Perovskite/Silicon Tandem Solar Cells: From Detailed Balance Limit Calculations to Photon Management
Corresponding Author: Yuen Hong Tsang
Nano-Micro Letters,
Vol. 11 (2019), Article Number: 58
Abstract
Energy conversion efficiency losses and limits of perovskite/silicon tandem solar cells are investigated by detailed balance calculations and photon management. An extended Shockley–Queisser model is used to identify fundamental loss mechanisms and link the losses to the optics of solar cells. Photon management is used to minimize losses and maximize the energy conversion efficiency. The influence of photon management on the solar cell parameters of a perovskite single-junction solar cell and a perovskite/silicon solar cell is discussed in greater details. An optimized solar cell design of a perovskite/silicon tandem solar cell is presented, which allows for the realization of solar cells with energy conversion efficiencies exceeding 32%.
Highlights:
1 Thermodynamic and detailed balance calculations are provided to derive guideline for the optimization of perovskite solar cells.
2 The influence of photon management on the energy conversion efficiency of perovskite solar cells is discussed.
3 An optimized solar cell design is proposed, which allows for realizing perovskite/silicon tandem solar cell with an energy conversion efficiency exceeding 32%.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- A. Duran Sahin, I. Dincer, M.A. Rosen, Thermodynamic analysis of solar photovoltaic cell systems. Sol. Energy Mater. Sol. Cells 91, 153–159 (2017). https://doi.org/10.1016/j.solmat.2006.07.015
- U. Rau, U.W. Paetzold, T. Kirchartz, Thermodynamics of light management in photovoltaic devices. Phys. Rev. B 90, 035211 (2014). https://doi.org/10.1103/PhysRevB.90.035211
- F.H. Alharbi, S. Kais, Theoretical limits of photovoltaics efficiency and possible improvements by intuitive approaches learned from photosynthesis and quantum coherence. Renew. Sustain. Energy Rev. 43, 1073–1089 (2015). https://doi.org/10.1016/j.rser.2014.11.101
- K. Yoshikawa, H. Kawasaki, W. Yoshida, T. Irie, K. Konishi et al., Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%. Nat. Energy 2, 17032 (2017). https://doi.org/10.1038/nenergy.2017.32
- W. Shockley, H.J. Queisser, Detailed balance limit of efficiency of p–n junction solar cells. J. Appl. Phys. 32, 510–519 (1961). https://doi.org/10.1063/1.1736034
- A. De Vos, Detailed balance limit of the efficiency of tandem solar cells. J. Phys. D Appl. Phys. 13, 839–846 (1980). https://doi.org/10.1088/0022-3727/13/5/018
- K.A. Bush, A.F. Palmstrom, Z.J. Yu, M. Boccard, R. Cheacharoen et al., 23.6%-efficient monolithic perovskite/silicon tandem solar cells with improved stability. Nat. Energy 2, 17009 (2017). https://doi.org/10.1038/nenergy.2017.9
- F. Sahli, J. Werner, B.A. Kamino, M. Bräuninger, R. Monnard et al., Fully textured monolithic perovskite/silicon tandem solar cells with 25.2% power conversion efficiency. Nat. Mater. 17, 820–826 (2018). https://doi.org/10.1038/s41563-018-0115-4
- T. Leijtens, K.A. Bush, R. Prasanna, M.D. McGehee, Opportunities and challenges for tandem solar cells using metal halide perovskite semiconductors. Nat. Energy 3, 828–838 (2018). https://doi.org/10.1038/s41560-018-0190-4
- D. Zhao, C. Wang, Z. Song, Y. Yu, C. Chen, X. Zhao, K. Zhu, Y. Yan, Four-terminal all-perovskite tandem solar cells achieving power conversion efficiencies exceeding 23%. ACS Energy Lett. 3, 305–306 (2018). https://doi.org/10.1021/acsenergylett.7b01287
- W. Qarony, M.I. Hossain, A. Salleo, D. Knipp, Y.H. Tsang, Rough versus planar interfaces: how to maximize the short circuit current of perovskite single and tandem solar cells. Mater. Today Energy 11, 106–113 (2019). https://doi.org/10.1016/j.mtener.2018.10.001
- J. Werner, B. Niesen, C. Ballif, Perovskite/silicon tandem solar cells: marriage of convenience or true love story? An overview. Adv. Mater. Interfaces 5, 1700731 (2018). https://doi.org/10.1002/admi.201700731
- F. Meillaud, A. Shah, C. Droz, E. Vallat-Sauvain, C. Miazza, Efficiency limits for single-junction and tandem solar cells. Sol. Energy Mater. Sol. Cells 90, 2952–2959 (2006). https://doi.org/10.1016/j.solmat.2006.06.002
- A. Shah, J. Meier, E. Vallat-Sauvain, C. Droz, U. Kroll, N. Wyrsch, J. Guillet, U. Graf, Microcrystalline silicon and ‘micromorph’ tandem solar cells. Thin Solid Films 403–404, 179–187 (2002). https://doi.org/10.1016/S0040-6090(01)01658-3
- J. Meier, J. Spitznagel, U. Kroll, C. Bucher, S. Faÿ, T. Moriarty, A. Shah, Potential of amorphous and microcrystalline silicon solar cells. Thin Solid Films 451–452, 518–524 (2004). https://doi.org/10.1016/j.tsf.2003.11.014
- M.A. Green, Third Generation Photovoltaics: Advanced Solar Energy Conversion (Springer, Berlin, 2003), pp. 35–66
- W. Qarony, M.I. Hossain, M.K. Hossain, M.J. Uddin, A. Haque, A.R. Saad, Y.H. Tsang, Efficient amorphous silicon solar cells: characterization, optimization, and optical loss analysis. Results Phys. 7, 4287–4293 (2017). https://doi.org/10.1016/j.rinp.2017.09.030
- R. Lopez-Delgado, H.J. Higuera-Valenzuela, A. Zazueta-Raynaud, A. Ramos, J.E. Pelayo, D. Berman, M.E. Álvarez-Ramos, A. Ayon, Enhancing the power conversion efficiency of solar cells employing down-shifting silicon quantum dots. J. Phys.: Conf. Ser. 773, 012087 (2016). https://doi.org/10.1088/1742-6596/773/1/012087
- G. Conibeer, I. Perez-Wurfl, X. Hao, D. Di, D. Lin, Si solid-state quantum dot-based materials for tandem solar cells. Nanoscale Res. Lett. 7, 193 (2012). https://doi.org/10.1186/1556-276X-7-193
- R. Lopez-Delgado, H.J. Higuera-Valenzuela, A. Zazueta-Raynaud, A. Ramos-Carrazco, J.E. Pelayo, D. Berman-Mendoza, M.E. Álvarez-Ramos, A. Ayon, Solar cell efficiency improvement employing down-shifting silicon quantum dots. Microsyst. Technol. 24, 495–502 (2018). https://doi.org/10.1007/s00542-017-3405-x
