3D-Printed MOF Monoliths: Fabrication Strategies and Environmental Applications
Corresponding Author: Mashallah Rezakazemi
Nano-Micro Letters,
Vol. 16 (2024), Article Number: 272
Abstract
Metal–organic frameworks (MOFs) have been extensively considered as one of the most promising types of porous and crystalline organic–inorganic materials, thanks to their large specific surface area, high porosity, tailorable structures and compositions, diverse functionalities, and well-controlled pore/size distribution. However, most developed MOFs are in powder forms, which still have some technical challenges, including abrasion, dustiness, low packing densities, clogging, mass/heat transfer limitation, environmental pollution, and mechanical instability during the packing process, that restrict their applicability in industrial applications. Therefore, in recent years, attention has focused on techniques to convert MOF powders into macroscopic materials like beads, membranes, monoliths, gel/sponges, and nanofibers to overcome these challenges.Three-dimensional (3D) printing technology has achieved much interest because it can produce many high-resolution macroscopic frameworks with complex shapes and geometries from digital models. Therefore, this review summarizes the combination of different 3D printing strategies with MOFs and MOF-based materials for fabricating 3D-printed MOF monoliths and their environmental applications, emphasizing water treatment and gas adsorption/separation applications. Herein, the various strategies for the fabrication of 3D-printed MOF monoliths, such as direct ink writing, seed-assisted in-situ growth, coordination replication from solid precursors, matrix incorporation, selective laser sintering, and digital light processing, are described with the relevant examples. Finally, future directions and challenges of 3D-printed MOF monoliths are also presented to better plan future trajectories in the shaping of MOF materials with improved control over the structure, composition, and textural properties of 3D-printed MOF monoliths.
Highlights:
1 Challenges and future directions for 3D-printed metal-organic frameworks (MOFs) monoliths in environmental applications are discussed.
2 Various strategies for fabrication of 3D-printed MOF monoliths are summarized.
3 Advancements in 3D printing enable customizable and high-performance MOF monoliths.
4 3D orienting of MOFs opens avenues for applications in water treatment and gas adsorption.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- F. Ahmadijokani, S. Ahmadipouya, M.H. Haris, M. Rezakazemi, A. Bokhari et al., Magnetic nitrogen-rich UiO-66 metal–organic framework: an efficient adsorbent for water treatment. ACS Appl. Mater. Interfaces 15, 30106–30116 (2023). https://doi.org/10.1021/acsami.3c02171
- S. Tajahmadi, A. Shamloo, A. Shojaei, M. Sharifzadeh, Adsorption behavior of a Gd-based metal-organic framework toward the quercetin drug: effect of the activation condition. ACS Omega 7, 41177–41188 (2022). https://doi.org/10.1021/acsomega.2c04800
- M. Barjasteh, M. Vossoughi, M. Bagherzadeh, K. Pooshang, Bagheri MIL-100(Fe) a potent adsorbent of Dacarbazine: Experimental and molecular docking simulation. Chem. Eng. J. 452, 138987 (2023). https://doi.org/10.1016/j.cej.2022.138987
- O.M. Yaghi, H. Li, Hydrothermal synthesis of a metal-organic framework containing large rectangular channels. J. Am. Chem. Soc. 117, 10401–10402 (1995). https://doi.org/10.1021/ja00146a033
- O.M. Yaghi, M. O’Keeffe, N.W. Ockwig, H.K. Chae, M. Eddaoudi et al., Reticular synthesis and the design of new materials. Nature 423, 705–714 (2003). https://doi.org/10.1038/nature01650
- M. Barjasteh, S.M. Dehnavi, S.A. Seyedkhani, S.Y. Rahnamaee, M. Golizadeh, Synergistic wound healing by novel Ag@ZIF-8 nanostructures. Int. J. Pharm. 629, 122339 (2022). https://doi.org/10.1016/j.ijpharm.2022.122339
- S.M. Dehnavi, M. Barjasteh, S. Ahmadi Seyedkhani, S.Y. Rahnamaee, R. Bagheri, A novel silver-based metal-organic framework incorporated into nanofibrous chitosan coatings for bone tissue implants. Int. J. Pharm. 640, 123047 (2023). https://doi.org/10.1016/j.ijpharm.2023.123047
- H.V. Doan, H. Amer Hamzah, P. Karikkethu Prabhakaran, C. Petrillo, V.P. Ting, Hierarchical metal-organic frameworks with macroporosity: synthesis, achievements, and challenges. Nano-Micro Lett. 11, 54 (2019). https://doi.org/10.1007/s40820-019-0286-9
- M. Barjasteh, M. Vossoughi, M. Bagherzadeh, K. Pooshang Bagheri, Green synthesis of PEG-coated MIL-100(Fe) for controlled release of dacarbazine and its anticancer potential against human melanoma cells. Int. J. Pharm. 618, 121647 (2022). https://doi.org/10.1016/j.ijpharm.2022.121647
- K. Mirzaei, E. Jafarpour, A. Shojaei, H. Molavi, Facile synthesis of polyaniline@UiO-66 nanohybrids for efficient and rapid adsorption of methyl orange from aqueous media. Ind. Eng. Chem. Res. 61, 11735–11746 (2022). https://doi.org/10.1021/acs.iecr.2c00919
- S. Tajahmadi, H. Molavi, F. Ahmadijokani, A. Shamloo, A. Shojaei et al., Metal-organic frameworks: a promising option for the diagnosis and treatment of Alzheimer’s disease. J. Control. Release 353, 1–29 (2023). https://doi.org/10.1016/j.jconrel.2022.11.002
- C. Li, Y. Ji, Y. Wang, C. Liu, Z. Chen et al., Applications of metal–organic frameworks and their derivatives in electrochemical CO2 reduction. Nano-Micro Lett. 15, 113 (2023). https://doi.org/10.1007/s40820-023-01092-8
- D. Feng, L. Zhou, T.J. White, A.K. Cheetham, T. Ma et al., Nanoengineering metal-organic frameworks and derivatives for electrosynthesis of ammonia. Nano-Micro Lett. 15, 203 (2023). https://doi.org/10.1007/s40820-023-01169-4
- H. Xu, G. Zhang, Y. Wang, M. Ning, B. Ouyang et al., Size-dependent oxidation-induced phase engineering for MOFs derivatives via spatial confinement strategy toward enhanced microwave absorption. Nano-Micro Lett. 14, 102 (2022). https://doi.org/10.1007/s40820-022-00841-5
- Y. Gao, J. Wang, Y. Yang, J. Wang, C. Zhang et al., Engineering spin states of isolated copper species in a metal-organic framework improves urea electrosynthesis. Nano-Micro Lett. 15, 158 (2023). https://doi.org/10.1007/s40820-023-01127-0
- S. Ahmadipouya, S.A. Mousavi, A. Shokrgozar, D.V. Mousavi, Improving dye removal and antifouling performance of polysulfone nanofiltration membranes by incorporation of UiO-66 metal-organic framework. J. Environ. Chem. Eng. 10, 107535 (2022). https://doi.org/10.1016/j.jece.2022.107535
- K. Mirzaei, A. Mohammadi, E. Jafarpour, A. Shojaei, A.L. Moghaddam, Improved adsorption performance of ZIF-8 towards methylene blue dye by hybridization with nanodiamond. J. Water Process. Eng. 50, 103254 (2022). https://doi.org/10.1016/j.jwpe.2022.103254
- F. Ahmadijokani, A. Ghaffarkhah, H. Molavi, S. Dutta, Y. Lu et al., COF and MOF hybrids: advanced materials for wastewater treatment. Adv. Funct. Mater. (2023). https://doi.org/10.1002/adfm.202305527
- X. He, Fundamental perspectives on the electrochemical water applications of metal–organic frameworks. Nano-Micro Lett. 15, 148 (2023). https://doi.org/10.1007/s40820-023-01124-3
- M. Liu, Y. Peng, W. Chen, S. Cao, S. Chen et al., Metal-organic frameworks for carbon-neutral catalysis: state of the art, challenges, and opportunities. Coord. Chem. Rev. 506, 215726 (2024). https://doi.org/10.1016/j.ccr.2024.215726
- Y. Bai, Y. Dou, L.-H. Xie, W. Rutledge, J.-R. Li et al., Zr-based metal–organic frameworks: design, synthesis, structure, and applications. Chem. Soc. Rev. 45, 2327–2367 (2016). https://doi.org/10.1039/C5CS00837A
- M. Chafiq, A. Chaouiki, Y.G. Ko, Recent advances in multifunctional reticular framework nanops: a paradigm shift in materials science road to a structured future. Nano-Micro Lett. 15, 213 (2023). https://doi.org/10.1007/s40820-023-01180-9
- H. Molavi, M.S. Salimi, Green synthesis of cerium-based metal-organic framework (Ce-UiO-66 MOF) for wastewater treatment. Langmuir 39, 17798–17807 (2023). https://doi.org/10.1021/acs.langmuir.3c02384
- D. Chakraborty, A. Yurdusen, G. Mouchaham, F. Nouar, C. Serre, Large-scale production of metal–organic frameworks. Adv. Funct. Mater. (2023). https://doi.org/10.1002/adfm.202309089
- D. Crawford, J. Casaban, R. Haydon, N. Giri, T. McNally et al., Synthesis by extrusion: continuous, large-scale preparation of MOFs using little or no solvent. Chem. Sci. 6, 1645–1649 (2015). https://doi.org/10.1039/C4SC03217A
- H.U. Escobar-Hernandez, Y. Quan, M.I. Papadaki, Q. Wang, Life cycle assessment of metal–organic frameworks: sustainability study of zeolitic imidazolate framework-67. ACS Sustain. Chem. Eng. 11, 4219–4225 (2023). https://doi.org/10.1021/acssuschemeng.2c07276
- B.B. Shah, T. Kundu, D. Zhao, Mechanical properties of shaped metal-organic frameworks. Topics in current chemistry collections (Springer International Publishing, Cham, 2019), pp.339–372
- F. Ahmadijokani, H. Molavi, M. Amini, A. Bahi, S. Wuttke et al., Waste organic dye removal using MOF-based electrospun nanofibers of high amine density. Chem. Eng. J. 466, 143119 (2023). https://doi.org/10.1016/j.cej.2023.143119
- K. Mirzaei, E. Jafarpour, A. Shojaei, S.S. Khasraghi, P. Jafarpour, An investigation on the influence of highly acidic media on the microstructural stability and dye adsorption performance of UiO-66. Appl. Surf. Sci. 618, 156531 (2023). https://doi.org/10.1016/j.apsusc.2023.156531
- T. Tian, Z. Zeng, D. Vulpe, M.E. Casco, G. Divitini et al., A Sol–gel monolithic metal–organic framework with enhanced methane uptake. Nat. Mater. 17, 174–179 (2018). https://doi.org/10.1038/nmat5050
- C. Duan, Y. Yu, J. Xiao, Y. Li, P. Yang et al., Recent advancements in metal–organic frameworks for green applications. Green Energy Environ. 6, 33–49 (2021). https://doi.org/10.1016/j.gee.2020.04.006
- A. Tati, S. Ahmadipouya, H. Molavi, S.A. Mousavi, M. Rezakazemi, Efficient removal of organic dyes using electrospun nanofibers with Ce-based UiO-66 MOFs. Ecotoxicol. Environ. Saf. 266, 115584 (2023). https://doi.org/10.1016/j.ecoenv.2023.115584
- F. Al-Ghazzawi, L. Conte, C. Richardson, P. Wagner, Reactive extrusion printing for simultaneous crystallization-deposition of metal-organic framework films. Angew. Chem. Int. Ed. 61, e202117240 (2022). https://doi.org/10.1002/anie.202117240
- W.-Q. Ding, L. Xu, X.-Y. Li, M.-L. Fu, B. Yuan, 3D-printed MOFs/polymer composite as a separatable adsorbent for the removal of phenylarsenic acid in the aqueous solution. ACS Appl. Mater. Interfaces 15, 49181–49194 (2023). https://doi.org/10.1021/acsami.3c10766
- B. Yeskendir, J.-P. Dacquin, Y. Lorgouilloux, C. Courtois, S. Royer et al., From metal–organic framework powders to shaped solids: recent developments and challenges. Mater. Adv. 2, 7139–7186 (2021). https://doi.org/10.1039/d1ma00630d
- F. Lorignon, A. Gossard, M. Carboni, Hierarchically porous monolithic MOFs: an ongoing challenge for industrial-scale effluent treatment. Chem. Eng. J. 393, 124765 (2020). https://doi.org/10.1016/j.cej.2020.124765
- H. Yang, H. Zhou, G. Zhang, X. Guo, H. Pang, Recent progress of integrating MOFs into printed devices and their applications. Sci. China Mater. 66, 441–469 (2023). https://doi.org/10.1007/s40843-022-2226-6
- Q. Ma, T. Zhang, B. Wang, Shaping of metal-organic frameworks, a critical step toward industrial applications. Matter 5, 1070–1091 (2022). https://doi.org/10.1016/j.matt.2022.02.014
- J. Hou, A.F. Sapnik, T.D. Bennett, Metal–organic framework gels and monoliths. Chem. Sci. 11, 310–323 (2020). https://doi.org/10.1039/c9sc04961d
- A.H. Valekar, K.-H. Cho, U.-H. Lee, J.S. Lee, J.W. Yoon et al., Shaping of porous metal–organic framework granules using mesoporous ρ-alumina as a binder. RSC Adv. 7, 55767–55777 (2017). https://doi.org/10.1039/C7RA11764G
- X. Yu, B. Li, L. Wu, D. Shi, S. Han, Review and perspectives of monolithic metal–organic frameworks: toward industrial applications. Energy Fuels 37, 9938–9955 (2023). https://doi.org/10.1021/acs.energyfuels.3c00858
- G. Cai, P. Yan, L. Zhang, H.-C. Zhou, H.-L. Jiang, Metal-organic framework-based hierarchically porous materials: synthesis and applications. Chem. Rev. 121, 12278–12326 (2021). https://doi.org/10.1021/acs.chemrev.1c00243
- Y. Dou, W. Zhang, A. Kaiser, Electrospinning of metal–organic frameworks for energy and environmental applications. Adv. Sci. 7(3), 1902590 (2020). https://doi.org/10.1002/advs.201902590
- X. Huang, J. Wei, Y. Zhang, B. Qian, Q. Jia et al., Ultralight magnetic and dielectric aerogels achieved by metal-organic framework initiated gelation of graphene oxide for enhanced microwave absorption. Nano-Micro Lett. 14, 107 (2022). https://doi.org/10.1007/s40820-022-00851-3
