Liquid Metal Grid Patterned Thin Film Devices Toward Absorption-Dominant and Strain-Tunable Electromagnetic Interference Shielding
Corresponding Author: Sungjune Park
Nano-Micro Letters,
Vol. 16 (2024), Article Number: 248
Abstract
The demand of high-performance thin-film-shaped deformable electromagnetic interference (EMI) shielding devices is increasing for the next generation of wearable and miniaturized soft electronics. Although highly reflective conductive materials can effectively shield EMI, they prevent deformation of the devices owing to rigidity and generate secondary electromagnetic pollution simultaneously. Herein, soft and stretchable EMI shielding thin film devices with absorption-dominant EMI shielding behavior is presented. The devices consist of liquid metal (LM) layer and LM grid-patterned layer separated by a thin elastomeric film, fabricated by leveraging superior adhesion of aerosol-deposited LM on elastomer. The devices demonstrate high electromagnetic shielding effectiveness (SE) (SET of up to 75 dB) with low reflectance (SER of 1.5 dB at the resonant frequency) owing to EMI absorption induced by multiple internal reflection generated in the LM grid architectures. Remarkably, the excellent stretchability of the LM-based devices facilitates tunable EMI shielding abilities through grid space adjustment upon strain (resonant frequency shift from 81.3 to 71.3 GHz @ 33% strain) and is also capable of retaining shielding effectiveness even after multiple strain cycles. This newly explored device presents an advanced paradigm for powerful EMI shielding performance for next-generation smart electronics.
Highlights:
1 Multiple internal reflection-based absorption-dominant stretchable electromagnetic shielding thin film by incorporating liquid metal grid structure is developed.
2 The device demonstrates high electromagnetic shielding effectiveness (SE) (SET of up to 75 dB) with low reflectance (SER of 1.5 dB at the resonant frequency).
3 The shielding properties of the device can be tuned by adjusting the liquid metal patterned grid spaces upon strain.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- C. Mo, X. Lei, X. Tang, M. Wang, E.-T. Kang et al., Nanoengineering natural leather for dynamic thermal management and electromagnetic interference shielding. Small 19, e2303368 (2023). https://doi.org/10.1002/smll.202303368
- H. Liu, Y. Xu, K. Yang, H. Yong, Y. Huang et al., Skin-like copper/carbon nanotubes/graphene composites and low thermogenesis during electromagnetic interference shielding. J. Mater. Chem. C 11, 3010–3019 (2023). https://doi.org/10.1039/D2TC04552D
- B. Yang, H. Wang, M. Zhang, F. Jia, Y. Liu et al., Mechanically strong, flexible, and flame-retardant Ti3C2Tx MXene-coated aramid paper with superior electromagnetic interference shielding and electrical heating performance. Chem. Eng. J. 476, 146834 (2023). https://doi.org/10.1016/j.cej.2023.146834
- Y. Zhan, C. Santillo, Y. Meng, M. Lavorgna, Recent advances and perspectives on silver-based polymer composites for electromagnetic interference shielding. J. Mater. Chem. C 11, 859–892 (2023). https://doi.org/10.1039/d2tc03821h
- S. Zheng, Y. Wang, Y. Zhu, C. Zheng, Recent advances in structural design of conductive polymer composites for electromagnetic interference shielding. Polym. Compos. 45, 43–76 (2024). https://doi.org/10.1002/pc.27773
- A.A. Albert, V. Parthasarathy, P.S. Kumar, Review on recent progress in epoxy-based composite materials for Electromagnetic Interference (EMI) shielding applications. Polym. Compos. 45, 1956–1984 (2024). https://doi.org/10.1002/pc.27928
- X. Zhang, K. Qian, J. Fang, S. Thaiboonrod, M. Miao et al., Synchronous deprotonation–protonation for mechanically robust chitin/aramid nanofibers conductive aerogel with excellent pressure sensing, thermal management, and electromagnetic interference shielding. Nano Res. 17, 2038–2049 (2024). https://doi.org/10.1007/s12274-023-6189-6
- J. Xiao, B. Zhan, M. He, X. Qi, X. Gong et al., Interfacial polarization loss improvement induced by the hollow engineering of necklace-like PAN/carbon nanofibers for boosted microwave absorption. Adv. Funct. Mater. (2024). https://doi.org/10.1002/adfm.202316722
- C. Li, L. Zhang, S. Zhang, Q. Yu, D. Li et al., Flexible regulation engineering of titanium nitride nanofibrous membranes for efficient electromagnetic microwave absorption in wide temperature spectrum. Nano Res. 17, 1666–1675 (2024). https://doi.org/10.1007/s12274-023-6350-2
