High-Performance Na-Ion Storage of S-Doped Porous Carbon Derived from Conjugated Microporous Polymers
Corresponding Author: Ting Lu
Nano-Micro Letters,
Vol. 11 (2019), Article Number: 60
Abstract
Na-ion batteries (NIBs) have attracted considerable attention in recent years owing to the high abundance and low cost of Na. It is well known that S doping can improve the electrochemical performance of carbon materials for NIBs. However, the current methods for S doping in carbons normally involve toxic precursors or rigorous conditions. In this work, we report a creative and facile strategy for preparing S-doped porous carbons (SCs) via the pyrolysis of conjugated microporous polymers (CMPs). Briefly, thiophene-based CMPs served as the precursors and doping sources simultaneously. Simple direct carbonization of CMPs produced S-doped carbon materials with highly porous structures. When used as an anode for NIBs, the SCs exhibited a high reversible capacity of 440 mAh g−1 at 50 mA g−1 after 100 cycles, superior rate capability, and excellent cycling stability (297 mAh g−1 after 1000 cycles at 500 mA g−1), outperforming most S-doped carbon materials reported thus far. The excellent performance of the SCs is attributed to the expanded lattice distance after S doping. Furthermore, we employed ex situ X-ray photoelectron spectroscopy to investigate the electrochemical reaction mechanism of the SCs during sodiation–desodiation, which can highlight the role of doped S for Na-ion storage.
Highlights:
1 S-doped porous carbons (SCs) derived from conjugated microporous polymers were synthesized for Na-ion batteries.
2 The SCs exhibited a high capacity of 440 mAh g−1 at 50 mA g−1 and excellent cycling performance.
3 Ex situ X-ray photoelectron spectroscopy was used to investigate the electrochemical reaction mechanism of the SCs.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- H. Yang, H.-H. Wu, M. Ge, L. Li, Y. Yuan et al., Simultaneously dual modification of Ni-rich layered oxide cathode for high-energy lithium-ion batteries. Adv. Funct. Mater. 29, 1808825 (2019). https://doi.org/10.1002/adfm.201808825
- J.-L. Shi, D.-D. Xiao, M. Ge, X. Yu, Y. Chu et al., High-capacity cathode material with high voltage for Li-ion batteries. Adv. Mater. 30, 1705575 (2018). https://doi.org/10.1002/adma.201705575
- J. Li, L. Han, X. Zhang, G. Zhu, T. Chen, T. Lu, L. Pan, Sb2O5/Co-containing carbon polyhedra as anode material for high-performance lithium-ion batteries. Chem. Eng. J. 370, 800–809 (2019). https://doi.org/10.1016/j.cej.2019.03.244
- L. Wan, D. Yan, X. Xu, J. Li, T. Lu, Y. Gao, Y. Yao, L. Pan, Self-assembled 3D flower-like Fe3O4/C architecture with superior lithium ion storage performance. J. Mater. Chem. A 6, 24940–24948 (2018). https://doi.org/10.1039/C8TA06482B
- M.S. Islam, C.A. Fisher, Lithium and sodium battery cathode materials: computational insights into voltage, diffusion and nanostructural properties. Chem. Soc. Rev. 43, 185–204 (2014). https://doi.org/10.1039/C3CS60199D
- B.L. Ellis, L.F. Nazar, Sodium and sodium-ion energy storage batteries. Curr. Opin. Solid State Mater. Sci. 16, 168–177 (2012). https://doi.org/10.1016/j.cossms.2012.04.002
- L. Zheng, L. Li, R. Shunmugasundaram, M.N. Obrovac, Effect of controlled-atmosphere storage and ethanol rinsing on NaNi0.5Mn0.5O2 for sodium-ion batteries. ACS Appl. Mater. Interfaces 10, 38246–38254 (2018). https://doi.org/10.1021/acsami.8b14209
- J. Li, X. Zhang, L. Han, D. Yan, S. Hou, T. Lu, Y. Yao, L. Pan, TiO2 nanocrystals embedded in sulfur-doped porous carbon as high-performance and long-lasting anode materials for sodium-ion batteries. J. Mater. Chem. A 6, 24224–24231 (2018). https://doi.org/10.1039/C8TA05617J
- W. Li, M. Zhou, H. Li, K. Wang, S. Cheng, K. Jiang, A high performance sulfur-doped disordered carbon anode for sodium ion batteries. Energy Environ. Sci. 8, 2916–2921 (2015). https://doi.org/10.1039/C5EE01985K
- L. Qie, W. Chen, X. Xiong, C. Hu, F. Zou, P. Hu, Y. Huang, Sulfur-doped carbon with enlarged interlayer distance as a high-performance anode material for sodium-ion batteries. Adv. Sci. 2, 1500195 (2015). https://doi.org/10.1002/advs.201500195
- S.Y. Hong, Y. Kim, Y. Park, A. Choi, N.-S. Choi, K.T. Lee, Charge carriers in rechargeable batteries: Na ions vs Li ions. Energy Environ. Sci. 6, 2067–2081 (2013). https://doi.org/10.1039/c3ee40811f
- Y. Bao, Y. Huang, X. Song, J. Long, S. Wang, L.-X. Ding, H. Wang, Heteroatom doping and activation of carbon nanofibers enabling ultrafast and stable sodium storage. Electrochim. Acta 276, 304–310 (2018). https://doi.org/10.1016/j.electacta.2018.04.207
