Solar-Driven Sustainability: III–V Semiconductor for Green Energy Production Technologies
Corresponding Author: Yong‑Ho Ra
Nano-Micro Letters,
Vol. 16 (2024), Article Number: 244
Abstract
Long-term societal prosperity depends on addressing the world’s energy and environmental problems, and photocatalysis has emerged as a viable remedy. Improving the efficiency of photocatalytic processes is fundamentally achieved by optimizing the effective utilization of solar energy and enhancing the efficient separation of photogenerated charges. It has been demonstrated that the fabrication of III–V semiconductor-based photocatalysts is effective in increasing solar light absorption, long-term stability, large-scale production and promoting charge transfer. This focused review explores on the current developments in III–V semiconductor materials for solar-powered photocatalytic systems. The review explores on various subjects, including the advancement of III–V semiconductors, photocatalytic mechanisms, and their uses in H2 conversion, CO2 reduction, environmental remediation, and photocatalytic oxidation and reduction reactions. In order to design heterostructures, the review delves into basic concepts including solar light absorption and effective charge separation. It also highlights significant advancements in green energy systems for water splitting, emphasizing the significance of establishing eco-friendly systems for CO2 reduction and hydrogen production. The main purpose is to produce hydrogen through sustainable and ecologically friendly energy conversion. The review intends to foster the development of greener and more sustainable energy source by encouraging researchers and developers to focus on practical applications and advancements in solar-powered photocatalysis.
Highlights:
1 In-depth review assesses III–V materials for efficient hydrogen generation and CO2 reduction in renewable energy technologies.
2 Exploration of strategies for broad light absorption and increased efficiency in water splitting processes and CO2 reduction.
3 Innovative electrode designs conclude the path for stable, large-scale implementation of clean energy systems.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- D. Welsby, J. Price, S. Pye, P. Ekins, Unextractable fossil fuels in a 1.5 ℃ world. Nature 597, 230–234 (2021). https://doi.org/10.1038/s41586-021-03821-8
- T. Ahmad, D. Zhang, A critical review of comparative global historical energy consumption and future demand: the story told so far. Energy Rep. 6, 1973–1991 (2020). https://doi.org/10.1016/j.egyr.2020.07.020
- P. Achakulwisut, P. Erickson, C. Guivarch, R. Schaeffer, E. Brutschin et al., Global fossil fuel reduction pathways under different climate mitigation strategies and ambitions. Nat. Commun. 14, 5425 (2023). https://doi.org/10.1038/s41467-023-41105-z
- N. Fajrina, M. Tahir, 2D-montmorillonite-dispersed g-C3N4/TiO2 2D/0Dnanocomposite for enhanced photo-induced H2 evolution from glycerol-water mixture. Appl. Surf. Sci. 471, 1053–1064 (2019). https://doi.org/10.1016/j.apsusc.2018.12.076
- A. Habibi-Yangjeh, K. Pournemati, A review on emerging homojunction photocatalysts with impressive performances for wastewater detoxification. Crit. Rev. Environ. Sci. Technol. 54, 290–320 (2024). https://doi.org/10.1080/10643389.2023.2239125
- D. Tong, Q. Zhang, Y. Zheng, K. Caldeira, C. Shearer et al., Committed emissions from existing energy infrastructure jeopardize 1.5 ℃ climate target. Nature 572, 373–377 (2019). https://doi.org/10.1038/s41586-019-1364-3
- L.T. Keyßer, M. Lenzen, 1.5 °C degrowth scenarios suggest the need for new mitigation pathways. Nat. Commun. 12, 2676 (2021). https://doi.org/10.1038/s41467-021-22884-9
- J.L. Holechek, H.M.E. Geli, M.N. Sawalhah, R. Valdez, A global assessment: can renewable energy replace fossil fuels by 2050? Sustainability 14, 4792 (2022). https://doi.org/10.3390/su14084792
- N. Fajrina, M. Tahir, Engineering approach in stimulating photocatalytic H2 production in a slurry and monolithic photoreactor systems using Ag-bridged Z-scheme pCN/TiO2 nanocomposite. Chem. Eng. J. 374, 1076–1095 (2019). https://doi.org/10.1016/j.cej.2019.06.011
- T. Uekert, C.M. Pichler, T. Schubert, E. Reisner, Solar-driven reforming of solid waste for a sustainable future. Nat. Sustain. 4, 383–391 (2021). https://doi.org/10.1038/s41893-020-00650-x
- K. Obata, M. Schwarze, T.A. Thiel, X. Zhang, B. Radhakrishnan et al., Solar-driven upgrading of biomass by coupled hydrogenation using in situ (photo)electrochemically generated H2. Nat. Commun. 14, 6017 (2023). https://doi.org/10.1038/s41467-023-41742-4
- Y. Pan, H. Zhang, B. Zhang, F. Gong, J. Feng et al., Renewable formate from sunlight, biomass and carbon dioxide in a photoelectrochemical cell. Nat. Commun. 14, 1013 (2023). https://doi.org/10.1038/s41467-023-36726-3
- M. Tahir, Construction of a stable two-dimensional MAX supported protonated graphitic carbon nitride (pg-C3N4)/Ti3AlC2/TiO2 Z-scheme multiheterojunction system for efficient photocatalytic CO2 reduction through dry reforming of methanol. Energy Fuels 34, 3540–3556 (2020). https://doi.org/10.1021/acs.energyfuels.9b04393
- M. Tahir, Ni/MMT-promoted TiO2 nanocatalyst for dynamic photocatalytic H2 and hydrocarbons production from ethanol-water mixture under UV-light. Int. J. Hydrog. Energy 42, 28309–28326 (2017). https://doi.org/10.1016/j.ijhydene.2017.09.116
- J. Tournet, Y. Lee, S.K. Karuturi, H.H. Tan, C. Jagadish, III–V semiconductor materials for solar hydrogen production: status and prospects. ACS Energy Lett. 5, 611–622 (2020). https://doi.org/10.1021/acsenergylett.9b02582
- N. Goodarzi, Z. Ashrafi-Peyman, E. Khani, A.Z. Moshfegh, Recent progress on semiconductor heterogeneous photocatalysts in clean energy production and environmental remediation. Catalysts 13, 1102 (2023). https://doi.org/10.3390/catal13071102
- A. Ali Khan, M. Tahir, A. Bafaqeer, Constructing a stable 2D layered Ti3C2 MXene cocatalyst-assisted TiO2/g-C3N4/Ti3C2 heterojunction for tailoring photocatalytic bireforming of methane under visible light. Energy Fuels 34, 9810–9828 (2020). https://doi.org/10.1021/acs.energyfuels.0c01354
- P. Hemmati-Eslamlu, A. Habibi-Yangjeh, A review on impressive Z- and S-scheme photocatalysts composed of g-C3N4 for detoxification of antibiotics. FlatChem 43, 100597 (2024). https://doi.org/10.1016/j.flatc.2023.100597
- A. Akhundi, A. Zaker Moshfegh, A. Habibi-Yangjeh, M. Sillanpää, Simultaneous dual-functional photocatalysis by g-C3N4-based nanostructures. ACS EST Engg. 2, 564–585 (2022). https://doi.org/10.1021/acsestengg.1c00346
- O.S. Bushuyev, P. De Luna, C.T. Dinh, L. Tao, G. Saur et al., What should we make with CO2 and how can we make it? Joule 2, 825–832 (2018). https://doi.org/10.1016/j.joule.2017.09.003