- T. Zhao, J. Zhou, W. Wu, K. Qian, Y. Zhu et al., Antibacterial conductive polyacrylamide/quaternary ammonium chitosan hydrogel for electromagnetic interference shielding and strain sensing. Int. J. Biol. Macromol. 265, 130795 (2024). https://doi.org/10.1016/j.ijbiomac.2024.130795
- Y. Yao, S. Jin, H. Zou, L. Li, X. Ma et al., Polymer-based lightweight materials for electromagnetic interference shielding: a review. J. Mater. Sci. 56, 6549–6580 (2021). https://doi.org/10.1007/s10853-020-05635-x
- Y. Zhang, Z. Yang, Y. Yu, B. Wen, Y. Liu et al., Tunable electromagnetic interference shielding ability in a one-dimensional bagasse fiber/polyaniline heterostructure. ACS Appl. Polym. Mater. 1, 737–745 (2019). https://doi.org/10.1021/acsapm.8b00025
- X. Hou, X.-R. Feng, K. Jiang, Y.-C. Zheng, J.-T. Liu et al., Recent progress in smart electromagnetic interference shielding materials. J. Mater. Sci. Technol. 186, 256–271 (2024). https://doi.org/10.1016/j.jmst.2024.01.008
- X. Liu, Y. Li, X. Sun, W. Tang, G. Deng et al., Off/on switchable smart electromagnetic interference shielding aerogel. Matter 4, 1735–1747 (2021). https://doi.org/10.1016/j.matt.2021.02.022
- H. Wang, X. Ren, F. Wu, S. Zhang, L. Fang, Investigation on high EMI shielding effectiveness and shielding mechanism of spherical Ti3C2Tx microfilm prepared by spray-freezing. J. Alloys Compd. 976, 173317 (2024). https://doi.org/10.1016/j.jallcom.2023.173317
- L. Liu, X. Chen, J. Wang, L. Qiao, S. Gao et al., Effects of Y and Zn additions on electrical conductivity and electromagnetic shielding effectiveness of Mg-Y-Zn alloys. J. Mater. Sci. Technol. 35, 1074–1080 (2019). https://doi.org/10.1016/j.jmst.2018.12.010
- U. Hwang, J. Kim, M. Seol, B. Lee, I.-K. Park et al., Quantitative interpretation of electromagnetic interference shielding efficiency: is it really a wave absorber or a reflector? ACS Omega 7, 4135–4139 (2022). https://doi.org/10.1021/acsomega.1c05657
- J. Lee, Y. Liu, Y. Liu, S.-J. Park, M. Park et al., Ultrahigh electromagnetic interference shielding performance of lightweight, flexible, and highly conductive copper-clad carbon fiber nonwoven fabrics. J. Mater. Chem. C 5, 7853–7861 (2017). https://doi.org/10.1039/C7TC02074K
- K. Chizari, M. Arjmand, Z. Liu, U. Sundararaj, D. Therriault, Three-dimensional printing of highly conductive polymer nanocomposites for EMI shielding applications. Mater. Today Commun. (2017). https://doi.org/10.1016/j.mtcomm.2017.02.006
- B. Shen, Y. Li, W. Zhai, W. Zheng, Compressible graphene-coated polymer foams with ultralow density for adjustable electromagnetic interference (EMI) shielding. ACS Appl. Mater. Interfaces 8, 8050–8057 (2016). https://doi.org/10.1021/acsami.5b11715
- Y. Chen, H.-B. Zhang, Y. Yang, M. Wang, A. Cao et al., High-performance epoxy nanocomposites reinforced with three-dimensional carbon nanotube sponge for electromagnetic interference shielding. Adv. Funct. Mater. 26, 447–455 (2016). https://doi.org/10.1002/adfm.201503782
- F. Peng, W. Zhu, Y. Fang, B. Fu, H. Chen et al., Ultralight and highly conductive silver nanowire aerogels for high-performance electromagnetic interference shielding. ACS Appl. Mater. Interfaces 15, 4284–4293 (2023). https://doi.org/10.1021/acsami.2c16940
- Z. Lei, W. Liu, W. Xing, Y. Zhang, Y. Liu et al., Developing thermal regulating and electromagnetic shielding nacre-inspired graphene-conjugated conducting polymer film via apparent wiedemann-franz law. ACS Appl. Mater. Interfaces 14, 49199–49211 (2022). https://doi.org/10.1021/acsami.2c14805
- H. Lee, S.H. Ryu, S.J. Kwon, J.R. Choi, S.-B. Lee et al., Absorption-dominant mmWave emi shielding films with ultralow reflection using ferromagnetic resonance frequency tunable M-type ferrites. Nano-Micro Lett. 15, 76 (2023). https://doi.org/10.1007/s40820-023-01058-w
- J. Zhao, Z. Gu, Q., Zhang stacking MoS2 flower-like microspheres on pomelo peels-derived porous carbon nanosheets for high-efficient X-band electromagnetic wave absorption. Nano Res. 17, 1607–1615 (2024). https://doi.org/10.1007/s12274-023-6090-3
- J. Zhao, M. Li, X. Gao, Construction of SnO2 nanop cluster@PANI core-shell microspheres for efficient X-band electromagnetic wave absorption. J. Alloys Compd. 915, 165439 (2022). https://doi.org/10.1016/j.jallcom.2022.165439
- X. Zhong, M. He, C. Zhang, Y. Guo, J. Hu et al., Heterostructured BN@Co-C@C endowing polyester composites excellent thermal conductivity and microwave absorption at C band. Adv. Funct. Mater. 34, 2313544 (2024). https://doi.org/10.1002/adfm.202313544
- M. He, J. Hu, H. Yan, X. Zhong, Y. Zhang et al., Shape anisotropic chain-like CoNi/polydimethylsiloxane composite films with excellent low-frequency microwave absorption and high thermal conductivity. Adv. Funct. Mater. (2024). https://doi.org/10.1002/adfm.202316691