- X. Pi, Q. Li, D. Li, D. Yang, Spin-coating silicon-quantum-dot ink to improve solar cell efficiency. Sol. Energy Mater. Sol. Cells 95, 2941–2945 (2011). https://doi.org/10.1016/j.solmat.2011.06.010
- C.M. Wolff, F. Zu, A. Paulke, L.P. Toro, N. Koch, D. Neher, Reduced interface-mediated recombination for high open-circuit voltages in CH3NH3PbI3 Solar Cells. Adv. Mater. 29, 1700159 (2017). https://doi.org/10.1002/adma.201700159
- A.M.A. Leguy, Y. Hu, M. Campoy-Quiles, M.I. Alonso, O.J. Weber et al., Reversible hydration of CH3NH3PbI3 in films, single crystals, and solar cells. Chem. Mater. 27, 3397–3407 (2015). https://doi.org/10.1021/acs.chemmater.5b00660
- W.-J. Yin, T. Shi, Y. Yan, Unusual defect physics in CH3NH3PbI3 perovskite solar cell absorber. Appl. Phys. Lett. 104, 063903 (2014). https://doi.org/10.1063/1.4864778
- H. Zhang, H. Wang, W. Chen, A.K.Y. Jen, CuGaO2: a promising inorganic hole-transporting material for highly efficient and stable perovskite solar cells. Adv. Mater. 29, 1604984 (2017). https://doi.org/10.1002/adma.201604984
- M. Liu, M.B. Johnston, H.J. Snaith, Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 501, 395–398 (2013). https://doi.org/10.1038/nature12509
- N.J. Jeon, J. Lee, J.H. Noh, M.K. Nazeeruddin, M. Grätzel, S. Il Seok, Efficient inorganic-organic hybrid perovskite solar cells based on pyrene arylamine derivatives as hole-transporting materials. J. Am. Chem. Soc. 135, 19087–19090 (2013). https://doi.org/10.1021/ja410659k
- Z. Fang, L. Liu, Z. Zhang, S. Yang, F. Liu, M. Liu, L. Ding, CsPbI2.25Br0.75 solar cells with 15.9% efficiency. Sci. Bull. 64, 507–510 (2019). https://doi.org/10.1016/j.scib.2019.04.013
- C. Zuo, A.D. Scully, D. Vak, W. Tan, X. Jiao, C.R. McNeill, D. Angmo, L. Ding, M. Gao, Self-assembled 2D perovskite layers for efficient printable solar cells. Adv. Energy Mater. 9, 1803258 (2019). https://doi.org/10.1002/aenm.201803258
- C. Zuo, D. Vak, D. Angmo, L. Ding, M. Gao, One-step roll-to-roll air processed high efficiency perovskite solar cells. Nano Energy 46, 185–192 (2018). https://doi.org/10.1016/j.nanoen.2018.01.037
- C. Zuo, L. Ding, An 80.11% FF record achieved for perovskite solar cells by using the NH4Cl additive. Nanoscale 6, 9935 (2014). https://doi.org/10.1039/C4NR02425G
- C. Zuo, H.J. Bolink, H. Han, J. Huang, D. Cahen, L. Ding, Advances in perovskite solar cells. Adv. Sci. 3, 1500324 (2016). https://doi.org/10.1002/advs.201500324
- J. Burschka, N. Pellet, S.J. Moon, R. Humphry-Baker, P. Gao, M.K. Nazeeruddin, M. Grätzel, Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 499, 316–319 (2013). https://doi.org/10.1038/nature12340
- N.-G. Park, Perovskite solar cells: an emerging photovoltaic technology. Mater. Today 18, 65–72 (2015). https://doi.org/10.1016/j.mattod.2014.07.007
- J.-W. Lee, D.-J. Seol, A.-N. Cho, N.-G. Park, High-efficiency perovskite solar cells based on the black polymorph of HC(NH2)2PbI3. Adv. Mater. 26, 4991–4998 (2014). https://doi.org/10.1002/adma.201401137
- F. Hao, C.C. Stoumpos, D.H. Cao, R.P.H. Chang, M.G. Kanatzidis, Lead-free solid-state organic–inorganic halide perovskite solar cells. Nat. Photonics 8, 489–494 (2014). https://doi.org/10.1038/nphoton.2014.82
- M.A. Green, Y. Hishikawa, E.D. Dunlop, D.H. Levi, J. Hohl-Ebinger, M. Yoshita, A.W.Y. Ho-Baillie, Solar cell efficiency tables (Version 53). Prog. Photovolt. Res. Appl. 27, 3–12 (2019). https://doi.org/10.1002/pip.3102
- Oxford PV-The Perovskite Company, Oxford PV Perovskite Solar Cell Achieves 28% Efficiency (2018). https://www.oxfordpv.com/news/oxford-pv-perovskite-solar-cell-achieves-28-efficiency. Accessed 19 June 2019
- S. Limpert, S. Bremner, H. Linke, Reversible electron–hole separation in a hot carrier solar cell. New J. Phys. 17, 095004 (2015). https://doi.org/10.1088/1367-2630/17/9/095004
- Reference Solar Spectral Irradiance: ASTM G-173, (2018). http://rredc.nrel.gov/solar/spectra/am1.5/astmg173/astmg173.html. Accessed 19 March 2018
- L.A. Kosyachenko, Solar Cells: New Approaches and Reviews. InTech (2015), p. 388. https://doi.org/10.5772/58490
- A. Luque, S. Hegedus, Handbook of Photovoltaic Science and Engineering (Wiley, Chichester, 2002), pp. 1–797
- S.S. Hegedus, A. Luque, Status, trends, challenges and the bright future of solar electricity from photovoltaics, in Handbook of Photovoltaic Science and Engineering, ed. by A. Luque, S. Hegedus (Wiley, Chichester, 2005), pp. 1–43
- P.T. Landsberg, T. Markvart, The carnot factor in solar-cell theory. Solid State Electron. 42, 657–659 (1998). https://doi.org/10.1016/S0038-1101(97)00253-0
- F.L. Curzon, B. Ahlborn, Efficiency of a Carnot engine at maximum power output. Am. J. Phys. 43, 22–24 (1975). https://doi.org/10.1119/1.10023
- S. Rühle, The detailed balance limit of perovskite/silicon and perovskite/CdTe tandem solar cells. Phys. Status Solidi. 214, 1600955 (2017). https://doi.org/10.1002/pssa.201600955
- M.H. Futscher, B. Ehrler, Modeling the performance limitations and prospects of perovskite/Si tandem solar cells under realistic operating conditions. ACS Energy Lett. 2, 2089–2095 (2017). https://doi.org/10.1021/acsenergylett.7b00596
- M. Planck, Ueber das gesetz der energieverteilung im normalspectrum. Ann. Phys. 309, 553–563 (1901). https://doi.org/10.1002/andp.19013090310
- Article
- MATH
- T. Markvart, P.T. Landsberg, Thermodynamics and reciprocity of solar energy conversion. Phys. E Low-Dimens. Syst. Nanostructures 14, 71–77 (2002). https://doi.org/10.1016/S1386-9477(02)00352-1
- A. De Vos, P.T. Landsberg, P. Baruch, J.E. Parrott, Entropy fluxes, endoreversibility, and solar energy conversion. J. Appl. Phys. 74, 3631–3637 (1993). https://doi.org/10.1063/1.354503
- R. Rawat, R. Lamba, S.C. Kaushik, Thermodynamic study of solar photovoltaic energy conversion: an overview. Renew. Sustain. Energy Rev. 71, 630–638 (2017). https://doi.org/10.1016/j.rser.2016.12.089
- P.T. Landsberg, G. Tonge, Thermodynamic energy conversion efficiencies. J. Appl. Phys. 51, R1–R20 (1980). https://doi.org/10.1063/1.328187