- A. Perazio, C.E. Creissen, J.G. Rivera de la Cruz, M.W. Schreiber, M. Fontecave, Acidic electroreduction of CO2 to multi-carbon products with CO2 recovery and recycling from carbonate. ACS Energy Lett. 8, 2979–2985 (2023). https://doi.org/10.1021/acsenergylett.3c00901
- R.R. Ikreedeegh, M. Tahir, Indirect Z-scheme heterojunction of NH2-MIL-125(Ti) MOF/g-C3N4 nanocomposite with RGO solid electron mediator for efficient photocatalytic CO2 reduction to CO and CH4. J. Environ. Chem. Eng. 9, 105600 (2021). https://doi.org/10.1016/j.jece.2021.105600
- Y.-H. Ra, R. Navamathavan, J.-H. Park, C.-R. Lee, Coaxial InxGa1–xN/GaN multiple quantum well nanowire arrays on Si(111) substrate for high-performance light-emitting diodes. Nano Lett. 13, 3506–3516 (2013). https://doi.org/10.1021/nl400906r
- A. Machín, M. Cotto, J. Ducongé, F. Márquez, Artificial photosynthesis: current advancements and future prospects. Biomimetics 8, 298 (2023). https://doi.org/10.3390/biomimetics8030298
- J. He, C. Janáky, Recent advances in solar-driven carbon dioxide conversion: expectations versus reality. ACS Energy Lett. 5, 1996–2014 (2020). https://doi.org/10.1021/acsenergylett.0c00645
- T.N. Huan, D.A. Dalla Corte, S. Lamaison, D. Karapinar, L. Lutz et al., Low-cost high-efficiency system for solar-driven conversion of CO2 to hydrocarbons. Proc. Natl. Acad. Sci. U.S.A. 116, 9735–9740 (2019). https://doi.org/10.1073/pnas.1815412116
- C. Xu, X. Zhang, M. Zhu, L. Zhang, P. Sui et al., Accelerating photoelectric CO2 conversion with a photothermal wavelength-dependent plasmonic local field. Appl. Catal. B Environ. 298, 120533 (2021). https://doi.org/10.1016/j.apcatb.2021.120533
- J. Bian, Z. Zhang, Y. Liu, E. Chen, J. Tang et al., Strategies and reaction systems for solar-driven CO2 reduction by water. Carbon Neutrality 1, 5 (2022). https://doi.org/10.1007/s43979-022-00006-8
- T. Kunene, L. Xiong, J. Rosenthal, Solar-powered synthesis of hydrocarbons from carbon dioxide and water. Proc. Natl. Acad. Sci. U.S.A. 116, 9693–9695 (2019). https://doi.org/10.1073/pnas.1904856116
- J.K. Sheu, P.H. Liao, T.C. Huang, K.J. Chiang, W.C. Lai et al., InGaN-based epitaxial films as photoelectrodes for hydrogen generation through water photoelectrolysis and CO2 reduction to formic acid. Sol. Energy Mater. Sol. Cells 166, 86–90 (2017). https://doi.org/10.1016/j.solmat.2017.03.014
- L. Wan, R. Chen, D.W.F. Cheung, L. Wu, J. Luo, Solar driven CO2 reduction: from materials to devices. J. Mater. Chem. A 11, 12499–12520 (2023). https://doi.org/10.1039/d3ta00267e
- T. Morikawa, S. Sato, K. Sekizawa, T.M. Suzuki, T. Arai, Solar-driven CO2 reduction using a semiconductor/molecule hybrid photosystem: from photocatalysts to a monolithic artificial leaf. Acc. Chem. Res. 55, 933–943 (2022). https://doi.org/10.1021/acs.accounts.1c00564
- S.-U. Kim, D.-Y. Um, J.-K. Oh, B. Chandran, C.-R. Lee et al., Structural engineering in a microscale laser diode with InGaN tunnel-junction nanorods. ACS Photonics 10, 1053–1059 (2023). https://doi.org/10.1021/acsphotonics.3c00132
- S. Bai, W. Yin, L. Wang, Z. Li, Y. Xiong, Surface and interface design in cocatalysts for photocatalytic water splitting and CO2 reduction. RSC Adv. 6, 57446–57463 (2016). https://doi.org/10.1039/C6RA10539D
- L. Tian, X. Guan, S. Zong, A. Dai, J. Qu, Cocatalysts for photocatalytic overall water splitting: a mini review. Catalysts 13, 355 (2023). https://doi.org/10.3390/catal13020355
- R. Wang, Y. Kuwahara, K. Mori, H. Yamashita, Semiconductor-based photoanodes modified with metal-organic frameworks and molecular catalysts as cocatalysts for enhanced photoelectrochemical water oxidation reaction. ChemCatChem 13, 5058–5072 (2021). https://doi.org/10.1002/cctc.202101033
- H. Song, S. Luo, H. Huang, B. Deng, J. Ye, Solar-driven hydrogen production: recent advances, challenges, and future perspectives. ACS Energy Lett. 7, 1043–1065 (2022). https://doi.org/10.1021/acsenergylett.1c02591
- Y. Chen, X. Feng, Y. Liu, X. Guan, C. Burda et al., Metal oxide-based tandem cells for self-biased photoelectrochemical water splitting. ACS Energy Lett. 5, 844–866 (2020). https://doi.org/10.1021/acsenergylett.9b02620
- R. Jia, Y. Wang, A. Li, C. Cheng, Recent advances on three-dimensional ordered macroporous metal oxide-based photoelectrodes for photoelectrochemical water splitting. Mater. Chem. Front. 8, 1230–1249 (2024). https://doi.org/10.1039/D3QM00990D
- H. He, A. Liao, W. Guo, W. Luo, Y. Zhou et al., State-of-the-art progress in the use of ternary metal oxides as photoelectrode materials for water splitting and organic synthesis. Nano Today 28, 100763 (2019). https://doi.org/10.1016/j.nantod.2019.100763
- Q. Cai, W. Hong, C. Jian, W. Liu, Ultrafast hot ion-exchange triggered electrocatalyst modification and interface engineering on silicon photoanodes. Nano Energy 70, 104485 (2020). https://doi.org/10.1016/j.nanoen.2020.104485
- Y. Yang, S. Niu, D. Han, T. Liu, G. Wang et al., Progress in developing metal oxide nanomaterials for photoelectrochemical water splitting. Adv. Energy Mater. 7, 1700555 (2017). https://doi.org/10.1002/aenm.201700555
- Y.-C. Pu, M.G. Kibria, Z. Mi, J.Z. Zhang, Ultrafast exciton dynamics in InGaN/GaN and Rh/Cr2O3 nanop-decorated InGaN/GaN nanowires. J. Phys. Chem. Lett. 6, 2649–2656 (2015). https://doi.org/10.1021/acs.jpclett.5b00909
- S. Noh, J. Song, S. Han, J. Shin, Y.-T. Yu et al., Drastic improvement in photoelectrochemical water splitting performance over prolonged reaction time using new carrier-guiding semiconductor nanostructures. J. Mater. Chem. A 10, 9821–9829 (2022). https://doi.org/10.1039/D2TA01711C
- J. Wu, When Group-III nitrides go infrared: new properties and perspectives. J. Appl. Phys. J. Appl. Phys. 106, 011101 (2009). https://doi.org/10.1063/1.3155798
- S. Chu, S. Vanka, Y. Wang, J. Gim, Y. Wang et al., Solar water oxidation by an InGaN nanowire photoanode with a bandgap of 1.7 eV. ACS Energy Lett. 3, 307–314 (2018). https://doi.org/10.1021/acsenergylett.7b01138
- S. Vanka, B. Zhou, R.A. Awni, Z. Song, F.A. Chowdhury et al., InGaN/Si double-junction photocathode for unassisted solar water splitting. ACS Energy Lett. 5, 3741–3751 (2020). https://doi.org/10.1021/acsenergylett.0c01583
- X. Guan, F.A. Chowdhury, N. Pant, L. Guo, L. Vayssieres et al., Efficient unassisted overall photocatalytic seawater splitting on GaN-based nanowire arrays. J. Phys. Chem. C 122, 13797–13802 (2018). https://doi.org/10.1021/acs.jpcc.8b00875
- P. Zhou, I.A. Navid, Y. Ma, Y. Xiao, P. Wang, et al., Solar-to-hydrogen efficiency of more than 9% in photocatalytic water splitting. Nature 613, 66–70 (2023). https://doi.org/10.1038/s41586-022-05399-1