- X.-M. Liu, L.-H. Xie, Y. Wu, Recent advances in the shaping of metal–organic frameworks. Inorg. Chem. Front. 7, 2840–2866 (2020). https://doi.org/10.1039/c9qi01564g
- L.D. Tijing, J.R.C. Dizon, I. Ibrahim, A.R.N. Nisay, H.K. Shon et al., 3D printing for membrane separation, desalination and water treatment. Appl. Mater. Today 18, 100486 (2020). https://doi.org/10.1016/j.apmt.2019.100486
- N.H. Mohd Yusoff, L.-R. Irene Teo, S.J. Phang, V.-L. Wong, K.H. Cheah et al., Recent advances in polymer-based 3D printing for wastewater treatment application: an overview. Chem. Eng. J. 429, 132311 (2022). https://doi.org/10.1016/j.cej.2021.132311
- W.Y. Lieu, D. Fang, K.J. Tay, X.L. Li, W.C. Chu et al., Progress on 3D-printed metal-organic frameworks with hierarchical structures. Adv. Mater. Technol. 7, 2200023 (2022). https://doi.org/10.1002/admt.202200023
- H. Zhou, S. Gu, Y. Lu, G. Zhang, B. Li et al., Stabilizing Ni2+ in hollow nano MOF/polymetallic phosphides composites for enhanced electrochemical performance in 3D-printed micro-supercapacitors. Adv. Mater. (2024). https://doi.org/10.1002/adma.202401856
- G. J. H. Lim, M. Srinivasan, A. Suwardi, D. Zhang, in Emerging 3D printing of MOFs and their derivatives. ed., Elsevier, 367–389, (2024)
- Y. Wang, S. Lin, M. Li, C. Zhu, H. Yang et al., Boosting CO2 hydrogenation of Fe-based monolithic catalysts via 3D printing technology-induced heat/mass-transfer enhancements. Appl. Catal. B Environ. 340, 123211 (2024). https://doi.org/10.1016/j.apcatb.2023.123211
- J. Zhu, P. Wu, Y. Chao, J. Yu, W. Zhu et al., Recent advances in 3D printing for catalytic applications. Chem. Eng. J. 433, 134341 (2022). https://doi.org/10.1016/j.cej.2021.134341
- J. Yu, J. Zhu, L. Chen, Y. Chao, W. Zhu et al., A review of adsorption materials and their application of 3D printing technology in the separation process. Chem. Eng. J. 475, 146247 (2023). https://doi.org/10.1016/j.cej.2023.146247
- Z. Wang, J. Wang, M. Li, K. Sun, C.-J. Liu, Three-dimensional printed acrylonitrile butadiene styrene framework coated with Cu-BTC metal-organic frameworks for the removal of methylene blue. Sci. Rep. 4, 5939 (2014). https://doi.org/10.1038/srep05939
- H. Thakkar, S. Eastman, Q. Al-Naddaf, A.A. Rownaghi, F. Rezaei, 3D-printed metal–organic framework monoliths for gas adsorption processes. ACS Appl. Mater. Interfaces 9, 35908–35916 (2017). https://doi.org/10.1021/acsami.7b11626
- P. Pei, Z. Tian, Y. Zhu, 3D printed mesoporous bioactive glass/metal-organic framework scaffolds with antitubercular drug delivery. Microporous Mesoporous Mater. 272, 24–30 (2018). https://doi.org/10.1016/j.micromeso.2018.06.012
- R. Singh, G. Souillard, L. Chassat, Y. Gao, X. Mulet et al., Fabricating bioactive 3D metal–organic framework devices. Adv. Sustain. Syst. 4, 2000059 (2020). https://doi.org/10.1002/adsu.202000059
- Y. Hong, M. Wu, G. Chen, Z. Dai, Y. Zhang et al., 3D printed microfluidic device with microporous Mn2O3-modified screen printed electrode for real-time determination of heavy metal ions. ACS Appl. Mater. Interfaces 8, 32940–32947 (2016). https://doi.org/10.1021/acsami.6b10464
- M.C. Kreider, M. Sefa, J.A. Fedchak, J. Scherschligt, M. Bible et al., Toward 3D printed hydrogen storage materials made with ABS-MOF composites. Polym. Adv. Technol. 29, 867–873 (2018). https://doi.org/10.1002/pat.4197
- N. Maldonado, V.G. Vegas, O. Halevi, J.I. Martínez, P.S. Lee et al., 3D printing of a thermo- and solvatochromic composite material based on a Cu(II)–thymine coordination polymer with moisture sensing capabilities. Adv. Funct. Mater. 29, 1808424 (2019). https://doi.org/10.1002/adfm.201808424
- A.J. Young, R. Guillet-Nicolas, E.S. Marshall, F. Kleitz, A.J. Goodhand et al., Direct ink writing of catalytically active UiO-66 polymer composites. Chem. Commun. 55, 2190–2193 (2019). https://doi.org/10.1039/C8CC10018G
- Z. Lyu, G.J.H. Lim, R. Guo, Z. Kou, T. Wang et al., 3D-printed MOF-derived hierarchically porous frameworks for practical high-energy density Li–O2 batteries. Adv. Funct. Mater. 29, 1806658 (2019). https://doi.org/10.1002/adfm.201806658
- L. Zhong, J. Chen, Z. Ma, H. Feng, S. Chen et al., 3D printing of metal–organic framework incorporated porous scaffolds to promote osteogenic differentiation and bone regeneration. Nanoscale 12, 24437–24449 (2020). https://doi.org/10.1039/D0NR06297A
- X. Liu, D. Zhao, J. Wang, Challenges and opportunities in preserving key structural features of 3D-printed metal/covalent organic framework. Nano-Micro Lett. 16, 157 (2024). https://doi.org/10.1007/s40820-024-01373-w
- A. Pustovarenko, B. Seoane, E. Abou-Hamad, H.E. King, B.M. Weckhuysen et al., Rapid fabrication of MOF-based mixed matrix membranes through digital light processing. Mater. Adv. 2, 2739–2749 (2021). https://doi.org/10.1039/d1ma00023c
- O. Halevi, J.M.R. Tan, P.S. Lee, S. Magdassi, Hydrolytically stable MOF in 3D-printed structures. Adv. Sustain. Syst. 2, 1700150 (2018). https://doi.org/10.1002/adsu.201700150
- L.L. da Luz, R. Milani, J.F. Felix, I.R.B. Ribeiro, M. Talhavini et al., Inkjet printing of lanthanide–organic frameworks for anti-counterfeiting applications. ACS Appl. Mater. Interfaces 7, 27115–27123 (2015). https://doi.org/10.1021/acsami.5b06301
- S. Shi, Y. Jiang, H. Ren, S. Deng, J. Sun et al., 3D-printed carbon-based conformal electromagnetic interference shielding module for integrated electronics. Nano-Micro Lett. 16, 85 (2024). https://doi.org/10.1007/s40820-023-01317-w
- C.-H. Su, C.-W. Kung, T.-H. Chang, H.-C. Lu, K.-C. Ho et al., Inkjet-printed porphyrinic metal–organic framework thin films for electrocatalysis. J. Mater. Chem. A 4, 11094–11102 (2016). https://doi.org/10.1039/c6ta03547g
- P. Goel, S. Singh, H. Kaur, S. Mishra, A. Deep, Low-cost inkjet printing of metal–organic frameworks patterns on different substrates and their applications in ammonia sensing. Sens. Actuat. B Chem. 329, 129157 (2021). https://doi.org/10.1016/j.snb.2020.129157
- M. Hou, H. Zhao, Y. Feng, J. Ge, Synthesis of patterned enzyme–metal–organic framework composites by ink-jet printing. Bioresour. Bioprocess. 4, 40 (2017). https://doi.org/10.1186/s40643-017-0171-7
- D.A. Gregory, J. Nicks, J. Artigas-Arnaudas, M.S. Harris, J.A. Foster et al., Controlling the composition and position of metal–organic frameworks via reactive inkjet printing. Adv. Mater. Interfaces 10, 2300027 (2023). https://doi.org/10.1002/admi.202300027
- J. Kim, J. Choi, J. Hyun, In situ synthesis of single layered metal–organic frameworks via inkjet printing on a cellulose nanofiber film. ACS Appl. Mater. Interfaces 16, 15617–15631 (2024). https://doi.org/10.1021/acsami.4c00779
- D.E. Kravchenko, A. Matavž, V. Rubio-Giménez, H. Vanduffel, M. Verstreken et al., Aerosol jet printing of the ultramicroporous calcium squarate metal–organic framework. Chem. Mater. 34, 6809–6814 (2022). https://doi.org/10.1021/acs.chemmater.2c00947
- E.B. Secor, Principles of aerosol jet printing. Flex. Print. Electron. 3, 035002 (2018). https://doi.org/10.1088/2058-8585/aace28
- H. Chen, J. Wang, S. Peng, D. Liu, W. Yan et al., A generalized polymer precursor ink design for 3D printing of functional metal oxides. Nano-Micro Lett. 15, 180 (2023). https://doi.org/10.1007/s40820-023-01147-w
- T. Xue, Y. Yang, D. Yu, Q. Wali, Z. Wang et al., 3D printed integrated gradient-conductive MXene/CNT/polyimide aerogel frames for electromagnetic interference shielding with ultra-low reflection. Nano-Micro Lett. 15, 45 (2023). https://doi.org/10.1007/s40820-023-01017-5
- A. Masud, C. Zhou, N. Aich, Emerging investigator series: 3D printed graphene-biopolymer aerogels for water contaminant removal: a proof of concept. Environ. Sci. Nano 8, 399–414 (2021)
- S.S. Crump, Apparatus and method for creating three-dimensional objects. United States Patent 5121329 (1992).
- M. Zhou, M. Li, J. Jiang, N. Gao, F. Tian et al., Construction of bionic porous polyetherimide structure by an in situ foaming fused deposition modeling process. Adv. Eng. Mater. 24, 2101027 (2022). https://doi.org/10.1002/adem.202101027
- L. Ritzen, V. Montano, S.J. Garcia, 3D printing of a self-healing thermoplastic polyurethane through FDM: from polymer slab to mechanical assessment. Polymers 13, 305 (2021). https://doi.org/10.3390/polym13020305
- D. Popescu, A. Zapciu, C. Amza, F. Baciu, R. Marinescu, FDM process parameters influence over the mechanical properties of polymer specimens: a review. Polym. Test. 69, 157–166 (2018). https://doi.org/10.1016/j.polymertesting.2018.05.020
- V. Vancauwenberghe, V.B. Mbong, E. Vanstreels, P. Verboven, J. Lammertyn, B. Nicolai, 3D printing of plant tissue for innovative food manufacturing: Encapsulation of alive plant cells into pectin based bio-ink. J. Food Eng. 263, 454–464 (2019). https://doi.org/10.1016/j.jfoodeng.2017.12.003
- C.A. Grande, R. Blom, V. Middelkoop, D. Matras, A. Vamvakeros et al., Multiscale investigation of adsorption properties of novel 3D printed UTSA-16 structures. Chem. Eng. J. 402, 126166 (2020). https://doi.org/10.1016/j.cej.2020.126166
- C. Kokkinos, A. Economou, A. Pournara, M. Manos, I. Spanopoulos et al., 3D-printed lab-in-a-syringe voltammetric cell based on a working electrode modified with a highly efficient Ca-MOF sorbent for the determination of Hg(II). Sens. Actuat. B Chem. 321, 128508 (2020). https://doi.org/10.1016/j.snb.2020.128508
- Z. Liu, X. Xia, W. Li, L. Xiao, X. Sun et al., In situ growth of Ca2+-based metal-organic framework on CaSiO3/ABS/TPU 3D skeleton for methylene blue removal. Materials 13, 4403 (2020). https://doi.org/10.3390/ma13194403
- R. Xing, R. Huang, R. Su, J. Kong, M.D. Dickey et al., 3D-printing of hierarchical porous copper-based metal–organic-framework structures for efficient fixed-bed catalysts. Chem. Bio. Eng. 1, 264–273 (2024). https://doi.org/10.1021/cbe.4c00001
- S. Lawson, Q. Al-Naddaf, K. Newport, A. Rownaghi, F. Rezaei, Assessment of CO2/CH4 separation performance of 3D-printed carbon monoliths in pressure swing adsorption. Ind. Eng. Chem. Res. 60, 16445–16456 (2021). https://doi.org/10.1021/acs.iecr.1c01741
- K. Mori, T. Fujita, H. Hata, H.-J. Kim, T. Nakano et al., Surface chemical engineering of a metal 3D-printed flow reactor using a metal–organic framework for liquid-phase catalytic H2 production from hydrogen storage materials. ACS Appl. Mater. Interfaces 15, 51079–51088 (2023). https://doi.org/10.1021/acsami.3c10945
- Y.-P. Chuang, C.-H. Shen, H.-J. Hsu, Y.-Z. Su, S.-C. Yang et al., Cerium (IV)-based metal–organic framework nanostructures grown on 3D-printed free-standing membranes and their derivatives for charge storage. ACS Appl. Nano Mater. 6, 19701–19709 (2023). https://doi.org/10.1021/acsanm.3c03508
- A.K. Chaudhari, J.-C. Tan, Dual-guest functionalized zeolitic imidazolate framework-8 for 3D printing white light-emitting composites. Adv. Opt. Mater. 8, 1901912 (2020). https://doi.org/10.1002/adom.201901912
- M.A.F. Maghsoudi, R.M. Aghdam, R.A. Asbagh, A. Moghaddaszadeh, A. Ghaee et al., 3D-printing of alginate/gelatin scaffold loading tannic acid@ZIF-8 for wound healing: in vitro and in vivo studies. Int. J. Biol. Macromol. 265, 130744 (2024). https://doi.org/10.1016/j.ijbiomac.2024.130744
- S.D. Perera, R.M. Johnson, R. Pawle, J. Elliott, T.M. Tran et al., Hierarchically structured metal–organic framework polymer composites for chemical warfare agent degradation. ACS Appl. Mater. Interfaces 16(8), 10795–10804 (2024). https://doi.org/10.1021/acsami.3c19446
- R. Pei, L. Fan, F. Zhao, J. Xiao, Y. Yang et al., 3D-Printed metal-organic frameworks within biocompatible polymers as excellent adsorbents for organic dyes removal. J. Hazard. Mater. 384, 121418 (2020). https://doi.org/10.1016/j.jhazmat.2019.121418
- A. Anvari Kohestani, F. Pishbin, 3D printing of bone scaffolds based on alginate/gelatin hydrogel ink containing bioactive glass 45S5 and ZIF-8 nanops with sustained drug-release capability. Adv. Eng. Mater. 25, 2300563 (2023). https://doi.org/10.1002/adem.202300563
- S. Lawson, M. Snarzyk, D. Hanify, A.A. Rownaghi, F. Rezaei, Development of 3D-printed polymer-MOF monoliths for CO2 adsorption. Ind. Eng. Chem. Res. 59, 7151–7160 (2020). https://doi.org/10.1021/acs.iecr.9b05445
- H. Thakkar, Q. Al-Naddaf, N. Legion, M. Hovis, A. Krishnamurthy et al., Adsorption of ethane and ethylene over 3D-printed ethane-selective monoliths. ACS Sustain. Chem. Eng. 6, 15228–15237 (2018). https://doi.org/10.1021/acssuschemeng.8b03685
- C.-G. Lin, W. Zhou, X.-T. Xiong, W. Xuan, P.J. Kitson et al., Digital control of multistep hydrothermal synthesis by using 3D printed reactionware for the synthesis of metal-organic frameworks. Angew. Chem. Int. Ed. 57, 16716–16720 (2018). https://doi.org/10.1002/anie.201810095