- S.H. Ryu, B. Park, Y.K. Han, S.J. Kwon, T. Kim et al., Electromagnetic wave shielding flexible films with near-zero reflection in the 5G frequency band. J. Mater. Chem. A 10, 4446–4455 (2022). https://doi.org/10.1039/D1TA10065C
- A. Sheng, W. Ren, Y. Yang, D.-X. Yan, H. Duan et al., Multilayer WPU conductive composites with controllable electro-magnetic gradient for absorption-dominated electromagnetic interference shielding. Compos. Part A Appl. Sci. Manuf. 129, 105692 (2020). https://doi.org/10.1016/j.compositesa.2019.105692
- W.-L. Song, M.-S. Cao, M.-M. Lu, S. Bi, C.-Y. Wang et al., Flexible graphene/polymer composite films in sandwich structures for effective electromagnetic interference shielding. Carbon 66, 67–76 (2014). https://doi.org/10.1016/j.carbon.2013.08.043
- Z. Wang, X. Zhang, C. Cheng, X. Song, C. Hua et al., 3D printed epoxy composite microsandwich with high strength, toughness, and EMI shielding performances. Compos. Struct. 323, 117456 (2023). https://doi.org/10.1016/j.compstruct.2023.117456
- X. Li, X. Ma, H. Zhang, N. Xue, Q. Yao et al., Ambient-stable MXene with superior performance suitable for widespread applications. Chem. Eng. J. 455, 140635 (2023). https://doi.org/10.1016/j.cej.2022.140635
- T. Habib, X. Zhao, S.A. Shah, Y. Chen, W. Sun et al., Oxidation stability of Ti3C2Tx MXene nanosheets in solvents and composite films. npj 2D Mater. Appl. 3(1): 8 (2019). https://doi.org/10.1038/s41699-019-0089-3
- R. Tutika, A.B.M.T. Haque, M.D. Bartlett, Self-healing liquid metal composite for reconfigurable and recyclable soft electronics. Commun. Mater. 2, 64 (2021). https://doi.org/10.1038/s43246-021-00169-4
- M.D. Bartlett, A. Fassler, N. Kazem, E.J. Markvicka, P. Mandal et al., Stretchable, high-k dielectric elastomers through liquid-metal inclusions. Adv. Mater. 28, 3726–3731 (2016). https://doi.org/10.1002/adma.201506243
- A.B.M. Tahidul Haque, D. Ho, D. Hwang, R. Tutika, C. Lee et al., Electrically conductive liquid metal composite adhesives for reversible bonding of soft electronics. Adv. Funct. Mater. (2023). https://doi.org/10.1002/adfm.202304101
- W. Zhang, J.Z. Ou, S.-Y. Tang, V. Sivan, D.D. Yao et al., Liquid metal/metal oxide frameworks. Adv. Funct. Mater. 24, 3799–3807 (2014). https://doi.org/10.1002/adfm.201304064
- V. Sivan, S.-Y. Tang, A.P. O’Mullane, P. Petersen, N. Eshtiaghi et al., Liquid metal marbles. Adv. Funct. Mater. 23, 144–152 (2013). https://doi.org/10.1002/adfm.201200837
- T. Daeneke, K. Khoshmanesh, N. Mahmood, I.A. de Castro, D. Esrafilzadeh et al., Liquid metals: fundamentals and applications in chemistry. Chem. Soc. Rev. 47, 4073–4111 (2018). https://doi.org/10.1039/c7cs00043j
- G. Li, M. Zhang, S. Liu, M. Yuan, J. Wu et al., Three-dimensional flexible electronics using solidified liquid metal with regulated plasticity. Nat. Electron. 6, 154–163 (2023). https://doi.org/10.1038/s41928-022-00914-8
- T. Wang, S. Liu, Y. Hu, Z. Xu, S. Hu et al., Liquid metal/wood anisotropic conductors for flexible and recyclable electronics. Adv. Mater. Interfaces 9, 2200172 (2022). https://doi.org/10.1002/admi.202200172
- Q. Shen, M. Jiang, R. Wang, K. Song, M.H. Vong et al., Liquid metal-based soft, hermetic, and wireless-communicable seals for stretchable systems. Science 379, 488–493 (2023). https://doi.org/10.1126/science.ade7341
- B. Yao, W. Hong, T. Chen, Z. Han, X. Xu et al., Highly stretchable polymer composite with strain-enhanced electromagnetic interference shielding effectiveness. Adv. Mater. 32, e1907499 (2020). https://doi.org/10.1002/adma.201907499
- M. Zhang, P. Zhang, Q. Wang, L. Li, S. Dong et al., Stretchable liquid metal electromagnetic interference shielding coating materials with superior effectiveness. J. Mater. Chem. C 7, 10331–10337 (2019). https://doi.org/10.1039/C9TC02887K
- L.-C. Jia, X.-X. Jia, W.-J. Sun, Y.-P. Zhang, L. Xu et al., Stretchable liquid metal-based conductive textile for electromagnetic interference shielding. ACS Appl. Mater. Interfaces 12, 53230–53238 (2020). https://doi.org/10.1021/acsami.0c14397
- W. Xing, Y. Xu, S. Chen, Z. Lei, Y. Zhang et al., Cuttlefish-inspired self-adaptive liquid metal network enabling electromagnetic interference shielding and thermal management. Adv. Mater. Technol. 8, 2300102 (2023). https://doi.org/10.1002/admt.202300102
- X. Sun, J.-H. Fu, C. Teng, M. Zhang, T. Liu et al., Superhydrophobic E-textile with an Ag-EGaIn conductive layer for motion detection and electromagnetic interference shielding. ACS Appl. Mater. Interfaces 14, 33650–33661 (2022). https://doi.org/10.1021/acsami.2c09554