- Y. Wang, Y. Wu, K. Sun, Z. Mi, A quadruple-band metal–nitride nanowire artificial photosynthesis system for high efficiency photocatalytic overall solar water splitting. Mater. Horiz. 6, 1454–1462 (2019). https://doi.org/10.1039/C9MH00257J
- X. Guan, F.A. Chowdhury, Y. Wang, N. Pant, S. Vanka et al., Making of an industry-friendly artificial photosynthesis device. ACS Energy Lett. 3, 2230–2231 (2018). https://doi.org/10.1021/acsenergylett.8b01377
- M.G. Kibria, F.A. Chowdhury, S. Zhao, B. AlOtaibi, M.L. Trudeau et al., Visible light-driven efficient overall water splitting using p-type metal-nitride nanowire arrays. Nat. Commun. 6, 6797 (2015). https://doi.org/10.1038/ncomms7797
- F.A. Chowdhury, M.L. Trudeau, H. Guo, Z. Mi, A photochemical diode artificial photosynthesis system for unassisted high efficiency overall pure water splitting. Nat. Commun. 9, 1707 (2018). https://doi.org/10.1038/s41467-018-04067-1
- Z. Wang, Y. Gu, L. Wang, Revisiting solar hydrogen production through photovoltaic-electrocatalytic and photoelectrochemical water splitting. Front. Energy 15, 596–599 (2021). https://doi.org/10.1007/s11708-021-0745-0
- H. He, Q. Zhang, Z. Wang, S. Pan, Y. Zhao et al., Advances and practical prospects for bias-free photovoltaic-driven electrochemical water splitting systems. Adv. Energy Mater. 14, 2303713 (2024). https://doi.org/10.1002/aenm.202303713
- Y.-C. Kao, H.-M. Chou, S.-C. Hsu, A. Lin, C.-C. Lin et al., Performance comparison of III–V//Si and III–V//InGaAs multi-junction solar cells fabricated by the combination of mechanical stacking and wire bonding. Sci. Rep. 9, 4308 (2019). https://doi.org/10.1038/s41598-019-40727-y
- C.-W. Huang, C.-H. Liao, C.-H. Wu, J.C.S. Wu, Photocatalytic water splitting to produce hydrogen using multi-junction solar cell with different deposited thin films. Sol. Energy Mater. Sol. Cells 107, 322–328 (2012). https://doi.org/10.1016/j.solmat.2012.07.003
- Z. Li, S. Fang, H. Sun, R.-J. Chung, X. Fang et al., Solar hydrogen. Adv. Energy Mater. 13, 2203019 (2023). https://doi.org/10.1002/aenm.202203019
- S.A. Bonke, M. Wiechen, D.R. MacFarlane, L. Spiccia, Renewable fuels from concentrated solar power: towards practical artificial photosynthesis. Energy Environ. Sci. 8, 2791–2796 (2015). https://doi.org/10.1039/C5EE02214B
- B. Turan, J.-P. Becker, F. Urbain, F. Finger, U. Rau et al., Upscaling of integrated photoelectrochemical water-splitting devices to large areas. Nat. Commun. 7, 12681 (2016). https://doi.org/10.1038/ncomms12681
- S.-Y. Liu, J.K. Sheu, Y.-C. Lin, Y.-T. Chen, S.J. Tu et al., InGaN working electrodes with assisted bias generated from GaAs solar cells for efficient water splitting. Opt. Express 21, A991–A996 (2013). https://doi.org/10.1364/OE.21.00A991
- K. Fujii, S. Nakamura, M. Sugiyama, K. Watanabe, B. Bagheri et al., Characteristics of hydrogen generation from water splitting by polymer electrolyte electrochemical cell directly connected with concentrated photovoltaic cell. Int. J. Hydrog. Energy 38, 14424–14432 (2013). https://doi.org/10.1016/j.ijhydene.2013.07.010
- J. Jia, L.C. Seitz, J.D. Benck, Y. Huo, Y. Chen et al., Solar water splitting by photovoltaic-electrolysis with a solar-to-hydrogen efficiency over 30. Nat. Commun. 7, 13237 (2016). https://doi.org/10.1038/ncomms13237
- M.A. Nadeem, H. Idriss, Effect of PH, temperature, and low light flux on the performance (16% STH) of coupled triple junction solar cell to water electrolysis. J. Power. Sources 459, 228074 (2020). https://doi.org/10.1016/j.jpowsour.2020.228074
- Z.N. Zahran, Y. Miseki, E.A. Mohamed, Y. Tsubonouchi, K. Makita et al., Perfect matching factor between a customized double-junction GaAs photovoltaic device and an electrolyzer for efficient solar water splitting. ACS Appl. Energy Mater. 5, 8241–8253 (2022). https://doi.org/10.1021/acsaem.2c00768
- A. Nakamura, Y. Ota, K. Koike, Y. Hidaka, K. Nishioka et al., A 24.4% solar to hydrogen energy conversion efficiency by combining concentrator photovoltaic modules and electrochemical cells. Appl. Phys. Express 8, 107101 (2015). https://doi.org/10.7567/apex.8.107101
- S.M. Bashir, M.A. Nadeem, M. Al-Oufi, M. Al-Hakami, T.T. Isimjan et al., Sixteen percent solar-to-hydrogen efficiency using a power-matched alkaline electrolyzer and a high concentrated solar cell: effect of operating parameters. ACS Omega 5, 10510–10518 (2020). https://doi.org/10.1021/acsomega.0c00749
- M.A. Khan, I. Al-Shankiti, A. Ziani, H. Idriss, Demonstration of green hydrogen production using solar energy at 28% efficiency and evaluation of its economic viability. Sustain. Energy Fuels 5, 1085–1094 (2021). https://doi.org/10.1039/D0SE01761B
- S. Rau, S. Vierrath, J. Ohlmann, A. Fallisch, D. Lackner et al., Highly efficient solar hydrogen generation—an integrated concept joining III–V solar cells with PEM electrolysis cells. Energy Technol. 2, 43–53 (2014). https://doi.org/10.1002/ente.201300116
- G. Peharz, F. Dimroth, U. Wittstadt, Solar hydrogen production by water splitting with a conversion efficiency of 18%. Int. J. Hydrog. Energy 32, 3248–3252 (2007). https://doi.org/10.1016/j.ijhydene.2007.04.036
- O. Khaselev, High-efficiency integrated multijunction photovoltaic/electrolysis systems for hydrogen production. Int. J. Hydrog. Energy 26, 127–132 (2001). https://doi.org/10.1016/s0360-3199(00)00039-2
- T.J. Jacobsson, V. Fjällström, M. Sahlberg, M. Edoff, T. Edvinsson, A monolithic device for solar water splitting based on series interconnected thin film absorbers reaching over 10% solar-to-hydrogen efficiency. Energy Environ. Sci. 6, 3676–3683 (2013). https://doi.org/10.1039/C3EE42519C
- C.R. Cox, J.Z. Lee, D.G. Nocera, T. Buonassisi, Ten-percent solar-to-fuel conversion with nonprecious materials. Proc. Natl. Acad. Sci. U.S.A. 111, 14057–14061 (2014). https://doi.org/10.1073/pnas.1414290111
- H. Song, S. Oh, H. Yoon, K.-H. Kim, S. Ryu et al., Bifunctional NiFe inverse opal electrocatalysts with heterojunction Si solar cells for 954%-efficient unassisted solar water splitting. Nano Energy 42, 1–7 (2017). https://doi.org/10.1016/j.nanoen.2017.10.028
- G. Liu, K. Du, S. Haussener, K. Wang, Charge transport in two-photon semiconducting structures for solar fuels. Chemsuschem 9, 2878–2904 (2016). https://doi.org/10.1002/cssc.201600773
- B. Liu, S. Wang, G. Zhang, Z. Gong, B. Wu et al., Tandem cells for unbiased photoelectrochemical water splitting. Chem. Soc. Rev. 52, 4644–4671 (2023). https://doi.org/10.1039/D3CS00145H
- J.F. Geisz, R.M. France, K.L. Schulte, M.A. Steiner, A.G. Norman et al., Six-junction III–V solar cells with 47.1% conversion efficiency under 143 Suns concentration. Nat. Energy 5, 326–335 (2020). https://doi.org/10.1038/s41560-020-0598-5
