Catalyst–Support Interaction in Polyaniline-Supported Ni3Fe Oxide to Boost Oxygen Evolution Activities for Rechargeable Zn-Air Batteries
Corresponding Author: Liang An
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 6
Abstract
Catalyst–support interaction plays a crucial role in improving the catalytic activity of oxygen evolution reaction (OER). Here we modulate the catalyst–support interaction in polyaniline-supported Ni3Fe oxide (Ni3Fe oxide/PANI) with a robust hetero-interface, which significantly improves oxygen evolution activities with an overpotential of 270 mV at 10 mA cm−2 and specific activity of 2.08 mA cmECSA−2 at overpotential of 300 mV, 3.84-fold that of Ni3Fe oxide. It is revealed that the catalyst–support interaction between Ni3Fe oxide and PANI support enhances the Ni–O covalency via the interfacial Ni–N bond, thus promoting the charge and mass transfer on Ni3Fe oxide. Considering the excellent activity and stability, rechargeable Zn-air batteries with optimum Ni3Fe oxide/PANI are assembled, delivering a low charge voltage of 1.95 V to cycle for 400 h at 10 mA cm−2. The regulation of the effect of catalyst–support interaction on catalytic activity provides new possibilities for the future design of highly efficient OER catalysts.
Highlights:
1 Ni3Fe oxide, with an average size of 3.5 ± 1.5 nm, was successfully deposited onto polyaniline (PANI) support through a solvothermal strategy followed by calcination.
2 The catalyst–support interaction between Ni3Fe oxide and PANI can enhance the Ni-O covalency via the interfacial Ni-N bond.
3 Ni3Fe oxide/PANI-assembled Zn-air batteries achieve superior cycling life for over 400 h at 10 mA cm−2 and a low charge potential of around 1.95 V.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J. Zhang, Z. Zhao, Z. Xia, L. Dai, A metal-free bifunctional electrocatalyst for oxygen reduction and oxygen evolution reactions. Nat. Nanotechnol. 10, 444–452 (2015). https://doi.org/10.1038/nnano.2015.48
- X. Zou, M. Tang, Q. Lu, Y. Wang, Z. Shao et al., Carbon-based electrocatalysts for rechargeable Zn-air batteries: design concepts, recent progress and future perspectives. Energy Environ. Sci. 17, 386–424 (2024). https://doi.org/10.1039/D3EE03059H
- J. Zheng, B. Zhang, X. Chen, W. Hao, J. Yao et al., Critical solvation structures arrested active molecules for reversible Zn electrochemistry. Nano-Micro Lett. 16, 145 (2024). https://doi.org/10.1007/s40820-024-01361-0
- Q. Lu, X. Zou, Y. Bu, Z. Shao, Structural design of supported electrocatalysts for rechargeable Zn-air batteries. Energy Storage Mater. 55, 166–192 (2023). https://doi.org/10.1016/j.ensm.2022.11.046
- Q. Lu, X. Zou, Y. Bu, L. An, Y. Wang et al., What matters in engineering next-generation rechargeable Zn-air batteries? Next Energy 1, 100025 (2023). https://doi.org/10.1016/j.nxener.2023.100025
- G. Nazir, A. Rehman, J.-H. Lee, C.-H. Kim, J. Gautam et al., A review of rechargeable zinc-air batteries: recent progress and future perspectives. Nano-Micro Lett. 16, 138 (2024). https://doi.org/10.1007/s40820-024-01328-1
- H.-F. Wang, C. Tang, B. Wang, B.-Q. Li, Q. Zhang, Bifunctional transition metal hydroxysulfides: room-temperature sulfurization and their applications in Zn-air batteries. Adv. Mater. 29, 1702327 (2017). https://doi.org/10.1002/adma.201702327
- Y. Gao, L. Liu, Y. Jiang, D. Yu, X. Zheng et al., Design principles and mechanistic understandings of non-noble-metal bifunctional electrocatalysts for zinc–air batteries. Nano-Micro Lett. 16, 162 (2024). https://doi.org/10.1007/s40820-024-01366-9
- X. Zou, Q. Lu, J. Wu, K. Zhang, M. Tang et al., Screening spinel oxide supports for RuO2 to boost bifunctional electrocatalysts for advanced Zn-air batteries. Adv. Funct. Mater. (2024). https://doi.org/10.1002/adfm.202401134
- Q. Lu, X. Zou, Y. Bu, Y. Wang, Z. Shao, Single-phase ruthenium-based oxide with dual-atoms induced bifunctional catalytic centers enables highly efficient rechargeable Zn-air batteries. Energy Storage Mater. 68, 103341 (2024). https://doi.org/10.1016/j.ensm.2024.103341