- C. Chen, M. Wu, Z. Xu, T. Feng, J. Yang, Z. Chen, S. Wang, Y. Wang, Tailored N-doped porous carbon nanocomposites through MOF self-assembling for Li/Na ion batteries. J. Colloid Interface Sci. 538, 267–276 (2019). https://doi.org/10.1016/j.jcis.2018.11.101
- Q. Li, Y. Zhu, P. Zhao, C. Yuan, M. Chen, C. Wang, Commercial activated carbon as a novel precursor of the amorphous carbon for high-performance sodium-ion batteries anode. Carbon 129, 85–94 (2018). https://doi.org/10.1016/j.carbon.2017.12.008
- X.-F. Luo, C.-H. Yang, Y.-Y. Peng, N.-W. Pu, M.-D. Ger, C.-T. Hsieh, J.-K. Chang, Graphene nanosheets, carbon nanotubes, graphite, and activated carbon as anode materials for sodium-ion batteries. J. Mater. Chem. A 3, 10320–10326 (2015). https://doi.org/10.1039/C5TA00727E
- M.M. Islam, C.M. Subramaniyam, T. Akhter, S.N. Faisal, A.I. Minett, H.K. Liu, K. Konstantinov, S.X. Dou, Three dimensional cellular architecture of sulfur doped graphene: self-standing electrode for flexible supercapacitors, lithium ion and sodium ion batteries. J. Mater. Chem. A 5, 5290–5302 (2017). https://doi.org/10.1039/C6TA10933K
- D. Li, H. Chen, G. Liu, M. Wei, L.-X. Ding, S. Wang, H. Wang, Porous nitrogen doped carbon sphere as high performance anode of sodium-ion battery. Carbon 94, 888–894 (2015). https://doi.org/10.1016/j.carbon.2015.07.067
- K.-L. Hong, L. Qie, R. Zeng, Z.-Q. Yi, W. Zhang et al., Biomass derived hard carbon used as a high performance anode material for sodium ion batteries. J. Mater. Chem. A 2, 12733–12738 (2014). https://doi.org/10.1039/C4TA02068E
- B. Quan, S.-H. Yu, D.Y. Chung, A. Jin, J.H. Park, Y.-E. Sung, Y. Piao, Single source precursor-based solvothermal synthesis of heteroatom-doped graphene and its energy storage and conversion applications. Sci. Rep. 4, 5639 (2014). https://doi.org/10.1038/srep05639
- Y. Zhou, Y. Leng, W. Zhou, J. Huang, M. Zhao, Sulfur and nitrogen self-doped carbon nanosheets derived from peanut root nodules as high-efficiency non-metal electrocatalyst for hydrogen evolution reaction. Nano Energy 16, 357–366 (2015). https://doi.org/10.1016/j.nanoen.2015.07.008
- Y. Li, Z. Wang, L. Li, S. Peng, L. Zhang, M. Srinivasan, S. Ramakrishna, Preparation of nitrogen-and phosphorous co-doped carbon microspheres and their superior performance as anode in sodium-ion batteries. Carbon 99, 556–563 (2016). https://doi.org/10.1016/j.carbon.2015.12.066
- B. Quan, A. Jin, S.H. Yu, S.M. Kang, J. Jeong, H.D. Abruña, L. Jin, Y. Piao, Y.E. Sung, Solvothermal-derived s-doped graphene as an anode material for sodium-ion batteries. Adv. Sci. 5, 1700880 (2018). https://doi.org/10.1002/advs.201700880
- X. Deng, K. Xie, L. Li, W. Zhou, J. Sunarso, Z. Shao, Scalable synthesis of self-standing sulfur-doped flexible graphene films as recyclable anode materials for low-cost sodium-ion batteries. Carbon 107, 67–73 (2016). https://doi.org/10.1016/j.carbon.2016.05.052
- J. Yang, X. Zhou, D. Wu, X. Zhao, Z. Zhou, S-doped N-rich carbon nanosheets with expanded interlayer distance as anode materials for sodium-ion batteries. Adv. Mater. 29, 1604108 (2017). https://doi.org/10.1002/adma.201604108
- Z. Hong, Y. Zhen, Y. Ruan, M. Kang, K. Zhou, J.M. Zhang, Z. Huang, M. Wei, Rational design and general synthesis of S-doped hard carbon with tunable doping sites toward excellent Na-ion storage performance. Adv. Mater. 30, 1802035 (2018). https://doi.org/10.1002/adma.201802035
- M. Lu, W. Yu, J. Shi, W. Liu, S. Chen, X. Wang, H. Wang, Self-doped carbon architectures with heteroatoms containing nitrogen, oxygen and sulfur as high-performance anodes for lithium-and sodium-ion batteries. Electrochim. Acta 251, 396–406 (2017). https://doi.org/10.1016/j.electacta.2017.08.131
- Z. Xiang, Y. Xue, D. Cao, L. Huang, J.F. Chen, L. Dai, Highly efficient electrocatalysts for oxygen reduction based on 2D covalent organic polymers complexed with non-precious metals. Angew. Chem. Int. Ed. 53, 2433–2437 (2014). https://doi.org/10.1002/anie.201308896
- J. Zhu, C. Yang, C. Lu, F. Zhang, Z. Yuan, X. Zhuang, Two-dimensional porous polymers: from sandwich-like structure to layered skeleton. Acc. Chem. Res. 51, 3191–3202 (2018). https://doi.org/10.1021/acs.accounts.8b00444
- K. Yuan, X. Zhuang, H. Fu, G. Brunklaus, M. Forster, Y. Chen, X. Feng, U. Scherf, Two-dimensional core-shelled porous hybrids as highly efficient catalysts for the oxygen reduction reaction. Angew. Chem. Int. Ed. 55, 6858–6863 (2016). https://doi.org/10.1002/anie.201600850