- Y. Zheng, M. Ma, H. Shao, Recent advances in efficient and scalable solar hydrogen production through water splitting. Carbon Neutrality 2, 23 (2023). https://doi.org/10.1007/s43979-023-00064-6
- Y. Wang, J. Schwartz, J. Gim, R. Hovden, Z. Mi, Stable unassisted solar water splitting on semiconductor photocathodes protected by multifunctional GaN nanostructures. ACS Energy Lett. 4, 1541–1548 (2019). https://doi.org/10.1021/acsenergylett.9b00549
- E. Verlage, S. Hu, R. Liu, R.J.R. Jones, K. Sun et al., A monolithically integrated, intrinsically safe, 10% efficient, solar-driven water-splitting system based on active, stable earth-abundant electrocatalysts in conjunction with tandem III–V light absorbers protected by amorphous TiO2 films. Energy Environ. Sci. 8, 3166–3172 (2015). https://doi.org/10.1039/C5EE01786F
- M.M. May, H.-J. Lewerenz, D. Lackner, F. Dimroth, T. Hannappel, Efficient direct solar-to-hydrogen conversion by in situ interface transformation of a tandem structure. Nat. Commun. 6, 8286 (2015). https://doi.org/10.1038/ncomms9286
- O. Khaselev, J.A. Turner, A monolithic photovoltaic-photoelectrochemical device for hydrogen production via water splitting. Science 280, 425–427 (1998). https://doi.org/10.1126/science.280.5362.425
- W.-H. Cheng, M.H. Richter, M.M. May, J. Ohlmann, D. Lackner et al., Monolithic photoelectrochemical device for direct water splitting with 19% efficiency. ACS Energy Lett. 3, 1795–1800 (2018). https://doi.org/10.1021/acsenergylett.8b00920
- S. Okamoto, M. Deguchi, S. Yotsuhashi, Modulated III–V triple-junction solar cell wireless device for efficient water splitting. J. Phys. Chem. C 121, 1393–1398 (2017). https://doi.org/10.1021/acs.jpcc.6b07991
- M. Ben-Naim, R.J. Britto, C.W. Aldridge, R. Mow, M.A. Steiner et al., Addressing the stability gap in photoelectrochemistry: molybdenum disulfide protective catalysts for tandem III–V unassisted solar water splitting. ACS Energy Lett. 5, 2631–2640 (2020). https://doi.org/10.1021/acsenergylett.0c01132
- Q. Wang, K. Domen, Particulate photocatalysts for light-driven water splitting: mechanisms, challenges, and design strategies. Chem. Rev. 120, 919–985 (2020). https://doi.org/10.1021/acs.chemrev.9b00201
- P. Varadhan, H.-C. Fu, Y.-C. Kao, R.-H. Horng, J.-H. He, An efficient and stable photoelectrochemical system with 9% solar-to-hydrogen conversion efficiency via InGaP/GaAs double junction. Nat. Commun. 10, 5282 (2019). https://doi.org/10.1038/s41467-019-12977-x
- M.A. Steiner, C.D. Barraugh, C.W. Aldridge, I.B. Alvarez, D.J. Friedman et al., Photoelectrochemical water splitting using strain-balanced multiple quantum well photovoltaic cells. Sustain. Energy Fuels 3, 2837–2844 (2019). https://doi.org/10.1039/c9se00276f
- J.H. Kim, D. Hansora, P. Sharma, J.-W. Jang, J.S. Lee, Toward practical solar hydrogen production–an artificial photosynthetic leaf-to-farm challenge. Chem. Soc. Rev. 48, 1908–1971 (2019). https://doi.org/10.1039/c8cs00699g
- H. Charles, R.C. Pawar, H. Khan, C.S. Lee, Photocatalyst engineering for water-based CO2 reduction under visible light irradiation to enhance CO selectivity: a review of recent advances. Int. J. Precis. Eng. Manuf. Green Technol. 10, 1061–1091 (2023). https://doi.org/10.1007/s40684-023-00511-w
- M. Zhang, M. Lu, Z.-L. Lang, J. Liu, M. Liu et al., Semiconductor/covalent-organic-framework Z-scheme heterojunctions for artificial photosynthesis. Angew. Chem. Int. Ed. Engl. 59, 6500–6506 (2020). https://doi.org/10.1002/anie.202000929
- W. Zhang, A.R. Mohamed, W.J. Ong, Z-scheme photocatalytic systems for carbon dioxide reduction: where are we now? Angew. Chem. Int. Ed. 59, 22894–22915 (2020). https://doi.org/10.1002/anie.201914925
- J. Nozik, R. Memming, Physical chemistry of semiconductor-liquid interfaces. J. Phys. Chem. 100, 13061–13078 (1996)
- S.W. Boettcher, S.Z. Oener, M.C. Lonergan, Y. Surendranath, S. Ardo et al., Potentially confusing: potentials in electrochemistry. ACS Energy Lett. 6, 261–266 (2021). https://doi.org/10.1021/acsenergylett.0c02443
- L. Caccamo, G. Cocco, G. Martín, H. Zhou, S. Fundling et al., Insights into interfacial changes and photoelectrochemical stability of InxGa1–xN (0001) photoanode surfaces in liquid environments. ACS Appl. Mater. Interfaces 8, 8232–8238 (2016). https://doi.org/10.1021/acsami.5b12583
- J.H. Park, A. Mandal, S. Kang, U. Chatterjee, J.S. Kim et al., Hydrogen generation using non-polar coaxial InGaN/GaN multiple quantum well structure formed on hollow n-GaN nanowires. Sci. Rep. 6, 31996 (2016). https://doi.org/10.1038/srep31996
- M. Alqahtani, S. Sathasivam, A. Alhassan, F. Cui, S. BenJaber et al., InGaN/GaN multiple quantum well photoanode modified with cobalt oxide for water oxidation. ACS Appl. Energy Mater. 1, 6417–6424 (2018). https://doi.org/10.1021/acsaem.8b01387
- C.W. Lee, F.-W. Lin, P.-H. Liao, M.-L. Lee, J.-K. Sheu, Stable photoelectrochemical water splitting using p–n GaN junction decorated with nickel oxides as photoanodes. J. Phys. Chem. C 125, 16776–16783 (2021). https://doi.org/10.1021/acs.jpcc.1c04208
- K. Maeda, Photocatalytic water splitting using semiconductor ps: history and recent developments. J. Photochem. Photobiol. C Photochem. Rev. 12, 237–268 (2011). https://doi.org/10.1016/j.jphotochemrev.2011.07.001
- M. Saruyama, C.M. Pelicano, T. Teranishi, Bridging electrocatalyst and cocatalyst studies for solar hydrogen production via water splitting. Chem. Sci. 13, 2824–2840 (2022). https://doi.org/10.1039/d1sc06015e
- D. Kang, T.W. Kim, S.R. Kubota, A.C. Cardiel, H.G. Cha et al., Electrochemical synthesis of photoelectrodes and catalysts for use in solar water splitting. Chem. Rev. 115, 12839–12887 (2015). https://doi.org/10.1021/acs.chemrev.5b00498
- M. Kumar, B. Meena, P. Subramanyam, D. Suryakala, C. Subrahmanyam, Recent trends in photoelectrochemical water splitting: the role of cocatalysts. NPG Asia Mater. 14, 88 (2022). https://doi.org/10.1038/s41427-022-00436-x
- L. Tian, X. Guan, S. Zong, A. Dai, J. Qu, Cocatalysts for photocatalytic overall water splitting: a mini review. Catalysts 13, 1–19 (2023). https://doi.org/10.3390/catal13020355
- Q. Wang, J. Liu, Q. Li, J. Yang, Stability of photocathodes: a review on principles, design, and strategies. Chemsuschem 16, e202202186 (2023). https://doi.org/10.1002/cssc.202202186
- Y. Xiao, X. Kong, S. Vanka, W.J. Dong, G. Zeng et al., Oxynitrides enabled photoelectrochemical water splitting with over 3, 000 hrs stable operation in practical two-electrode configuration. Nat. Commun. 14, 2047 (2023). https://doi.org/10.1038/s41467-023-37754-9
- M.G. Kibria, R. Qiao, W. Yang, I. Boukahil, X. Kong et al., Atomic-scale origin of long-term stability and high performance of p-GaN nanowire arrays for photocatalytic overall pure water splitting. Adv. Mater. 28, 8388–8397 (2016). https://doi.org/10.1002/adma.201602274