- T. Wang, G. Nam, Y. Jin, X. Wang, P. Ren et al., NiFe (oxy) hydroxides derived from NiFe disulfides as an efficient oxygen evolution catalyst for rechargeable Zn-air batteries: the effect of surface S residues. Adv. Mater. 30, e1800757 (2018). https://doi.org/10.1002/adma.201800757
- J. Yin, Y. Li, F. Lv, Q. Fan, Y.-Q. Zhao et al., NiO/CoN porous nanowires as efficient bifunctional catalysts for Zn-air batteries. ACS Nano 11, 2275–2283 (2017). https://doi.org/10.1021/acsnano.7b00417
- Q. Lu, J. Yu, X. Zou, K. Liao, P. Tan et al., Self-catalyzed growth of co, N-codoped CNTs on carbon-encased CoSx surface: a noble-metal-free bifunctional oxygen electrocatalyst for flexible solid Zn-air batteries. Adv. Funct. Mater. 29, 1904481 (2019). https://doi.org/10.1002/adfm.201904481
- T. Zhou, N. Zhang, C. Wu, Y. Xie, Surface/interface nanoengineering for rechargeable Zn-air batteries. Energy Environ. Sci. 13, 1132–1153 (2020). https://doi.org/10.1039/C9EE03634B
- Y. Li, S.H. Talib, D.Q. Liu, K. Zong, A. Saad et al., Improved oxygen evolution reaction performance in Co0.4Mn0.6O2 nanosheets through Triple-doping (Cu, P, N) strategy and its application to Zn-air battery. Appl. Catal. B Environ. 320, 122023 (2023). https://doi.org/10.1016/j.apcatb.2022.122023
- Q. Lu, Y. Guo, P. Mao, K. Liao, X. Zou et al., Rich atomic interfaces between sub-1 nm RuOx clusters and porous Co3O4 nanosheets boost oxygen electrocatalysis bifunctionality for advanced Zn-air batteries. Energy Storage Mater. 32, 20–29 (2020). https://doi.org/10.1016/j.ensm.2020.06.015
- K. Xiao, Y.F. Wang, P.Y. Wu, L.P. Hou, Z.Q. Liu, Activating lattice oxygen in spinel ZnCo2O4 through filling oxygen vacancies with fluorine for electrocatalytic oxygen evolution. Angew. Chem. Int. Ed. 62, e202301408 (2023). https://doi.org/10.1002/anie.202301408
- X.T. Wang, T. Ouyang, L. Wang, J.H. Zhong, Z.Q. Liu, Surface reorganization on electrochemically-induced Zn–Ni–Co spinel oxides for enhanced oxygen electrocatalysis. Angew. Chem. Int. Ed. 59, 6492–6499 (2020). https://doi.org/10.1002/anie.202000690
- Z. Wang, J. Huang, L. Wang, Y. Liu, W. Liu et al., Cation-tuning induced d-band center modulation on co-based spinel oxide for oxygen reduction/evolution reaction. Angew. Chem. Int. Ed. 61, e202114696 (2022). https://doi.org/10.1002/anie.202114696
- J. Cai, H. Zhang, L. Zhang, Y. Xiong, T. Ouyang et al., Hetero-anionic structure activated Co-S bonds promote oxygen electrocatalytic activity for high-efficiency zinc-air batteries. Adv. Mater. 35, e2303488 (2023). https://doi.org/10.1002/adma.202303488
- J. Zhu, M. Xiao, G. Li, S. Li, J. Zhang et al., A triphasic bifunctional oxygen electrocatalyst with tunable and synergetic interfacial structure for rechargeable Zn-air batteries. Adv. Energy Mater. 10, 1903003 (2020). https://doi.org/10.1002/aenm.201903003
- J. Zhao, J.-J. Zhang, Z.-Y. Li, X.-H. Bu, Recent progress on NiFe-based electrocatalysts for the oxygen evolution reaction. Small 16, e2003916 (2020). https://doi.org/10.1002/smll.202003916
- Y. Zhao, W. Wan, N. Dongfang, C.A. Triana, L. Douls et al., Optimized NiFe-based coordination polymer catalysts: sulfur-tuning and operando monitoring of water oxidation. ACS Nano 16, 15318–15327 (2022). https://doi.org/10.1021/acsnano.2c06890
- L.K. Gao, X. Cui, Z.W. Wang, C.D. Sewell, Z.L. Li et al., Operando unraveling photothermal-promoted dynamic active-sites generation in NiFe2O4 for markedly enhanced oxygen evolution. Proc. Natl. Acad. Sci. U.S.A. 118, e2023421118 (2021). https://doi.org/10.1073/pnas.2023421118
- Q. Lu, X. Zou, C. Wang, K. Liao, P. Tan et al., Tailoring charge and mass transport in cation/anion-codoped Ni3N/N-doped CNT integrated electrode toward rapid oxygen evolution for fast-charging zinc-air batteries. Energy Storage Mater. 39, 11–20 (2021). https://doi.org/10.1016/j.ensm.2021.04.013