- R.B. Wehrspohn, U. Rau, A. Gombert, Photon Management in Solar Cells (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2015), pp. 1–346. https://doi.org/10.1002/9783527665662
- Z. Yu, A. Raman, S. Fan, Nanophotonic light-trapping theory for solar cells. Appl. Phys. A 105, 329–339 (2011). https://doi.org/10.1007/s00339-011-6617-4
- J. Zhu, Z. Yu, S. Fan, Y. Cui, Nanostructured photon management for high performance solar cells. Mater. Sci. Eng., R 70, 330–340 (2010). https://doi.org/10.1016/j.mser.2010.06.018
- Z. Yu, A. Raman, S. Fan, Fundamental limit of nanophotonic light trapping in solar cells. Proc. Natl. Acad. Sci. 107, 17491–17496 (2010). https://doi.org/10.1073/pnas.1008296107
- T. Duong, Y. Wu, H. Shen, J. Peng, X. Fu et al., Rubidium multication perovskite with optimized bandgap for perovskite-silicon tandem with over 26% efficiency. Adv. Energy Mater. 7, 1700228 (2017). https://doi.org/10.1002/aenm.201700228
- T.C.-J. Yang, P. Fiala, Q. Jeangros, C. Ballif, High-bandgap perovskite materials for multijunction solar cells. Joule 2, 1421–1436 (2018). https://doi.org/10.1016/j.joule.2018.05.008
- D. Ju, Y. Dang, Z. Zhu, H. Liu, C.-C. Chueh et al., Tunable band gap and long carrier recombination lifetime of stable mixed CH3NH3PbxSn1–xBr3 single crystals. Chem. Mater. 30, 1556–1565 (2018). https://doi.org/10.1021/acs.chemmater.7b04565
- L. Wang, G.D. Yuan, R.F. Duan, F. Huang, T.B. Wei, Z.Q. Liu, J.X. Wang, J.M. Li, Tunable bandgap in hybrid perovskite CH3NH3Pb(Br3−yXy) single crystals and photodetector applications. AIP Adv. 6, 045115 (2016). https://doi.org/10.1063/1.4948312
- J.H. Noh, S.H. Im, J.H. Heo, T.N. Mandal, S. Il Seok, Chemical management for colorful, efficient, and stable inorganic–organic hybrid nanostructured solar cells. Nano Lett. 13, 1764–1769 (2013). https://doi.org/10.1021/nl400349b
- S. Tombe, G. Adam, H. Heilbrunner, D.H. Apaydin, C. Ulbricht, N.S. Sariciftci, C.J. Arendse, E. Iwuoha, M.C. Scharber, Optical and electronic properties of mixed halide (X = I, Cl, Br) methylammonium lead perovskite solar cells. J. Mater. Chem. C 5, 1714–1723 (2017). https://doi.org/10.1039/C6TC04830G
- J. Xie, K. Huang, X. Yu, Z. Yang, K. Xiao et al., Enhanced electronic properties of SnO2 via electron transfer from graphene quantum dots for efficient perovskite solar cells. ACS Nano 11, 9176–9182 (2017). https://doi.org/10.1021/acsnano.7b04070
- F. Giordano, A. Abate, J.P. Correa Baena, M. Saliba, T. Matsui et al., Enhanced electronic properties in mesoporous TiO2 via lithium doping for high-efficiency perovskite solar cells. Nat. Commun. 7, 10379 (2016). https://doi.org/10.1038/ncomms10379
- O. Malinkiewicz, A. Yella, Y.H. Lee, G.M. Espallargas, M. Graetzel, M.K. Nazeeruddin, H.J. Bolink, Perovskite solar cells employing organic charge-transport layers. Nat. Photonics 8, 128–132 (2014). https://doi.org/10.1038/nphoton.2013.341
- H. Zhou, Q.Q. Chen, G. Li, S. Luo, T.-B.T. Song et al., Interface engineering of highly efficient perovskite solar cells. Science 345, 542–546 (2014). https://doi.org/10.1126/science.1254050
- M.A. Mejía Escobar, S. Pathak, J. Liu, H.J. Snaith, F. Jaramillo, ZrO2/TiO2 electron collection layer for efficient meso-superstructured hybrid perovskite solar cells. ACS Appl. Mater. Interfaces 9, 2342–2349 (2017). https://doi.org/10.1021/acsami.6b12509
- L. Zheng, Y. Ma, S. Chu, S. Wang, B. Qu et al., Improved light absorption and charge transport for perovskite solar cells with rough interfaces by sequential deposition. Nanoscale 6, 8171–8176 (2014). https://doi.org/10.1039/C4NR01141D
- D.-L. Wang, H.-J. Cui, G.-J. Hou, Z.-G. Zhu, Q.-B. Yan, G. Su, Highly efficient light management for perovskite solar cells. Sci. Rep. 6, 18922 (2016). https://doi.org/10.1038/srep18922
- W. Qarony, Y.A. Jui, G.M. Das, T. Mohsin, M.I. Hossain, S.N. Islam, Optical analysis in CH3NH3PbI3 and CH3NH3PbI2Cl based thin-film perovskite solar cell. Am. J. Energy Res. 3, 19–24 (2015). https://doi.org/10.12691/ajer-3-2-1
- P. Löper, M. Stuckelberger, B. Niesen, J. Werner, M. Filipič et al., Complex refractive index spectra of CH3NH3PbI3 perovskite thin films determined by spectroscopic ellipsometry and spectrophotometry. J. Phys. Chem. Lett. 6, 66–71 (2015). https://doi.org/10.1021/jz502471h
- Y. Li, W. Yan, Y. Li, S. Wang, W. Wang, Z. Bian, L. Xiao, Q. Gong, Direct observation of long electron-hole diffusion distance in CH3NH3PbI3 perovskite thin film. Sci. Rep. 5, 14485 (2015). https://doi.org/10.1038/srep14485
- H.-S. Rao, B.-X. Chen, X.-D. Wang, D.-B. Kuang, C.-Y. Su, A micron-scale laminar MAPbBr 3 single crystal for an efficient and stable perovskite solar cell. Chem. Commun. 53, 5163–5166 (2017). https://doi.org/10.1039/C7CC02447A
- M. van Eerden, M. Jaysankar, A. Hadipour, T. Merckx, J.J. Schermer, T. Aernouts, J. Poortmans, U.W. Paetzold, Optical analysis of planar multicrystalline perovskite solar cells. Adv. Opt. Mater. 5, 1700151 (2017). https://doi.org/10.1002/adom.201700151
- W. Qarony, M.I. Hossain, R. Dewan, S. Fischer, V.B. Meyer-Rochow, A. Salleo, D. Knipp, Y.H. Tsang, Approaching perfect light incoupling in perovskite and silicon thin film solar cells by moth eye surface textures. Adv. Theory Simul. 1, 1800030 (2018). https://doi.org/10.1002/adts.201800030
- W. Qarony, M.I. Hossain, V. Jovanov, D. Knipp, Y.H. Tsang, Maximizing the short circuit current of organic solar cells by partial decoupling of electrical and optical properties. Appl. Nanosci. 8, 339–346 (2018). https://doi.org/10.1007/s13204-018-0713-0
- M.I. Hossain, W. Qarony, V. Jovanov, Y.H. Tsang, D. Knipp, Nanophotonic design of perovskite/silicon tandem solar cells. J. Mater. Chem. A 6, 3625–3633 (2018). https://doi.org/10.1039/c8ta00628h
- D. Koushik, W.J.H. Verhees, Y. Kuang, S. Veenstra, D. Zhang, M.A. Verheijen, M. Creatore, R.E.I. Schropp, High-efficiency humidity-stable planar perovskite solar cells based on atomic layer architecture. Energy Environ. Sci. 10, 91–100 (2017). https://doi.org/10.1039/C6EE02687G