- O. Pitkänen, J. Tolvanen, I. Szenti, Á. Kukovecz, J. Hannu et al., Lightweight hierarchical carbon nanocomposites with highly efficient and tunable electromagnetic interference shielding properties. ACS Appl. Mater. Interfaces 11, 19331–19338 (2019). https://doi.org/10.1021/acsami.9b02309
- B. Zhao, R. Wang, Y. Li, Y. Ren, X. Li et al., Dependence of electromagnetic interference shielding ability of conductive polymer composite foams with hydrophobic properties on cellular structure. J. Mater. Chem. C 8, 7401–7410 (2020). https://doi.org/10.1039/D0TC00987C
- M.C. Vu, P.J. Park, S.-R. Bae, S.Y. Kim, Y.-M. Kang et al., Scalable ultrarobust thermoconductive nonflammable bioinspired papers of graphene nanoplatelet crosslinked aramid nanofibers for thermal management and electromagnetic shielding. J. Mater. Chem. A 9, 8527–8540 (2021). https://doi.org/10.1039/D0TA12306D
- J. Hasch, E. Topak, R. Schnabel, T. Zwick, R. Weigel et al., Millimeter-wave technology for automotive radar sensors in the 77 GHz frequency band. IEEE Trans. Microw. Theory Tech. 60, 845–860 (2012). https://doi.org/10.1109/TMTT.2011.2178427
- A.M. Nicolson, G.F. Ross, Measurement of the intrinsic properties of materials by time-domain techniques. IEEE Trans. Instrum. Meas. 19, 377–382 (1970). https://doi.org/10.1109/TIM.1970.4313932
- H. Abbasi, M. Antunes, J.I. Velasco, Recent advances in carbon-based polymer nanocomposites for electromagnetic interference shielding. Prog. Mater. Sci. 103, 319–373 (2019). https://doi.org/10.1016/j.pmatsci.2019.02.003
- R. Ulrich, Far-infrared properties of metallic mesh and its complementary structure. Infrared Phys. 7, 37–55 (1967). https://doi.org/10.1016/0020-0891(67)90028-0
- P. Bhuyan, Y. Wei, D. Sin, J. Yu, C. Nah et al., Soft and stretchable liquid metal composites with shape memory and healable conductivity. ACS Appl. Mater. Interfaces 13, 28916–28924 (2021). https://doi.org/10.1021/acsami.1c06786
- S. Park, K. Mondal, R.M. Treadway, V. Kumar, S. Ma et al., Silicones for stretchable and durable soft devices: beyond sylgard-184. ACS Appl. Mater. Interfaces 10, 11261–11268 (2018). https://doi.org/10.1021/acsami.7b18394
- T.V. Neumann, B. Kara, Y. Sargolzaeiaval, S. Im, J. Ma et al., Aerosol spray deposition of liquid metal and elastomer coatings for rapid processing of stretchable electronics. Micromachines 12, 146 (2021). https://doi.org/10.3390/mi12020146
- U.G. Lee, W.-B. Kim, D.H. Han, H.S. Chung, A modified equation for thickness of the film fabricated by spin coating. Symmetry 11, 1183 (2019). https://doi.org/10.3390/sym11091183
- Y. Lin, O. Gordon, M.R. Khan, N. Vasquez, J. Genzer et al., Vacuum filling of complex microchannels with liquid metal. Lab Chip 17, 3043–3050 (2017). https://doi.org/10.1039/C7LC00426E
- Y. Zhang, H. Duan, G. Li, M. Peng, X. Ma et al., Construction of liquid metal-based soft microfluidic sensors via soft lithography. J. Nanobiotechnology 20, 246 (2022). https://doi.org/10.1186/s12951-022-01471-0
- L. Wang, J. Liu, Pressured liquid metal screen printing for rapid manufacture of high resolution electronic patterns. RSC Adv. 5, 57686–57691 (2015). https://doi.org/10.1039/C5RA10295B
- C. Votzke, N. Alteir, Y. Mengüç, M.L. (2021). Johnston, Stenciled liquid metal paste for robust stretchable electrical interconnects. 2021 IEEE International Conference on Flexible and Printable Sensors and Systems (FLEPS). Manchester, United Kingdom. IEEE, pp.1–4
- Y. Wei, S. Kim, S. Kim, P. Bhuyan, K. Hong et al., Liquid metal fillers enabled remote actuating and localizing reversible wrinkles on polymeric bilayer. Appl. Mater. Today 28, 101537 (2022). https://doi.org/10.1016/j.apmt.2022.101537
- R.W. Style, R. Boltyanskiy, B. Allen, K.E. Jensen, H.P. Foote et al., Stiffening solids with liquid inclusions. Nat. Phys. 11, 82–87 (2015). https://doi.org/10.1038/nphys3181
- H. Wang, R. Li, Y. Cao, S. Chen, B. Yuan et al., Liquid metal fibers. Adv. Fiber. Mater. 4, 987–1004 (2022). https://doi.org/10.1007/s42765-022-00173-4
- D. Sin, V.K. Singh, P. Bhuyan, Y. Wei, H.-M. Lee et al., Ultrastretchable thermo- and mechanochromic fiber with healable metallic conductivity. Adv. Electron. Mater. 7, 2100146 (2021). https://doi.org/10.1002/aelm.202100146
- M.D. Dickey, Stretchable and soft electronics using liquid metals. Adv. Mater. 29, 1606425 (2017). https://doi.org/10.1002/adma.201606425
- P.A.R. Ade, G. Pisano, C. Tucker, S. Weaver, A review of metal mesh filters. In: Zmuidzinas J, Holland WS, Withington S, Duncan WD (eds). Millimeter and Submillimeter Detectors and Instrumentation for Astronomy III. SPIE.