- X.F. Lu, Y. Chen, S. Wang, S. Gao, X.W.D. Lou, Interfacing manganese oxide and cobalt in porous graphitic carbon polyhedrons boosts oxygen electrocatalysis for Zn-air batteries. Adv. Mater. 31, e1902339 (2019). https://doi.org/10.1002/adma.201902339
- M. Zhang, Q. Dai, H. Zheng, M. Chen, L. Dai, Novel MOF-derived Co@N-C bifunctional catalysts for highly efficient Zn-air batteries and water splitting. Adv. Mater. 30, 1705431 (2018). https://doi.org/10.1002/adma.201705431
- H. Zou, W. Rong, B. Long, Y. Ji, L. Duan, Corrosion-induced Cl-doped ultrathin graphdiyne toward electrocatalytic nitrogen reduction at ambient conditions. ACS Catal. 9, 10649–10655 (2019). https://doi.org/10.1021/acscatal.9b02794
- C. Hang, J. Zhang, J. Zhu, W. Li, Z. Kou et al., In situ exfoliating and generating active sites on graphene nanosheets strongly coupled with carbon fiber toward self-standing bifunctional cathode for rechargeable Zn-air batteries. Adv. Energy Mater. 8, 1703539 (2018). https://doi.org/10.1002/aenm.201703539
- R. Balint, N.J. Cassidy, S.H. Cartmell, Conductive polymers: towards a smart biomaterial for tissue engineering. Acta Biomater. 10, 2341–2353 (2014). https://doi.org/10.1016/j.actbio.2014.02.015
- Y. Shi, L. Peng, Y. Ding, Y. Zhao, G. Yu, Nanostructured conductive polymers for advanced energy storage. Chem. Soc. Rev. 44, 6684–6696 (2015). https://doi.org/10.1039/C5CS00362H
- H. Lei, S. Yang, Q. Wan, L. Ma, M.S. Javed et al., Coordination and interface engineering to boost catalytic property of two-dimensional ZIFs for wearable Zn-air batteries. J. Energy Chem. 68, 78–86 (2022). https://doi.org/10.1016/j.jechem.2021.11.013
- M. Khalid, A.M.B. Honorato, H. Varela, L. Dai, Multifunctional electrocatalysts derived from conducting polymer and metal organic framework complexes. Nano Energy 45, 127–135 (2018). https://doi.org/10.1016/j.nanoen.2017.12.045
- P.F. Liu, L. Zhang, L.R. Zheng, H.G. Yang, Surface engineering of nickel selenide for an enhanced intrinsic overall water splitting ability. Mater. Chem. Front. 2, 1725–1731 (2018). https://doi.org/10.1039/C8QM00292D
- K. Gong, Y. Wei, T. Lin, X. Qi, F. Sun et al., Maximizing the interface of dual active sites to enhance higher oxygenate synthesis from syngas with high activity. ACS Catal. 13, 4533–4543 (2023). https://doi.org/10.1021/acscatal.3c00363
- A.C. Ghogia, L.M. Romero Millán, C.E. White, A. Nzihou, Synthesis and growth of green graphene from biochar revealed by magnetic properties of iron catalyst. ChemSusChem 16, e202201864 (2023). https://doi.org/10.1002/cssc.202201864
- L. Ge, C. Han, J. Liu, In situ synthesis and enhanced visible light photocatalytic activities of novel PANI–g-C3N4 composite photocatalysts. J. Mater. Chem. 22, 11843–11850 (2012). https://doi.org/10.1039/C2JM16241E
- X. Wang, J. Luo, Y. Tuo, Y. Gu, W. Liu et al., Hierarchical heterostructure of NiFe2O4 nanoflakes grown on the tip of NiCo2O4 nanoneedles with enhanced interfacial polarization effect to achieve highly efficient electrocatalytic oxygen evolution. Chem. Eng. J. 457, 141169 (2023). https://doi.org/10.1016/j.cej.2022.141169
- Y.T. Yan, J.H. Lin, K.K. Huang, X.H. Zheng, L. Qiao et al., Tensile strain-mediated spinel ferrites enable superior oxygen evolution activity. J. Am. Chem. Soc. 145, 24218–24229 (2023). https://doi.org/10.1021/jacs.3c08598
- S.X. Wang, L.X. Sun, Z.C. Tan, F. Xu, Y.S. Li, Synthesis, characterization and thermal analysis of polyaniline (PANI)/Co3O4 composites. J. Therm. Anal. Calorim. 89, 609–612 (2007). https://doi.org/10.1007/s10973-006-7569-3
- S. Hong, K. Ham, J. Hwang, S. Kang, M.H. Seo et al., Active motif change of Ni–Fe spinel oxide by Ir doping for highly durable and facile oxygen evolution reaction. Adv. Funct. Mater. 33, 2209543 (2023). https://doi.org/10.1002/adfm.202209543
- A. Khadka, E. Samuel, B. Joshi, Y.I. Kim, A. Aldalbahi et al., Bimetallic CoMoO4 nanosheets on freestanding nanofiber as wearable supercapacitors with long-term stability. Int. J. Energy Res. 2023, 2910207 (2023). https://doi.org/10.1155/2023/2910207