- J.H. Noh, N.J. Jeon, Y.C. Choi, M.K. Nazeeruddin, M. Grätzel, S. Il Seok, Nanostructured TiO2/CH3NH3PbI3 heterojunction solar cells employing spiro-OMeTAD/Co-complex as hole-transporting material. J. Mater. Chem. A 1, 11842 (2013). https://doi.org/10.1039/c3ta12681a
- S. Jang, J. Yoon, K. Ha, M. Kim, D.H. Kim et al., Facile fabrication of three-dimensional TiO2 structures for highly efficient perovskite solar cells. Nano Energy 22, 499–506 (2016). https://doi.org/10.1016/j.nanoen.2016.02.050
- C.C. Vidyasagar, B.M. Muñoz Flores, V.M. Jiménez Pérez, Recent advances in synthesis and properties of hybrid halide perovskites for photovoltaics. Nano-Micro Lett. 10, 68 (2018). https://doi.org/10.1007/s40820-018-0221-5
- H. Luo, X. Lin, X. Hou, L. Pan, S. Huang, X. Chen, Efficient and air-stable planar perovskite solar cells formed on graphene-oxide-modified pedot:pss hole transport layer. Nano-Micro Lett. 9, 39 (2017). https://doi.org/10.1007/s40820-017-0140-x
- Z. Liu, B. Sun, X. Liu, J. Han, H. Ye, T. Shi, Z. Tang, G. Liao, Efficient carbon-based CsPbBr3 inorganic perovskite solar cells by using cu-phthalocyanine as hole transport material. Nano-Micro Lett. 10, 34 (2018). https://doi.org/10.1007/s40820-018-0187-3
- X. Xu, Z. Liu, Z. Zuo, M. Zhang, Z. Zhao et al., Hole selective NiO contact for efficient perovskite solar cells with carbon electrode. Nano Lett. 15, 2402–2408 (2015). https://doi.org/10.1021/nl504701y
- J. Zhou, X. Meng, X. Zhang, X. Tao, Z. Zhang, J. Hu, C. Wang, Y. Li, S. Yang, Low-temperature aqueous solution processed ZnO as an electron transporting layer for efficient perovskite solar cells. Mater. Chem. Front. 1, 802–806 (2017). https://doi.org/10.1039/C6QM00248J
- L. Hu, J. Peng, W. Wang, Z. Xia, J. Yuan et al., Sequential deposition of CH3NH3PbI3 on planar NiO film for efficient planar perovskite solar cells. ACS Photonics 1, 547–553 (2014). https://doi.org/10.1021/ph5000067
- W. Chen, Y. Wu, B. Tu, F. Liu, A.B. Djurišić, Z. He, Inverted planar organic-inorganic hybrid perovskite solar cells with NiOx hole-transport layers as light-in window. Appl. Surf. Sci. 451, 325–332 (2018). https://doi.org/10.1016/j.apsusc.2018.04.230
- M.I. Hossain, A. Hongsingthong, W. Qarony, P. Sichanugrist, M. Konagai, A. Salleo, D. Knipp, Y.H. Tsang, Optics of perovskite solar cell front contacts. ACS Appl. Mater. Interfaces 11, 14693–14701 (2019). https://doi.org/10.1021/acsami.8b16586
- M. Filipič, P. Löper, B. Niesen, S. De Wolf, J. Krč, C. Ballif, M. Topič, CH3NH3PbI3 perovskite/silicon tandem solar cells: characterization based optical simulations. Opt. Express 23, A263–A278 (2015). https://doi.org/10.1364/OE.23.00A263
- M.A. Slawinski, R.A. Slawinski, R.J. Brown, J.M. Parkin, A generalized form of Snell’s law in anisotropic media. Geophysics 65, 632–637 (2000). https://doi.org/10.1190/1.1444759
- Meep Documentation, Open Source FDTD Solver (2019). https://meep.readthedocs.io/en/latest/. Accessed 20 June 2019
- A. Tamang, A. Hongsingthong, V. Jovanov, P. Sichanugrist, B.A. Khan, R. Dewan, M. Konagai, D. Knipp, Enhanced photon management in silicon thin film solar cells with different front and back interface texture. Sci. Rep. 6, 29639 (2016). https://doi.org/10.1038/srep29639
- D. Knipp, V. Jovanov, A. Tamang, V. Wagner, A. Salleo, Towards 3D organic solar cells. Nano Energy 31, 582–589 (2017). https://doi.org/10.1016/j.nanoen.2016.11.059
- A.D. Rakic, A.B. Djurisic, J.M. Elazar, M.L. Majewski, Optical properties of metallic films for vertical-cavity optoelectronic devices. Appl. Opt. 37, 5271–5283 (1998)
- R. Dewan, M. Marinkovic, R. Noriega, S. Phadke, A. Salleo, D. Knipp, Light trapping in thin-film silicon solar cells with submicron surface texture. Opt. Express 17, 23058 (2009). https://doi.org/10.1364/OE.17.023058
- R. Parsons, A. Tamang, V. Jovanov, V. Wagner, D. Knipp, Comparison of light trapping in silicon nanowire and surface textured thin-film solar cells. Appl. Sci. 7, 427 (2017). https://doi.org/10.3390/app7040427
- M.I. Hossain, W. Qarony, M.K. Hossain, M.K. Debnath, M.J. Uddin, Y.H. Tsang, Effect of back reflectors on photon absorption in thin-film amorphous silicon solar cells. Appl. Nanosci. 7, 489–497 (2017). https://doi.org/10.1007/s13204-017-0582-y
- W.-K. Kuo, J.-J. Hsu, C.-K. Nien, H.H. Yu, Moth-eye-inspired biophotonic surfaces with antireflective and hydrophobic characteristics. ACS Appl. Mater. Interfaces 8, 32021–32030 (2016). https://doi.org/10.1021/acsami.6b10960
- G. Tan, J.-H. Lee, Y.-H. Lan, M.-K. Wei, L.-H. Peng, I.-C. Cheng, S.-T. Wu, Broadband antireflection film with moth-eye-like structure for flexible display applications. Optica 4, 678 (2017). https://doi.org/10.1364/OPTICA.4.000678
- L.W. Chan, D.E. Morse, M.J. Gordon, Moth eye-inspired anti-reflective surfaces for improved IR optical systems & visible LEDs fabricated with colloidal lithography and etching. Bioinspir. Biomim. 13, 041001 (2018). https://doi.org/10.1088/1748-3190/aab738
- J. Woo Leem, X.-Y. Guan, M. Choi, J. Su Yu, Broadband and omnidirectional highly-transparent coverglasses coated with biomimetic moth-eye nanopatterned polymer films for solar photovoltaic system applications. Sol. Energy Mater. Sol. Cells 134, 45–53 (2015). https://doi.org/10.1016/j.solmat.2014.11.025
- Q. Chen, G. Hubbard, P.A. Shields, C. Liu, D.W.E. Allsopp, W.N. Wang, S. Abbott, Broadband moth-eye antireflection coatings fabricated by low-cost nanoimprinting. Appl. Phys. Lett. 94, 263118 (2009). https://doi.org/10.1063/1.3171930
- R. Dewan, S. Fischer, V.B. Meyer-Rochow, Y. Özdemir, S. Hamraz, D. Knipp, Studying nanostructured nipple arrays of moth eye facets helps to design better thin film solar cells. Bioinspir. Biomim. 7, 016003 (2012). https://doi.org/10.1088/1748-3182/7/1/016003
- Y. Zhou, G. Long, Low density of conduction and valence band states contribute to the high open-circuit voltage in perovskite solar cells. J. Phys. Chem. C 121, 1455–1462 (2017). https://doi.org/10.1021/acs.jpcc.6b10914