References
C. Mo, X. Lei, X. Tang, M. Wang, E.-T. Kang et al., Nanoengineering natural leather for dynamic thermal management and electromagnetic interference shielding. Small 19, e2303368 (2023). https://doi.org/10.1002/smll.202303368
H. Liu, Y. Xu, K. Yang, H. Yong, Y. Huang et al., Skin-like copper/carbon nanotubes/graphene composites and low thermogenesis during electromagnetic interference shielding. J. Mater. Chem. C 11, 3010–3019 (2023). https://doi.org/10.1039/D2TC04552D
B. Yang, H. Wang, M. Zhang, F. Jia, Y. Liu et al., Mechanically strong, flexible, and flame-retardant Ti3C2Tx MXene-coated aramid paper with superior electromagnetic interference shielding and electrical heating performance. Chem. Eng. J. 476, 146834 (2023). https://doi.org/10.1016/j.cej.2023.146834
Y. Zhan, C. Santillo, Y. Meng, M. Lavorgna, Recent advances and perspectives on silver-based polymer composites for electromagnetic interference shielding. J. Mater. Chem. C 11, 859–892 (2023). https://doi.org/10.1039/d2tc03821h
S. Zheng, Y. Wang, Y. Zhu, C. Zheng, Recent advances in structural design of conductive polymer composites for electromagnetic interference shielding. Polym. Compos. 45, 43–76 (2024). https://doi.org/10.1002/pc.27773
A.A. Albert, V. Parthasarathy, P.S. Kumar, Review on recent progress in epoxy-based composite materials for Electromagnetic Interference (EMI) shielding applications. Polym. Compos. 45, 1956–1984 (2024). https://doi.org/10.1002/pc.27928
X. Zhang, K. Qian, J. Fang, S. Thaiboonrod, M. Miao et al., Synchronous deprotonation–protonation for mechanically robust chitin/aramid nanofibers conductive aerogel with excellent pressure sensing, thermal management, and electromagnetic interference shielding. Nano Res. 17, 2038–2049 (2024). https://doi.org/10.1007/s12274-023-6189-6
J. Xiao, B. Zhan, M. He, X. Qi, X. Gong et al., Interfacial polarization loss improvement induced by the hollow engineering of necklace-like PAN/carbon nanofibers for boosted microwave absorption. Adv. Funct. Mater. (2024). https://doi.org/10.1002/adfm.202316722
C. Li, L. Zhang, S. Zhang, Q. Yu, D. Li et al., Flexible regulation engineering of titanium nitride nanofibrous membranes for efficient electromagnetic microwave absorption in wide temperature spectrum. Nano Res. 17, 1666–1675 (2024). https://doi.org/10.1007/s12274-023-6350-2
T. Zhao, J. Zhou, W. Wu, K. Qian, Y. Zhu et al., Antibacterial conductive polyacrylamide/quaternary ammonium chitosan hydrogel for electromagnetic interference shielding and strain sensing. Int. J. Biol. Macromol. 265, 130795 (2024). https://doi.org/10.1016/j.ijbiomac.2024.130795
Y. Yao, S. Jin, H. Zou, L. Li, X. Ma et al., Polymer-based lightweight materials for electromagnetic interference shielding: a review. J. Mater. Sci. 56, 6549–6580 (2021). https://doi.org/10.1007/s10853-020-05635-x
Y. Zhang, Z. Yang, Y. Yu, B. Wen, Y. Liu et al., Tunable electromagnetic interference shielding ability in a one-dimensional bagasse fiber/polyaniline heterostructure. ACS Appl. Polym. Mater. 1, 737–745 (2019). https://doi.org/10.1021/acsapm.8b00025
X. Hou, X.-R. Feng, K. Jiang, Y.-C. Zheng, J.-T. Liu et al., Recent progress in smart electromagnetic interference shielding materials. J. Mater. Sci. Technol. 186, 256–271 (2024). https://doi.org/10.1016/j.jmst.2024.01.008
X. Liu, Y. Li, X. Sun, W. Tang, G. Deng et al., Off/on switchable smart electromagnetic interference shielding aerogel. Matter 4, 1735–1747 (2021). https://doi.org/10.1016/j.matt.2021.02.022
H. Wang, X. Ren, F. Wu, S. Zhang, L. Fang, Investigation on high EMI shielding effectiveness and shielding mechanism of spherical Ti3C2Tx microfilm prepared by spray-freezing. J. Alloys Compd. 976, 173317 (2024). https://doi.org/10.1016/j.jallcom.2023.173317
L. Liu, X. Chen, J. Wang, L. Qiao, S. Gao et al., Effects of Y and Zn additions on electrical conductivity and electromagnetic shielding effectiveness of Mg-Y-Zn alloys. J. Mater. Sci. Technol. 35, 1074–1080 (2019). https://doi.org/10.1016/j.jmst.2018.12.010