- K. Yuan, P. Guo-Wang, T. Hu, L. Shi, R. Zeng, M. Forster, T. Pichler, Y. Chen, U. Scherf, Nanofibrous and graphene-templated conjugated microporous polymer materials for flexible chemosensors and supercapacitors. Chem. Mater. 27, 7403–7411 (2015). https://doi.org/10.1021/acs.chemmater.5b03290
- J.-X. Jiang, F. Su, H. Niu, C.D. Wood, N.L. Campbell, Y.Z. Khimyak, A.I. Cooper, Conjugated microporous poly (phenylene butadiynylene)s. Chem. Commun. (2008). https://doi.org/10.1039/B715563H
- L. Chen, Y. Yang, D. Jiang, CMPs as scaffolds for constructing porous catalytic frameworks: a built-in heterogeneous catalyst with high activity and selectivity based on nanoporous metalloporphyrin polymers. J. Am. Chem. Soc. 132, 9138–9143 (2010). https://doi.org/10.1021/ja1028556
- J.-X. Jiang, A. Trewin, D.J. Adams, A.I. Cooper, Band gap engineering in fluorescent conjugated microporous polymers. Chem. Sci. 2, 1777–1781 (2011). https://doi.org/10.1039/c1sc00329a
- X. Feng, Y. Liang, L. Zhi, A. Thomas, D. Wu, I. Lieberwirth, U. Kolb, K. Müllen, Synthesis of microporous carbon nanofibers and nanotubes from conjugated polymer network and evaluation in electrochemical capacitor. Adv. Funct. Mater. 19, 2125–2129 (2009). https://doi.org/10.1002/adfm.200900264
- Y. Xu, S. Jin, H. Xu, A. Nagai, D. Jiang, Conjugated microporous polymers: design, synthesis and application. Chem. Soc. Rev. 42, 8012–8031 (2013). https://doi.org/10.1039/c3cs60160a
- A.I. Cooper, Conjugated microporous polymers. Adv. Mater. 21, 1291–1295 (2009). https://doi.org/10.1002/adma.200801971
- R. Dawson, A.I. Cooper, D.J. Adams, Nanoporous organic polymer networks. Prog. Polym. Sci. 37, 530–563 (2012). https://doi.org/10.1016/j.progpolymsci.2011.09.002
- J.X. Jiang, F. Su, A. Trewin, C.D. Wood, N.L. Campbell et al., Conjugated microporous poly (aryleneethynylene) networks. Angew. Chem. Int. Ed. 46, 8574–8578 (2007). https://doi.org/10.1002/anie.200701595
- K. Yuan, T. Hu, Y. Xu, R. Graf, L. Shi, M. Forster, T. Pichler, T. Riedl, Y. Chen, U. Scherf, Nitrogen-doped porous carbon/graphene nanosheets derived from two-dimensional conjugated microporous polymer sandwiches with promising capacitive performance. Mater. Chem. Front. 1, 278–285 (2017). https://doi.org/10.1039/C6QM00012F
- X. Zhuang, D. Gehrig, N. Forler, H. Liang, M. Wagner, M.R. Hansen, F. Laquai, F. Zhang, X. Feng, Conjugated microporous polymers with dimensionality-controlled heterostructures for green energy devices. Adv. Mater. 27, 3789–3796 (2015). https://doi.org/10.1002/adma.201501786
- L. Hao, J. Ning, B. Luo, B. Wang, Y. Zhang, Z. Tang, J. Yang, A. Thomas, L. Zhi, Structural evolution of 2D microporous covalent triazine-based framework toward the study of high-performance supercapacitors. J. Am. Chem. Soc. 137, 219–225 (2014). https://doi.org/10.1021/ja508693y
- Y. Su, Z. Yao, F. Zhang, H. Wang, Z. Mics, E. Cánovas, M. Bonn, X. Zhuang, X. Feng, Sulfur-enriched conjugated polymer nanosheet derived sulfur and nitrogen co-doped porous carbon nanosheets as electrocatalysts for oxygen reduction reaction and zinc–air battery. Adv. Funct. Mater. 26, 5893–5902 (2016). https://doi.org/10.1002/adfm.201602158
- J. Wang, L. Yan, Q. Ren, L. Fan, F. Zhang, Z. Shi, Facile hydrothermal treatment route of reed straw-derived hard carbon for high performance sodium ion battery. Electrochim. Acta 291, 188–196 (2018). https://doi.org/10.1016/j.electacta.2018.08.136
- L. Xiao, Y. Cao, W.A. Henderson, M.L. Sushko, Y. Shao, J. Xiao, W. Wang, M.H. Engelhard, Z. Nie, J. Liu, Hard carbon nanoparticles as high-capacity, high-stability anodic materials for Na-ion batteries. Nano Energy 19, 279–288 (2016). https://doi.org/10.1016/j.nanoen.2015.10.034
- G. Xu, J. Han, B. Ding, P. Nie, J. Pan, H. Dou, H. Li, X. Zhang, Biomass-derived porous carbon materials with sulfur and nitrogen dual-doping for energy storage. Green Chem. 17, 1668–1674 (2015). https://doi.org/10.1039/C4GC02185A
- Y. Li, S. Xu, X. Wu, J. Yu, Y. Wang, Y.-S. Hu, H. Li, L. Chen, X. Huang, Amorphous monodispersed hard carbon micro-spherules derived from biomass as a high performance negative electrode material for sodium-ion batteries. J. Mater. Chem. A 3, 71–77 (2015). https://doi.org/10.1039/C4TA05451B
- L. Zeng, W. Li, J. Cheng, J. Wang, X. Liu, Y. Yu, N-doped porous hollow carbon nanofibers fabricated using electrospun polymer templates and their sodium storage properties. RSC Adv. 4, 16920–16927 (2014). https://doi.org/10.1039/C4RA01200C
- H. Tang, D. Yan, T. Lu, L. Pan, Sulfur-doped carbon spheres with hierarchical micro/mesopores as anode materials for sodium-ion batteries. Electrochim. Acta 241, 63–72 (2017). https://doi.org/10.1016/j.electacta.2017.04.112