- T. Kirchartz, High open-circuit voltages in lead-halide perovskite solar cells—experiment, theory and open questions. Phys. Appl. Phys. 1, 2 (2019). https://doi.org/10.1098/rsta.2018.0286
- M. Nishiwaki, K. Nagaya, M. Kato, S. Fujimoto, H. Tampo, T. Miyadera, M. Chikamatsu, H. Shibata, H. Fujiwara, Tail state formation in solar cell materials: first principles analyses of zincblende, chalcopyrite, kesterite, and hybrid perovskite crystals. Phys. Rev. Mater. 2, 085404 (2018). https://doi.org/10.1103/PhysRevMaterials.2.085404
- Y. Wang, Y. Liang, Y. Zhang, W. Yang, L. Sun, D. Xu, Pushing the envelope: achieving an open-circuit voltage of 1.18 V for unalloyed MAPbI3 perovskite solar cells of a planar architecture. Adv. Funct. Mater. 28, 1801237 (2018). https://doi.org/10.1002/adfm.201801237
References
A. Duran Sahin, I. Dincer, M.A. Rosen, Thermodynamic analysis of solar photovoltaic cell systems. Sol. Energy Mater. Sol. Cells 91, 153–159 (2017). https://doi.org/10.1016/j.solmat.2006.07.015
U. Rau, U.W. Paetzold, T. Kirchartz, Thermodynamics of light management in photovoltaic devices. Phys. Rev. B 90, 035211 (2014). https://doi.org/10.1103/PhysRevB.90.035211
F.H. Alharbi, S. Kais, Theoretical limits of photovoltaics efficiency and possible improvements by intuitive approaches learned from photosynthesis and quantum coherence. Renew. Sustain. Energy Rev. 43, 1073–1089 (2015). https://doi.org/10.1016/j.rser.2014.11.101
K. Yoshikawa, H. Kawasaki, W. Yoshida, T. Irie, K. Konishi et al., Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%. Nat. Energy 2, 17032 (2017). https://doi.org/10.1038/nenergy.2017.32
W. Shockley, H.J. Queisser, Detailed balance limit of efficiency of p–n junction solar cells. J. Appl. Phys. 32, 510–519 (1961). https://doi.org/10.1063/1.1736034
A. De Vos, Detailed balance limit of the efficiency of tandem solar cells. J. Phys. D Appl. Phys. 13, 839–846 (1980). https://doi.org/10.1088/0022-3727/13/5/018
K.A. Bush, A.F. Palmstrom, Z.J. Yu, M. Boccard, R. Cheacharoen et al., 23.6%-efficient monolithic perovskite/silicon tandem solar cells with improved stability. Nat. Energy 2, 17009 (2017). https://doi.org/10.1038/nenergy.2017.9
F. Sahli, J. Werner, B.A. Kamino, M. Bräuninger, R. Monnard et al., Fully textured monolithic perovskite/silicon tandem solar cells with 25.2% power conversion efficiency. Nat. Mater. 17, 820–826 (2018). https://doi.org/10.1038/s41563-018-0115-4
T. Leijtens, K.A. Bush, R. Prasanna, M.D. McGehee, Opportunities and challenges for tandem solar cells using metal halide perovskite semiconductors. Nat. Energy 3, 828–838 (2018). https://doi.org/10.1038/s41560-018-0190-4
D. Zhao, C. Wang, Z. Song, Y. Yu, C. Chen, X. Zhao, K. Zhu, Y. Yan, Four-terminal all-perovskite tandem solar cells achieving power conversion efficiencies exceeding 23%. ACS Energy Lett. 3, 305–306 (2018). https://doi.org/10.1021/acsenergylett.7b01287
W. Qarony, M.I. Hossain, A. Salleo, D. Knipp, Y.H. Tsang, Rough versus planar interfaces: how to maximize the short circuit current of perovskite single and tandem solar cells. Mater. Today Energy 11, 106–113 (2019). https://doi.org/10.1016/j.mtener.2018.10.001
J. Werner, B. Niesen, C. Ballif, Perovskite/silicon tandem solar cells: marriage of convenience or true love story? An overview. Adv. Mater. Interfaces 5, 1700731 (2018). https://doi.org/10.1002/admi.201700731
F. Meillaud, A. Shah, C. Droz, E. Vallat-Sauvain, C. Miazza, Efficiency limits for single-junction and tandem solar cells. Sol. Energy Mater. Sol. Cells 90, 2952–2959 (2006). https://doi.org/10.1016/j.solmat.2006.06.002
A. Shah, J. Meier, E. Vallat-Sauvain, C. Droz, U. Kroll, N. Wyrsch, J. Guillet, U. Graf, Microcrystalline silicon and ‘micromorph’ tandem solar cells. Thin Solid Films 403–404, 179–187 (2002). https://doi.org/10.1016/S0040-6090(01)01658-3
J. Meier, J. Spitznagel, U. Kroll, C. Bucher, S. Faÿ, T. Moriarty, A. Shah, Potential of amorphous and microcrystalline silicon solar cells. Thin Solid Films 451–452, 518–524 (2004). https://doi.org/10.1016/j.tsf.2003.11.014
M.A. Green, Third Generation Photovoltaics: Advanced Solar Energy Conversion (Springer, Berlin, 2003), pp. 35–66
W. Qarony, M.I. Hossain, M.K. Hossain, M.J. Uddin, A. Haque, A.R. Saad, Y.H. Tsang, Efficient amorphous silicon solar cells: characterization, optimization, and optical loss analysis. Results Phys. 7, 4287–4293 (2017). https://doi.org/10.1016/j.rinp.2017.09.030
R. Lopez-Delgado, H.J. Higuera-Valenzuela, A. Zazueta-Raynaud, A. Ramos, J.E. Pelayo, D. Berman, M.E. Álvarez-Ramos, A. Ayon, Enhancing the power conversion efficiency of solar cells employing down-shifting silicon quantum dots. J. Phys.: Conf. Ser. 773, 012087 (2016). https://doi.org/10.1088/1742-6596/773/1/012087
G. Conibeer, I. Perez-Wurfl, X. Hao, D. Di, D. Lin, Si solid-state quantum dot-based materials for tandem solar cells. Nanoscale Res. Lett. 7, 193 (2012). https://doi.org/10.1186/1556-276X-7-193
R. Lopez-Delgado, H.J. Higuera-Valenzuela, A. Zazueta-Raynaud, A. Ramos-Carrazco, J.E. Pelayo, D. Berman-Mendoza, M.E. Álvarez-Ramos, A. Ayon, Solar cell efficiency improvement employing down-shifting silicon quantum dots. Microsyst. Technol. 24, 495–502 (2018). https://doi.org/10.1007/s00542-017-3405-x
X. Pi, Q. Li, D. Li, D. Yang, Spin-coating silicon-quantum-dot ink to improve solar cell efficiency. Sol. Energy Mater. Sol. Cells 95, 2941–2945 (2011). https://doi.org/10.1016/j.solmat.2011.06.010
C.M. Wolff, F. Zu, A. Paulke, L.P. Toro, N. Koch, D. Neher, Reduced interface-mediated recombination for high open-circuit voltages in CH3NH3PbI3 Solar Cells. Adv. Mater. 29, 1700159 (2017). https://doi.org/10.1002/adma.201700159
A.M.A. Leguy, Y. Hu, M. Campoy-Quiles, M.I. Alonso, O.J. Weber et al., Reversible hydration of CH3NH3PbI3 in films, single crystals, and solar cells. Chem. Mater. 27, 3397–3407 (2015). https://doi.org/10.1021/acs.chemmater.5b00660