- J.T. Zhang, M. Zhang, L.X. Qiu, Y. Zeng, J.S. Chen et al., Three-dimensional interconnected core-shell networks with Ni(Fe)OOH and M–N–C active species together as high-efficiency oxygen catalysts for rechargeable Zn-air batteries. J. Mater. Chem. A 7, 19045–19059 (2019). https://doi.org/10.1039/c9ta06852j
- Y.N. Jo, P. Santhoshkumar, K. Prasanna, K. Vediappan, C.W. Lee, Improving self-discharge and anti-corrosion performance of Zn-air batteries using conductive polymer-coated Zn active materials. J. Ind. Eng. Chem. 76, 396–402 (2019). https://doi.org/10.1016/j.jiec.2019.04.005
- J. Liu, D. Zhu, T. Ling, A. Vasileff, S.-Z. Qiao, S-NiFe2O4 ultra-small nanop built nanosheets for efficient water splitting in alkaline and neutral pH. Nano Energy 40, 264–273 (2017). https://doi.org/10.1016/j.nanoen.2017.08.031
- X. Zhao, P. Pachfule, S. Li, J.R.J. Simke, J. Schmidt et al., Bifunctional electrocatalysts for overall water splitting from an iron/nickel-based bimetallic metal-organic framework/dicyandiamide composite. Angew. Chem. Int. Ed. 57, 8921–8926 (2018). https://doi.org/10.1002/anie.201803136
- L. An, Z. Zhang, J. Feng, F. Lv, Y. Li et al., Heterostructure-promoted oxygen electrocatalysis enables rechargeable zinc-air battery with neutral aqueous electrolyte. J. Am. Chem. Soc. 140, 17624–17631 (2018). https://doi.org/10.1021/jacs.8b09805
- Y. Qiao, P. Yuan, Y. Hu, J. Zhang, S. Mu et al., Sulfuration of an Fe–N–C catalyst containing FexC/Fe species to enhance the catalysis of oxygen reduction in acidic media and for use in flexible Zn-air batteries. Adv. Mater. 30, e1804504 (2018). https://doi.org/10.1002/adma.201804504
- S. Chen, X. Liang, S. Hu, X. Li, G. Zhang et al., Inducing Fe 3d electron delocalization and spin-state transition of FeN4 species boosts oxygen reduction reaction for wearable zinc-air battery. Nano-Micro Lett. 15, 47 (2023). https://doi.org/10.1007/s40820-023-01014-8
- X. Wang, Y. Tong, X. Li, L. Zhao, Y. Cui et al., Trace nitrogen-incorporation stimulates dual active sites of nickel catalysts for efficient hydrogen oxidation electrocatalysis. Chem. Eng. J. 445, 136700 (2022). https://doi.org/10.1016/j.cej.2022.136700
- J.J. Fang, X.J. Zhang, X.D. Wang, D. Liu, Y.R. Xue et al., A metal and nitrogen doped carbon composite with both oxygen reduction and evolution active sites for rechargeable zinc-air batteries. J. Mater. Chem. A 8(31), 15752–15759 (2020). https://doi.org/10.1039/d0ta02544e
- L. Lin, C. Zhang, C. Liang, H. Zhang, Z. Wang et al., Hydrogen bonds induced ultralong stability of conductive π-d conjugated FeCo3(DDA)2 with high OER activity. Adv. Mater. 36, e2402388 (2024). https://doi.org/10.1002/adma.202402388
- W.X. Liu, X.X. Niu, J.X. Feng, R.L. Yin, S.L. Ma et al., Tunable heterogeneous FeCo alloy-Mo0.82N bifunctional electrocatalysts for temperature-adapted Zn-air batteries. ACS Appl. Mater. Interfaces 15, 15344–15352 (2023). https://doi.org/10.1021/acsami.2c21616
- Q. Wang, S. Tang, Z. Wang, J. Wu, Y. Bai et al., Electrolyte tuned robust interface toward fast-charging Zn-air battery with atomic Mo site catalyst. Adv. Funct. Mater. 33, 2307390 (2023). https://doi.org/10.1002/adfm.202307390
- T. Bai, D. Li, S. Xiao, F. Ji, S. Zhang et al., Recent progress on single-atom catalysts for lithium–air battery applications. Energy Environ. Sci. 16, 1431–1465 (2023). https://doi.org/10.1039/d2ee02949a
- H. Zheng, D. Deng, X. Zheng, Y. Chen, Y. Bai et al., Highly reversible Zn-air batteries enabled by tuned valence electron and steric hindrance on atomic Fe–N4–C sites. Nano Lett. 24, 4672–4681 (2024). https://doi.org/10.1021/acs.nanolett.4c01078
- Q. Wang, Q. Feng, Y. Lei, S. Tang, L. Xu et al., Quasi-solid-state Zn-air batteries with an atomically dispersed cobalt electrocatalyst and organohydrogel electrolyte. Nat. Commun. 13, 3689 (2022). https://doi.org/10.1038/s41467-022-31383-4
- M. Tang, Q. Liu, Z. Yu, X. Zou, X. Huo et al., Bi-functional electrolyte additive leading to a highly reversible and stable zinc anode. Small (2024). https://doi.org/10.1002/smll.202403457