- H.N. Abdelhamid, S. Sultan, A.P. Mathew, 3D printing of cellulose/leaf-like zeolitic imidazolate frameworks (CelloZIF-L) for adsorption of carbon dioxide (CO2) and heavy metal ions. Dalton Trans. 52, 2988–2998 (2023). https://doi.org/10.1039/d2dt04168e
- M.R. Sommer, L. Alison, C. Minas, E. Tervoort, P.A. Rühs et al., 3D printing of concentrated emulsions into multiphase biocompatible soft materials. Soft Matter 13, 1794–1803 (2017). https://doi.org/10.1039/c6sm02682f
- D. López-Velázquez, A.R. Hernández-Sosa, E. Pérez, Effect of the degree of substitution in the transition temperatures and hydrophobicity of hydroxypropyl cellulose esters. Carbohydr. Polym. 125, 224–231 (2015). https://doi.org/10.1016/j.carbpol.2014.12.086
- A. Figuerola, D.A.V. Medina, A.J. Santos-Neto, C.P. Cabello, V. Cerdà et al., Metal–organic framework mixed-matrix coatings on 3D printed devices. Appl. Mater. Today 16, 21–27 (2019). https://doi.org/10.1016/j.apmt.2019.04.011
- G.J.H. Lim, Y. Wu, B.B. Shah, J.J. Koh, C.K. Liu et al., 3D-printing of pure metal–organic framework monoliths. ACS Mater. Lett. 1, 147–153 (2019). https://doi.org/10.1021/acsmaterialslett.9b00069
- B. Claessens, N. Dubois, J. Lefevere, S. Mullens, J. Cousin-Saint-Remi et al., 3D-printed ZIF-8 monoliths for biobutanol recovery. Ind. Eng. Chem. Res. 59, 8813–8824 (2020). https://doi.org/10.1021/acs.iecr.0c00453
- J. Dhainaut, M. Bonneau, R. Ueoka, K. Kanamori, S. Furukawa, Formulation of metal–organic framework inks for the 3D printing of robust microporous solids toward high-pressure gas storage and separation. ACS Appl. Mater. Interfaces 12, 10983–10992 (2020). https://doi.org/10.1021/acsami.9b22257
- K.A. Evans, Z.C. Kennedy, B.W. Arey, J.F. Christ, H.T. Schaef et al., Chemically active, porous 3D-printed thermoplastic composites. ACS Appl. Mater. Interfaces 10, 15112–15121 (2018). https://doi.org/10.1021/acsami.7b17565
- E. Lahtinen, R.L.M. Precker, M. Lahtinen, E. Hey-Hawkins, M. Haukka, Selective laser sintering of metal-organic frameworks: production of highly porous filters by 3D printing onto a polymeric matrix. ChemPlusChem 84, 222–225 (2019). https://doi.org/10.1002/cplu.201900081
- R. Li, S. Yuan, W. Zhang, H. Zheng, W. Zhu et al., 3D printing of mixed matrix films based on metal–organic frameworks and thermoplastic polyamide 12 by selective laser sintering for water applications. ACS Appl. Mater. Interfaces 11, 40564–40574 (2019). https://doi.org/10.1021/acsami.9b11840
- N.R. Catarineu, D. Lin, C. Zhu, D.I. Oyarzun, Y. Li, High-performance aqueous zinc-ion hybrid capacitors based on 3D printed metal-organic framework cathodes. Chem. Eng. J. 465, 142544 (2023). https://doi.org/10.1016/j.cej.2023.142544
- J. Li, M. Li, J.J. Koh, J. Wang, Z. Lyu, 3D-printed biomimetic structures for energy and environmental applications. DeCarbon 3, 100026 (2024). https://doi.org/10.1016/j.decarb.2023.100026
- C. Li, S. Deng, W. Feng, Y. Cao, J. Bai et al., A universal room-temperature 3D printing approach towards porous MOF based dendrites inhibition hybrid solid-state electrolytes. Small 19, e2300066 (2023). https://doi.org/10.1002/smll.202300066
- E. Hędrzak, A. Węgrzynowicz, R. Rachwalik, B. Sulikowski, P. Michorczyk, Monoliths with MFI zeolite layers prepared with the assistance of 3D printing: characterization and performance in the gas phase isomerization of α-pinene. Appl. Catal. A Gen. 579, 75–85 (2019). https://doi.org/10.1016/j.apcata.2019.04.017
- S. Lawson, X. Li, H. Thakkar, A.A. Rownaghi, F. Rezaei, Recent advances in 3D printing of structured materials for adsorption and catalysis applications. Chem. Rev. 121, 6246–6291 (2021). https://doi.org/10.1021/acs.chemrev.1c00060
- S. Lawson, Q. Al-Naddaf, A. Krishnamurthy, M.S. Amour, C. Griffin et al., UTSA-16 growth within 3D-printed co-Kaolin monoliths with high selectivity for CO2/CH4, CO2/N2, and CO2/H2 separation. ACS Appl. Mater. Interfaces 10, 19076–19086 (2018). https://doi.org/10.1021/acsami.8b05192
- W. Liu, O. Erol, D.H. Gracias, 3D printing of an in situ grown MOF hydrogel with tunable mechanical properties. ACS Appl. Mater. Interfaces 12, 33267–33275 (2020). https://doi.org/10.1021/acsami.0c08880
- J. Huang, P. Wu, Controlled assembly of luminescent lanthanide-organic frameworks via post-treatment of 3D-printed objects. Nano-Micro Lett. 13, 15 (2020). https://doi.org/10.1007/s40820-020-00543-w
- S. Lawson, A.-A. Alwakwak, A.A. Rownaghi, F. Rezaei, Gel–print–grow: a new way of 3D printing metal–organic frameworks. ACS Appl. Mater. Interfaces 12, 56108–56117 (2020). https://doi.org/10.1021/acsami.0c18720
- R. Ajdary, S. Huan, N. Zanjanizadeh Ezazi, W. Xiang, R. Grande et al., Acetylated nanocellulose for single-component bioinks and cell proliferation on 3D-printed scaffolds. Biomacromol 20, 2770–2778 (2019). https://doi.org/10.1021/acs.biomac.9b00527
- W. Xu, X. Wang, N. Sandler, S. Willför, C. Xu, Three-dimensional printing of wood-derived biopolymers: a review focused on biomedical applications. ACS Sustain. Chem. Eng. 6, 5663–5680 (2018). https://doi.org/10.1021/acssuschemeng.7b03924
- S. Sultan, H.N. Abdelhamid, X. Zou, A.P. Mathew, CelloMOF: nanocellulose enabled 3D printing of metal–organic frameworks. Adv. Funct. Mater. 29, 1805372 (2019). https://doi.org/10.1002/adfm.201805372
- J.-L. Zhuang, D. Ar, X.-J. Yu, J.-X. Liu, A. Terfort, Patterned deposition of metal-organic frameworks onto plastic, paper, and textile substrates by inkjet printing of a precursor solution. Adv. Mater. 25, 4631–4635 (2013). https://doi.org/10.1002/adma.201301626
- H. Nasser Abdelhamid, S. Sultan, A.P. Mathew, Binder-free Three-dimensional (3D) printing of Cellulose-ZIF8 (CelloZIF-8) for water treatment and carbon dioxide (CO2) adsorption. Chem. Eng. J. 468, 143567 (2023). https://doi.org/10.1016/j.cej.2023.143567
- Z. Chen, S. Song, H. Zeng, Z. Ge, B. Liu et al., 3D printing MOF nanozyme hydrogel with dual enzymatic activities and visualized glucose monitoring for diabetic wound healing. Chem. Eng. J. 471, 144649 (2023). https://doi.org/10.1016/j.cej.2023.144649
- I. Stassen, M. Styles, G. Grenci, H. Gorp, W. Vanderlinden et al., Chemical vapour deposition of zeolitic imidazolate framework thinfilms. Nat. Mater. 15, 304–310 (2016). https://doi.org/10.1038/nmat4509
- M. Mar del Darder, S. Salehinia, J.B. Parra, J.M. Herrero-Martinez, F. Svec et al., Nanop-directed metal–organic framework/porous organic polymer monolithic supports for flow-based applications. ACS Appl. Mater. Interfaces 9, 1728–1736 (2017). https://doi.org/10.1021/acsami.6b10999
- S. Waheed, M. Rodas, H. Kaur, N.L. Kilah, B. Paull et al., In-situ growth of metal-organic frameworks in a reactive 3D printable material. Appl. Mater. Today 22, 100930 (2021). https://doi.org/10.1016/j.apmt.2020.100930
- D. Nagaraju, D.G. Bhagat, R. Banerjee, U.K. Kharul, In situ growth of metal-organic frameworks on a porous ultrafiltration membrane for gas separation. J. Mater. Chem. A 1, 8828 (2013). https://doi.org/10.1039/c3ta10438a
- I. Pellejero, F. Almazán, M. Lafuente, M.A. Urbiztondo, M. Drobek et al., Functionalization of 3D printed ABS filters with MOF for toxic gas removal. J. Ind. Eng. Chem. 89, 194–203 (2020). https://doi.org/10.1016/j.jiec.2020.05.013
- M. Weber, A. Julbe, A. Ayral, P. Miele, M. Bechelany, Atomic layer deposition for membranes: basics, challenges, and opportunities. Chem. Mater. 30, 7368–7390 (2018). https://doi.org/10.1021/acs.chemmater.8b02687
- A.D. Pournara, A. Margariti, G.D. Tarlas, A. Kourtelaris, V. Petkov et al., A Ca2+ MOF combining highly efficient sorption and capability for voltammetric determination of heavy metal ions in aqueous media. J. Mater. Chem. A 7, 15432–15443 (2019). https://doi.org/10.1039/c9ta03337h
- K. Sumida, M. Hu, S. Furukawa, S. Kitagawa, Structuralization of Ca2+-based metal-organic frameworks prepared via coordination replication of calcium carbonate. Inorg. Chem. 55, 3700–3705 (2016). https://doi.org/10.1021/acs.inorgchem.6b00397
- C. Xu, T. Liu, W. Guo, Y. Sun, C. Liang et al., 3D printing of powder-based inks into functional hierarchical porous TiO2 materials. Adv. Eng. Mater. 22, 1901088 (2020). https://doi.org/10.1002/adem.201901088
- H. Thakkar, S. Lawson, A.A. Rownaghi, F. Rezaei, Development of 3D-printed polymer-zeolite composite monoliths for gas separation. Chem. Eng. J. 348, 109–116 (2018). https://doi.org/10.1016/j.cej.2018.04.178
- S. Yuan, F. Shen, C.K. Chua, K. Zhou, Polymeric composites for powder-based additive manufacturing: materials and applications. Prog. Polym. Sci. 91, 141–168 (2019). https://doi.org/10.1016/j.progpolymsci.2018.11.001
- T. Stichel, T. Frick, T. Laumer, F. Tenner, T. Hausotte et al., A Round Robin study for selective laser sintering of polymers: Back tracing of the pore morphology to the process parameters. J. Mater. Process. Technol. 252, 537–545 (2018). https://doi.org/10.1016/j.jmatprotec.2017.10.013
- E. Lahtinen, M.M. Hänninen, K. Kinnunen, H.M. Tuononen, A. Väisänen et al., Porous 3D printed scavenger filters for selective recovery of precious metals from electronic waste. Adv. Sustain. Syst. 2, 1800048 (2018). https://doi.org/10.1002/adsu.201800048
- R. Zhou, Y. Wang, Z. Liu, Y. Pang, J. Chen et al., Digital light processing 3D-printed ceramic metamaterials for electromagnetic wave absorption. Nano-Micro Lett. 14, 122 (2022). https://doi.org/10.1007/s40820-022-00865-x
- L. Cao, K. Tao, A. Huang, C. Kong, L. Chen, A highly permeable mixed matrix membrane containing CAU-1-NH2 for H2 and CO2 separation. Chem. Commun. 49, 8513–8515 (2013). https://doi.org/10.1039/C3CC44530E
- J.B. Decoste, G.W. Peterson, M.W. Smith, C.A. Stone, C.R. Willis, Enhanced stability of Cu-BTC MOF via perfluorohexane plasma-enhanced chemical vapor deposition. J. Am. Chem. Soc. 134, 1486–1489 (2012). https://doi.org/10.1021/ja211182m
- A.I. Cherevko, G.L. Denisov, I.A. Nikovskii, A.V. Polezhaev, A.A. Korlyukov et al., Composite materials manufactured by photopolymer 3D printing with metal-organic frameworks. Russ. J. Coord. Chem. 47, 319–325 (2021). https://doi.org/10.1134/s107032842105002x
- H. Molavi, K. Mirzaei, E. Jafarpour, A. Mohammadi, M.S. Salimi et al., Wastewater treatment using nanodiamond and related materials. J. Environ. Manag. 349, 119349 (2024). https://doi.org/10.1016/j.jenvman.2023.119349
- H. Wang, J. Zhao, Y. Li, Y. Cao, Z. Zhu et al., Aqueous two-phase interfacial assembly of COF membranes for water desalination. Nano-Micro Lett. 14, 216 (2022). https://doi.org/10.1007/s40820-022-00968-5
- M. Zamani, M. Aghajanzadeh, H. Molavi, H. Danafar, A. Shojaei, Thermally oxidized nanodiamond: an effective sorbent for separation of methotrexate from aqueous media: synthesis, characterization, in vivo and in vitro biocompatibility study. J. Inorg. Organomet. Polym. Mater. 29, 701–709 (2019). https://doi.org/10.1007/s10904-018-1043-0
- A. Mohammadi, E. Jafarpour, K. Mirzaei, A. Shojaei, P. Jafarpour et al., Novel ZIF-8/CNC nanohybrid with an interconnected structure: toward a sustainable adsorbent for efficient removal of Cd(II) ions. ACS Appl. Mater. Interfaces 16, 3862–3875 (2024). https://doi.org/10.1021/acsami.3c15524
- X. Huang, L. Li, S. Zhao, L. Tong, Z. Li et al., MOF-like 3D graphene-based catalytic membrane fabricated by one-step laser scribing for robust water purification and green energy production. Nano-Micro Lett. 14, 174 (2022). https://doi.org/10.1007/s40820-022-00923-4
- O. Halevi, T.-Y. Chen, P.S. Lee, S. Magdassi, J.A. Hriljac, Nuclear wastewater decontamination by 3D-Printed hierarchical zeolite monoliths. RSC Adv. 10, 5766–5776 (2020). https://doi.org/10.1039/C9RA09967K
- Y. Cao, R. Wu, Y.-Y. Gao, Y. Zhou, J.-J. Zhu, Advances of electrochemical and electrochemiluminescent sensors based on covalent organic frameworks. Nano-Micro Lett. 16, 37 (2023). https://doi.org/10.1007/s40820-023-01249-5
- P.O. Vicentino, R.J. Cassella, D. Leite, M. Resano, Extraction induced by microemulsion breaking as a novel tool for the simultaneous determination of Cd, Mn, Pb and Sb in gasoline samples by ICP-MS and discrete sample introduction. Talanta 206, 120230 (2020). https://doi.org/10.1016/j.talanta.2019.120230
- M. Lu, Y. Deng, Y. Luo, J. Lv, T. Li et al., Graphene aerogel-metal-organic framework-based electrochemical method for simultaneous detection of multiple heavy-metal ions. Anal. Chem. 91, 888–895 (2019). https://doi.org/10.1021/acs.analchem.8b03764
- W. H. Organization, WHO, WHO Staff. Guidelines for Drinking-water Quality. (World Health Organization; 2004).