- S. Han, S. Noh, J. Shin, Y.-T. Yu, I.-S. Seo et al., Photoelectrochemical water-splitting using GaN pyramidal dots and their long-term stability in the two-electrode configuration. J. Mater. Chem. A 10, 10355–10362 (2022). https://doi.org/10.1039/D2TA01361D
- C.A. Nelson, N.R. Monahan, X.-Y. Zhu, Exceeding the Shockley-Queisser limit in solar energy conversion. Energy Environ. Sci. 6, 3508–3519 (2013). https://doi.org/10.1039/C3EE42098A
- W. Hou, S.B. Cronin, A review of surface plasmon resonance-enhanced photocatalysis. Adv. Funct. Mater. 23, 1612–1619 (2013). https://doi.org/10.1002/adfm.201202148
- H. Karimi-Maleh, B. Kumar, S. Rajendran, J. Qin, S. Vadivel et al., Tuning of metal oxides photocatalytic performance using Ag nanops integration. J. Mol. Liq. 314, 113588 (2020). https://doi.org/10.1016/j.molliq.2020.113588
- T. Bak, J. Nowotny, M. Rekas, C.C. Sorrell, Photo-electrochemical hydrogen generation from water using solar energy. Materials-related aspects. Int. J. Hydrog. Energy 27, 991–1022 (2002). https://doi.org/10.1016/s0360-3199(02)00022-8
- T. Takata, J. Jiang, Y. Sakata, M. Nakabayashi, N. Shibata et al., Photocatalytic water splitting with a quantum efficiency of almost unity. Nature 581, 411–414 (2020). https://doi.org/10.1038/s41586-020-2278-9
- M. Valenti, M.P. Jonsson, G. Biskos, A. Schmidt-Ott, W.A. Smith, Plasmonic nanop-semiconductor composites for efficient solar water splitting. J. Mater. Chem. A 4, 17891–17912 (2016). https://doi.org/10.1039/C6TA06405A
- J.-K. Oh, D.-Y. Um, B. Chandran, S.-U. Kim, C.-R. Lee et al., Low-leakage Current core-shell AlGaN nanorod LED device operating in the ultraviolet-B band. ACS Appl. Mater. Interfaces 16, 9020–9029 (2024). https://doi.org/10.1021/acsami.3c17356
- N. Wu, Plasmonic metal–semiconductor photocatalysts and photoelectrochemical cells: a review. Nanoscale 10, 2679–2696 (2018). https://doi.org/10.1039/C7NR08487K
- H. Chen, P. Wang, X. Wang, X. Wang, L. Rao et al., 3D InGaN nanowire arrays on oblique pyramid-textured Si (311) for light trapping and solar water splitting enhancement. Nano Energy 83, 105768 (2021). https://doi.org/10.1016/j.nanoen.2021.105768
- Z. Zhang, J.T.J. Yates, Band bending in semiconductors: chemical and physical consequences at surfaces and interfaces. Chem. Rev. 112, 5520–5551 (2012). https://doi.org/10.1021/cr3000626
- Y. Nosaka, A.Y. Nosaka, Generation and detection of reactive oxygen species in photocatalysis. Chem. Rev. 117, 11302–11336 (2017). https://doi.org/10.1021/acs.chemrev.7b00161
- S. Chen, T. Takata, K. Domen, Particulate photocatalysts for overall water splitting. Nat. Rev. Mater. 2, 17050 (2017). https://doi.org/10.1038/natrevmats.2017.50
- J. Wu, Y. Huang, W. Ye, Y. Li, CO2 reduction: from the electrochemical to photochemical approach. Adv. Sci. 4, 1700194 (2017). https://doi.org/10.1002/advs.392
- C.E. Creissen, M. Fontecave, Solar-driven electrochemical CO2 reduction with heterogeneous catalysts. Adv. Energy Mater. 11, 2002652 (2021). https://doi.org/10.1002/aenm.202002652
- Y. Li, Z. Ma, S. Hou, Q. Liu, G. Yan et al., Recent progress in hydrogen: from solar to solar cell. J. Mater. Sci. Technol. 176, 236–257 (2024). https://doi.org/10.1016/j.jmst.2023.08.030
- A. Polman, M. Knight, E.C. Garnett, B. Ehrler, W.C. Sinke, Photovoltaic materials: present efficiencies and future challenges. Science 352, eaad4424 (2016). https://doi.org/10.1126/science.aad4424
- A. Grimm, W.A. de Jong, G.J. Kramer, Renewable hydrogen production: a techno-economic comparison of photoelectrochemical cells and photovoltaic-electrolysis. Int. J. Hydrog. Energy 45, 22545–22555 (2020). https://doi.org/10.1016/j.ijhydene.2020.06.092
- L. Pan, J.H. Kim, M.T. Mayer, M.-K. Son, A. Ummadisingu et al., Boosting the performance of Cu2O photocathodes for unassisted solar water splitting devices. Nat. Catal. 1, 412–420 (2018). https://doi.org/10.1038/s41929-018-0077-6
- D. Kang, J.L. Young, H. Lim, W.E. Klein, H. Chen et al., Printed assemblies of GaAs photoelectrodes with decoupled optical and reactive interfaces for unassisted solar water splitting. Nat. Energy 2, 17043 (2017). https://doi.org/10.1038/nenergy.2017.43
- J. Lin, W. Wang, G. Li, Modulating surface/interface structure of emerging InGaN nanowires for efficient photoelectrochemical water splitting. Adv. Funct. Mater. 30, 2005677 (2020). https://doi.org/10.1002/adfm.202005677
- W.J. Dong, Z. Mi, One-dimensional III-nitrides: towards ultrahigh efficiency, ultrahigh stability artificial photosynthesis. J. Mater. Chem. A 11, 5427–5459 (2023). https://doi.org/10.1039/d2ta09967e
- M. Powalla, S. Paetel, E. Ahlswede, R. Wuerz, C.D. Wessendorf et al., Thin-film solar cells exceeding 22% solar cell efficiency: an overview on CdTe-, Cu(In, Ga)Se2-, and perovskite-based materials. Appl. Phys. Rev. 5, 041602 (2018). https://doi.org/10.1063/1.5061809
- J.W. Ager, M.R. Shaner, K.A. Walczak, I.D. Sharp, S. Ardo, Experimental demonstrations of spontaneous, solar-driven photoelectrochemical water splitting. Energy Environ. Sci. 8, 2811–2824 (2015). https://doi.org/10.1039/c5ee00457h
- K. Wang, L. Zheng, Y. Hou, A. Nozariasbmarz, B. Poudel et al., Overcoming Shockley-Queisser limit using halide perovskite platform? Joule 6, 756–771 (2022). https://doi.org/10.1016/j.joule.2022.01.009
- N.-T. Suen, S.-F. Hung, Q. Quan, N. Zhang, Y.-J. Xu et al., Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives. Chem. Soc. Rev. 46, 337–365 (2017). https://doi.org/10.1039/C6CS00328A
- Y. Yang, P. Li, X. Zheng, W. Sun, S.X. Dou et al., Anion-exchange membrane water electrolyzers and fuel cells. Chem. Soc. Rev. 51, 9620–9693 (2022). https://doi.org/10.1039/d2cs00038e
- F. Yilmaz, M.T. Balta, R. Selbaş, RETRACTED: a review of solar based hydrogen production methods. Renew. Sustain. Energy Rev. 56, 171–178 (2016). https://doi.org/10.1016/j.rser.2015.11.060
- M.G. Walter, E.L. Warren, J.R. McKone, S.W. Boettcher, Q. Mi et al., Solar water splitting cells. Chem. Rev. 110, 6446–6473 (2010). https://doi.org/10.1021/cr1002326
- H. Nishiyama, T. Yamada, M. Nakabayashi, Y. Maehara, M. Yamaguchi et al., Photocatalytic solar hydrogen production from water on a 100–m2 scale. Nature 598, 304–307 (2021). https://doi.org/10.1038/s41586-021-03907-3
- S. Zoller, E. Koepf, D. Nizamian, M. Stephan, A. Patané et al., A solar tower fuel plant for the thermochemical production of kerosene from H2O and CO2. Joule 6, 1606–1616 (2022). https://doi.org/10.1016/j.joule.2022.06.012
- R. Schäppi, D. Rutz, F. Dähler, A. Muroyama, P. Haueter et al., Drop-in fuels from sunlight and air. Nature 601, 63–68 (2022). https://doi.org/10.1038/s41586-021-04174-y