- Y. Yan, Y.-X. Yin, S. Xin, Y.-G. Guo, L.-J. Wan, Ionothermal synthesis of sulfur-doped porous carbons hybridized with graphene as superior anode materials for lithium-ion batteries. Chem. Commun. 48, 10663–10665 (2012). https://doi.org/10.1039/c2cc36234a
- X. Ma, G. Ning, Y. Kan, Y. Ma, C. Qi, B. Chen, Y. Li, X. Lan, J. Gao, Synthesis of S-doped mesoporous carbon fibres with ultrahigh S concentration and their application as high performance electrodes in supercapacitors. Electrochim. Acta 150, 108–113 (2014). https://doi.org/10.1016/j.electacta.2014.10.128
- M. Chen, S. Jiang, C. Huang, X. Wang, S. Cai, K. Xiang, Y. Zhang, J. Xue, Honeycomb-like nitrogen and sulfur dual-doped hierarchical porous biomass-derived carbon for lithium–sulfur batteries. Chemsuschem 10, 1803–1812 (2017). https://doi.org/10.1002/cssc.201700050
- B. Wang, X. Zhang, X. Liu, G. Wang, H. Wang, J. Bai, Rational design of Fe3O4@ C yolk-shell nanorods constituting a stable anode for high-performance Li/Na-ion batteries. J. Colloid Interface Sci. 528, 225–236 (2018). https://doi.org/10.1016/j.jcis.2018.05.086
- J. Feng, L. Dong, X. Li, D. Li, P. Lu, F. Hou, J. Liang, S.X. Dou, Hierarchically stacked reduced graphene oxide/carbon nanotubes for as high performance anode for sodium-ion batteries. Electrochim. Acta 302, 65–70 (2019). https://doi.org/10.1016/j.electacta.2019.02.008
- T.H. Hwang, D.S. Jung, J.-S. Kim, B.G. Kim, J.W. Choi, One-dimensional carbon–sulfur composite fibers for Na–S rechargeable batteries operating at room temperature. Nano Lett. 13, 4532–4538 (2013). https://doi.org/10.1021/nl402513x
- S. Xin, Y.X. Yin, Y.G. Guo, L.J. Wan, A high-energy room-temperature sodium-sulfur battery. Adv. Mater. 26, 1261–1265 (2014). https://doi.org/10.1002/adma.201304126
- Y.S. Yun, V.-D. Le, H. Kim, S.-J. Chang, S.J. Baek et al., Effects of sulfur doping on graphene-based nanosheets for use as anode materials in lithium-ion batteries. J. Power Sources 262, 79–85 (2014). https://doi.org/10.1016/j.jpowsour.2014.03.084
- S.R. Prabakar, J. Jeong, M. Pyo, Nanoporous hard carbon anodes for improved electrochemical performance in sodium ion batteries. Electrochim. Acta 161, 23–31 (2015). https://doi.org/10.1016/j.electacta.2015.02.086
- H. Zhang, M. Hu, Q. Lv, L. Yang, R. Lv, Monodisperse nitrogen-doped carbon spheres with superior rate capacities for lithium/sodium ion storage. Electrochim. Acta 297, 365–371 (2019). https://doi.org/10.1016/j.electacta.2018.11.207
- X. Zhang, D. Li, G. Zhu, T. Lu, L. Pan, Porous CoFe2O4 nanocubes derived from metal-organic frameworks as high-performance anode for sodium ion batteries. J. Colloid Interface Sci. 499, 145–150 (2017). https://doi.org/10.1016/j.jcis.2017.03.104
- V.G. Pol, E. Lee, D. Zhou, F. Dogan, J.M. Calderon-Moreno, C.S. Johnson, Spherical carbon as a new high-rate anode for sodium-ion batteries. Electrochim. Acta 127, 61–67 (2014). https://doi.org/10.1016/j.electacta.2014.01.132
- D. Xu, C. Chen, J. Xie, B. Zhang, L. Miao, J. Cai, Y. Huang, L. Zhang, A Hierarchical N/S-codoped carbon anode fabricated facilely from cellulose/polyaniline microspheres for high-performance sodium-ion batteries. Adv. Energy Mater. 6, 1501929 (2016). https://doi.org/10.1002/aenm.201501929
- Y. Li, Y.-S. Hu, X. Qi, X. Rong, H. Li, X. Huang, L. Chen, Advanced sodium-ion batteries using superior low cost pyrolyzed anthracite anode: towards practical applications. Energy Storage Mater. 5, 191–197 (2016). https://doi.org/10.1016/j.ensm.2016.07.006
- F. Chen, J. Yang, T. Bai, B. Long, X. Zhou, Biomass waste-derived honeycomb-like nitrogen and oxygen dual-doped porous carbon for high performance lithium-sulfur batteries. Electrochim. Acta 192, 99–109 (2016). https://doi.org/10.1016/j.electacta.2016.01.192
- J. Li, W. Qin, J. Xie, H. Lei, Y. Zhu et al., Sulphur-doped reduced graphene oxide sponges as high-performance free-standing anodes for K-ion storage. Nano Energy 53, 415–424 (2018). https://doi.org/10.1016/j.nanoen.2018.08.075
- H. Chen, X. Chen, Z. Qiao, H. Liu, Release and transformation behavior of Cl during pyrolysis of torrefied rice straw. Fuel 183, 145–154 (2016). https://doi.org/10.1016/j.fuel.2016.06.031
- D. Chao, P. Liang, Z. Chen, L. Bai, H. Shen, X.E.A. Liu, Pseudocapacitive Na-ion storage boosts high rate and areal capacity of self-branched 2D layered metal chalcogenide nanoarrays. ACS Nano 10, 10211–10219 (2016). https://doi.org/10.1021/acsnano.6b05566