- E. Vlachou, A. Margariti, G.S. Papaefstathiou, C. Kokkinos, Voltammetric determination of Pb(II) by a Ca-MOF-modified carbon paste electrode integrated in a 3D-printed device. Sensors 20, 4442 (2020). https://doi.org/10.3390/s20164442
- R. Wang, X. Zhao, N. Jia, L. Cheng, L. Liu et al., Superwetting oil/water separation membrane constructed from in situ assembled metal–phenolic networks and metal–organic frameworks. ACS Appl. Mater. Interfaces 12, 10000–10008 (2020). https://doi.org/10.1021/acsami.9b22080
- J. Lefevere, B. Claessens, S. Mullens, G. Baron, J. Cousin-Saint-Remi et al., 3D-printed zeolitic imidazolate framework structures for adsorptive separations. ACS Appl. Nano Mater. 2, 4991–4999 (2019). https://doi.org/10.1021/acsanm.9b00934
- G. Li, X. Mo, Y. Wang, C.-Y. Chan, K.C. Chan, All 3D-printed superhydrophobic/oleophilic membrane for robotic oil recycling. Adv. Mater. Interfaces 6, 1900874 (2019). https://doi.org/10.1002/admi.201900874
- V.H. Ng, C.H. Koo, W.C. Chong, J.Y. Tey, Progress of 3D printed feed spacers for membrane filtration. Mater. Today Proc. 46, 2070–2077 (2021). https://doi.org/10.1016/j.matpr.2021.03.241
- S. Yuan, J. Zhu, Y. Li, Y. Zhao, J. Li et al., Structure architecture of micro/nanoscale ZIF-L on a 3D printed membrane for a superhydrophobic and underwater superoleophobic surface. J. Mater. Chem. A 7, 2723–2729 (2019). https://doi.org/10.1039/c8ta10249j
- Z. Shi, C. Xu, F. Chen, Y. Wang, L. Li et al., Renewable metal–organic-frameworks-coated 3D printing film for removal of malachite green. RSC Adv. 7, 49947–49952 (2017). https://doi.org/10.1039/C7RA10912A
- V.V. Panic, S.J. Velickovic, Removal of model cationic dye by adsorption onto poly(methacrylic acid)/zeolite hydrogel composites: Kinetics, equilibrium study and image analysis. Sep. Purif. Technol. 122, 384–394 (2014). https://doi.org/10.1016/j.seppur.2013.11.025
- X. Yi, K. Yang, C. Liang, X. Zhong, P. Ning et al., Imaging-guided combined photothermal and radiotherapy to treat subcutaneous and metastatic tumors using iodine-131-doped copper sulfide nanops. Adv. Funct. Mater. 25, 4689–4699 (2015). https://doi.org/10.1002/adfm.201502003
- D. Esparza, M. Valiente, A. Borràs, M. Villar, L.O. Leal et al., Fast-response flow-based method for evaluating 131I from biological and hospital waste samples exploiting liquid scintillation detection. Talanta 206, 120224 (2020). https://doi.org/10.1016/j.talanta.2019.120224
- M. del Rio, M. Villar, S. Quesada, G. Turnes Palomino, L. Ferrer et al., Silver-functionalized UiO-66 metal-organic framework-coated 3D printed device for the removal of radioactive iodine from wastewaters. Appl. Mater. Today 24, 101130 (2021). https://doi.org/10.1016/j.apmt.2021.101130
- H. Shahriyari Far, M. Najafi, M. Hasanzadeh, R. Rahimi, Designing a novel porous Ti3C2Tx MXene/MOF-based 3D-printed architecture as an efficient and easy recoverable adsorbent for organic dye removal from aqueous solution. Int. J. Environ. Anal. Chem. (2023). https://doi.org/10.1080/03067319.2023.2271850
- V.T. Huong, B. Van Duc, N.T. An, T.T.P. Anh, T.M. Aminabhavi et al., 3D-Printed WO3−UiO-66@reduced graphene oxide nanocomposites for photocatalytic degradation of sulfamethoxazole. Chem. Eng. J. 483, 149277 (2024). https://doi.org/10.1016/j.cej.2024.149277
- J. Duan, Q. Li, W. Xu, X. Hu, Y. Wang et al., Mechanically flexible and weavable hybrid aerogel fibers with ultrahigh metal–organic framework loadings for versatile applications. ACS Appl. Polym. Mater. 6, 1900–1910 (2024). https://doi.org/10.1021/acsapm.3c02734
- Y. de Rancourt, K. de Mimérand, J.G. Li, Photoactive hybrid materials with fractal designs produced via 3D printing and plasma grafting technologies. ACS Appl. Mater. Interfaces 11, 24771–24781 (2019). https://doi.org/10.1021/acsami.9b06982
- K. Li, Y. de Rancourt, X. de Mimérand, J. Jin, J.G. Yi, Metal oxide (ZnO and TiO2) and Fe-based metal–organic-framework nanops on 3D-printed fractal polymer surfaces for photocatalytic degradation of organic pollutants. ACS Appl. Nano Mater. 3, 2830–2845 (2020). https://doi.org/10.1021/acsanm.0c00096
- D. Liu, P. Jiang, X. Li, J. Liu, L. Zhou et al., 3D printing of metal-organic frameworks decorated hierarchical porous ceramics for high-efficiency catalytic degradation. Chem. Eng. J. 397, 125392 (2020). https://doi.org/10.1016/j.cej.2020.125392
- S. Wojtyła, P. Klama, K. Śpiewak, T. Baran, 3D printer as a potential source of indoor air pollution. Int. J. Environ. Sci. Technol. 17, 207–218 (2020). https://doi.org/10.1007/s13762-019-02444-x
- F. Rezaei, P. Webley, Optimum structured adsorbents for gas separation processes. Chem. Eng. Sci. 64, 5182–5191 (2009). https://doi.org/10.1016/j.ces.2009.08.029
- H. Thakkar, S. Eastman, A. Al-Mamoori, A. Hajari, A.A. Rownaghi et al., Formulation of aminosilica adsorbents into 3D-printed monoliths and evaluation of their CO2 capture performance. ACS Appl. Mater. Interfaces 9, 7489–7498 (2017). https://doi.org/10.1021/acsami.6b16732
- H. Thakkar, S. Eastman, A. Hajari, A.A. Rownaghi, J.C. Knox et al., 3D-printed zeolite monoliths for CO2 removal from enclosed environments. ACS Appl. Mater. Interfaces 8, 27753–27761 (2016). https://doi.org/10.1021/acsami.6b09647
- C.A. Grande, A. Kaiser, K.A. Andreassen, Methane storage in metal-organic framework HKUST-1 with enhanced heat management using 3D printed metal lattices. Chem. Eng. Res. Des. 192, 362–370 (2023). https://doi.org/10.1016/j.cherd.2023.03.003
- D. Nguyen, M. Murialdo, K. Hornbostel, S. Pang, C. Ye et al., 3D printed polymer composites for CO2 capture. Ind. Eng. Chem. Res. 58, 22015–22020 (2019). https://doi.org/10.1021/acs.iecr.9b04375
- H. Molavi, A. Shojaei, S.A. Mousavi, Photo-curable acrylate polyurethane as efficient composite membrane for CO2 separation. Polymer 149, 178–191 (2018). https://doi.org/10.1016/j.polymer.2018.06.074
- Y. Wang, Y. Ren, Y. Cao, X. Liang, G. He et al., Engineering HOF-based mixed-matrix membranes for efficient CO2 separation. Nano-Micro Lett. 15, 50 (2023). https://doi.org/10.1007/s40820-023-01020-w
- S. Liu, L. Wang, H. Zhang, H. Fang, X. Yue et al., Efficient CO2 capture and separation in MOFs: effect from isoreticular double interpenetration. ACS Appl. Mater. Interfaces 16, 7152–7160 (2024). https://doi.org/10.1021/acsami.3c16622
- B. Verougstraete, D. Schuddinck, J. Lefevere, G.V. Baron, J.F.M. Denayer, A 3D-printed zeolitic imidazolate framework-8 monolith for flue- and biogas separations by adsorption: influence of flow distribution and process parameters. Front. Chem. Eng. 2, 589686 (2020). https://doi.org/10.3389/fceng.2020.589686
- W.Y. Hong, S.P. Perera, A.D. Burrows, Manufacturing of metal-organic framework monoliths and their application in CO2 adsorption. Microporous Mesoporous Mater. 214, 149–155 (2015). https://doi.org/10.1016/j.micromeso.2015.05.014
- G. Férey, C. Mellot-Draznieks, C. Serre, F. Millange, J. Dutour et al., A chromium terephthalate-based solid with unusually large pore volumes and surface area. Science 309, 2040–2042 (2005). https://doi.org/10.1126/science.1116275
- Q. Liu, L. Ning, S. Zheng, M. Tao, Y. Shi et al., Adsorption of carbon dioxide by MIL-101(Cr): regeneration conditions and influence of flue gas contaminants. Sci. Rep. 3, 2916 (2013). https://doi.org/10.1038/srep02916
- S. Lawson, C. Griffin, K. Rapp, A.A. Rownaghi, F. Rezaei, Amine-functionalized MIL-101 monoliths for CO2 removal from enclosed environments. Energy Fuels 33, 2399–2407 (2019). https://doi.org/10.1021/acs.energyfuels.8b04508
- S.H. Ding, P.C. Oh, H. Mukhtar, A. Jamil, Nucleophilic substituted NH2-MIL-125 (Ti)/polyvinylidene fluoride hollow fiber mixed matrix membranes for CO2/CH4 separation and CO2 permeation prediction via theoretical models. J. Membr. Sci. 681, 121746 (2023). https://doi.org/10.1016/j.memsci.2023.121746
- D.L. Zhao, F. Feng, L. Shen, Z. Huang, Q. Zhao et al., Engineering metal–organic frameworks (MOFs) based thin-film nanocomposite (TFN) membranes for molecular separation. Chem. Eng. J. 454, 140447 (2023). https://doi.org/10.1016/j.cej.2022.140447
- Z.-X. Low, Y.T. Chua, B.M. Ray, D. Mattia, I.S. Metcalfe et al., Perspective on 3D printing of separation membranes and comparison to related unconventional fabrication techniques. J. Membr. Sci. 523, 596–613 (2017). https://doi.org/10.1016/j.memsci.2016.10.006
- S.K. Elsaidi, M. Ostwal, L. Zhu, A. Sekizkardes, M.H. Mohamed et al., 3D printed MOF-based mixed matrix thin-film composite membranes. RSC Adv. 11, 25658–25663 (2021). https://doi.org/10.1039/D1RA03124D
- B. Hu, K. Huang, B. Tang, Z. Lei, Z. Wang et al., Graphene quantum dot-mediated atom-layer semiconductor electrocatalyst for hydrogen evolution. Nano-Micro Lett. 15, 217 (2023). https://doi.org/10.1007/s40820-023-01182-7
- C. Liu, F. Li, L.-P. Ma, H.-M. Cheng, Advanced materials for energy storage. Adv. Mater. 22, 0903328 (2010). https://doi.org/10.1002/adma.200903328
- L. Ren, Y. Li, N. Zhang, Z. Li, X. Lin et al., Nanostructuring of Mg-based hydrogen storage materials: recent advances for promoting key applications. Nano-Micro Lett. 15, 93 (2023). https://doi.org/10.1007/s40820-023-01041-5
- M.S. Denny Jr., S.M. Cohen, In situ modification of metal–organic frameworks in mixed-matrix membranes. Angew. Chem. Int. Ed. 54, 9029–9032 (2015). https://doi.org/10.1002/anie.201504077
- D.J. Tranchemontagne, J.R. Hunt, O.M. Yaghi, Room temperature synthesis of metal-organic frameworks: MOF-5, MOF-74, MOF-177, MOF-199, and IRMOF-0. Tetrahedron 64, 8553–8557 (2008). https://doi.org/10.1016/j.tet.2008.06.036
- Z. Zhang, H.T.H. Nguyen, S.A. Miller, S.M. Cohen, polyMOFs: a class of interconvertible polymer-metal-organic-framework hybrid materials. Angew. Chem. Int. Ed. 54, 6152–6157 (2015). https://doi.org/10.1002/anie.201502733
- Y. Zhao, W.W. Ho, CO2-selective membranes containing sterically hindered amines for CO2/H2 separation. Ind. Eng. Chem. Res. 52, 8774–8782 (2013). https://doi.org/10.1021/ie301397m
- Q. Al-Naddaf, A.A. Rownaghi, F. Rezaei, Multicomponent adsorptive separation of CO2, CO, CH4, N2, and H2 over core-shell zeolite-5A@MOF-74 composite adsorbents. Chem. Eng. J. 384, 123251 (2020). https://doi.org/10.1016/j.cej.2019.123251
- S. Lawson, F. Rezaei, Effects of process parameters on CO2/H2 separation performance of 3D-printed MOF-74 monoliths. ACS Sustain. Chem. Eng. 9, 10902–10912 (2021). https://doi.org/10.1021/acssuschemeng.1c03443
- R.B. Eldridge, Olefin/paraffin separation technology: a review. Ind. Eng. Chem. Res. 32, 2208–2212 (1993). https://doi.org/10.1021/ie00022a002
- N. Lamia, M. Jorge, M.A. Granato, F.A. Almeida Paz, H. Chevreau et al., Adsorption of propane, propylene and isobutane on a metal–organic framework: molecular simulation and experiment. Chem. Eng. Sci. 64, 3246–3259 (2009). https://doi.org/10.1016/j.ces.2009.04.010
- P.-Q. Liao, W.-X. Zhang, J.-P. Zhang, X.-M. Chen, Efficient purification of ethene by an ethane-trapping metal-organic framework. Nat. Commun. 6, 8697 (2015). https://doi.org/10.1038/ncomms9697
References
F. Ahmadijokani, S. Ahmadipouya, M.H. Haris, M. Rezakazemi, A. Bokhari et al., Magnetic nitrogen-rich UiO-66 metal–organic framework: an efficient adsorbent for water treatment. ACS Appl. Mater. Interfaces 15, 30106–30116 (2023). https://doi.org/10.1021/acsami.3c02171
S. Tajahmadi, A. Shamloo, A. Shojaei, M. Sharifzadeh, Adsorption behavior of a Gd-based metal-organic framework toward the quercetin drug: effect of the activation condition. ACS Omega 7, 41177–41188 (2022). https://doi.org/10.1021/acsomega.2c04800