- A. Vilanova, P. Dias, J. Azevedo, M. Wullenkord, C. Spenke et al., Solar water splitting under natural concentrated sunlight using a 200 cm2 photoelectrochemical-photovoltaic device. J. Power. Sources 454, 227890 (2020). https://doi.org/10.1016/j.jpowsour.2020.227890
- G. Segev, J. Kibsgaard, C. Hahn, Z.J. Xu, W.H. (Sophia) Cheng et al., The 2022 solar fuels roadmap. J. Phys. D Appl. Phys. 55, 323003 (2022). https://doi.org/10.1088/1361-6463/ac6f97
- M. Dumortier, S. Tembhurne, S. Haussener, Holistic design guidelines for solar hydrogen production by photo-electrochemical routes. Energy Environ. Sci. 8, 3614–3628 (2015). https://doi.org/10.1039/c5ee01821h
- B.A. Pinaud, J.D. Benck, L.C. Seitz, A.J. Forman, Z. Chen et al., Technical and economic feasibility of centralized facilities for solar hydrogen production via photocatalysis and photoelectrochemistry. Energy Environ. Sci. 6, 1983–2002 (2013). https://doi.org/10.1039/C3EE40831K
- Q. Wang, C. Pornrungroj, S. Linley, E. Reisner, Strategies to improve light utilization in solar fuel synthesis. Nat. Energy 7, 13–24 (2022). https://doi.org/10.1038/s41560-021-00919-1
- M.A. Modestino, S. Haussener, An integrated device view on photo-electrochemical solar-hydrogen generation. Annu. Rev. Chem. Biomol. Eng. 6, 13–34 (2015). https://doi.org/10.1146/annurev-chembioeng-061114-123357
- I. Holmes-Gentle, S. Tembhurne, C. Suter, S. Haussener, Kilowatt-scale solar hydrogen production system using a concentrated integrated photoelectrochemical device. Nat. Energy 8, 586–596 (2023). https://doi.org/10.1038/s41560-023-01247-2
- B. Seger, I.E. Castelli, P.C.K. Vesborg, K.W. Jacobsen, O. Hansen et al., 2-Photon tandem device for water splitting: comparing photocathode first versus photoanode first designs. Energy Environ. Sci. 7, 2397–2413 (2014). https://doi.org/10.1039/C4EE01335B
- C. Ding, W. Qin, N. Wang, G. Liu, Z. Wang et al., Solar-to-hydrogen efficiency exceeding 2.5% achieved for overall water splitting with an all earth-abundant dual-photoelectrode. Phys. Chem. Chem. Phys. 16, 15608–15614 (2014). https://doi.org/10.1039/C4CP02391A
- B. AlOtaibi, S. Fan, S. Vanka, M.G. Kibria, Z. Mi, A metal-nitride nanowire dual-photoelectrode device for unassisted solar-to-hydrogen conversion under parallel illumination. Nano Lett. 15, 6821–6828 (2015). https://doi.org/10.1021/acs.nanolett.5b02671
- W.J. Dong, Y. Xiao, K.R. Yang, Z. Ye, P. Zhou et al., Pt nanoclusters on GaN nanowires for solar-asssisted seawater hydrogen evolution. Nat. Commun. 14, 179 (2023). https://doi.org/10.1038/s41467-023-35782-z
- K. Ohkawa, Y. Uetake, M. Velazquez-Rizo, D. Iida, Photoelectrochemical hydrogen generation using graded In-content InGaN photoelectrode structures. Nano Energy 59, 569–573 (2019). https://doi.org/10.1016/j.nanoen.2019.03.011
- D.-Y. Um, Y.-H. Ra, J.-H. Park, G.-E. Hong, C.-R. Lee, Near-IR emission of InGaN quasi-quantum dots on non-polar GaN nanowire structures. Nanoscale Adv. 3, 5036–5045 (2021). https://doi.org/10.1039/d1na00338k
- D.-Y. Um, B. Chandran, J.-K. Oh, S.-U. Kim, Y.-T. Yu et al., External catalyst-free InGaN photoelectrode for highly efficient energy conversion and H2 generation. Chem. Eng. J. 472, 144997 (2023). https://doi.org/10.1016/j.cej.2023.144997
- J.L. Young, M.A. Steiner, H. Döscher, R.M. France, J.A. Turner et al., Direct solar-to-hydrogen conversion via inverted metamorphic multi-junction semiconductor architectures. Nat. Energy 2, 17028 (2017). https://doi.org/10.1038/nenergy.2017.28
- Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan Vol. 11007, (Department of Energy, 2015), pp. 1–44.
- Q. Chen, G. Fan, H. Fu, Z. Li, Z. Zou, Tandem photoelectrochemical cells for solar water splitting. Adv. Phys. X 3, 1487267 (2018). https://doi.org/10.1080/23746149.2018.1487267
- J.L. Young, K.X. Steirer, M.J. Dzara, J.A. Turner, T.G. Deutsch, Remarkable stability of unmodified GaAs photocathodes during hydrogen evolution in acidic electrolyte. J. Mater. Chem. A 4, 2831–2836 (2016). https://doi.org/10.1039/C5TA07648J
- S. Xu, E.A. Carter, Theoretical insights into heterogeneous (photo)electrochemical CO2 reduction. Chem. Rev. 119, 6631–6669 (2019). https://doi.org/10.1021/acs.chemrev.8b00481
- P. Hou, W. Song, X. Wang, Z. Hu, P. Kang, Well-defined single-atom cobalt catalyst for electrocatalytic flue gas CO2 reduction. Small 16, e2001896 (2020). https://doi.org/10.1002/smll.202001896
- J.W. Lim, W.J. Dong, W.S. Cho, C.J. Yoo, J.-L. Lee, CuSx catalysts by Ag-mediated corrosion of Cu for electrochemical reduction of sulfur-containing CO2 gas to HCOOH. ACS Catal. 12, 13174–13185 (2022). https://doi.org/10.1021/acscatal.2c04088
- W.J. Dong, I.A. Navid, Y. Xiao, J.W. Lim, J.L. Lee et al., CuS-decorated GaN nanowires on silicon photocathodes for converting CO2 mixture gas to HCOOH. J. Am. Chem. Soc. 143, 10099–10107 (2021). https://doi.org/10.1021/jacs.1c02139
- S.N. Habisreutinger, L. Schmidt-Mende, J.K. Stolarczyk, Photocatalytic reduction of CO2 on TiO2 and other semiconductors. Angew. Chem. Int. Ed. 52, 7372–7408 (2013). https://doi.org/10.1002/anie.201207199
- L. Wang, W. Chen, D. Zhang, Y. Du, R. Amal et al., Surface strategies for catalytic CO2 reduction: from two-dimensional materials to nanoclusters to single atoms. Chem. Soc. Rev. 48, 5310–5349 (2019). https://doi.org/10.1039/c9cs00163h
- S. Back, M.S. Yeom, Y. Jung, Active sites of Au and Ag nanop catalysts for CO2 electroreduction to CO. ACS Catal. 5, 5089–5096 (2015). https://doi.org/10.1021/acscatal.5b00462
- D.R. Kauffman, D. Alfonso, C. Matranga, H. Qian, R. Jin, Experimental and computational investigation of Au25 clusters and CO2: a unique interaction and enhanced electrocatalytic activity. J. Am. Chem. Soc. 134, 10237–10243 (2012). https://doi.org/10.1021/ja303259q
- B. Zhou, Y. Ma, P. Ou, Z. Ye, X.-Y. Li et al., Light-driven synthesis of C2H6 from CO2 and H2O on a bimetallic AuIr composite supported on InGaN nanowires. Nat. Catal. 6, 987–995 (2023). https://doi.org/10.1038/s41929-023-01023-1
- Y. Wang, J. Liu, Y. Wang, Y. Wang, G. Zheng, Efficient solar-driven electrocatalytic CO2 reduction in a redox-medium-assisted system. Nat. Commun. 9, 5003 (2018). https://doi.org/10.1038/s41467-018-07380-x
- R.T. Rashid, Y. Chen, X. Liu, F.A. Chowdhury, M. Liu et al., Tunable green syngas generation from CO2 and H2O with sunlight as the only energy input. Proc. Natl. Acad. Sci. U.S.A. 119, e2121174119 (2022). https://doi.org/10.1073/pnas.2121174119
- D. Higgins, C. Hahn, C. Xiang, T.F. Jaramillo, A.Z. Weber, Gas-diffusion electrodes for carbon dioxide reduction: a new paradigm. ACS Energy Lett. 4, 317–324 (2019). https://doi.org/10.1021/acsenergylett.8b02035
- M.R. Singh, K. Papadantonakis, C. Xiang, N.S. Lewis, An electrochemical engineering assessment of the operational conditions and constraints for solar-driven water-splitting systems at near-neutral pH. Energy Environ. Sci. 8, 2760–2767 (2015). https://doi.org/10.1039/C5EE01721A