- J. Zhang, W. Zhang, T. He, I.S. Amiinu, Z. Kou, J.E.A. Li, Smart reconstruction of dual-carbon decorated MnO for anode with high-capacity and ultralong-life lithium storage properties. Carbon 115, 95–104 (2017). https://doi.org/10.1016/j.carbon.2016.12.090
- W. Tian, H. Hu, Y. Wang, P. Li, J. Liu et al., Metal-organic frameworks mediated synthesis of one-dimensional molybdenum-based/carbon composites for enhanced lithium storage. ACS Nano 12, 1990–2000 (2018). https://doi.org/10.1021/acsnano.7b09175
- D. Li, L. Zhang, H. Chen, J. Wang, L.X. Ding, S. Wang, P.J. Ashman, H. Wang, Graphene-based nitrogen-doped carbon sandwich nanosheets: new capacitive process controlled anode material for high-performance sodium-ion batteries. J. Mater. Chem. A 4, 8630–8635 (2016). https://doi.org/10.1039/C6TA02139E
- C. Zhao, C. Yu, M. Zhang, H. Huang, S. Li, X. Han, Z. Liu, J. Yang, W. Xiao, J. Liang, Ultrafine MoO2-carbon microstructures enable ultralong-life power-type sodium ion storage by enhanced pseudocapacitance. Adv. Energy Mater. 7, 1602880 (2017). https://doi.org/10.1002/aenm.201602880
References
H. Yang, H.-H. Wu, M. Ge, L. Li, Y. Yuan et al., Simultaneously dual modification of Ni-rich layered oxide cathode for high-energy lithium-ion batteries. Adv. Funct. Mater. 29, 1808825 (2019). https://doi.org/10.1002/adfm.201808825
J.-L. Shi, D.-D. Xiao, M. Ge, X. Yu, Y. Chu et al., High-capacity cathode material with high voltage for Li-ion batteries. Adv. Mater. 30, 1705575 (2018). https://doi.org/10.1002/adma.201705575
J. Li, L. Han, X. Zhang, G. Zhu, T. Chen, T. Lu, L. Pan, Sb2O5/Co-containing carbon polyhedra as anode material for high-performance lithium-ion batteries. Chem. Eng. J. 370, 800–809 (2019). https://doi.org/10.1016/j.cej.2019.03.244
L. Wan, D. Yan, X. Xu, J. Li, T. Lu, Y. Gao, Y. Yao, L. Pan, Self-assembled 3D flower-like Fe3O4/C architecture with superior lithium ion storage performance. J. Mater. Chem. A 6, 24940–24948 (2018). https://doi.org/10.1039/C8TA06482B
M.S. Islam, C.A. Fisher, Lithium and sodium battery cathode materials: computational insights into voltage, diffusion and nanostructural properties. Chem. Soc. Rev. 43, 185–204 (2014). https://doi.org/10.1039/C3CS60199D
B.L. Ellis, L.F. Nazar, Sodium and sodium-ion energy storage batteries. Curr. Opin. Solid State Mater. Sci. 16, 168–177 (2012). https://doi.org/10.1016/j.cossms.2012.04.002
L. Zheng, L. Li, R. Shunmugasundaram, M.N. Obrovac, Effect of controlled-atmosphere storage and ethanol rinsing on NaNi0.5Mn0.5O2 for sodium-ion batteries. ACS Appl. Mater. Interfaces 10, 38246–38254 (2018). https://doi.org/10.1021/acsami.8b14209
J. Li, X. Zhang, L. Han, D. Yan, S. Hou, T. Lu, Y. Yao, L. Pan, TiO2 nanocrystals embedded in sulfur-doped porous carbon as high-performance and long-lasting anode materials for sodium-ion batteries. J. Mater. Chem. A 6, 24224–24231 (2018). https://doi.org/10.1039/C8TA05617J
W. Li, M. Zhou, H. Li, K. Wang, S. Cheng, K. Jiang, A high performance sulfur-doped disordered carbon anode for sodium ion batteries. Energy Environ. Sci. 8, 2916–2921 (2015). https://doi.org/10.1039/C5EE01985K
L. Qie, W. Chen, X. Xiong, C. Hu, F. Zou, P. Hu, Y. Huang, Sulfur-doped carbon with enlarged interlayer distance as a high-performance anode material for sodium-ion batteries. Adv. Sci. 2, 1500195 (2015). https://doi.org/10.1002/advs.201500195
S.Y. Hong, Y. Kim, Y. Park, A. Choi, N.-S. Choi, K.T. Lee, Charge carriers in rechargeable batteries: Na ions vs Li ions. Energy Environ. Sci. 6, 2067–2081 (2013). https://doi.org/10.1039/c3ee40811f
Y. Bao, Y. Huang, X. Song, J. Long, S. Wang, L.-X. Ding, H. Wang, Heteroatom doping and activation of carbon nanofibers enabling ultrafast and stable sodium storage. Electrochim. Acta 276, 304–310 (2018). https://doi.org/10.1016/j.electacta.2018.04.207
C. Chen, M. Wu, Z. Xu, T. Feng, J. Yang, Z. Chen, S. Wang, Y. Wang, Tailored N-doped porous carbon nanocomposites through MOF self-assembling for Li/Na ion batteries. J. Colloid Interface Sci. 538, 267–276 (2019). https://doi.org/10.1016/j.jcis.2018.11.101
Q. Li, Y. Zhu, P. Zhao, C. Yuan, M. Chen, C. Wang, Commercial activated carbon as a novel precursor of the amorphous carbon for high-performance sodium-ion batteries anode. Carbon 129, 85–94 (2018). https://doi.org/10.1016/j.carbon.2017.12.008
X.-F. Luo, C.-H. Yang, Y.-Y. Peng, N.-W. Pu, M.-D. Ger, C.-T. Hsieh, J.-K. Chang, Graphene nanosheets, carbon nanotubes, graphite, and activated carbon as anode materials for sodium-ion batteries. J. Mater. Chem. A 3, 10320–10326 (2015). https://doi.org/10.1039/C5TA00727E