- K. Zhang, P. Sun, Y. Huang, M. Tang, X. Zou et al., Electrochemical nitrate reduction to ammonia on CuCo nanowires at practical level. Adv. Funct. Mater. (2024). https://doi.org/10.1002/adfm.202405179
- Y. Wang, X. Ge, Q. Lu, W. Bai, C. Ye et al., Accelerated deprotonation with a hydroxy-silicon alkali solid for rechargeable zinc-air batteries. Nat. Commun. 14, 6968 (2023). https://doi.org/10.1038/s41467-023-42728-y
- R. Madhu, A. Karmakar, P. Arunachalam, J. Muthukumar, P. Gudlur et al., Regulating the selective adsorption of OH* over the equatorial position of Co3O4 doping of Ru ions for efficient water oxidation reaction. J. Mater. Chem. A 11(40), 21767–21779 (2023). https://doi.org/10.1039/d3ta03822j
- J. Qi, Q. Chen, M. Chen, W. Zhang, X. Shen et al., Promoting oxygen evolution electrocatalysis by coordination engineering in cobalt phosphate. Small (2024). https://doi.org/10.1002/smll.202403310
References
J. Zhang, Z. Zhao, Z. Xia, L. Dai, A metal-free bifunctional electrocatalyst for oxygen reduction and oxygen evolution reactions. Nat. Nanotechnol. 10, 444–452 (2015). https://doi.org/10.1038/nnano.2015.48
X. Zou, M. Tang, Q. Lu, Y. Wang, Z. Shao et al., Carbon-based electrocatalysts for rechargeable Zn-air batteries: design concepts, recent progress and future perspectives. Energy Environ. Sci. 17, 386–424 (2024). https://doi.org/10.1039/D3EE03059H
J. Zheng, B. Zhang, X. Chen, W. Hao, J. Yao et al., Critical solvation structures arrested active molecules for reversible Zn electrochemistry. Nano-Micro Lett. 16, 145 (2024). https://doi.org/10.1007/s40820-024-01361-0
Q. Lu, X. Zou, Y. Bu, Z. Shao, Structural design of supported electrocatalysts for rechargeable Zn-air batteries. Energy Storage Mater. 55, 166–192 (2023). https://doi.org/10.1016/j.ensm.2022.11.046
Q. Lu, X. Zou, Y. Bu, L. An, Y. Wang et al., What matters in engineering next-generation rechargeable Zn-air batteries? Next Energy 1, 100025 (2023). https://doi.org/10.1016/j.nxener.2023.100025
G. Nazir, A. Rehman, J.-H. Lee, C.-H. Kim, J. Gautam et al., A review of rechargeable zinc-air batteries: recent progress and future perspectives. Nano-Micro Lett. 16, 138 (2024). https://doi.org/10.1007/s40820-024-01328-1
H.-F. Wang, C. Tang, B. Wang, B.-Q. Li, Q. Zhang, Bifunctional transition metal hydroxysulfides: room-temperature sulfurization and their applications in Zn-air batteries. Adv. Mater. 29, 1702327 (2017). https://doi.org/10.1002/adma.201702327
Y. Gao, L. Liu, Y. Jiang, D. Yu, X. Zheng et al., Design principles and mechanistic understandings of non-noble-metal bifunctional electrocatalysts for zinc–air batteries. Nano-Micro Lett. 16, 162 (2024). https://doi.org/10.1007/s40820-024-01366-9
X. Zou, Q. Lu, J. Wu, K. Zhang, M. Tang et al., Screening spinel oxide supports for RuO2 to boost bifunctional electrocatalysts for advanced Zn-air batteries. Adv. Funct. Mater. (2024). https://doi.org/10.1002/adfm.202401134
Q. Lu, X. Zou, Y. Bu, Y. Wang, Z. Shao, Single-phase ruthenium-based oxide with dual-atoms induced bifunctional catalytic centers enables highly efficient rechargeable Zn-air batteries. Energy Storage Mater. 68, 103341 (2024). https://doi.org/10.1016/j.ensm.2024.103341
T. Wang, G. Nam, Y. Jin, X. Wang, P. Ren et al., NiFe (oxy) hydroxides derived from NiFe disulfides as an efficient oxygen evolution catalyst for rechargeable Zn-air batteries: the effect of surface S residues. Adv. Mater. 30, e1800757 (2018). https://doi.org/10.1002/adma.201800757
J. Yin, Y. Li, F. Lv, Q. Fan, Y.-Q. Zhao et al., NiO/CoN porous nanowires as efficient bifunctional catalysts for Zn-air batteries. ACS Nano 11, 2275–2283 (2017). https://doi.org/10.1021/acsnano.7b00417
Q. Lu, J. Yu, X. Zou, K. Liao, P. Tan et al., Self-catalyzed growth of co, N-codoped CNTs on carbon-encased CoSx surface: a noble-metal-free bifunctional oxygen electrocatalyst for flexible solid Zn-air batteries. Adv. Funct. Mater. 29, 1904481 (2019). https://doi.org/10.1002/adfm.201904481
