et al., Large-scale synthesis and exciton dynamics of monolayer MoS2 on differently doped GaN substrates. Nanophotonics 12, 4475–4484 (2023). https://doi.org/10.1515/nanoph-2023-0503
M.C. Schwinn, S. Rafiq, C. Lee, M.P. Bland, T.W. Song et al., Charge transfer dynamics and interlayer exciton formation in MoS2/VOPc mixed dimensional heterojunction. J. Chem. Phys. 157, 184701 (2022). https://doi.org/10.1063/5.0107791
Y.-Y. Yue, Z. Wang, L. Wang, H.-Y. Wang, Y. Chen et al., Many-p induced band renormalization processes in few- and mono-layer MoS2. Nanotechnology 32, 135208 (2021). https://doi.org/10.1088/1361-6528/abcfec
X. Zhang, X. Wu, X. Liu, G. Chen, Y. Wang et al., Heterostructural CsPbX3-PbS (X = Cl, Br, I) quantum dots with tunable vis–NIR dual emission. J. Am. Chem. Soc. 142, 4464–4471 (2020). https://doi.org/10.1021/jacs.9b13681
X.A. Jeanbourquin, A. Rahmanudin, X. Yu, M. Johnson, N. Guijarro et al., Amorphous ternary charge-cascade molecules for bulk heterojunction photovoltaics. ACS Appl. Mater. Interfaces 9, 27825–27831 (2017). https://doi.org/10.1021/acsami.7b04983
B. Cao, Q. Liu, Y. Zheng, X. Tang, J. Chai et al., Wafer-scale InN/In2S3 core–shell nanorod array for ultrafast self-powered photodetection. Adv. Funct. Mater. 32, 2110715 (2022). https://doi.org/10.1002/adfm.202110715
W. Song, J. Chen, Z. Li, X. Fang, Self-powered MXene/GaN van der Waals heterojunction ultraviolet photodiodes with superhigh efficiency and stable current outputs. Adv. Mater. 33, e2101059 (2021). https://doi.org/10.1002/adma.202101059
L.-H. Zeng, D. Wu, S.-H. Lin, C. Xie, H.-Y. Yuan et al., Controlled synthesis of 2D palladium diselenide for sensitive photodetector applications. Adv. Funct. Mater. 29, 1806878 (2019). https://doi.org/10.1002/adfm.201806878
Z.R. Zytkiewicz, P. Dluzewski, J. Borysiuk, M. Sobanska, K. Klosek et al., Properties of GaN nanocolumns grown by plasma - assisted MBE on Si (111) substrates. Acta Phys. Pol. A 120, A-15-A-16 (2011). https://doi.org/10.1269/aphyspola.120.a-15
Y. Peng, J. Lu, X. Wang, W. Ma, M. Que et al., Self-powered high-performance flexible GaN/ZnO heterostructure UV photodetectors with piezo-phototronic effect enhanced photoresponse. Nano Energy 94, 106945 (2022). https://doi.org/10.1016/j.nanoen.2022.106945
X. Ma, S. Fu, J. Ding, M. Liu, A. Bian et al., Robust interlayer exciton in WS2/MoSe2 van der Waals heterostructure under high pressure. Nano Lett. 21, 8035–8042 (2021). https://doi.org/10.1021/acs.nanolett.1c02281
R. Pan, J. Kang, Y. Li, Z. Zhang, R. Li et al., Highly enhanced photoluminescence of monolayer MoS2 in plasmonic hybrids with double-layer stacked Ag nanops. ACS Appl. Mater. Interfaces 14, 12495–12503 (2022). https://doi.org/10.1021/acsami.1c21960
X. He, H. Li, Z. Zhu, Z. Dai, Y. Yang et al., Strain engineering in monolayer WS2, MoS2, and the WS2/MoS2 heterostructure. Appl. Phys. Lett. 109, 173105 (2016). https://doi.org/10.1063/1.4966218
S. Sarkar, S. Goswami, M. Trushin, S. Saha, M. Panahandeh-Fard et al., Polaronic trions at the MoS2/SrTiO3 interface. Adv. Mater. 31, e1903569 (2019). https://doi.org/10.1002/adma.201903569
H. Li, A.W. Contryman, X. Qian, S.M. Ardakani, Y. Gong et al., Optoelectronic crystal of artificial atoms in strain-textured molybdenum disulphide. Nat. Commun. 6, 7381 (2015). https://doi.org/10.1038/ncomms8381
Y. Li, N. Stolte, B. Li, H. Li, G. Cheng et al., Interface charge-transfer induced intralayer excited-state biexcitons in graphene/WS2 van der Waals heterostructures. Nanoscale 11, 13552–13557 (2019). https://doi.org/10.1039/c9nr02862e
C. Pan, J. Zhai, Z.L. Wang, Piezotronics and piezo-phototronics of third generation semiconductor nanowires. Chem. Rev. 119, 9303–9359 (2019). https://doi.org/10.1021/acs.chemrev.8b00599
S.F. Leung, K.T. Ho, P.K. Kung, V.K.S. Hsiao, H.N. Alshareef et al., A self-powered and flexible organometallic halide perovskite photodetector with very high detectivity. Adv. Mater. 30, 1704611 (2018). https://doi.org/10.1002/adma.201704611
I. Medhaug, J.A. Olseth, J. Reuder, UV radiation and skin cancer in Norway. J. Photochem. Photobiol. B Biol. 96, 232–241 (2009). https://doi.org/10.1016/j.jphotobiol.2009.06.011