U. Hwang, J. Kim, M. Seol, B. Lee, I.-K. Park et al., Quantitative interpretation of electromagnetic interference shielding efficiency: is it really a wave absorber or a reflector? ACS Omega 7, 4135–4139 (2022). https://doi.org/10.1021/acsomega.1c05657
J. Lee, Y. Liu, Y. Liu, S.-J. Park, M. Park et al., Ultrahigh electromagnetic interference shielding performance of lightweight, flexible, and highly conductive copper-clad carbon fiber nonwoven fabrics. J. Mater. Chem. C 5, 7853–7861 (2017). https://doi.org/10.1039/C7TC02074K
K. Chizari, M. Arjmand, Z. Liu, U. Sundararaj, D. Therriault, Three-dimensional printing of highly conductive polymer nanocomposites for EMI shielding applications. Mater. Today Commun. (2017). https://doi.org/10.1016/j.mtcomm.2017.02.006
B. Shen, Y. Li, W. Zhai, W. Zheng, Compressible graphene-coated polymer foams with ultralow density for adjustable electromagnetic interference (EMI) shielding. ACS Appl. Mater. Interfaces 8, 8050–8057 (2016). https://doi.org/10.1021/acsami.5b11715
Y. Chen, H.-B. Zhang, Y. Yang, M. Wang, A. Cao et al., High-performance epoxy nanocomposites reinforced with three-dimensional carbon nanotube sponge for electromagnetic interference shielding. Adv. Funct. Mater. 26, 447–455 (2016). https://doi.org/10.1002/adfm.201503782
F. Peng, W. Zhu, Y. Fang, B. Fu, H. Chen et al., Ultralight and highly conductive silver nanowire aerogels for high-performance electromagnetic interference shielding. ACS Appl. Mater. Interfaces 15, 4284–4293 (2023). https://doi.org/10.1021/acsami.2c16940
Z. Lei, W. Liu, W. Xing, Y. Zhang, Y. Liu et al., Developing thermal regulating and electromagnetic shielding nacre-inspired graphene-conjugated conducting polymer film via apparent wiedemann-franz law. ACS Appl. Mater. Interfaces 14, 49199–49211 (2022). https://doi.org/10.1021/acsami.2c14805
H. Lee, S.H. Ryu, S.J. Kwon, J.R. Choi, S.-B. Lee et al., Absorption-dominant mmWave emi shielding films with ultralow reflection using ferromagnetic resonance frequency tunable M-type ferrites. Nano-Micro Lett. 15, 76 (2023). https://doi.org/10.1007/s40820-023-01058-w
J. Zhao, Z. Gu, Q., Zhang stacking MoS2 flower-like microspheres on pomelo peels-derived porous carbon nanosheets for high-efficient X-band electromagnetic wave absorption. Nano Res. 17, 1607–1615 (2024). https://doi.org/10.1007/s12274-023-6090-3
J. Zhao, M. Li, X. Gao, Construction of SnO2 nanop cluster@PANI core-shell microspheres for efficient X-band electromagnetic wave absorption. J. Alloys Compd. 915, 165439 (2022). https://doi.org/10.1016/j.jallcom.2022.165439
X. Zhong, M. He, C. Zhang, Y. Guo, J. Hu et al., Heterostructured BN@Co-C@C endowing polyester composites excellent thermal conductivity and microwave absorption at C band. Adv. Funct. Mater. 34, 2313544 (2024). https://doi.org/10.1002/adfm.202313544
M. He, J. Hu, H. Yan, X. Zhong, Y. Zhang et al., Shape anisotropic chain-like CoNi/polydimethylsiloxane composite films with excellent low-frequency microwave absorption and high thermal conductivity. Adv. Funct. Mater. (2024). https://doi.org/10.1002/adfm.202316691
S.H. Ryu, B. Park, Y.K. Han, S.J. Kwon, T. Kim et al., Electromagnetic wave shielding flexible films with near-zero reflection in the 5G frequency band. J. Mater. Chem. A 10, 4446–4455 (2022). https://doi.org/10.1039/D1TA10065C
A. Sheng, W. Ren, Y. Yang, D.-X. Yan, H. Duan et al., Multilayer WPU conductive composites with controllable electro-magnetic gradient for absorption-dominated electromagnetic interference shielding. Compos. Part A Appl. Sci. Manuf. 129, 105692 (2020). https://doi.org/10.1016/j.compositesa.2019.105692
W.-L. Song, M.-S. Cao, M.-M. Lu, S. Bi, C.-Y. Wang et al., Flexible graphene/polymer composite films in sandwich structures for effective electromagnetic interference shielding. Carbon 66, 67–76 (2014). https://doi.org/10.1016/j.carbon.2013.08.043
Z. Wang, X. Zhang, C. Cheng, X. Song, C. Hua et al., 3D printed epoxy composite microsandwich with high strength, toughness, and EMI shielding performances. Compos. Struct. 323, 117456 (2023). https://doi.org/10.1016/j.compstruct.2023.117456