T. Zhou, N. Zhang, C. Wu, Y. Xie, Surface/interface nanoengineering for rechargeable Zn-air batteries. Energy Environ. Sci. 13, 1132–1153 (2020). https://doi.org/10.1039/C9EE03634B
Y. Li, S.H. Talib, D.Q. Liu, K. Zong, A. Saad et al., Improved oxygen evolution reaction performance in Co0.4Mn0.6O2 nanosheets through Triple-doping (Cu, P, N) strategy and its application to Zn-air battery. Appl. Catal. B Environ. 320, 122023 (2023). https://doi.org/10.1016/j.apcatb.2022.122023
Q. Lu, Y. Guo, P. Mao, K. Liao, X. Zou et al., Rich atomic interfaces between sub-1 nm RuOx clusters and porous Co3O4 nanosheets boost oxygen electrocatalysis bifunctionality for advanced Zn-air batteries. Energy Storage Mater. 32, 20–29 (2020). https://doi.org/10.1016/j.ensm.2020.06.015
K. Xiao, Y.F. Wang, P.Y. Wu, L.P. Hou, Z.Q. Liu, Activating lattice oxygen in spinel ZnCo2O4 through filling oxygen vacancies with fluorine for electrocatalytic oxygen evolution. Angew. Chem. Int. Ed. 62, e202301408 (2023). https://doi.org/10.1002/anie.202301408
X.T. Wang, T. Ouyang, L. Wang, J.H. Zhong, Z.Q. Liu, Surface reorganization on electrochemically-induced Zn–Ni–Co spinel oxides for enhanced oxygen electrocatalysis. Angew. Chem. Int. Ed. 59, 6492–6499 (2020). https://doi.org/10.1002/anie.202000690
Z. Wang, J. Huang, L. Wang, Y. Liu, W. Liu et al., Cation-tuning induced d-band center modulation on co-based spinel oxide for oxygen reduction/evolution reaction. Angew. Chem. Int. Ed. 61, e202114696 (2022). https://doi.org/10.1002/anie.202114696
J. Cai, H. Zhang, L. Zhang, Y. Xiong, T. Ouyang et al., Hetero-anionic structure activated Co-S bonds promote oxygen electrocatalytic activity for high-efficiency zinc-air batteries. Adv. Mater. 35, e2303488 (2023). https://doi.org/10.1002/adma.202303488
J. Zhu, M. Xiao, G. Li, S. Li, J. Zhang et al., A triphasic bifunctional oxygen electrocatalyst with tunable and synergetic interfacial structure for rechargeable Zn-air batteries. Adv. Energy Mater. 10, 1903003 (2020). https://doi.org/10.1002/aenm.201903003
J. Zhao, J.-J. Zhang, Z.-Y. Li, X.-H. Bu, Recent progress on NiFe-based electrocatalysts for the oxygen evolution reaction. Small 16, e2003916 (2020). https://doi.org/10.1002/smll.202003916
Y. Zhao, W. Wan, N. Dongfang, C.A. Triana, L. Douls et al., Optimized NiFe-based coordination polymer catalysts: sulfur-tuning and operando monitoring of water oxidation. ACS Nano 16, 15318–15327 (2022). https://doi.org/10.1021/acsnano.2c06890
L.K. Gao, X. Cui, Z.W. Wang, C.D. Sewell, Z.L. Li et al., Operando unraveling photothermal-promoted dynamic active-sites generation in NiFe2O4 for markedly enhanced oxygen evolution. Proc. Natl. Acad. Sci. U.S.A. 118, e2023421118 (2021). https://doi.org/10.1073/pnas.2023421118
Q. Lu, X. Zou, C. Wang, K. Liao, P. Tan et al., Tailoring charge and mass transport in cation/anion-codoped Ni3N/N-doped CNT integrated electrode toward rapid oxygen evolution for fast-charging zinc-air batteries. Energy Storage Mater. 39, 11–20 (2021). https://doi.org/10.1016/j.ensm.2021.04.013
X.F. Lu, Y. Chen, S. Wang, S. Gao, X.W.D. Lou, Interfacing manganese oxide and cobalt in porous graphitic carbon polyhedrons boosts oxygen electrocatalysis for Zn-air batteries. Adv. Mater. 31, e1902339 (2019). https://doi.org/10.1002/adma.201902339
M. Zhang, Q. Dai, H. Zheng, M. Chen, L. Dai, Novel MOF-derived Co@N-C bifunctional catalysts for highly efficient Zn-air batteries and water splitting. Adv. Mater. 30, 1705431 (2018). https://doi.org/10.1002/adma.201705431
H. Zou, W. Rong, B. Long, Y. Ji, L. Duan, Corrosion-induced Cl-doped ultrathin graphdiyne toward electrocatalytic nitrogen reduction at ambient conditions. ACS Catal. 9, 10649–10655 (2019). https://doi.org/10.1021/acscatal.9b02794
C. Hang, J. Zhang, J. Zhu, W. Li, Z. Kou et al., In situ exfoliating and generating active sites on graphene nanosheets strongly coupled with carbon fiber toward self-standing bifunctional cathode for rechargeable Zn-air batteries. Adv. Energy Mater. 8, 1703539 (2018). https://doi.org/10.1002/aenm.201703539