- S. Verma, X. Lu, S. Ma, R.I. Masel, P.J.A. Kenis, The effect of electrolyte composition on the electroreduction of CO2 to CO on Ag based gas diffusion electrodes. Phys. Chem. Chem. Phys. 18, 7075–7084 (2016). https://doi.org/10.1039/c5cp05665a
- W.-H. Cheng, M.H. Richter, I. Sullivan, D.M. Larson, C. Xiang et al., CO2 reduction to CO with 19% efficiency in a solar-driven gas diffusion electrode flow cell under outdoor solar illumination. ACS Energy Lett. 5, 470–476 (2020). https://doi.org/10.1021/acsenergylett.9b02576
- B. Zhou, P. Ou, N. Pant, S. Cheng, S. Vanka et al., Highly efficient binary copper-iron catalyst for photoelectrochemical carbon dioxide reduction toward methane. Proc. Natl. Acad. Sci. U.S.A. 117, 1330–1338 (2020). https://doi.org/10.1073/pnas.1911159117
- Y. Wang, S. Fan, B. AlOtaibi, Y. Wang, L. Li et al., A monolithically integrated Gallium nitride nanowire/silicon solar cell photocathode for selective carbon dioxide reduction to methane. Chemistry 22, 8809–8813 (2016). https://doi.org/10.1002/chem.201601642
- S. Chu, P. Ou, P. Ghamari, S. Vanka, B. Zhou et al., Photoelectrochemical CO2 reduction into syngas with the metal/oxide interface. J. Am. Chem. Soc. 140, 7869–7877 (2018). https://doi.org/10.1021/jacs.8b03067
- B. Zhou, X. Kong, S. Vanka, S. Cheng, N. Pant et al., A GaN: Sn nanoarchitecture integrated on a silicon platform for converting CO2 to HCOOH by photoelectrocatalysis. Energy Environ. Sci. 12, 2842–2848 (2019). https://doi.org/10.1039/c9ee01339c
- S. Chu, P. Ou, R.T. Rashid, Y. Pan, D. Liang et al., Efficient photoelectrochemical conversion of CO2 to syngas by photocathode engineering. Green Energy Environ. 7, 545–553 (2022). https://doi.org/10.1016/j.gee.2020.11.015
- Y. Zhang, C. Ye, J. Duan, H. Feng, D. Liu et al., Solar-driven carbon dioxide reduction: a fair evaluation of photovoltaic-biased photoelectrocatalysis and photovoltaic-powered electrocatalysis. Front. Energy Res. 10, 956444 (2022). https://doi.org/10.3389/fenrg.2022.956444
- B. AlOtaibi, X. Kong, S. Vanka, S.Y. Woo, A. Pofelski et al., Photochemical carbon dioxide reduction on Mg-doped Ga(In)N nanowire arrays under visible light irradiation. ACS Energy Lett. 1, 246–252 (2016). https://doi.org/10.1021/acsenergylett.6b00119
- S. Chu, S. Fan, Y. Wang, D. Rossouw, Y. Wang et al., Tunable syngas production from CO2 and H2O in an aqueous photoelectrochemical cell. Angew. Chem. Int. Ed. 55, 14262–14266 (2016). https://doi.org/10.1002/anie.201606424
- J.S. DuChene, G. Tagliabue, A.J. Welch, W.-H. Cheng, H.A. Atwater, Hot hole collection and photoelectrochemical CO2 reduction with plasmonic Au/p-GaN photocathodes. Nano Lett. 18, 2545–2550 (2018). https://doi.org/10.1021/acs.nanolett.8b00241
- B.V. Ricketti, E.M. Gauger, A. Fedrizzi, The coherence time of sunlight in the context of natural and artificial light-harvesting. Sci. Rep. 12, 5438 (2022). https://doi.org/10.1038/s41598-022-08693-0
- S. Harrison, M. Hayne, Photoelectrolysis using type-II semiconductor heterojunctions. Sci. Rep. 7, 11638 (2017). https://doi.org/10.1038/s41598-017-11971-x
- Y. Zhao, M. Xu, X. Huang, J. Lebeau, T. Li et al., Toward high efficiency at high temperatures: recent progress and prospects on InGaN-Based solar cells. Mater. Today Energy 31, 101229 (2023). https://doi.org/10.1016/j.mtener.2022.101229
- A.K. Al Sharyani, L. Muruganandam, Photocatalytic degradation of eicosane and phytane compounds using support zinc oxide nanorods under solar simulator irradiation. J. Water Process. Eng. 53, 103837 (2023). https://doi.org/10.1016/j.jwpe.2023.103837
References
D. Welsby, J. Price, S. Pye, P. Ekins, Unextractable fossil fuels in a 1.5 ℃ world. Nature 597, 230–234 (2021). https://doi.org/10.1038/s41586-021-03821-8
T. Ahmad, D. Zhang, A critical review of comparative global historical energy consumption and future demand: the story told so far. Energy Rep. 6, 1973–1991 (2020). https://doi.org/10.1016/j.egyr.2020.07.020
P. Achakulwisut, P. Erickson, C. Guivarch, R. Schaeffer, E. Brutschin et al., Global fossil fuel reduction pathways under different climate mitigation strategies and ambitions. Nat. Commun. 14, 5425 (2023). https://doi.org/10.1038/s41467-023-41105-z
N. Fajrina, M. Tahir, 2D-montmorillonite-dispersed g-C3N4/TiO2 2D/0Dnanocomposite for enhanced photo-induced H2 evolution from glycerol-water mixture. Appl. Surf. Sci. 471, 1053–1064 (2019). https://doi.org/10.1016/j.apsusc.2018.12.076
A. Habibi-Yangjeh, K. Pournemati, A review on emerging homojunction photocatalysts with impressive performances for wastewater detoxification. Crit. Rev. Environ. Sci. Technol. 54, 290–320 (2024). https://doi.org/10.1080/10643389.2023.2239125
D. Tong, Q. Zhang, Y. Zheng, K. Caldeira, C. Shearer et al., Committed emissions from existing energy infrastructure jeopardize 1.5 ℃ climate target. Nature 572, 373–377 (2019). https://doi.org/10.1038/s41586-019-1364-3
L.T. Keyßer, M. Lenzen, 1.5 °C degrowth scenarios suggest the need for new mitigation pathways. Nat. Commun. 12, 2676 (2021). https://doi.org/10.1038/s41467-021-22884-9
J.L. Holechek, H.M.E. Geli, M.N. Sawalhah, R. Valdez, A global assessment: can renewable energy replace fossil fuels by 2050? Sustainability 14, 4792 (2022). https://doi.org/10.3390/su14084792
N. Fajrina, M. Tahir, Engineering approach in stimulating photocatalytic H2 production in a slurry and monolithic photoreactor systems using Ag-bridged Z-scheme pCN/TiO2 nanocomposite. Chem. Eng. J. 374, 1076–1095 (2019). https://doi.org/10.1016/j.cej.2019.06.011
T. Uekert, C.M. Pichler, T. Schubert, E. Reisner, Solar-driven reforming of solid waste for a sustainable future. Nat. Sustain. 4, 383–391 (2021). https://doi.org/10.1038/s41893-020-00650-x
K. Obata, M. Schwarze, T.A. Thiel, X. Zhang, B. Radhakrishnan et al., Solar-driven upgrading of biomass by coupled hydrogenation using in situ (photo)electrochemically generated H2. Nat. Commun. 14, 6017 (2023). https://doi.org/10.1038/s41467-023-41742-4
Y. Pan, H. Zhang, B. Zhang, F. Gong, J. Feng et al., Renewable formate from sunlight, biomass and carbon dioxide in a photoelectrochemical cell. Nat. Commun. 14, 1013 (2023). https://doi.org/10.1038/s41467-023-36726-3
M. Tahir, Construction of a stable two-dimensional MAX supported protonated graphitic carbon nitride (pg-C3N4)/Ti3AlC2/TiO2 Z-scheme multiheterojunction system for efficient photocatalytic CO2 reduction through dry reforming of methanol. Energy Fuels 34, 3540–3556 (2020). https://doi.org/10.1021/acs.energyfuels.9b04393
M. Tahir, Ni/MMT-promoted TiO2 nanocatalyst for dynamic photocatalytic H2 and hydrocarbons production from ethanol-water mixture under UV-light. Int. J. Hydrog. Energy 42, 28309–28326 (2017). https://doi.org/10.1016/j.ijhydene.2017.09.116