M. Barjasteh, M. Vossoughi, M. Bagherzadeh, K. Pooshang, Bagheri MIL-100(Fe) a potent adsorbent of Dacarbazine: Experimental and molecular docking simulation. Chem. Eng. J. 452, 138987 (2023). https://doi.org/10.1016/j.cej.2022.138987
O.M. Yaghi, H. Li, Hydrothermal synthesis of a metal-organic framework containing large rectangular channels. J. Am. Chem. Soc. 117, 10401–10402 (1995). https://doi.org/10.1021/ja00146a033
O.M. Yaghi, M. O’Keeffe, N.W. Ockwig, H.K. Chae, M. Eddaoudi et al., Reticular synthesis and the design of new materials. Nature 423, 705–714 (2003). https://doi.org/10.1038/nature01650
M. Barjasteh, S.M. Dehnavi, S.A. Seyedkhani, S.Y. Rahnamaee, M. Golizadeh, Synergistic wound healing by novel Ag@ZIF-8 nanostructures. Int. J. Pharm. 629, 122339 (2022). https://doi.org/10.1016/j.ijpharm.2022.122339
S.M. Dehnavi, M. Barjasteh, S. Ahmadi Seyedkhani, S.Y. Rahnamaee, R. Bagheri, A novel silver-based metal-organic framework incorporated into nanofibrous chitosan coatings for bone tissue implants. Int. J. Pharm. 640, 123047 (2023). https://doi.org/10.1016/j.ijpharm.2023.123047
H.V. Doan, H. Amer Hamzah, P. Karikkethu Prabhakaran, C. Petrillo, V.P. Ting, Hierarchical metal-organic frameworks with macroporosity: synthesis, achievements, and challenges. Nano-Micro Lett. 11, 54 (2019). https://doi.org/10.1007/s40820-019-0286-9
M. Barjasteh, M. Vossoughi, M. Bagherzadeh, K. Pooshang Bagheri, Green synthesis of PEG-coated MIL-100(Fe) for controlled release of dacarbazine and its anticancer potential against human melanoma cells. Int. J. Pharm. 618, 121647 (2022). https://doi.org/10.1016/j.ijpharm.2022.121647
K. Mirzaei, E. Jafarpour, A. Shojaei, H. Molavi, Facile synthesis of polyaniline@UiO-66 nanohybrids for efficient and rapid adsorption of methyl orange from aqueous media. Ind. Eng. Chem. Res. 61, 11735–11746 (2022). https://doi.org/10.1021/acs.iecr.2c00919
S. Tajahmadi, H. Molavi, F. Ahmadijokani, A. Shamloo, A. Shojaei et al., Metal-organic frameworks: a promising option for the diagnosis and treatment of Alzheimer’s disease. J. Control. Release 353, 1–29 (2023). https://doi.org/10.1016/j.jconrel.2022.11.002
C. Li, Y. Ji, Y. Wang, C. Liu, Z. Chen et al., Applications of metal–organic frameworks and their derivatives in electrochemical CO2 reduction. Nano-Micro Lett. 15, 113 (2023). https://doi.org/10.1007/s40820-023-01092-8
D. Feng, L. Zhou, T.J. White, A.K. Cheetham, T. Ma et al., Nanoengineering metal-organic frameworks and derivatives for electrosynthesis of ammonia. Nano-Micro Lett. 15, 203 (2023). https://doi.org/10.1007/s40820-023-01169-4
H. Xu, G. Zhang, Y. Wang, M. Ning, B. Ouyang et al., Size-dependent oxidation-induced phase engineering for MOFs derivatives via spatial confinement strategy toward enhanced microwave absorption. Nano-Micro Lett. 14, 102 (2022). https://doi.org/10.1007/s40820-022-00841-5
Y. Gao, J. Wang, Y. Yang, J. Wang, C. Zhang et al., Engineering spin states of isolated copper species in a metal-organic framework improves urea electrosynthesis. Nano-Micro Lett. 15, 158 (2023). https://doi.org/10.1007/s40820-023-01127-0
S. Ahmadipouya, S.A. Mousavi, A. Shokrgozar, D.V. Mousavi, Improving dye removal and antifouling performance of polysulfone nanofiltration membranes by incorporation of UiO-66 metal-organic framework. J. Environ. Chem. Eng. 10, 107535 (2022). https://doi.org/10.1016/j.jece.2022.107535
K. Mirzaei, A. Mohammadi, E. Jafarpour, A. Shojaei, A.L. Moghaddam, Improved adsorption performance of ZIF-8 towards methylene blue dye by hybridization with nanodiamond. J. Water Process. Eng. 50, 103254 (2022). https://doi.org/10.1016/j.jwpe.2022.103254
F. Ahmadijokani, A. Ghaffarkhah, H. Molavi, S. Dutta, Y. Lu et al., COF and MOF hybrids: advanced materials for wastewater treatment. Adv. Funct. Mater. (2023). https://doi.org/10.1002/adfm.202305527
X. He, Fundamental perspectives on the electrochemical water applications of metal–organic frameworks. Nano-Micro Lett. 15, 148 (2023). https://doi.org/10.1007/s40820-023-01124-3
M. Liu, Y. Peng, W. Chen, S. Cao, S. Chen et al., Metal-organic frameworks for carbon-neutral catalysis: state of the art, challenges, and opportunities. Coord. Chem. Rev. 506, 215726 (2024). https://doi.org/10.1016/j.ccr.2024.215726
Y. Bai, Y. Dou, L.-H. Xie, W. Rutledge, J.-R. Li et al., Zr-based metal–organic frameworks: design, synthesis, structure, and applications. Chem. Soc. Rev. 45, 2327–2367 (2016). https://doi.org/10.1039/C5CS00837A
M. Chafiq, A. Chaouiki, Y.G. Ko, Recent advances in multifunctional reticular framework nanops: a paradigm shift in materials science road to a structured future. Nano-Micro Lett. 15, 213 (2023). https://doi.org/10.1007/s40820-023-01180-9
H. Molavi, M.S. Salimi, Green synthesis of cerium-based metal-organic framework (Ce-UiO-66 MOF) for wastewater treatment. Langmuir 39, 17798–17807 (2023). https://doi.org/10.1021/acs.langmuir.3c02384
D. Chakraborty, A. Yurdusen, G. Mouchaham, F. Nouar, C. Serre, Large-scale production of metal–organic frameworks. Adv. Funct. Mater. (2023). https://doi.org/10.1002/adfm.202309089
D. Crawford, J. Casaban, R. Haydon, N. Giri, T. McNally et al., Synthesis by extrusion: continuous, large-scale preparation of MOFs using little or no solvent. Chem. Sci. 6, 1645–1649 (2015). https://doi.org/10.1039/C4SC03217A
H.U. Escobar-Hernandez, Y. Quan, M.I. Papadaki, Q. Wang, Life cycle assessment of metal–organic frameworks: sustainability study of zeolitic imidazolate framework-67. ACS Sustain. Chem. Eng. 11, 4219–4225 (2023). https://doi.org/10.1021/acssuschemeng.2c07276
B.B. Shah, T. Kundu, D. Zhao, Mechanical properties of shaped metal-organic frameworks. Topics in current chemistry collections (Springer International Publishing, Cham, 2019), pp.339–372
F. Ahmadijokani, H. Molavi, M. Amini, A. Bahi, S. Wuttke et al., Waste organic dye removal using MOF-based electrospun nanofibers of high amine density. Chem. Eng. J. 466, 143119 (2023). https://doi.org/10.1016/j.cej.2023.143119
K. Mirzaei, E. Jafarpour, A. Shojaei, S.S. Khasraghi, P. Jafarpour, An investigation on the influence of highly acidic media on the microstructural stability and dye adsorption performance of UiO-66. Appl. Surf. Sci. 618, 156531 (2023). https://doi.org/10.1016/j.apsusc.2023.156531
T. Tian, Z. Zeng, D. Vulpe, M.E. Casco, G. Divitini et al., A Sol–gel monolithic metal–organic framework with enhanced methane uptake. Nat. Mater. 17, 174–179 (2018). https://doi.org/10.1038/nmat5050
C. Duan, Y. Yu, J. Xiao, Y. Li, P. Yang et al., Recent advancements in metal–organic frameworks for green applications. Green Energy Environ. 6, 33–49 (2021). https://doi.org/10.1016/j.gee.2020.04.006
A. Tati, S. Ahmadipouya, H. Molavi, S.A. Mousavi, M. Rezakazemi, Efficient removal of organic dyes using electrospun nanofibers with Ce-based UiO-66 MOFs. Ecotoxicol. Environ. Saf. 266, 115584 (2023). https://doi.org/10.1016/j.ecoenv.2023.115584
F. Al-Ghazzawi, L. Conte, C. Richardson, P. Wagner, Reactive extrusion printing for simultaneous crystallization-deposition of metal-organic framework films. Angew. Chem. Int. Ed. 61, e202117240 (2022). https://doi.org/10.1002/anie.202117240
W.-Q. Ding, L. Xu, X.-Y. Li, M.-L. Fu, B. Yuan, 3D-printed MOFs/polymer composite as a separatable adsorbent for the removal of phenylarsenic acid in the aqueous solution. ACS Appl. Mater. Interfaces 15, 49181–49194 (2023). https://doi.org/10.1021/acsami.3c10766
B. Yeskendir, J.-P. Dacquin, Y. Lorgouilloux, C. Courtois, S. Royer et al., From metal–organic framework powders to shaped solids: recent developments and challenges. Mater. Adv. 2, 7139–7186 (2021). https://doi.org/10.1039/d1ma00630d
F. Lorignon, A. Gossard, M. Carboni, Hierarchically porous monolithic MOFs: an ongoing challenge for industrial-scale effluent treatment. Chem. Eng. J. 393, 124765 (2020). https://doi.org/10.1016/j.cej.2020.124765
H. Yang, H. Zhou, G. Zhang, X. Guo, H. Pang, Recent progress of integrating MOFs into printed devices and their applications. Sci. China Mater. 66, 441–469 (2023). https://doi.org/10.1007/s40843-022-2226-6
Q. Ma, T. Zhang, B. Wang, Shaping of metal-organic frameworks, a critical step toward industrial applications. Matter 5, 1070–1091 (2022). https://doi.org/10.1016/j.matt.2022.02.014
J. Hou, A.F. Sapnik, T.D. Bennett, Metal–organic framework gels and monoliths. Chem. Sci. 11, 310–323 (2020). https://doi.org/10.1039/c9sc04961d
A.H. Valekar, K.-H. Cho, U.-H. Lee, J.S. Lee, J.W. Yoon et al., Shaping of porous metal–organic framework granules using mesoporous ρ-alumina as a binder. RSC Adv. 7, 55767–55777 (2017). https://doi.org/10.1039/C7RA11764G
X. Yu, B. Li, L. Wu, D. Shi, S. Han, Review and perspectives of monolithic metal–organic frameworks: toward industrial applications. Energy Fuels 37, 9938–9955 (2023). https://doi.org/10.1021/acs.energyfuels.3c00858
G. Cai, P. Yan, L. Zhang, H.-C. Zhou, H.-L. Jiang, Metal-organic framework-based hierarchically porous materials: synthesis and applications. Chem. Rev. 121, 12278–12326 (2021). https://doi.org/10.1021/acs.chemrev.1c00243
Y. Dou, W. Zhang, A. Kaiser, Electrospinning of metal–organic frameworks for energy and environmental applications. Adv. Sci. 7(3), 1902590 (2020). https://doi.org/10.1002/advs.201902590
X. Huang, J. Wei, Y. Zhang, B. Qian, Q. Jia et al., Ultralight magnetic and dielectric aerogels achieved by metal-organic framework initiated gelation of graphene oxide for enhanced microwave absorption. Nano-Micro Lett. 14, 107 (2022). https://doi.org/10.1007/s40820-022-00851-3
X.-M. Liu, L.-H. Xie, Y. Wu, Recent advances in the shaping of metal–organic frameworks. Inorg. Chem. Front. 7, 2840–2866 (2020). https://doi.org/10.1039/c9qi01564g
L.D. Tijing, J.R.C. Dizon, I. Ibrahim, A.R.N. Nisay, H.K. Shon et al., 3D printing for membrane separation, desalination and water treatment. Appl. Mater. Today 18, 100486 (2020). https://doi.org/10.1016/j.apmt.2019.100486
N.H. Mohd Yusoff, L.-R. Irene Teo, S.J. Phang, V.-L. Wong, K.H. Cheah et al., Recent advances in polymer-based 3D printing for wastewater treatment application: an overview. Chem. Eng. J. 429, 132311 (2022). https://doi.org/10.1016/j.cej.2021.132311
W.Y. Lieu, D. Fang, K.J. Tay, X.L. Li, W.C. Chu et al., Progress on 3D-printed metal-organic frameworks with hierarchical structures. Adv. Mater. Technol. 7, 2200023 (2022). https://doi.org/10.1002/admt.202200023
H. Zhou, S. Gu, Y. Lu, G. Zhang, B. Li et al., Stabilizing Ni2+ in hollow nano MOF/polymetallic phosphides composites for enhanced electrochemical performance in 3D-printed micro-supercapacitors. Adv. Mater. (2024). https://doi.org/10.1002/adma.202401856
G. J. H. Lim, M. Srinivasan, A. Suwardi, D. Zhang, in Emerging 3D printing of MOFs and their derivatives. ed., Elsevier, 367–389, (2024)
Y. Wang, S. Lin, M. Li, C. Zhu, H. Yang et al., Boosting CO2 hydrogenation of Fe-based monolithic catalysts via 3D printing technology-induced heat/mass-transfer enhancements. Appl. Catal. B Environ. 340, 123211 (2024). https://doi.org/10.1016/j.apcatb.2023.123211
J. Zhu, P. Wu, Y. Chao, J. Yu, W. Zhu et al., Recent advances in 3D printing for catalytic applications. Chem. Eng. J. 433, 134341 (2022). https://doi.org/10.1016/j.cej.2021.134341
J. Yu, J. Zhu, L. Chen, Y. Chao, W. Zhu et al., A review of adsorption materials and their application of 3D printing technology in the separation process. Chem. Eng. J. 475, 146247 (2023). https://doi.org/10.1016/j.cej.2023.146247