W.-J. Yin, T. Shi, Y. Yan, Unusual defect physics in CH3NH3PbI3 perovskite solar cell absorber. Appl. Phys. Lett. 104, 063903 (2014). https://doi.org/10.1063/1.4864778
H. Zhang, H. Wang, W. Chen, A.K.Y. Jen, CuGaO2: a promising inorganic hole-transporting material for highly efficient and stable perovskite solar cells. Adv. Mater. 29, 1604984 (2017). https://doi.org/10.1002/adma.201604984
M. Liu, M.B. Johnston, H.J. Snaith, Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 501, 395–398 (2013). https://doi.org/10.1038/nature12509
N.J. Jeon, J. Lee, J.H. Noh, M.K. Nazeeruddin, M. Grätzel, S. Il Seok, Efficient inorganic-organic hybrid perovskite solar cells based on pyrene arylamine derivatives as hole-transporting materials. J. Am. Chem. Soc. 135, 19087–19090 (2013). https://doi.org/10.1021/ja410659k
Z. Fang, L. Liu, Z. Zhang, S. Yang, F. Liu, M. Liu, L. Ding, CsPbI2.25Br0.75 solar cells with 15.9% efficiency. Sci. Bull. 64, 507–510 (2019). https://doi.org/10.1016/j.scib.2019.04.013
C. Zuo, A.D. Scully, D. Vak, W. Tan, X. Jiao, C.R. McNeill, D. Angmo, L. Ding, M. Gao, Self-assembled 2D perovskite layers for efficient printable solar cells. Adv. Energy Mater. 9, 1803258 (2019). https://doi.org/10.1002/aenm.201803258
C. Zuo, D. Vak, D. Angmo, L. Ding, M. Gao, One-step roll-to-roll air processed high efficiency perovskite solar cells. Nano Energy 46, 185–192 (2018). https://doi.org/10.1016/j.nanoen.2018.01.037
C. Zuo, L. Ding, An 80.11% FF record achieved for perovskite solar cells by using the NH4Cl additive. Nanoscale 6, 9935 (2014). https://doi.org/10.1039/C4NR02425G
C. Zuo, H.J. Bolink, H. Han, J. Huang, D. Cahen, L. Ding, Advances in perovskite solar cells. Adv. Sci. 3, 1500324 (2016). https://doi.org/10.1002/advs.201500324
J. Burschka, N. Pellet, S.J. Moon, R. Humphry-Baker, P. Gao, M.K. Nazeeruddin, M. Grätzel, Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 499, 316–319 (2013). https://doi.org/10.1038/nature12340
N.-G. Park, Perovskite solar cells: an emerging photovoltaic technology. Mater. Today 18, 65–72 (2015). https://doi.org/10.1016/j.mattod.2014.07.007
J.-W. Lee, D.-J. Seol, A.-N. Cho, N.-G. Park, High-efficiency perovskite solar cells based on the black polymorph of HC(NH2)2PbI3. Adv. Mater. 26, 4991–4998 (2014). https://doi.org/10.1002/adma.201401137
F. Hao, C.C. Stoumpos, D.H. Cao, R.P.H. Chang, M.G. Kanatzidis, Lead-free solid-state organic–inorganic halide perovskite solar cells. Nat. Photonics 8, 489–494 (2014). https://doi.org/10.1038/nphoton.2014.82
M.A. Green, Y. Hishikawa, E.D. Dunlop, D.H. Levi, J. Hohl-Ebinger, M. Yoshita, A.W.Y. Ho-Baillie, Solar cell efficiency tables (Version 53). Prog. Photovolt. Res. Appl. 27, 3–12 (2019). https://doi.org/10.1002/pip.3102
Oxford PV-The Perovskite Company, Oxford PV Perovskite Solar Cell Achieves 28% Efficiency (2018). https://www.oxfordpv.com/news/oxford-pv-perovskite-solar-cell-achieves-28-efficiency. Accessed 19 June 2019
S. Limpert, S. Bremner, H. Linke, Reversible electron–hole separation in a hot carrier solar cell. New J. Phys. 17, 095004 (2015). https://doi.org/10.1088/1367-2630/17/9/095004
Reference Solar Spectral Irradiance: ASTM G-173, (2018). http://rredc.nrel.gov/solar/spectra/am1.5/astmg173/astmg173.html. Accessed 19 March 2018
L.A. Kosyachenko, Solar Cells: New Approaches and Reviews. InTech (2015), p. 388. https://doi.org/10.5772/58490
A. Luque, S. Hegedus, Handbook of Photovoltaic Science and Engineering (Wiley, Chichester, 2002), pp. 1–797
S.S. Hegedus, A. Luque, Status, trends, challenges and the bright future of solar electricity from photovoltaics, in Handbook of Photovoltaic Science and Engineering, ed. by A. Luque, S. Hegedus (Wiley, Chichester, 2005), pp. 1–43
P.T. Landsberg, T. Markvart, The carnot factor in solar-cell theory. Solid State Electron. 42, 657–659 (1998). https://doi.org/10.1016/S0038-1101(97)00253-0
F.L. Curzon, B. Ahlborn, Efficiency of a Carnot engine at maximum power output. Am. J. Phys. 43, 22–24 (1975). https://doi.org/10.1119/1.10023
S. Rühle, The detailed balance limit of perovskite/silicon and perovskite/CdTe tandem solar cells. Phys. Status Solidi. 214, 1600955 (2017). https://doi.org/10.1002/pssa.201600955
M.H. Futscher, B. Ehrler, Modeling the performance limitations and prospects of perovskite/Si tandem solar cells under realistic operating conditions. ACS Energy Lett. 2, 2089–2095 (2017). https://doi.org/10.1021/acsenergylett.7b00596
M. Planck, Ueber das gesetz der energieverteilung im normalspectrum. Ann. Phys. 309, 553–563 (1901). https://doi.org/10.1002/andp.19013090310
Article
MATH
T. Markvart, P.T. Landsberg, Thermodynamics and reciprocity of solar energy conversion. Phys. E Low-Dimens. Syst. Nanostructures 14, 71–77 (2002). https://doi.org/10.1016/S1386-9477(02)00352-1
A. De Vos, P.T. Landsberg, P. Baruch, J.E. Parrott, Entropy fluxes, endoreversibility, and solar energy conversion. J. Appl. Phys. 74, 3631–3637 (1993). https://doi.org/10.1063/1.354503
R. Rawat, R. Lamba, S.C. Kaushik, Thermodynamic study of solar photovoltaic energy conversion: an overview. Renew. Sustain. Energy Rev. 71, 630–638 (2017). https://doi.org/10.1016/j.rser.2016.12.089
P.T. Landsberg, G. Tonge, Thermodynamic energy conversion efficiencies. J. Appl. Phys. 51, R1–R20 (1980). https://doi.org/10.1063/1.328187
R.B. Wehrspohn, U. Rau, A. Gombert, Photon Management in Solar Cells (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2015), pp. 1–346. https://doi.org/10.1002/9783527665662
Z. Yu, A. Raman, S. Fan, Nanophotonic light-trapping theory for solar cells. Appl. Phys. A 105, 329–339 (2011). https://doi.org/10.1007/s00339-011-6617-4
J. Zhu, Z. Yu, S. Fan, Y. Cui, Nanostructured photon management for high performance solar cells. Mater. Sci. Eng., R 70, 330–340 (2010). https://doi.org/10.1016/j.mser.2010.06.018
Z. Yu, A. Raman, S. Fan, Fundamental limit of nanophotonic light trapping in solar cells. Proc. Natl. Acad. Sci. 107, 17491–17496 (2010). https://doi.org/10.1073/pnas.1008296107