R. Balint, N.J. Cassidy, S.H. Cartmell, Conductive polymers: towards a smart biomaterial for tissue engineering. Acta Biomater. 10, 2341–2353 (2014). https://doi.org/10.1016/j.actbio.2014.02.015
Y. Shi, L. Peng, Y. Ding, Y. Zhao, G. Yu, Nanostructured conductive polymers for advanced energy storage. Chem. Soc. Rev. 44, 6684–6696 (2015). https://doi.org/10.1039/C5CS00362H
H. Lei, S. Yang, Q. Wan, L. Ma, M.S. Javed et al., Coordination and interface engineering to boost catalytic property of two-dimensional ZIFs for wearable Zn-air batteries. J. Energy Chem. 68, 78–86 (2022). https://doi.org/10.1016/j.jechem.2021.11.013
M. Khalid, A.M.B. Honorato, H. Varela, L. Dai, Multifunctional electrocatalysts derived from conducting polymer and metal organic framework complexes. Nano Energy 45, 127–135 (2018). https://doi.org/10.1016/j.nanoen.2017.12.045
P.F. Liu, L. Zhang, L.R. Zheng, H.G. Yang, Surface engineering of nickel selenide for an enhanced intrinsic overall water splitting ability. Mater. Chem. Front. 2, 1725–1731 (2018). https://doi.org/10.1039/C8QM00292D
K. Gong, Y. Wei, T. Lin, X. Qi, F. Sun et al., Maximizing the interface of dual active sites to enhance higher oxygenate synthesis from syngas with high activity. ACS Catal. 13, 4533–4543 (2023). https://doi.org/10.1021/acscatal.3c00363
A.C. Ghogia, L.M. Romero Millán, C.E. White, A. Nzihou, Synthesis and growth of green graphene from biochar revealed by magnetic properties of iron catalyst. ChemSusChem 16, e202201864 (2023). https://doi.org/10.1002/cssc.202201864
L. Ge, C. Han, J. Liu, In situ synthesis and enhanced visible light photocatalytic activities of novel PANI–g-C3N4 composite photocatalysts. J. Mater. Chem. 22, 11843–11850 (2012). https://doi.org/10.1039/C2JM16241E
X. Wang, J. Luo, Y. Tuo, Y. Gu, W. Liu et al., Hierarchical heterostructure of NiFe2O4 nanoflakes grown on the tip of NiCo2O4 nanoneedles with enhanced interfacial polarization effect to achieve highly efficient electrocatalytic oxygen evolution. Chem. Eng. J. 457, 141169 (2023). https://doi.org/10.1016/j.cej.2022.141169
Y.T. Yan, J.H. Lin, K.K. Huang, X.H. Zheng, L. Qiao et al., Tensile strain-mediated spinel ferrites enable superior oxygen evolution activity. J. Am. Chem. Soc. 145, 24218–24229 (2023). https://doi.org/10.1021/jacs.3c08598
S.X. Wang, L.X. Sun, Z.C. Tan, F. Xu, Y.S. Li, Synthesis, characterization and thermal analysis of polyaniline (PANI)/Co3O4 composites. J. Therm. Anal. Calorim. 89, 609–612 (2007). https://doi.org/10.1007/s10973-006-7569-3
S. Hong, K. Ham, J. Hwang, S. Kang, M.H. Seo et al., Active motif change of Ni–Fe spinel oxide by Ir doping for highly durable and facile oxygen evolution reaction. Adv. Funct. Mater. 33, 2209543 (2023). https://doi.org/10.1002/adfm.202209543
A. Khadka, E. Samuel, B. Joshi, Y.I. Kim, A. Aldalbahi et al., Bimetallic CoMoO4 nanosheets on freestanding nanofiber as wearable supercapacitors with long-term stability. Int. J. Energy Res. 2023, 2910207 (2023). https://doi.org/10.1155/2023/2910207
J.T. Zhang, M. Zhang, L.X. Qiu, Y. Zeng, J.S. Chen et al., Three-dimensional interconnected core-shell networks with Ni(Fe)OOH and M–N–C active species together as high-efficiency oxygen catalysts for rechargeable Zn-air batteries. J. Mater. Chem. A 7, 19045–19059 (2019). https://doi.org/10.1039/c9ta06852j
Y.N. Jo, P. Santhoshkumar, K. Prasanna, K. Vediappan, C.W. Lee, Improving self-discharge and anti-corrosion performance of Zn-air batteries using conductive polymer-coated Zn active materials. J. Ind. Eng. Chem. 76, 396–402 (2019). https://doi.org/10.1016/j.jiec.2019.04.005
J. Liu, D. Zhu, T. Ling, A. Vasileff, S.-Z. Qiao, S-NiFe2O4 ultra-small nanop built nanosheets for efficient water splitting in alkaline and neutral pH. Nano Energy 40, 264–273 (2017). https://doi.org/10.1016/j.nanoen.2017.08.031