M.M. Islam, C.M. Subramaniyam, T. Akhter, S.N. Faisal, A.I. Minett, H.K. Liu, K. Konstantinov, S.X. Dou, Three dimensional cellular architecture of sulfur doped graphene: self-standing electrode for flexible supercapacitors, lithium ion and sodium ion batteries. J. Mater. Chem. A 5, 5290–5302 (2017). https://doi.org/10.1039/C6TA10933K
D. Li, H. Chen, G. Liu, M. Wei, L.-X. Ding, S. Wang, H. Wang, Porous nitrogen doped carbon sphere as high performance anode of sodium-ion battery. Carbon 94, 888–894 (2015). https://doi.org/10.1016/j.carbon.2015.07.067
K.-L. Hong, L. Qie, R. Zeng, Z.-Q. Yi, W. Zhang et al., Biomass derived hard carbon used as a high performance anode material for sodium ion batteries. J. Mater. Chem. A 2, 12733–12738 (2014). https://doi.org/10.1039/C4TA02068E
B. Quan, S.-H. Yu, D.Y. Chung, A. Jin, J.H. Park, Y.-E. Sung, Y. Piao, Single source precursor-based solvothermal synthesis of heteroatom-doped graphene and its energy storage and conversion applications. Sci. Rep. 4, 5639 (2014). https://doi.org/10.1038/srep05639
Y. Zhou, Y. Leng, W. Zhou, J. Huang, M. Zhao, Sulfur and nitrogen self-doped carbon nanosheets derived from peanut root nodules as high-efficiency non-metal electrocatalyst for hydrogen evolution reaction. Nano Energy 16, 357–366 (2015). https://doi.org/10.1016/j.nanoen.2015.07.008
Y. Li, Z. Wang, L. Li, S. Peng, L. Zhang, M. Srinivasan, S. Ramakrishna, Preparation of nitrogen-and phosphorous co-doped carbon microspheres and their superior performance as anode in sodium-ion batteries. Carbon 99, 556–563 (2016). https://doi.org/10.1016/j.carbon.2015.12.066
B. Quan, A. Jin, S.H. Yu, S.M. Kang, J. Jeong, H.D. Abruña, L. Jin, Y. Piao, Y.E. Sung, Solvothermal-derived s-doped graphene as an anode material for sodium-ion batteries. Adv. Sci. 5, 1700880 (2018). https://doi.org/10.1002/advs.201700880
X. Deng, K. Xie, L. Li, W. Zhou, J. Sunarso, Z. Shao, Scalable synthesis of self-standing sulfur-doped flexible graphene films as recyclable anode materials for low-cost sodium-ion batteries. Carbon 107, 67–73 (2016). https://doi.org/10.1016/j.carbon.2016.05.052
J. Yang, X. Zhou, D. Wu, X. Zhao, Z. Zhou, S-doped N-rich carbon nanosheets with expanded interlayer distance as anode materials for sodium-ion batteries. Adv. Mater. 29, 1604108 (2017). https://doi.org/10.1002/adma.201604108
Z. Hong, Y. Zhen, Y. Ruan, M. Kang, K. Zhou, J.M. Zhang, Z. Huang, M. Wei, Rational design and general synthesis of S-doped hard carbon with tunable doping sites toward excellent Na-ion storage performance. Adv. Mater. 30, 1802035 (2018). https://doi.org/10.1002/adma.201802035
M. Lu, W. Yu, J. Shi, W. Liu, S. Chen, X. Wang, H. Wang, Self-doped carbon architectures with heteroatoms containing nitrogen, oxygen and sulfur as high-performance anodes for lithium-and sodium-ion batteries. Electrochim. Acta 251, 396–406 (2017). https://doi.org/10.1016/j.electacta.2017.08.131
Z. Xiang, Y. Xue, D. Cao, L. Huang, J.F. Chen, L. Dai, Highly efficient electrocatalysts for oxygen reduction based on 2D covalent organic polymers complexed with non-precious metals. Angew. Chem. Int. Ed. 53, 2433–2437 (2014). https://doi.org/10.1002/anie.201308896
J. Zhu, C. Yang, C. Lu, F. Zhang, Z. Yuan, X. Zhuang, Two-dimensional porous polymers: from sandwich-like structure to layered skeleton. Acc. Chem. Res. 51, 3191–3202 (2018). https://doi.org/10.1021/acs.accounts.8b00444
K. Yuan, X. Zhuang, H. Fu, G. Brunklaus, M. Forster, Y. Chen, X. Feng, U. Scherf, Two-dimensional core-shelled porous hybrids as highly efficient catalysts for the oxygen reduction reaction. Angew. Chem. Int. Ed. 55, 6858–6863 (2016). https://doi.org/10.1002/anie.201600850
K. Yuan, P. Guo-Wang, T. Hu, L. Shi, R. Zeng, M. Forster, T. Pichler, Y. Chen, U. Scherf, Nanofibrous and graphene-templated conjugated microporous polymer materials for flexible chemosensors and supercapacitors. Chem. Mater. 27, 7403–7411 (2015). https://doi.org/10.1021/acs.chemmater.5b03290
J.-X. Jiang, F. Su, H. Niu, C.D. Wood, N.L. Campbell, Y.Z. Khimyak, A.I. Cooper, Conjugated microporous poly (phenylene butadiynylene)s. Chem. Commun. (2008). https://doi.org/10.1039/B715563H
L. Chen, Y. Yang, D. Jiang, CMPs as scaffolds for constructing porous catalytic frameworks: a built-in heterogeneous catalyst with high activity and selectivity based on nanoporous metalloporphyrin polymers. J. Am. Chem. Soc. 132, 9138–9143 (2010). https://doi.org/10.1021/ja1028556
J.-X. Jiang, A. Trewin, D.J. Adams, A.I. Cooper, Band gap engineering in fluorescent conjugated microporous polymers. Chem. Sci. 2, 1777–1781 (2011). https://doi.org/10.1039/c1sc00329a