Z. Wang, J. Wang, M. Li, K. Sun, C.-J. Liu, Three-dimensional printed acrylonitrile butadiene styrene framework coated with Cu-BTC metal-organic frameworks for the removal of methylene blue. Sci. Rep. 4, 5939 (2014). https://doi.org/10.1038/srep05939
H. Thakkar, S. Eastman, Q. Al-Naddaf, A.A. Rownaghi, F. Rezaei, 3D-printed metal–organic framework monoliths for gas adsorption processes. ACS Appl. Mater. Interfaces 9, 35908–35916 (2017). https://doi.org/10.1021/acsami.7b11626
P. Pei, Z. Tian, Y. Zhu, 3D printed mesoporous bioactive glass/metal-organic framework scaffolds with antitubercular drug delivery. Microporous Mesoporous Mater. 272, 24–30 (2018). https://doi.org/10.1016/j.micromeso.2018.06.012
R. Singh, G. Souillard, L. Chassat, Y. Gao, X. Mulet et al., Fabricating bioactive 3D metal–organic framework devices. Adv. Sustain. Syst. 4, 2000059 (2020). https://doi.org/10.1002/adsu.202000059
Y. Hong, M. Wu, G. Chen, Z. Dai, Y. Zhang et al., 3D printed microfluidic device with microporous Mn2O3-modified screen printed electrode for real-time determination of heavy metal ions. ACS Appl. Mater. Interfaces 8, 32940–32947 (2016). https://doi.org/10.1021/acsami.6b10464
M.C. Kreider, M. Sefa, J.A. Fedchak, J. Scherschligt, M. Bible et al., Toward 3D printed hydrogen storage materials made with ABS-MOF composites. Polym. Adv. Technol. 29, 867–873 (2018). https://doi.org/10.1002/pat.4197
N. Maldonado, V.G. Vegas, O. Halevi, J.I. Martínez, P.S. Lee et al., 3D printing of a thermo- and solvatochromic composite material based on a Cu(II)–thymine coordination polymer with moisture sensing capabilities. Adv. Funct. Mater. 29, 1808424 (2019). https://doi.org/10.1002/adfm.201808424
A.J. Young, R. Guillet-Nicolas, E.S. Marshall, F. Kleitz, A.J. Goodhand et al., Direct ink writing of catalytically active UiO-66 polymer composites. Chem. Commun. 55, 2190–2193 (2019). https://doi.org/10.1039/C8CC10018G
Z. Lyu, G.J.H. Lim, R. Guo, Z. Kou, T. Wang et al., 3D-printed MOF-derived hierarchically porous frameworks for practical high-energy density Li–O2 batteries. Adv. Funct. Mater. 29, 1806658 (2019). https://doi.org/10.1002/adfm.201806658
L. Zhong, J. Chen, Z. Ma, H. Feng, S. Chen et al., 3D printing of metal–organic framework incorporated porous scaffolds to promote osteogenic differentiation and bone regeneration. Nanoscale 12, 24437–24449 (2020). https://doi.org/10.1039/D0NR06297A
X. Liu, D. Zhao, J. Wang, Challenges and opportunities in preserving key structural features of 3D-printed metal/covalent organic framework. Nano-Micro Lett. 16, 157 (2024). https://doi.org/10.1007/s40820-024-01373-w
A. Pustovarenko, B. Seoane, E. Abou-Hamad, H.E. King, B.M. Weckhuysen et al., Rapid fabrication of MOF-based mixed matrix membranes through digital light processing. Mater. Adv. 2, 2739–2749 (2021). https://doi.org/10.1039/d1ma00023c
O. Halevi, J.M.R. Tan, P.S. Lee, S. Magdassi, Hydrolytically stable MOF in 3D-printed structures. Adv. Sustain. Syst. 2, 1700150 (2018). https://doi.org/10.1002/adsu.201700150
L.L. da Luz, R. Milani, J.F. Felix, I.R.B. Ribeiro, M. Talhavini et al., Inkjet printing of lanthanide–organic frameworks for anti-counterfeiting applications. ACS Appl. Mater. Interfaces 7, 27115–27123 (2015). https://doi.org/10.1021/acsami.5b06301
S. Shi, Y. Jiang, H. Ren, S. Deng, J. Sun et al., 3D-printed carbon-based conformal electromagnetic interference shielding module for integrated electronics. Nano-Micro Lett. 16, 85 (2024). https://doi.org/10.1007/s40820-023-01317-w
C.-H. Su, C.-W. Kung, T.-H. Chang, H.-C. Lu, K.-C. Ho et al., Inkjet-printed porphyrinic metal–organic framework thin films for electrocatalysis. J. Mater. Chem. A 4, 11094–11102 (2016). https://doi.org/10.1039/c6ta03547g
P. Goel, S. Singh, H. Kaur, S. Mishra, A. Deep, Low-cost inkjet printing of metal–organic frameworks patterns on different substrates and their applications in ammonia sensing. Sens. Actuat. B Chem. 329, 129157 (2021). https://doi.org/10.1016/j.snb.2020.129157
M. Hou, H. Zhao, Y. Feng, J. Ge, Synthesis of patterned enzyme–metal–organic framework composites by ink-jet printing. Bioresour. Bioprocess. 4, 40 (2017). https://doi.org/10.1186/s40643-017-0171-7
D.A. Gregory, J. Nicks, J. Artigas-Arnaudas, M.S. Harris, J.A. Foster et al., Controlling the composition and position of metal–organic frameworks via reactive inkjet printing. Adv. Mater. Interfaces 10, 2300027 (2023). https://doi.org/10.1002/admi.202300027
J. Kim, J. Choi, J. Hyun, In situ synthesis of single layered metal–organic frameworks via inkjet printing on a cellulose nanofiber film. ACS Appl. Mater. Interfaces 16, 15617–15631 (2024). https://doi.org/10.1021/acsami.4c00779
D.E. Kravchenko, A. Matavž, V. Rubio-Giménez, H. Vanduffel, M. Verstreken et al., Aerosol jet printing of the ultramicroporous calcium squarate metal–organic framework. Chem. Mater. 34, 6809–6814 (2022). https://doi.org/10.1021/acs.chemmater.2c00947
E.B. Secor, Principles of aerosol jet printing. Flex. Print. Electron. 3, 035002 (2018). https://doi.org/10.1088/2058-8585/aace28
H. Chen, J. Wang, S. Peng, D. Liu, W. Yan et al., A generalized polymer precursor ink design for 3D printing of functional metal oxides. Nano-Micro Lett. 15, 180 (2023). https://doi.org/10.1007/s40820-023-01147-w
T. Xue, Y. Yang, D. Yu, Q. Wali, Z. Wang et al., 3D printed integrated gradient-conductive MXene/CNT/polyimide aerogel frames for electromagnetic interference shielding with ultra-low reflection. Nano-Micro Lett. 15, 45 (2023). https://doi.org/10.1007/s40820-023-01017-5
A. Masud, C. Zhou, N. Aich, Emerging investigator series: 3D printed graphene-biopolymer aerogels for water contaminant removal: a proof of concept. Environ. Sci. Nano 8, 399–414 (2021)
S.S. Crump, Apparatus and method for creating three-dimensional objects. United States Patent 5121329 (1992).
M. Zhou, M. Li, J. Jiang, N. Gao, F. Tian et al., Construction of bionic porous polyetherimide structure by an in situ foaming fused deposition modeling process. Adv. Eng. Mater. 24, 2101027 (2022). https://doi.org/10.1002/adem.202101027
L. Ritzen, V. Montano, S.J. Garcia, 3D printing of a self-healing thermoplastic polyurethane through FDM: from polymer slab to mechanical assessment. Polymers 13, 305 (2021). https://doi.org/10.3390/polym13020305
D. Popescu, A. Zapciu, C. Amza, F. Baciu, R. Marinescu, FDM process parameters influence over the mechanical properties of polymer specimens: a review. Polym. Test. 69, 157–166 (2018). https://doi.org/10.1016/j.polymertesting.2018.05.020
V. Vancauwenberghe, V.B. Mbong, E. Vanstreels, P. Verboven, J. Lammertyn, B. Nicolai, 3D printing of plant tissue for innovative food manufacturing: Encapsulation of alive plant cells into pectin based bio-ink. J. Food Eng. 263, 454–464 (2019). https://doi.org/10.1016/j.jfoodeng.2017.12.003
C.A. Grande, R. Blom, V. Middelkoop, D. Matras, A. Vamvakeros et al., Multiscale investigation of adsorption properties of novel 3D printed UTSA-16 structures. Chem. Eng. J. 402, 126166 (2020). https://doi.org/10.1016/j.cej.2020.126166
C. Kokkinos, A. Economou, A. Pournara, M. Manos, I. Spanopoulos et al., 3D-printed lab-in-a-syringe voltammetric cell based on a working electrode modified with a highly efficient Ca-MOF sorbent for the determination of Hg(II). Sens. Actuat. B Chem. 321, 128508 (2020). https://doi.org/10.1016/j.snb.2020.128508
Z. Liu, X. Xia, W. Li, L. Xiao, X. Sun et al., In situ growth of Ca2+-based metal-organic framework on CaSiO3/ABS/TPU 3D skeleton for methylene blue removal. Materials 13, 4403 (2020). https://doi.org/10.3390/ma13194403
R. Xing, R. Huang, R. Su, J. Kong, M.D. Dickey et al., 3D-printing of hierarchical porous copper-based metal–organic-framework structures for efficient fixed-bed catalysts. Chem. Bio. Eng. 1, 264–273 (2024). https://doi.org/10.1021/cbe.4c00001
S. Lawson, Q. Al-Naddaf, K. Newport, A. Rownaghi, F. Rezaei, Assessment of CO2/CH4 separation performance of 3D-printed carbon monoliths in pressure swing adsorption. Ind. Eng. Chem. Res. 60, 16445–16456 (2021). https://doi.org/10.1021/acs.iecr.1c01741
K. Mori, T. Fujita, H. Hata, H.-J. Kim, T. Nakano et al., Surface chemical engineering of a metal 3D-printed flow reactor using a metal–organic framework for liquid-phase catalytic H2 production from hydrogen storage materials. ACS Appl. Mater. Interfaces 15, 51079–51088 (2023). https://doi.org/10.1021/acsami.3c10945
Y.-P. Chuang, C.-H. Shen, H.-J. Hsu, Y.-Z. Su, S.-C. Yang et al., Cerium (IV)-based metal–organic framework nanostructures grown on 3D-printed free-standing membranes and their derivatives for charge storage. ACS Appl. Nano Mater. 6, 19701–19709 (2023). https://doi.org/10.1021/acsanm.3c03508
A.K. Chaudhari, J.-C. Tan, Dual-guest functionalized zeolitic imidazolate framework-8 for 3D printing white light-emitting composites. Adv. Opt. Mater. 8, 1901912 (2020). https://doi.org/10.1002/adom.201901912
M.A.F. Maghsoudi, R.M. Aghdam, R.A. Asbagh, A. Moghaddaszadeh, A. Ghaee et al., 3D-printing of alginate/gelatin scaffold loading tannic acid@ZIF-8 for wound healing: in vitro and in vivo studies. Int. J. Biol. Macromol. 265, 130744 (2024). https://doi.org/10.1016/j.ijbiomac.2024.130744
S.D. Perera, R.M. Johnson, R. Pawle, J. Elliott, T.M. Tran et al., Hierarchically structured metal–organic framework polymer composites for chemical warfare agent degradation. ACS Appl. Mater. Interfaces 16(8), 10795–10804 (2024). https://doi.org/10.1021/acsami.3c19446
R. Pei, L. Fan, F. Zhao, J. Xiao, Y. Yang et al., 3D-Printed metal-organic frameworks within biocompatible polymers as excellent adsorbents for organic dyes removal. J. Hazard. Mater. 384, 121418 (2020). https://doi.org/10.1016/j.jhazmat.2019.121418
A. Anvari Kohestani, F. Pishbin, 3D printing of bone scaffolds based on alginate/gelatin hydrogel ink containing bioactive glass 45S5 and ZIF-8 nanops with sustained drug-release capability. Adv. Eng. Mater. 25, 2300563 (2023). https://doi.org/10.1002/adem.202300563
S. Lawson, M. Snarzyk, D. Hanify, A.A. Rownaghi, F. Rezaei, Development of 3D-printed polymer-MOF monoliths for CO2 adsorption. Ind. Eng. Chem. Res. 59, 7151–7160 (2020). https://doi.org/10.1021/acs.iecr.9b05445
H. Thakkar, Q. Al-Naddaf, N. Legion, M. Hovis, A. Krishnamurthy et al., Adsorption of ethane and ethylene over 3D-printed ethane-selective monoliths. ACS Sustain. Chem. Eng. 6, 15228–15237 (2018). https://doi.org/10.1021/acssuschemeng.8b03685
C.-G. Lin, W. Zhou, X.-T. Xiong, W. Xuan, P.J. Kitson et al., Digital control of multistep hydrothermal synthesis by using 3D printed reactionware for the synthesis of metal-organic frameworks. Angew. Chem. Int. Ed. 57, 16716–16720 (2018). https://doi.org/10.1002/anie.201810095
H.N. Abdelhamid, S. Sultan, A.P. Mathew, 3D printing of cellulose/leaf-like zeolitic imidazolate frameworks (CelloZIF-L) for adsorption of carbon dioxide (CO2) and heavy metal ions. Dalton Trans. 52, 2988–2998 (2023). https://doi.org/10.1039/d2dt04168e
M.R. Sommer, L. Alison, C. Minas, E. Tervoort, P.A. Rühs et al., 3D printing of concentrated emulsions into multiphase biocompatible soft materials. Soft Matter 13, 1794–1803 (2017). https://doi.org/10.1039/c6sm02682f
D. López-Velázquez, A.R. Hernández-Sosa, E. Pérez, Effect of the degree of substitution in the transition temperatures and hydrophobicity of hydroxypropyl cellulose esters. Carbohydr. Polym. 125, 224–231 (2015). https://doi.org/10.1016/j.carbpol.2014.12.086