X. Li, X. Ma, H. Zhang, N. Xue, Q. Yao et al., Ambient-stable MXene with superior performance suitable for widespread applications. Chem. Eng. J. 455, 140635 (2023). https://doi.org/10.1016/j.cej.2022.140635
T. Habib, X. Zhao, S.A. Shah, Y. Chen, W. Sun et al., Oxidation stability of Ti3C2Tx MXene nanosheets in solvents and composite films. npj 2D Mater. Appl. 3(1): 8 (2019). https://doi.org/10.1038/s41699-019-0089-3
R. Tutika, A.B.M.T. Haque, M.D. Bartlett, Self-healing liquid metal composite for reconfigurable and recyclable soft electronics. Commun. Mater. 2, 64 (2021). https://doi.org/10.1038/s43246-021-00169-4
M.D. Bartlett, A. Fassler, N. Kazem, E.J. Markvicka, P. Mandal et al., Stretchable, high-k dielectric elastomers through liquid-metal inclusions. Adv. Mater. 28, 3726–3731 (2016). https://doi.org/10.1002/adma.201506243
A.B.M. Tahidul Haque, D. Ho, D. Hwang, R. Tutika, C. Lee et al., Electrically conductive liquid metal composite adhesives for reversible bonding of soft electronics. Adv. Funct. Mater. (2023). https://doi.org/10.1002/adfm.202304101
W. Zhang, J.Z. Ou, S.-Y. Tang, V. Sivan, D.D. Yao et al., Liquid metal/metal oxide frameworks. Adv. Funct. Mater. 24, 3799–3807 (2014). https://doi.org/10.1002/adfm.201304064
V. Sivan, S.-Y. Tang, A.P. O’Mullane, P. Petersen, N. Eshtiaghi et al., Liquid metal marbles. Adv. Funct. Mater. 23, 144–152 (2013). https://doi.org/10.1002/adfm.201200837
T. Daeneke, K. Khoshmanesh, N. Mahmood, I.A. de Castro, D. Esrafilzadeh et al., Liquid metals: fundamentals and applications in chemistry. Chem. Soc. Rev. 47, 4073–4111 (2018). https://doi.org/10.1039/c7cs00043j
G. Li, M. Zhang, S. Liu, M. Yuan, J. Wu et al., Three-dimensional flexible electronics using solidified liquid metal with regulated plasticity. Nat. Electron. 6, 154–163 (2023). https://doi.org/10.1038/s41928-022-00914-8
T. Wang, S. Liu, Y. Hu, Z. Xu, S. Hu et al., Liquid metal/wood anisotropic conductors for flexible and recyclable electronics. Adv. Mater. Interfaces 9, 2200172 (2022). https://doi.org/10.1002/admi.202200172
Q. Shen, M. Jiang, R. Wang, K. Song, M.H. Vong et al., Liquid metal-based soft, hermetic, and wireless-communicable seals for stretchable systems. Science 379, 488–493 (2023). https://doi.org/10.1126/science.ade7341
B. Yao, W. Hong, T. Chen, Z. Han, X. Xu et al., Highly stretchable polymer composite with strain-enhanced electromagnetic interference shielding effectiveness. Adv. Mater. 32, e1907499 (2020). https://doi.org/10.1002/adma.201907499
M. Zhang, P. Zhang, Q. Wang, L. Li, S. Dong et al., Stretchable liquid metal electromagnetic interference shielding coating materials with superior effectiveness. J. Mater. Chem. C 7, 10331–10337 (2019). https://doi.org/10.1039/C9TC02887K
L.-C. Jia, X.-X. Jia, W.-J. Sun, Y.-P. Zhang, L. Xu et al., Stretchable liquid metal-based conductive textile for electromagnetic interference shielding. ACS Appl. Mater. Interfaces 12, 53230–53238 (2020). https://doi.org/10.1021/acsami.0c14397
W. Xing, Y. Xu, S. Chen, Z. Lei, Y. Zhang et al., Cuttlefish-inspired self-adaptive liquid metal network enabling electromagnetic interference shielding and thermal management. Adv. Mater. Technol. 8, 2300102 (2023). https://doi.org/10.1002/admt.202300102
X. Sun, J.-H. Fu, C. Teng, M. Zhang, T. Liu et al., Superhydrophobic E-textile with an Ag-EGaIn conductive layer for motion detection and electromagnetic interference shielding. ACS Appl. Mater. Interfaces 14, 33650–33661 (2022). https://doi.org/10.1021/acsami.2c09554
O. Pitkänen, J. Tolvanen, I. Szenti, Á. Kukovecz, J. Hannu et al., Lightweight hierarchical carbon nanocomposites with highly efficient and tunable electromagnetic interference shielding properties. ACS Appl. Mater. Interfaces 11, 19331–19338 (2019). https://doi.org/10.1021/acsami.9b02309
B. Zhao, R. Wang, Y. Li, Y. Ren, X. Li et al., Dependence of electromagnetic interference shielding ability of conductive polymer composite foams with hydrophobic properties on cellular structure. J. Mater. Chem. C 8, 7401–7410 (2020). https://doi.org/10.1039/D0TC00987C