X. Feng, Y. Liang, L. Zhi, A. Thomas, D. Wu, I. Lieberwirth, U. Kolb, K. Müllen, Synthesis of microporous carbon nanofibers and nanotubes from conjugated polymer network and evaluation in electrochemical capacitor. Adv. Funct. Mater. 19, 2125–2129 (2009). https://doi.org/10.1002/adfm.200900264
Y. Xu, S. Jin, H. Xu, A. Nagai, D. Jiang, Conjugated microporous polymers: design, synthesis and application. Chem. Soc. Rev. 42, 8012–8031 (2013). https://doi.org/10.1039/c3cs60160a
A.I. Cooper, Conjugated microporous polymers. Adv. Mater. 21, 1291–1295 (2009). https://doi.org/10.1002/adma.200801971
R. Dawson, A.I. Cooper, D.J. Adams, Nanoporous organic polymer networks. Prog. Polym. Sci. 37, 530–563 (2012). https://doi.org/10.1016/j.progpolymsci.2011.09.002
J.X. Jiang, F. Su, A. Trewin, C.D. Wood, N.L. Campbell et al., Conjugated microporous poly (aryleneethynylene) networks. Angew. Chem. Int. Ed. 46, 8574–8578 (2007). https://doi.org/10.1002/anie.200701595
K. Yuan, T. Hu, Y. Xu, R. Graf, L. Shi, M. Forster, T. Pichler, T. Riedl, Y. Chen, U. Scherf, Nitrogen-doped porous carbon/graphene nanosheets derived from two-dimensional conjugated microporous polymer sandwiches with promising capacitive performance. Mater. Chem. Front. 1, 278–285 (2017). https://doi.org/10.1039/C6QM00012F
X. Zhuang, D. Gehrig, N. Forler, H. Liang, M. Wagner, M.R. Hansen, F. Laquai, F. Zhang, X. Feng, Conjugated microporous polymers with dimensionality-controlled heterostructures for green energy devices. Adv. Mater. 27, 3789–3796 (2015). https://doi.org/10.1002/adma.201501786
L. Hao, J. Ning, B. Luo, B. Wang, Y. Zhang, Z. Tang, J. Yang, A. Thomas, L. Zhi, Structural evolution of 2D microporous covalent triazine-based framework toward the study of high-performance supercapacitors. J. Am. Chem. Soc. 137, 219–225 (2014). https://doi.org/10.1021/ja508693y
Y. Su, Z. Yao, F. Zhang, H. Wang, Z. Mics, E. Cánovas, M. Bonn, X. Zhuang, X. Feng, Sulfur-enriched conjugated polymer nanosheet derived sulfur and nitrogen co-doped porous carbon nanosheets as electrocatalysts for oxygen reduction reaction and zinc–air battery. Adv. Funct. Mater. 26, 5893–5902 (2016). https://doi.org/10.1002/adfm.201602158
J. Wang, L. Yan, Q. Ren, L. Fan, F. Zhang, Z. Shi, Facile hydrothermal treatment route of reed straw-derived hard carbon for high performance sodium ion battery. Electrochim. Acta 291, 188–196 (2018). https://doi.org/10.1016/j.electacta.2018.08.136
L. Xiao, Y. Cao, W.A. Henderson, M.L. Sushko, Y. Shao, J. Xiao, W. Wang, M.H. Engelhard, Z. Nie, J. Liu, Hard carbon nanoparticles as high-capacity, high-stability anodic materials for Na-ion batteries. Nano Energy 19, 279–288 (2016). https://doi.org/10.1016/j.nanoen.2015.10.034
G. Xu, J. Han, B. Ding, P. Nie, J. Pan, H. Dou, H. Li, X. Zhang, Biomass-derived porous carbon materials with sulfur and nitrogen dual-doping for energy storage. Green Chem. 17, 1668–1674 (2015). https://doi.org/10.1039/C4GC02185A
Y. Li, S. Xu, X. Wu, J. Yu, Y. Wang, Y.-S. Hu, H. Li, L. Chen, X. Huang, Amorphous monodispersed hard carbon micro-spherules derived from biomass as a high performance negative electrode material for sodium-ion batteries. J. Mater. Chem. A 3, 71–77 (2015). https://doi.org/10.1039/C4TA05451B
L. Zeng, W. Li, J. Cheng, J. Wang, X. Liu, Y. Yu, N-doped porous hollow carbon nanofibers fabricated using electrospun polymer templates and their sodium storage properties. RSC Adv. 4, 16920–16927 (2014). https://doi.org/10.1039/C4RA01200C
H. Tang, D. Yan, T. Lu, L. Pan, Sulfur-doped carbon spheres with hierarchical micro/mesopores as anode materials for sodium-ion batteries. Electrochim. Acta 241, 63–72 (2017). https://doi.org/10.1016/j.electacta.2017.04.112
Y. Yan, Y.-X. Yin, S. Xin, Y.-G. Guo, L.-J. Wan, Ionothermal synthesis of sulfur-doped porous carbons hybridized with graphene as superior anode materials for lithium-ion batteries. Chem. Commun. 48, 10663–10665 (2012). https://doi.org/10.1039/c2cc36234a
X. Ma, G. Ning, Y. Kan, Y. Ma, C. Qi, B. Chen, Y. Li, X. Lan, J. Gao, Synthesis of S-doped mesoporous carbon fibres with ultrahigh S concentration and their application as high performance electrodes in supercapacitors. Electrochim. Acta 150, 108–113 (2014). https://doi.org/10.1016/j.electacta.2014.10.128
M. Chen, S. Jiang, C. Huang, X. Wang, S. Cai, K. Xiang, Y. Zhang, J. Xue, Honeycomb-like nitrogen and sulfur dual-doped hierarchical porous biomass-derived carbon for lithium–sulfur batteries. Chemsuschem 10, 1803–1812 (2017). https://doi.org/10.1002/cssc.201700050