T. Duong, Y. Wu, H. Shen, J. Peng, X. Fu et al., Rubidium multication perovskite with optimized bandgap for perovskite-silicon tandem with over 26% efficiency. Adv. Energy Mater. 7, 1700228 (2017). https://doi.org/10.1002/aenm.201700228
T.C.-J. Yang, P. Fiala, Q. Jeangros, C. Ballif, High-bandgap perovskite materials for multijunction solar cells. Joule 2, 1421–1436 (2018). https://doi.org/10.1016/j.joule.2018.05.008
D. Ju, Y. Dang, Z. Zhu, H. Liu, C.-C. Chueh et al., Tunable band gap and long carrier recombination lifetime of stable mixed CH3NH3PbxSn1–xBr3 single crystals. Chem. Mater. 30, 1556–1565 (2018). https://doi.org/10.1021/acs.chemmater.7b04565
L. Wang, G.D. Yuan, R.F. Duan, F. Huang, T.B. Wei, Z.Q. Liu, J.X. Wang, J.M. Li, Tunable bandgap in hybrid perovskite CH3NH3Pb(Br3−yXy) single crystals and photodetector applications. AIP Adv. 6, 045115 (2016). https://doi.org/10.1063/1.4948312
J.H. Noh, S.H. Im, J.H. Heo, T.N. Mandal, S. Il Seok, Chemical management for colorful, efficient, and stable inorganic–organic hybrid nanostructured solar cells. Nano Lett. 13, 1764–1769 (2013). https://doi.org/10.1021/nl400349b
S. Tombe, G. Adam, H. Heilbrunner, D.H. Apaydin, C. Ulbricht, N.S. Sariciftci, C.J. Arendse, E. Iwuoha, M.C. Scharber, Optical and electronic properties of mixed halide (X = I, Cl, Br) methylammonium lead perovskite solar cells. J. Mater. Chem. C 5, 1714–1723 (2017). https://doi.org/10.1039/C6TC04830G
J. Xie, K. Huang, X. Yu, Z. Yang, K. Xiao et al., Enhanced electronic properties of SnO2 via electron transfer from graphene quantum dots for efficient perovskite solar cells. ACS Nano 11, 9176–9182 (2017). https://doi.org/10.1021/acsnano.7b04070
F. Giordano, A. Abate, J.P. Correa Baena, M. Saliba, T. Matsui et al., Enhanced electronic properties in mesoporous TiO2 via lithium doping for high-efficiency perovskite solar cells. Nat. Commun. 7, 10379 (2016). https://doi.org/10.1038/ncomms10379
O. Malinkiewicz, A. Yella, Y.H. Lee, G.M. Espallargas, M. Graetzel, M.K. Nazeeruddin, H.J. Bolink, Perovskite solar cells employing organic charge-transport layers. Nat. Photonics 8, 128–132 (2014). https://doi.org/10.1038/nphoton.2013.341
H. Zhou, Q.Q. Chen, G. Li, S. Luo, T.-B.T. Song et al., Interface engineering of highly efficient perovskite solar cells. Science 345, 542–546 (2014). https://doi.org/10.1126/science.1254050
M.A. Mejía Escobar, S. Pathak, J. Liu, H.J. Snaith, F. Jaramillo, ZrO2/TiO2 electron collection layer for efficient meso-superstructured hybrid perovskite solar cells. ACS Appl. Mater. Interfaces 9, 2342–2349 (2017). https://doi.org/10.1021/acsami.6b12509
L. Zheng, Y. Ma, S. Chu, S. Wang, B. Qu et al., Improved light absorption and charge transport for perovskite solar cells with rough interfaces by sequential deposition. Nanoscale 6, 8171–8176 (2014). https://doi.org/10.1039/C4NR01141D
D.-L. Wang, H.-J. Cui, G.-J. Hou, Z.-G. Zhu, Q.-B. Yan, G. Su, Highly efficient light management for perovskite solar cells. Sci. Rep. 6, 18922 (2016). https://doi.org/10.1038/srep18922
W. Qarony, Y.A. Jui, G.M. Das, T. Mohsin, M.I. Hossain, S.N. Islam, Optical analysis in CH3NH3PbI3 and CH3NH3PbI2Cl based thin-film perovskite solar cell. Am. J. Energy Res. 3, 19–24 (2015). https://doi.org/10.12691/ajer-3-2-1
P. Löper, M. Stuckelberger, B. Niesen, J. Werner, M. Filipič et al., Complex refractive index spectra of CH3NH3PbI3 perovskite thin films determined by spectroscopic ellipsometry and spectrophotometry. J. Phys. Chem. Lett. 6, 66–71 (2015). https://doi.org/10.1021/jz502471h
Y. Li, W. Yan, Y. Li, S. Wang, W. Wang, Z. Bian, L. Xiao, Q. Gong, Direct observation of long electron-hole diffusion distance in CH3NH3PbI3 perovskite thin film. Sci. Rep. 5, 14485 (2015). https://doi.org/10.1038/srep14485
H.-S. Rao, B.-X. Chen, X.-D. Wang, D.-B. Kuang, C.-Y. Su, A micron-scale laminar MAPbBr 3 single crystal for an efficient and stable perovskite solar cell. Chem. Commun. 53, 5163–5166 (2017). https://doi.org/10.1039/C7CC02447A
M. van Eerden, M. Jaysankar, A. Hadipour, T. Merckx, J.J. Schermer, T. Aernouts, J. Poortmans, U.W. Paetzold, Optical analysis of planar multicrystalline perovskite solar cells. Adv. Opt. Mater. 5, 1700151 (2017). https://doi.org/10.1002/adom.201700151
W. Qarony, M.I. Hossain, R. Dewan, S. Fischer, V.B. Meyer-Rochow, A. Salleo, D. Knipp, Y.H. Tsang, Approaching perfect light incoupling in perovskite and silicon thin film solar cells by moth eye surface textures. Adv. Theory Simul. 1, 1800030 (2018). https://doi.org/10.1002/adts.201800030
W. Qarony, M.I. Hossain, V. Jovanov, D. Knipp, Y.H. Tsang, Maximizing the short circuit current of organic solar cells by partial decoupling of electrical and optical properties. Appl. Nanosci. 8, 339–346 (2018). https://doi.org/10.1007/s13204-018-0713-0
M.I. Hossain, W. Qarony, V. Jovanov, Y.H. Tsang, D. Knipp, Nanophotonic design of perovskite/silicon tandem solar cells. J. Mater. Chem. A 6, 3625–3633 (2018). https://doi.org/10.1039/c8ta00628h
D. Koushik, W.J.H. Verhees, Y. Kuang, S. Veenstra, D. Zhang, M.A. Verheijen, M. Creatore, R.E.I. Schropp, High-efficiency humidity-stable planar perovskite solar cells based on atomic layer architecture. Energy Environ. Sci. 10, 91–100 (2017). https://doi.org/10.1039/C6EE02687G
J.H. Noh, N.J. Jeon, Y.C. Choi, M.K. Nazeeruddin, M. Grätzel, S. Il Seok, Nanostructured TiO2/CH3NH3PbI3 heterojunction solar cells employing spiro-OMeTAD/Co-complex as hole-transporting material. J. Mater. Chem. A 1, 11842 (2013). https://doi.org/10.1039/c3ta12681a
S. Jang, J. Yoon, K. Ha, M. Kim, D.H. Kim et al., Facile fabrication of three-dimensional TiO2 structures for highly efficient perovskite solar cells. Nano Energy 22, 499–506 (2016). https://doi.org/10.1016/j.nanoen.2016.02.050
C.C. Vidyasagar, B.M. Muñoz Flores, V.M. Jiménez Pérez, Recent advances in synthesis and properties of hybrid halide perovskites for photovoltaics. Nano-Micro Lett. 10, 68 (2018). https://doi.org/10.1007/s40820-018-0221-5