X. Zhao, P. Pachfule, S. Li, J.R.J. Simke, J. Schmidt et al., Bifunctional electrocatalysts for overall water splitting from an iron/nickel-based bimetallic metal-organic framework/dicyandiamide composite. Angew. Chem. Int. Ed. 57, 8921–8926 (2018). https://doi.org/10.1002/anie.201803136
L. An, Z. Zhang, J. Feng, F. Lv, Y. Li et al., Heterostructure-promoted oxygen electrocatalysis enables rechargeable zinc-air battery with neutral aqueous electrolyte. J. Am. Chem. Soc. 140, 17624–17631 (2018). https://doi.org/10.1021/jacs.8b09805
Y. Qiao, P. Yuan, Y. Hu, J. Zhang, S. Mu et al., Sulfuration of an Fe–N–C catalyst containing FexC/Fe species to enhance the catalysis of oxygen reduction in acidic media and for use in flexible Zn-air batteries. Adv. Mater. 30, e1804504 (2018). https://doi.org/10.1002/adma.201804504
S. Chen, X. Liang, S. Hu, X. Li, G. Zhang et al., Inducing Fe 3d electron delocalization and spin-state transition of FeN4 species boosts oxygen reduction reaction for wearable zinc-air battery. Nano-Micro Lett. 15, 47 (2023). https://doi.org/10.1007/s40820-023-01014-8
X. Wang, Y. Tong, X. Li, L. Zhao, Y. Cui et al., Trace nitrogen-incorporation stimulates dual active sites of nickel catalysts for efficient hydrogen oxidation electrocatalysis. Chem. Eng. J. 445, 136700 (2022). https://doi.org/10.1016/j.cej.2022.136700
J.J. Fang, X.J. Zhang, X.D. Wang, D. Liu, Y.R. Xue et al., A metal and nitrogen doped carbon composite with both oxygen reduction and evolution active sites for rechargeable zinc-air batteries. J. Mater. Chem. A 8(31), 15752–15759 (2020). https://doi.org/10.1039/d0ta02544e
L. Lin, C. Zhang, C. Liang, H. Zhang, Z. Wang et al., Hydrogen bonds induced ultralong stability of conductive π-d conjugated FeCo3(DDA)2 with high OER activity. Adv. Mater. 36, e2402388 (2024). https://doi.org/10.1002/adma.202402388
W.X. Liu, X.X. Niu, J.X. Feng, R.L. Yin, S.L. Ma et al., Tunable heterogeneous FeCo alloy-Mo0.82N bifunctional electrocatalysts for temperature-adapted Zn-air batteries. ACS Appl. Mater. Interfaces 15, 15344–15352 (2023). https://doi.org/10.1021/acsami.2c21616
Q. Wang, S. Tang, Z. Wang, J. Wu, Y. Bai et al., Electrolyte tuned robust interface toward fast-charging Zn-air battery with atomic Mo site catalyst. Adv. Funct. Mater. 33, 2307390 (2023). https://doi.org/10.1002/adfm.202307390
T. Bai, D. Li, S. Xiao, F. Ji, S. Zhang et al., Recent progress on single-atom catalysts for lithium–air battery applications. Energy Environ. Sci. 16, 1431–1465 (2023). https://doi.org/10.1039/d2ee02949a
H. Zheng, D. Deng, X. Zheng, Y. Chen, Y. Bai et al., Highly reversible Zn-air batteries enabled by tuned valence electron and steric hindrance on atomic Fe–N4–C sites. Nano Lett. 24, 4672–4681 (2024). https://doi.org/10.1021/acs.nanolett.4c01078
Q. Wang, Q. Feng, Y. Lei, S. Tang, L. Xu et al., Quasi-solid-state Zn-air batteries with an atomically dispersed cobalt electrocatalyst and organohydrogel electrolyte. Nat. Commun. 13, 3689 (2022). https://doi.org/10.1038/s41467-022-31383-4
M. Tang, Q. Liu, Z. Yu, X. Zou, X. Huo et al., Bi-functional electrolyte additive leading to a highly reversible and stable zinc anode. Small (2024). https://doi.org/10.1002/smll.202403457
K. Zhang, P. Sun, Y. Huang, M. Tang, X. Zou et al., Electrochemical nitrate reduction to ammonia on CuCo nanowires at practical level. Adv. Funct. Mater. (2024). https://doi.org/10.1002/adfm.202405179
Y. Wang, X. Ge, Q. Lu, W. Bai, C. Ye et al., Accelerated deprotonation with a hydroxy-silicon alkali solid for rechargeable zinc-air batteries. Nat. Commun. 14, 6968 (2023). https://doi.org/10.1038/s41467-023-42728-y
R. Madhu, A. Karmakar, P. Arunachalam, J. Muthukumar, P. Gudlur et al., Regulating the selective adsorption of OH* over the equatorial position of Co3O4 doping of Ru ions for efficient water oxidation reaction. J. Mater. Chem. A 11(40), 21767–21779 (2023). https://doi.org/10.1039/d3ta03822j
J. Qi, Q. Chen, M. Chen, W. Zhang, X. Shen et al., Promoting oxygen evolution electrocatalysis by coordination engineering in cobalt phosphate. Small (2024). https://doi.org/10.1002/smll.202403310