A. Figuerola, D.A.V. Medina, A.J. Santos-Neto, C.P. Cabello, V. Cerdà et al., Metal–organic framework mixed-matrix coatings on 3D printed devices. Appl. Mater. Today 16, 21–27 (2019). https://doi.org/10.1016/j.apmt.2019.04.011
G.J.H. Lim, Y. Wu, B.B. Shah, J.J. Koh, C.K. Liu et al., 3D-printing of pure metal–organic framework monoliths. ACS Mater. Lett. 1, 147–153 (2019). https://doi.org/10.1021/acsmaterialslett.9b00069
B. Claessens, N. Dubois, J. Lefevere, S. Mullens, J. Cousin-Saint-Remi et al., 3D-printed ZIF-8 monoliths for biobutanol recovery. Ind. Eng. Chem. Res. 59, 8813–8824 (2020). https://doi.org/10.1021/acs.iecr.0c00453
J. Dhainaut, M. Bonneau, R. Ueoka, K. Kanamori, S. Furukawa, Formulation of metal–organic framework inks for the 3D printing of robust microporous solids toward high-pressure gas storage and separation. ACS Appl. Mater. Interfaces 12, 10983–10992 (2020). https://doi.org/10.1021/acsami.9b22257
K.A. Evans, Z.C. Kennedy, B.W. Arey, J.F. Christ, H.T. Schaef et al., Chemically active, porous 3D-printed thermoplastic composites. ACS Appl. Mater. Interfaces 10, 15112–15121 (2018). https://doi.org/10.1021/acsami.7b17565
E. Lahtinen, R.L.M. Precker, M. Lahtinen, E. Hey-Hawkins, M. Haukka, Selective laser sintering of metal-organic frameworks: production of highly porous filters by 3D printing onto a polymeric matrix. ChemPlusChem 84, 222–225 (2019). https://doi.org/10.1002/cplu.201900081
R. Li, S. Yuan, W. Zhang, H. Zheng, W. Zhu et al., 3D printing of mixed matrix films based on metal–organic frameworks and thermoplastic polyamide 12 by selective laser sintering for water applications. ACS Appl. Mater. Interfaces 11, 40564–40574 (2019). https://doi.org/10.1021/acsami.9b11840
N.R. Catarineu, D. Lin, C. Zhu, D.I. Oyarzun, Y. Li, High-performance aqueous zinc-ion hybrid capacitors based on 3D printed metal-organic framework cathodes. Chem. Eng. J. 465, 142544 (2023). https://doi.org/10.1016/j.cej.2023.142544
J. Li, M. Li, J.J. Koh, J. Wang, Z. Lyu, 3D-printed biomimetic structures for energy and environmental applications. DeCarbon 3, 100026 (2024). https://doi.org/10.1016/j.decarb.2023.100026
C. Li, S. Deng, W. Feng, Y. Cao, J. Bai et al., A universal room-temperature 3D printing approach towards porous MOF based dendrites inhibition hybrid solid-state electrolytes. Small 19, e2300066 (2023). https://doi.org/10.1002/smll.202300066
E. Hędrzak, A. Węgrzynowicz, R. Rachwalik, B. Sulikowski, P. Michorczyk, Monoliths with MFI zeolite layers prepared with the assistance of 3D printing: characterization and performance in the gas phase isomerization of α-pinene. Appl. Catal. A Gen. 579, 75–85 (2019). https://doi.org/10.1016/j.apcata.2019.04.017
S. Lawson, X. Li, H. Thakkar, A.A. Rownaghi, F. Rezaei, Recent advances in 3D printing of structured materials for adsorption and catalysis applications. Chem. Rev. 121, 6246–6291 (2021). https://doi.org/10.1021/acs.chemrev.1c00060
S. Lawson, Q. Al-Naddaf, A. Krishnamurthy, M.S. Amour, C. Griffin et al., UTSA-16 growth within 3D-printed co-Kaolin monoliths with high selectivity for CO2/CH4, CO2/N2, and CO2/H2 separation. ACS Appl. Mater. Interfaces 10, 19076–19086 (2018). https://doi.org/10.1021/acsami.8b05192
W. Liu, O. Erol, D.H. Gracias, 3D printing of an in situ grown MOF hydrogel with tunable mechanical properties. ACS Appl. Mater. Interfaces 12, 33267–33275 (2020). https://doi.org/10.1021/acsami.0c08880
J. Huang, P. Wu, Controlled assembly of luminescent lanthanide-organic frameworks via post-treatment of 3D-printed objects. Nano-Micro Lett. 13, 15 (2020). https://doi.org/10.1007/s40820-020-00543-w
S. Lawson, A.-A. Alwakwak, A.A. Rownaghi, F. Rezaei, Gel–print–grow: a new way of 3D printing metal–organic frameworks. ACS Appl. Mater. Interfaces 12, 56108–56117 (2020). https://doi.org/10.1021/acsami.0c18720
R. Ajdary, S. Huan, N. Zanjanizadeh Ezazi, W. Xiang, R. Grande et al., Acetylated nanocellulose for single-component bioinks and cell proliferation on 3D-printed scaffolds. Biomacromol 20, 2770–2778 (2019). https://doi.org/10.1021/acs.biomac.9b00527
W. Xu, X. Wang, N. Sandler, S. Willför, C. Xu, Three-dimensional printing of wood-derived biopolymers: a review focused on biomedical applications. ACS Sustain. Chem. Eng. 6, 5663–5680 (2018). https://doi.org/10.1021/acssuschemeng.7b03924
S. Sultan, H.N. Abdelhamid, X. Zou, A.P. Mathew, CelloMOF: nanocellulose enabled 3D printing of metal–organic frameworks. Adv. Funct. Mater. 29, 1805372 (2019). https://doi.org/10.1002/adfm.201805372
J.-L. Zhuang, D. Ar, X.-J. Yu, J.-X. Liu, A. Terfort, Patterned deposition of metal-organic frameworks onto plastic, paper, and textile substrates by inkjet printing of a precursor solution. Adv. Mater. 25, 4631–4635 (2013). https://doi.org/10.1002/adma.201301626
H. Nasser Abdelhamid, S. Sultan, A.P. Mathew, Binder-free Three-dimensional (3D) printing of Cellulose-ZIF8 (CelloZIF-8) for water treatment and carbon dioxide (CO2) adsorption. Chem. Eng. J. 468, 143567 (2023). https://doi.org/10.1016/j.cej.2023.143567
Z. Chen, S. Song, H. Zeng, Z. Ge, B. Liu et al., 3D printing MOF nanozyme hydrogel with dual enzymatic activities and visualized glucose monitoring for diabetic wound healing. Chem. Eng. J. 471, 144649 (2023). https://doi.org/10.1016/j.cej.2023.144649
I. Stassen, M. Styles, G. Grenci, H. Gorp, W. Vanderlinden et al., Chemical vapour deposition of zeolitic imidazolate framework thinfilms. Nat. Mater. 15, 304–310 (2016). https://doi.org/10.1038/nmat4509
M. Mar del Darder, S. Salehinia, J.B. Parra, J.M. Herrero-Martinez, F. Svec et al., Nanop-directed metal–organic framework/porous organic polymer monolithic supports for flow-based applications. ACS Appl. Mater. Interfaces 9, 1728–1736 (2017). https://doi.org/10.1021/acsami.6b10999
S. Waheed, M. Rodas, H. Kaur, N.L. Kilah, B. Paull et al., In-situ growth of metal-organic frameworks in a reactive 3D printable material. Appl. Mater. Today 22, 100930 (2021). https://doi.org/10.1016/j.apmt.2020.100930
D. Nagaraju, D.G. Bhagat, R. Banerjee, U.K. Kharul, In situ growth of metal-organic frameworks on a porous ultrafiltration membrane for gas separation. J. Mater. Chem. A 1, 8828 (2013). https://doi.org/10.1039/c3ta10438a
I. Pellejero, F. Almazán, M. Lafuente, M.A. Urbiztondo, M. Drobek et al., Functionalization of 3D printed ABS filters with MOF for toxic gas removal. J. Ind. Eng. Chem. 89, 194–203 (2020). https://doi.org/10.1016/j.jiec.2020.05.013
M. Weber, A. Julbe, A. Ayral, P. Miele, M. Bechelany, Atomic layer deposition for membranes: basics, challenges, and opportunities. Chem. Mater. 30, 7368–7390 (2018). https://doi.org/10.1021/acs.chemmater.8b02687
A.D. Pournara, A. Margariti, G.D. Tarlas, A. Kourtelaris, V. Petkov et al., A Ca2+ MOF combining highly efficient sorption and capability for voltammetric determination of heavy metal ions in aqueous media. J. Mater. Chem. A 7, 15432–15443 (2019). https://doi.org/10.1039/c9ta03337h
K. Sumida, M. Hu, S. Furukawa, S. Kitagawa, Structuralization of Ca2+-based metal-organic frameworks prepared via coordination replication of calcium carbonate. Inorg. Chem. 55, 3700–3705 (2016). https://doi.org/10.1021/acs.inorgchem.6b00397
C. Xu, T. Liu, W. Guo, Y. Sun, C. Liang et al., 3D printing of powder-based inks into functional hierarchical porous TiO2 materials. Adv. Eng. Mater. 22, 1901088 (2020). https://doi.org/10.1002/adem.201901088
H. Thakkar, S. Lawson, A.A. Rownaghi, F. Rezaei, Development of 3D-printed polymer-zeolite composite monoliths for gas separation. Chem. Eng. J. 348, 109–116 (2018). https://doi.org/10.1016/j.cej.2018.04.178
S. Yuan, F. Shen, C.K. Chua, K. Zhou, Polymeric composites for powder-based additive manufacturing: materials and applications. Prog. Polym. Sci. 91, 141–168 (2019). https://doi.org/10.1016/j.progpolymsci.2018.11.001
T. Stichel, T. Frick, T. Laumer, F. Tenner, T. Hausotte et al., A Round Robin study for selective laser sintering of polymers: Back tracing of the pore morphology to the process parameters. J. Mater. Process. Technol. 252, 537–545 (2018). https://doi.org/10.1016/j.jmatprotec.2017.10.013
E. Lahtinen, M.M. Hänninen, K. Kinnunen, H.M. Tuononen, A. Väisänen et al., Porous 3D printed scavenger filters for selective recovery of precious metals from electronic waste. Adv. Sustain. Syst. 2, 1800048 (2018). https://doi.org/10.1002/adsu.201800048
R. Zhou, Y. Wang, Z. Liu, Y. Pang, J. Chen et al., Digital light processing 3D-printed ceramic metamaterials for electromagnetic wave absorption. Nano-Micro Lett. 14, 122 (2022). https://doi.org/10.1007/s40820-022-00865-x
L. Cao, K. Tao, A. Huang, C. Kong, L. Chen, A highly permeable mixed matrix membrane containing CAU-1-NH2 for H2 and CO2 separation. Chem. Commun. 49, 8513–8515 (2013). https://doi.org/10.1039/C3CC44530E
J.B. Decoste, G.W. Peterson, M.W. Smith, C.A. Stone, C.R. Willis, Enhanced stability of Cu-BTC MOF via perfluorohexane plasma-enhanced chemical vapor deposition. J. Am. Chem. Soc. 134, 1486–1489 (2012). https://doi.org/10.1021/ja211182m
A.I. Cherevko, G.L. Denisov, I.A. Nikovskii, A.V. Polezhaev, A.A. Korlyukov et al., Composite materials manufactured by photopolymer 3D printing with metal-organic frameworks. Russ. J. Coord. Chem. 47, 319–325 (2021). https://doi.org/10.1134/s107032842105002x
H. Molavi, K. Mirzaei, E. Jafarpour, A. Mohammadi, M.S. Salimi et al., Wastewater treatment using nanodiamond and related materials. J. Environ. Manag. 349, 119349 (2024). https://doi.org/10.1016/j.jenvman.2023.119349
H. Wang, J. Zhao, Y. Li, Y. Cao, Z. Zhu et al., Aqueous two-phase interfacial assembly of COF membranes for water desalination. Nano-Micro Lett. 14, 216 (2022). https://doi.org/10.1007/s40820-022-00968-5
M. Zamani, M. Aghajanzadeh, H. Molavi, H. Danafar, A. Shojaei, Thermally oxidized nanodiamond: an effective sorbent for separation of methotrexate from aqueous media: synthesis, characterization, in vivo and in vitro biocompatibility study. J. Inorg. Organomet. Polym. Mater. 29, 701–709 (2019). https://doi.org/10.1007/s10904-018-1043-0
A. Mohammadi, E. Jafarpour, K. Mirzaei, A. Shojaei, P. Jafarpour et al., Novel ZIF-8/CNC nanohybrid with an interconnected structure: toward a sustainable adsorbent for efficient removal of Cd(II) ions. ACS Appl. Mater. Interfaces 16, 3862–3875 (2024). https://doi.org/10.1021/acsami.3c15524
X. Huang, L. Li, S. Zhao, L. Tong, Z. Li et al., MOF-like 3D graphene-based catalytic membrane fabricated by one-step laser scribing for robust water purification and green energy production. Nano-Micro Lett. 14, 174 (2022). https://doi.org/10.1007/s40820-022-00923-4
O. Halevi, T.-Y. Chen, P.S. Lee, S. Magdassi, J.A. Hriljac, Nuclear wastewater decontamination by 3D-Printed hierarchical zeolite monoliths. RSC Adv. 10, 5766–5776 (2020). https://doi.org/10.1039/C9RA09967K
Y. Cao, R. Wu, Y.-Y. Gao, Y. Zhou, J.-J. Zhu, Advances of electrochemical and electrochemiluminescent sensors based on covalent organic frameworks. Nano-Micro Lett. 16, 37 (2023). https://doi.org/10.1007/s40820-023-01249-5
P.O. Vicentino, R.J. Cassella, D. Leite, M. Resano, Extraction induced by microemulsion breaking as a novel tool for the simultaneous determination of Cd, Mn, Pb and Sb in gasoline samples by ICP-MS and discrete sample introduction. Talanta 206, 120230 (2020). https://doi.org/10.1016/j.talanta.2019.120230
M. Lu, Y. Deng, Y. Luo, J. Lv, T. Li et al., Graphene aerogel-metal-organic framework-based electrochemical method for simultaneous detection of multiple heavy-metal ions. Anal. Chem. 91, 888–895 (2019). https://doi.org/10.1021/acs.analchem.8b03764