H. Luo, X. Lin, X. Hou, L. Pan, S. Huang, X. Chen, Efficient and air-stable planar perovskite solar cells formed on graphene-oxide-modified pedot:pss hole transport layer. Nano-Micro Lett. 9, 39 (2017). https://doi.org/10.1007/s40820-017-0140-x
Z. Liu, B. Sun, X. Liu, J. Han, H. Ye, T. Shi, Z. Tang, G. Liao, Efficient carbon-based CsPbBr3 inorganic perovskite solar cells by using cu-phthalocyanine as hole transport material. Nano-Micro Lett. 10, 34 (2018). https://doi.org/10.1007/s40820-018-0187-3
X. Xu, Z. Liu, Z. Zuo, M. Zhang, Z. Zhao et al., Hole selective NiO contact for efficient perovskite solar cells with carbon electrode. Nano Lett. 15, 2402–2408 (2015). https://doi.org/10.1021/nl504701y
J. Zhou, X. Meng, X. Zhang, X. Tao, Z. Zhang, J. Hu, C. Wang, Y. Li, S. Yang, Low-temperature aqueous solution processed ZnO as an electron transporting layer for efficient perovskite solar cells. Mater. Chem. Front. 1, 802–806 (2017). https://doi.org/10.1039/C6QM00248J
L. Hu, J. Peng, W. Wang, Z. Xia, J. Yuan et al., Sequential deposition of CH3NH3PbI3 on planar NiO film for efficient planar perovskite solar cells. ACS Photonics 1, 547–553 (2014). https://doi.org/10.1021/ph5000067
W. Chen, Y. Wu, B. Tu, F. Liu, A.B. Djurišić, Z. He, Inverted planar organic-inorganic hybrid perovskite solar cells with NiOx hole-transport layers as light-in window. Appl. Surf. Sci. 451, 325–332 (2018). https://doi.org/10.1016/j.apsusc.2018.04.230
M.I. Hossain, A. Hongsingthong, W. Qarony, P. Sichanugrist, M. Konagai, A. Salleo, D. Knipp, Y.H. Tsang, Optics of perovskite solar cell front contacts. ACS Appl. Mater. Interfaces 11, 14693–14701 (2019). https://doi.org/10.1021/acsami.8b16586
M. Filipič, P. Löper, B. Niesen, S. De Wolf, J. Krč, C. Ballif, M. Topič, CH3NH3PbI3 perovskite/silicon tandem solar cells: characterization based optical simulations. Opt. Express 23, A263–A278 (2015). https://doi.org/10.1364/OE.23.00A263
M.A. Slawinski, R.A. Slawinski, R.J. Brown, J.M. Parkin, A generalized form of Snell’s law in anisotropic media. Geophysics 65, 632–637 (2000). https://doi.org/10.1190/1.1444759
Meep Documentation, Open Source FDTD Solver (2019). https://meep.readthedocs.io/en/latest/. Accessed 20 June 2019
A. Tamang, A. Hongsingthong, V. Jovanov, P. Sichanugrist, B.A. Khan, R. Dewan, M. Konagai, D. Knipp, Enhanced photon management in silicon thin film solar cells with different front and back interface texture. Sci. Rep. 6, 29639 (2016). https://doi.org/10.1038/srep29639
D. Knipp, V. Jovanov, A. Tamang, V. Wagner, A. Salleo, Towards 3D organic solar cells. Nano Energy 31, 582–589 (2017). https://doi.org/10.1016/j.nanoen.2016.11.059
A.D. Rakic, A.B. Djurisic, J.M. Elazar, M.L. Majewski, Optical properties of metallic films for vertical-cavity optoelectronic devices. Appl. Opt. 37, 5271–5283 (1998)
R. Dewan, M. Marinkovic, R. Noriega, S. Phadke, A. Salleo, D. Knipp, Light trapping in thin-film silicon solar cells with submicron surface texture. Opt. Express 17, 23058 (2009). https://doi.org/10.1364/OE.17.023058
R. Parsons, A. Tamang, V. Jovanov, V. Wagner, D. Knipp, Comparison of light trapping in silicon nanowire and surface textured thin-film solar cells. Appl. Sci. 7, 427 (2017). https://doi.org/10.3390/app7040427
M.I. Hossain, W. Qarony, M.K. Hossain, M.K. Debnath, M.J. Uddin, Y.H. Tsang, Effect of back reflectors on photon absorption in thin-film amorphous silicon solar cells. Appl. Nanosci. 7, 489–497 (2017). https://doi.org/10.1007/s13204-017-0582-y
W.-K. Kuo, J.-J. Hsu, C.-K. Nien, H.H. Yu, Moth-eye-inspired biophotonic surfaces with antireflective and hydrophobic characteristics. ACS Appl. Mater. Interfaces 8, 32021–32030 (2016). https://doi.org/10.1021/acsami.6b10960
G. Tan, J.-H. Lee, Y.-H. Lan, M.-K. Wei, L.-H. Peng, I.-C. Cheng, S.-T. Wu, Broadband antireflection film with moth-eye-like structure for flexible display applications. Optica 4, 678 (2017). https://doi.org/10.1364/OPTICA.4.000678
L.W. Chan, D.E. Morse, M.J. Gordon, Moth eye-inspired anti-reflective surfaces for improved IR optical systems & visible LEDs fabricated with colloidal lithography and etching. Bioinspir. Biomim. 13, 041001 (2018). https://doi.org/10.1088/1748-3190/aab738
J. Woo Leem, X.-Y. Guan, M. Choi, J. Su Yu, Broadband and omnidirectional highly-transparent coverglasses coated with biomimetic moth-eye nanopatterned polymer films for solar photovoltaic system applications. Sol. Energy Mater. Sol. Cells 134, 45–53 (2015). https://doi.org/10.1016/j.solmat.2014.11.025
Q. Chen, G. Hubbard, P.A. Shields, C. Liu, D.W.E. Allsopp, W.N. Wang, S. Abbott, Broadband moth-eye antireflection coatings fabricated by low-cost nanoimprinting. Appl. Phys. Lett. 94, 263118 (2009). https://doi.org/10.1063/1.3171930
R. Dewan, S. Fischer, V.B. Meyer-Rochow, Y. Özdemir, S. Hamraz, D. Knipp, Studying nanostructured nipple arrays of moth eye facets helps to design better thin film solar cells. Bioinspir. Biomim. 7, 016003 (2012). https://doi.org/10.1088/1748-3182/7/1/016003
Y. Zhou, G. Long, Low density of conduction and valence band states contribute to the high open-circuit voltage in perovskite solar cells. J. Phys. Chem. C 121, 1455–1462 (2017). https://doi.org/10.1021/acs.jpcc.6b10914
T. Kirchartz, High open-circuit voltages in lead-halide perovskite solar cells—experiment, theory and open questions. Phys. Appl. Phys. 1, 2 (2019). https://doi.org/10.1098/rsta.2018.0286
M. Nishiwaki, K. Nagaya, M. Kato, S. Fujimoto, H. Tampo, T. Miyadera, M. Chikamatsu, H. Shibata, H. Fujiwara, Tail state formation in solar cell materials: first principles analyses of zincblende, chalcopyrite, kesterite, and hybrid perovskite crystals. Phys. Rev. Mater. 2, 085404 (2018). https://doi.org/10.1103/PhysRevMaterials.2.085404
Y. Wang, Y. Liang, Y. Zhang, W. Yang, L. Sun, D. Xu, Pushing the envelope: achieving an open-circuit voltage of 1.18 V for unalloyed MAPbI3 perovskite solar cells of a planar architecture. Adv. Funct. Mater. 28, 1801237 (2018). https://doi.org/10.1002/adfm.201801237