M.C. Vu, P.J. Park, S.-R. Bae, S.Y. Kim, Y.-M. Kang et al., Scalable ultrarobust thermoconductive nonflammable bioinspired papers of graphene nanoplatelet crosslinked aramid nanofibers for thermal management and electromagnetic shielding. J. Mater. Chem. A 9, 8527–8540 (2021). https://doi.org/10.1039/D0TA12306D
J. Hasch, E. Topak, R. Schnabel, T. Zwick, R. Weigel et al., Millimeter-wave technology for automotive radar sensors in the 77 GHz frequency band. IEEE Trans. Microw. Theory Tech. 60, 845–860 (2012). https://doi.org/10.1109/TMTT.2011.2178427
A.M. Nicolson, G.F. Ross, Measurement of the intrinsic properties of materials by time-domain techniques. IEEE Trans. Instrum. Meas. 19, 377–382 (1970). https://doi.org/10.1109/TIM.1970.4313932
H. Abbasi, M. Antunes, J.I. Velasco, Recent advances in carbon-based polymer nanocomposites for electromagnetic interference shielding. Prog. Mater. Sci. 103, 319–373 (2019). https://doi.org/10.1016/j.pmatsci.2019.02.003
R. Ulrich, Far-infrared properties of metallic mesh and its complementary structure. Infrared Phys. 7, 37–55 (1967). https://doi.org/10.1016/0020-0891(67)90028-0
P. Bhuyan, Y. Wei, D. Sin, J. Yu, C. Nah et al., Soft and stretchable liquid metal composites with shape memory and healable conductivity. ACS Appl. Mater. Interfaces 13, 28916–28924 (2021). https://doi.org/10.1021/acsami.1c06786
S. Park, K. Mondal, R.M. Treadway, V. Kumar, S. Ma et al., Silicones for stretchable and durable soft devices: beyond sylgard-184. ACS Appl. Mater. Interfaces 10, 11261–11268 (2018). https://doi.org/10.1021/acsami.7b18394
T.V. Neumann, B. Kara, Y. Sargolzaeiaval, S. Im, J. Ma et al., Aerosol spray deposition of liquid metal and elastomer coatings for rapid processing of stretchable electronics. Micromachines 12, 146 (2021). https://doi.org/10.3390/mi12020146
U.G. Lee, W.-B. Kim, D.H. Han, H.S. Chung, A modified equation for thickness of the film fabricated by spin coating. Symmetry 11, 1183 (2019). https://doi.org/10.3390/sym11091183
Y. Lin, O. Gordon, M.R. Khan, N. Vasquez, J. Genzer et al., Vacuum filling of complex microchannels with liquid metal. Lab Chip 17, 3043–3050 (2017). https://doi.org/10.1039/C7LC00426E
Y. Zhang, H. Duan, G. Li, M. Peng, X. Ma et al., Construction of liquid metal-based soft microfluidic sensors via soft lithography. J. Nanobiotechnology 20, 246 (2022). https://doi.org/10.1186/s12951-022-01471-0
L. Wang, J. Liu, Pressured liquid metal screen printing for rapid manufacture of high resolution electronic patterns. RSC Adv. 5, 57686–57691 (2015). https://doi.org/10.1039/C5RA10295B
C. Votzke, N. Alteir, Y. Mengüç, M.L. (2021). Johnston, Stenciled liquid metal paste for robust stretchable electrical interconnects. 2021 IEEE International Conference on Flexible and Printable Sensors and Systems (FLEPS). Manchester, United Kingdom. IEEE, pp.1–4
Y. Wei, S. Kim, S. Kim, P. Bhuyan, K. Hong et al., Liquid metal fillers enabled remote actuating and localizing reversible wrinkles on polymeric bilayer. Appl. Mater. Today 28, 101537 (2022). https://doi.org/10.1016/j.apmt.2022.101537
R.W. Style, R. Boltyanskiy, B. Allen, K.E. Jensen, H.P. Foote et al., Stiffening solids with liquid inclusions. Nat. Phys. 11, 82–87 (2015). https://doi.org/10.1038/nphys3181
H. Wang, R. Li, Y. Cao, S. Chen, B. Yuan et al., Liquid metal fibers. Adv. Fiber. Mater. 4, 987–1004 (2022). https://doi.org/10.1007/s42765-022-00173-4
D. Sin, V.K. Singh, P. Bhuyan, Y. Wei, H.-M. Lee et al., Ultrastretchable thermo- and mechanochromic fiber with healable metallic conductivity. Adv. Electron. Mater. 7, 2100146 (2021). https://doi.org/10.1002/aelm.202100146
M.D. Dickey, Stretchable and soft electronics using liquid metals. Adv. Mater. 29, 1606425 (2017). https://doi.org/10.1002/adma.201606425
P.A.R. Ade, G. Pisano, C. Tucker, S. Weaver, A review of metal mesh filters. In: Zmuidzinas J, Holland WS, Withington S, Duncan WD (eds). Millimeter and Submillimeter Detectors and Instrumentation for Astronomy III. SPIE.