W. H. Organization, WHO, WHO Staff. Guidelines for Drinking-water Quality. (World Health Organization; 2004).
E. Vlachou, A. Margariti, G.S. Papaefstathiou, C. Kokkinos, Voltammetric determination of Pb(II) by a Ca-MOF-modified carbon paste electrode integrated in a 3D-printed device. Sensors 20, 4442 (2020). https://doi.org/10.3390/s20164442
R. Wang, X. Zhao, N. Jia, L. Cheng, L. Liu et al., Superwetting oil/water separation membrane constructed from in situ assembled metal–phenolic networks and metal–organic frameworks. ACS Appl. Mater. Interfaces 12, 10000–10008 (2020). https://doi.org/10.1021/acsami.9b22080
J. Lefevere, B. Claessens, S. Mullens, G. Baron, J. Cousin-Saint-Remi et al., 3D-printed zeolitic imidazolate framework structures for adsorptive separations. ACS Appl. Nano Mater. 2, 4991–4999 (2019). https://doi.org/10.1021/acsanm.9b00934
G. Li, X. Mo, Y. Wang, C.-Y. Chan, K.C. Chan, All 3D-printed superhydrophobic/oleophilic membrane for robotic oil recycling. Adv. Mater. Interfaces 6, 1900874 (2019). https://doi.org/10.1002/admi.201900874
V.H. Ng, C.H. Koo, W.C. Chong, J.Y. Tey, Progress of 3D printed feed spacers for membrane filtration. Mater. Today Proc. 46, 2070–2077 (2021). https://doi.org/10.1016/j.matpr.2021.03.241
S. Yuan, J. Zhu, Y. Li, Y. Zhao, J. Li et al., Structure architecture of micro/nanoscale ZIF-L on a 3D printed membrane for a superhydrophobic and underwater superoleophobic surface. J. Mater. Chem. A 7, 2723–2729 (2019). https://doi.org/10.1039/c8ta10249j
Z. Shi, C. Xu, F. Chen, Y. Wang, L. Li et al., Renewable metal–organic-frameworks-coated 3D printing film for removal of malachite green. RSC Adv. 7, 49947–49952 (2017). https://doi.org/10.1039/C7RA10912A
V.V. Panic, S.J. Velickovic, Removal of model cationic dye by adsorption onto poly(methacrylic acid)/zeolite hydrogel composites: Kinetics, equilibrium study and image analysis. Sep. Purif. Technol. 122, 384–394 (2014). https://doi.org/10.1016/j.seppur.2013.11.025
X. Yi, K. Yang, C. Liang, X. Zhong, P. Ning et al., Imaging-guided combined photothermal and radiotherapy to treat subcutaneous and metastatic tumors using iodine-131-doped copper sulfide nanops. Adv. Funct. Mater. 25, 4689–4699 (2015). https://doi.org/10.1002/adfm.201502003
D. Esparza, M. Valiente, A. Borràs, M. Villar, L.O. Leal et al., Fast-response flow-based method for evaluating 131I from biological and hospital waste samples exploiting liquid scintillation detection. Talanta 206, 120224 (2020). https://doi.org/10.1016/j.talanta.2019.120224
M. del Rio, M. Villar, S. Quesada, G. Turnes Palomino, L. Ferrer et al., Silver-functionalized UiO-66 metal-organic framework-coated 3D printed device for the removal of radioactive iodine from wastewaters. Appl. Mater. Today 24, 101130 (2021). https://doi.org/10.1016/j.apmt.2021.101130
H. Shahriyari Far, M. Najafi, M. Hasanzadeh, R. Rahimi, Designing a novel porous Ti3C2Tx MXene/MOF-based 3D-printed architecture as an efficient and easy recoverable adsorbent for organic dye removal from aqueous solution. Int. J. Environ. Anal. Chem. (2023). https://doi.org/10.1080/03067319.2023.2271850
V.T. Huong, B. Van Duc, N.T. An, T.T.P. Anh, T.M. Aminabhavi et al., 3D-Printed WO3−UiO-66@reduced graphene oxide nanocomposites for photocatalytic degradation of sulfamethoxazole. Chem. Eng. J. 483, 149277 (2024). https://doi.org/10.1016/j.cej.2024.149277
J. Duan, Q. Li, W. Xu, X. Hu, Y. Wang et al., Mechanically flexible and weavable hybrid aerogel fibers with ultrahigh metal–organic framework loadings for versatile applications. ACS Appl. Polym. Mater. 6, 1900–1910 (2024). https://doi.org/10.1021/acsapm.3c02734
Y. de Rancourt, K. de Mimérand, J.G. Li, Photoactive hybrid materials with fractal designs produced via 3D printing and plasma grafting technologies. ACS Appl. Mater. Interfaces 11, 24771–24781 (2019). https://doi.org/10.1021/acsami.9b06982
K. Li, Y. de Rancourt, X. de Mimérand, J. Jin, J.G. Yi, Metal oxide (ZnO and TiO2) and Fe-based metal–organic-framework nanops on 3D-printed fractal polymer surfaces for photocatalytic degradation of organic pollutants. ACS Appl. Nano Mater. 3, 2830–2845 (2020). https://doi.org/10.1021/acsanm.0c00096
D. Liu, P. Jiang, X. Li, J. Liu, L. Zhou et al., 3D printing of metal-organic frameworks decorated hierarchical porous ceramics for high-efficiency catalytic degradation. Chem. Eng. J. 397, 125392 (2020). https://doi.org/10.1016/j.cej.2020.125392
S. Wojtyła, P. Klama, K. Śpiewak, T. Baran, 3D printer as a potential source of indoor air pollution. Int. J. Environ. Sci. Technol. 17, 207–218 (2020). https://doi.org/10.1007/s13762-019-02444-x
F. Rezaei, P. Webley, Optimum structured adsorbents for gas separation processes. Chem. Eng. Sci. 64, 5182–5191 (2009). https://doi.org/10.1016/j.ces.2009.08.029
H. Thakkar, S. Eastman, A. Al-Mamoori, A. Hajari, A.A. Rownaghi et al., Formulation of aminosilica adsorbents into 3D-printed monoliths and evaluation of their CO2 capture performance. ACS Appl. Mater. Interfaces 9, 7489–7498 (2017). https://doi.org/10.1021/acsami.6b16732
H. Thakkar, S. Eastman, A. Hajari, A.A. Rownaghi, J.C. Knox et al., 3D-printed zeolite monoliths for CO2 removal from enclosed environments. ACS Appl. Mater. Interfaces 8, 27753–27761 (2016). https://doi.org/10.1021/acsami.6b09647
C.A. Grande, A. Kaiser, K.A. Andreassen, Methane storage in metal-organic framework HKUST-1 with enhanced heat management using 3D printed metal lattices. Chem. Eng. Res. Des. 192, 362–370 (2023). https://doi.org/10.1016/j.cherd.2023.03.003
D. Nguyen, M. Murialdo, K. Hornbostel, S. Pang, C. Ye et al., 3D printed polymer composites for CO2 capture. Ind. Eng. Chem. Res. 58, 22015–22020 (2019). https://doi.org/10.1021/acs.iecr.9b04375
H. Molavi, A. Shojaei, S.A. Mousavi, Photo-curable acrylate polyurethane as efficient composite membrane for CO2 separation. Polymer 149, 178–191 (2018). https://doi.org/10.1016/j.polymer.2018.06.074
Y. Wang, Y. Ren, Y. Cao, X. Liang, G. He et al., Engineering HOF-based mixed-matrix membranes for efficient CO2 separation. Nano-Micro Lett. 15, 50 (2023). https://doi.org/10.1007/s40820-023-01020-w
S. Liu, L. Wang, H. Zhang, H. Fang, X. Yue et al., Efficient CO2 capture and separation in MOFs: effect from isoreticular double interpenetration. ACS Appl. Mater. Interfaces 16, 7152–7160 (2024). https://doi.org/10.1021/acsami.3c16622
B. Verougstraete, D. Schuddinck, J. Lefevere, G.V. Baron, J.F.M. Denayer, A 3D-printed zeolitic imidazolate framework-8 monolith for flue- and biogas separations by adsorption: influence of flow distribution and process parameters. Front. Chem. Eng. 2, 589686 (2020). https://doi.org/10.3389/fceng.2020.589686
W.Y. Hong, S.P. Perera, A.D. Burrows, Manufacturing of metal-organic framework monoliths and their application in CO2 adsorption. Microporous Mesoporous Mater. 214, 149–155 (2015). https://doi.org/10.1016/j.micromeso.2015.05.014
G. Férey, C. Mellot-Draznieks, C. Serre, F. Millange, J. Dutour et al., A chromium terephthalate-based solid with unusually large pore volumes and surface area. Science 309, 2040–2042 (2005). https://doi.org/10.1126/science.1116275
Q. Liu, L. Ning, S. Zheng, M. Tao, Y. Shi et al., Adsorption of carbon dioxide by MIL-101(Cr): regeneration conditions and influence of flue gas contaminants. Sci. Rep. 3, 2916 (2013). https://doi.org/10.1038/srep02916
S. Lawson, C. Griffin, K. Rapp, A.A. Rownaghi, F. Rezaei, Amine-functionalized MIL-101 monoliths for CO2 removal from enclosed environments. Energy Fuels 33, 2399–2407 (2019). https://doi.org/10.1021/acs.energyfuels.8b04508
S.H. Ding, P.C. Oh, H. Mukhtar, A. Jamil, Nucleophilic substituted NH2-MIL-125 (Ti)/polyvinylidene fluoride hollow fiber mixed matrix membranes for CO2/CH4 separation and CO2 permeation prediction via theoretical models. J. Membr. Sci. 681, 121746 (2023). https://doi.org/10.1016/j.memsci.2023.121746
D.L. Zhao, F. Feng, L. Shen, Z. Huang, Q. Zhao et al., Engineering metal–organic frameworks (MOFs) based thin-film nanocomposite (TFN) membranes for molecular separation. Chem. Eng. J. 454, 140447 (2023). https://doi.org/10.1016/j.cej.2022.140447
Z.-X. Low, Y.T. Chua, B.M. Ray, D. Mattia, I.S. Metcalfe et al., Perspective on 3D printing of separation membranes and comparison to related unconventional fabrication techniques. J. Membr. Sci. 523, 596–613 (2017). https://doi.org/10.1016/j.memsci.2016.10.006
S.K. Elsaidi, M. Ostwal, L. Zhu, A. Sekizkardes, M.H. Mohamed et al., 3D printed MOF-based mixed matrix thin-film composite membranes. RSC Adv. 11, 25658–25663 (2021). https://doi.org/10.1039/D1RA03124D
B. Hu, K. Huang, B. Tang, Z. Lei, Z. Wang et al., Graphene quantum dot-mediated atom-layer semiconductor electrocatalyst for hydrogen evolution. Nano-Micro Lett. 15, 217 (2023). https://doi.org/10.1007/s40820-023-01182-7
C. Liu, F. Li, L.-P. Ma, H.-M. Cheng, Advanced materials for energy storage. Adv. Mater. 22, 0903328 (2010). https://doi.org/10.1002/adma.200903328
L. Ren, Y. Li, N. Zhang, Z. Li, X. Lin et al., Nanostructuring of Mg-based hydrogen storage materials: recent advances for promoting key applications. Nano-Micro Lett. 15, 93 (2023). https://doi.org/10.1007/s40820-023-01041-5
M.S. Denny Jr., S.M. Cohen, In situ modification of metal–organic frameworks in mixed-matrix membranes. Angew. Chem. Int. Ed. 54, 9029–9032 (2015). https://doi.org/10.1002/anie.201504077
D.J. Tranchemontagne, J.R. Hunt, O.M. Yaghi, Room temperature synthesis of metal-organic frameworks: MOF-5, MOF-74, MOF-177, MOF-199, and IRMOF-0. Tetrahedron 64, 8553–8557 (2008). https://doi.org/10.1016/j.tet.2008.06.036
Z. Zhang, H.T.H. Nguyen, S.A. Miller, S.M. Cohen, polyMOFs: a class of interconvertible polymer-metal-organic-framework hybrid materials. Angew. Chem. Int. Ed. 54, 6152–6157 (2015). https://doi.org/10.1002/anie.201502733
Y. Zhao, W.W. Ho, CO2-selective membranes containing sterically hindered amines for CO2/H2 separation. Ind. Eng. Chem. Res. 52, 8774–8782 (2013). https://doi.org/10.1021/ie301397m
Q. Al-Naddaf, A.A. Rownaghi, F. Rezaei, Multicomponent adsorptive separation of CO2, CO, CH4, N2, and H2 over core-shell zeolite-5A@MOF-74 composite adsorbents. Chem. Eng. J. 384, 123251 (2020). https://doi.org/10.1016/j.cej.2019.123251
S. Lawson, F. Rezaei, Effects of process parameters on CO2/H2 separation performance of 3D-printed MOF-74 monoliths. ACS Sustain. Chem. Eng. 9, 10902–10912 (2021). https://doi.org/10.1021/acssuschemeng.1c03443
R.B. Eldridge, Olefin/paraffin separation technology: a review. Ind. Eng. Chem. Res. 32, 2208–2212 (1993). https://doi.org/10.1021/ie00022a002
N. Lamia, M. Jorge, M.A. Granato, F.A. Almeida Paz, H. Chevreau et al., Adsorption of propane, propylene and isobutane on a metal–organic framework: molecular simulation and experiment. Chem. Eng. Sci. 64, 3246–3259 (2009). https://doi.org/10.1016/j.ces.2009.04.010
P.-Q. Liao, W.-X. Zhang, J.-P. Zhang, X.-M. Chen, Efficient purification of ethene by an ethane-trapping metal-organic framework. Nat. Commun. 6, 8697 (2015). https://doi.org/10.1038/ncomms9697