B. Wang, X. Zhang, X. Liu, G. Wang, H. Wang, J. Bai, Rational design of Fe3O4@ C yolk-shell nanorods constituting a stable anode for high-performance Li/Na-ion batteries. J. Colloid Interface Sci. 528, 225–236 (2018). https://doi.org/10.1016/j.jcis.2018.05.086
J. Feng, L. Dong, X. Li, D. Li, P. Lu, F. Hou, J. Liang, S.X. Dou, Hierarchically stacked reduced graphene oxide/carbon nanotubes for as high performance anode for sodium-ion batteries. Electrochim. Acta 302, 65–70 (2019). https://doi.org/10.1016/j.electacta.2019.02.008
T.H. Hwang, D.S. Jung, J.-S. Kim, B.G. Kim, J.W. Choi, One-dimensional carbon–sulfur composite fibers for Na–S rechargeable batteries operating at room temperature. Nano Lett. 13, 4532–4538 (2013). https://doi.org/10.1021/nl402513x
S. Xin, Y.X. Yin, Y.G. Guo, L.J. Wan, A high-energy room-temperature sodium-sulfur battery. Adv. Mater. 26, 1261–1265 (2014). https://doi.org/10.1002/adma.201304126
Y.S. Yun, V.-D. Le, H. Kim, S.-J. Chang, S.J. Baek et al., Effects of sulfur doping on graphene-based nanosheets for use as anode materials in lithium-ion batteries. J. Power Sources 262, 79–85 (2014). https://doi.org/10.1016/j.jpowsour.2014.03.084
S.R. Prabakar, J. Jeong, M. Pyo, Nanoporous hard carbon anodes for improved electrochemical performance in sodium ion batteries. Electrochim. Acta 161, 23–31 (2015). https://doi.org/10.1016/j.electacta.2015.02.086
H. Zhang, M. Hu, Q. Lv, L. Yang, R. Lv, Monodisperse nitrogen-doped carbon spheres with superior rate capacities for lithium/sodium ion storage. Electrochim. Acta 297, 365–371 (2019). https://doi.org/10.1016/j.electacta.2018.11.207
X. Zhang, D. Li, G. Zhu, T. Lu, L. Pan, Porous CoFe2O4 nanocubes derived from metal-organic frameworks as high-performance anode for sodium ion batteries. J. Colloid Interface Sci. 499, 145–150 (2017). https://doi.org/10.1016/j.jcis.2017.03.104
V.G. Pol, E. Lee, D. Zhou, F. Dogan, J.M. Calderon-Moreno, C.S. Johnson, Spherical carbon as a new high-rate anode for sodium-ion batteries. Electrochim. Acta 127, 61–67 (2014). https://doi.org/10.1016/j.electacta.2014.01.132
D. Xu, C. Chen, J. Xie, B. Zhang, L. Miao, J. Cai, Y. Huang, L. Zhang, A Hierarchical N/S-codoped carbon anode fabricated facilely from cellulose/polyaniline microspheres for high-performance sodium-ion batteries. Adv. Energy Mater. 6, 1501929 (2016). https://doi.org/10.1002/aenm.201501929
Y. Li, Y.-S. Hu, X. Qi, X. Rong, H. Li, X. Huang, L. Chen, Advanced sodium-ion batteries using superior low cost pyrolyzed anthracite anode: towards practical applications. Energy Storage Mater. 5, 191–197 (2016). https://doi.org/10.1016/j.ensm.2016.07.006
F. Chen, J. Yang, T. Bai, B. Long, X. Zhou, Biomass waste-derived honeycomb-like nitrogen and oxygen dual-doped porous carbon for high performance lithium-sulfur batteries. Electrochim. Acta 192, 99–109 (2016). https://doi.org/10.1016/j.electacta.2016.01.192
J. Li, W. Qin, J. Xie, H. Lei, Y. Zhu et al., Sulphur-doped reduced graphene oxide sponges as high-performance free-standing anodes for K-ion storage. Nano Energy 53, 415–424 (2018). https://doi.org/10.1016/j.nanoen.2018.08.075
H. Chen, X. Chen, Z. Qiao, H. Liu, Release and transformation behavior of Cl during pyrolysis of torrefied rice straw. Fuel 183, 145–154 (2016). https://doi.org/10.1016/j.fuel.2016.06.031
D. Chao, P. Liang, Z. Chen, L. Bai, H. Shen, X.E.A. Liu, Pseudocapacitive Na-ion storage boosts high rate and areal capacity of self-branched 2D layered metal chalcogenide nanoarrays. ACS Nano 10, 10211–10219 (2016). https://doi.org/10.1021/acsnano.6b05566
J. Zhang, W. Zhang, T. He, I.S. Amiinu, Z. Kou, J.E.A. Li, Smart reconstruction of dual-carbon decorated MnO for anode with high-capacity and ultralong-life lithium storage properties. Carbon 115, 95–104 (2017). https://doi.org/10.1016/j.carbon.2016.12.090
W. Tian, H. Hu, Y. Wang, P. Li, J. Liu et al., Metal-organic frameworks mediated synthesis of one-dimensional molybdenum-based/carbon composites for enhanced lithium storage. ACS Nano 12, 1990–2000 (2018). https://doi.org/10.1021/acsnano.7b09175
D. Li, L. Zhang, H. Chen, J. Wang, L.X. Ding, S. Wang, P.J. Ashman, H. Wang, Graphene-based nitrogen-doped carbon sandwich nanosheets: new capacitive process controlled anode material for high-performance sodium-ion batteries. J. Mater. Chem. A 4, 8630–8635 (2016). https://doi.org/10.1039/C6TA02139E
C. Zhao, C. Yu, M. Zhang, H. Huang, S. Li, X. Han, Z. Liu, J. Yang, W. Xiao, J. Liang, Ultrafine MoO2-carbon microstructures enable ultralong-life power-type sodium ion storage by enhanced pseudocapacitance. Adv. Energy Mater. 7, 1602880 (2017). https://doi.org/10.1002/aenm.201602880