J. Tournet, Y. Lee, S.K. Karuturi, H.H. Tan, C. Jagadish, III–V semiconductor materials for solar hydrogen production: status and prospects. ACS Energy Lett. 5, 611–622 (2020). https://doi.org/10.1021/acsenergylett.9b02582
N. Goodarzi, Z. Ashrafi-Peyman, E. Khani, A.Z. Moshfegh, Recent progress on semiconductor heterogeneous photocatalysts in clean energy production and environmental remediation. Catalysts 13, 1102 (2023). https://doi.org/10.3390/catal13071102
A. Ali Khan, M. Tahir, A. Bafaqeer, Constructing a stable 2D layered Ti3C2 MXene cocatalyst-assisted TiO2/g-C3N4/Ti3C2 heterojunction for tailoring photocatalytic bireforming of methane under visible light. Energy Fuels 34, 9810–9828 (2020). https://doi.org/10.1021/acs.energyfuels.0c01354
P. Hemmati-Eslamlu, A. Habibi-Yangjeh, A review on impressive Z- and S-scheme photocatalysts composed of g-C3N4 for detoxification of antibiotics. FlatChem 43, 100597 (2024). https://doi.org/10.1016/j.flatc.2023.100597
A. Akhundi, A. Zaker Moshfegh, A. Habibi-Yangjeh, M. Sillanpää, Simultaneous dual-functional photocatalysis by g-C3N4-based nanostructures. ACS EST Engg. 2, 564–585 (2022). https://doi.org/10.1021/acsestengg.1c00346
O.S. Bushuyev, P. De Luna, C.T. Dinh, L. Tao, G. Saur et al., What should we make with CO2 and how can we make it? Joule 2, 825–832 (2018). https://doi.org/10.1016/j.joule.2017.09.003
A. Perazio, C.E. Creissen, J.G. Rivera de la Cruz, M.W. Schreiber, M. Fontecave, Acidic electroreduction of CO2 to multi-carbon products with CO2 recovery and recycling from carbonate. ACS Energy Lett. 8, 2979–2985 (2023). https://doi.org/10.1021/acsenergylett.3c00901
R.R. Ikreedeegh, M. Tahir, Indirect Z-scheme heterojunction of NH2-MIL-125(Ti) MOF/g-C3N4 nanocomposite with RGO solid electron mediator for efficient photocatalytic CO2 reduction to CO and CH4. J. Environ. Chem. Eng. 9, 105600 (2021). https://doi.org/10.1016/j.jece.2021.105600
Y.-H. Ra, R. Navamathavan, J.-H. Park, C.-R. Lee, Coaxial InxGa1–xN/GaN multiple quantum well nanowire arrays on Si(111) substrate for high-performance light-emitting diodes. Nano Lett. 13, 3506–3516 (2013). https://doi.org/10.1021/nl400906r
A. Machín, M. Cotto, J. Ducongé, F. Márquez, Artificial photosynthesis: current advancements and future prospects. Biomimetics 8, 298 (2023). https://doi.org/10.3390/biomimetics8030298
J. He, C. Janáky, Recent advances in solar-driven carbon dioxide conversion: expectations versus reality. ACS Energy Lett. 5, 1996–2014 (2020). https://doi.org/10.1021/acsenergylett.0c00645
T.N. Huan, D.A. Dalla Corte, S. Lamaison, D. Karapinar, L. Lutz et al., Low-cost high-efficiency system for solar-driven conversion of CO2 to hydrocarbons. Proc. Natl. Acad. Sci. U.S.A. 116, 9735–9740 (2019). https://doi.org/10.1073/pnas.1815412116
C. Xu, X. Zhang, M. Zhu, L. Zhang, P. Sui et al., Accelerating photoelectric CO2 conversion with a photothermal wavelength-dependent plasmonic local field. Appl. Catal. B Environ. 298, 120533 (2021). https://doi.org/10.1016/j.apcatb.2021.120533
J. Bian, Z. Zhang, Y. Liu, E. Chen, J. Tang et al., Strategies and reaction systems for solar-driven CO2 reduction by water. Carbon Neutrality 1, 5 (2022). https://doi.org/10.1007/s43979-022-00006-8
T. Kunene, L. Xiong, J. Rosenthal, Solar-powered synthesis of hydrocarbons from carbon dioxide and water. Proc. Natl. Acad. Sci. U.S.A. 116, 9693–9695 (2019). https://doi.org/10.1073/pnas.1904856116
J.K. Sheu, P.H. Liao, T.C. Huang, K.J. Chiang, W.C. Lai et al., InGaN-based epitaxial films as photoelectrodes for hydrogen generation through water photoelectrolysis and CO2 reduction to formic acid. Sol. Energy Mater. Sol. Cells 166, 86–90 (2017). https://doi.org/10.1016/j.solmat.2017.03.014
L. Wan, R. Chen, D.W.F. Cheung, L. Wu, J. Luo, Solar driven CO2 reduction: from materials to devices. J. Mater. Chem. A 11, 12499–12520 (2023). https://doi.org/10.1039/d3ta00267e
T. Morikawa, S. Sato, K. Sekizawa, T.M. Suzuki, T. Arai, Solar-driven CO2 reduction using a semiconductor/molecule hybrid photosystem: from photocatalysts to a monolithic artificial leaf. Acc. Chem. Res. 55, 933–943 (2022). https://doi.org/10.1021/acs.accounts.1c00564
S.-U. Kim, D.-Y. Um, J.-K. Oh, B. Chandran, C.-R. Lee et al., Structural engineering in a microscale laser diode with InGaN tunnel-junction nanorods. ACS Photonics 10, 1053–1059 (2023). https://doi.org/10.1021/acsphotonics.3c00132
S. Bai, W. Yin, L. Wang, Z. Li, Y. Xiong, Surface and interface design in cocatalysts for photocatalytic water splitting and CO2 reduction. RSC Adv. 6, 57446–57463 (2016). https://doi.org/10.1039/C6RA10539D
L. Tian, X. Guan, S. Zong, A. Dai, J. Qu, Cocatalysts for photocatalytic overall water splitting: a mini review. Catalysts 13, 355 (2023). https://doi.org/10.3390/catal13020355
R. Wang, Y. Kuwahara, K. Mori, H. Yamashita, Semiconductor-based photoanodes modified with metal-organic frameworks and molecular catalysts as cocatalysts for enhanced photoelectrochemical water oxidation reaction. ChemCatChem 13, 5058–5072 (2021). https://doi.org/10.1002/cctc.202101033
H. Song, S. Luo, H. Huang, B. Deng, J. Ye, Solar-driven hydrogen production: recent advances, challenges, and future perspectives. ACS Energy Lett. 7, 1043–1065 (2022). https://doi.org/10.1021/acsenergylett.1c02591
Y. Chen, X. Feng, Y. Liu, X. Guan, C. Burda et al., Metal oxide-based tandem cells for self-biased photoelectrochemical water splitting. ACS Energy Lett. 5, 844–866 (2020). https://doi.org/10.1021/acsenergylett.9b02620
R. Jia, Y. Wang, A. Li, C. Cheng, Recent advances on three-dimensional ordered macroporous metal oxide-based photoelectrodes for photoelectrochemical water splitting. Mater. Chem. Front. 8, 1230–1249 (2024). https://doi.org/10.1039/D3QM00990D
H. He, A. Liao, W. Guo, W. Luo, Y. Zhou et al., State-of-the-art progress in the use of ternary metal oxides as photoelectrode materials for water splitting and organic synthesis. Nano Today 28, 100763 (2019). https://doi.org/10.1016/j.nantod.2019.100763
Q. Cai, W. Hong, C. Jian, W. Liu, Ultrafast hot ion-exchange triggered electrocatalyst modification and interface engineering on silicon photoanodes. Nano Energy 70, 104485 (2020). https://doi.org/10.1016/j.nanoen.2020.104485
Y. Yang, S. Niu, D. Han, T. Liu, G. Wang et al., Progress in developing metal oxide nanomaterials for photoelectrochemical water splitting. Adv. Energy Mater. 7, 1700555 (2017). https://doi.org/10.1002/aenm.201700555
Y.-C. Pu, M.G. Kibria, Z. Mi, J.Z. Zhang, Ultrafast exciton dynamics in InGaN/GaN and Rh/Cr2O3 nanop-decorated InGaN/GaN nanowires. J. Phys. Chem. Lett. 6, 2649–2656 (2015). https://doi.org/10.1021/acs.jpclett.5b00909
S. Noh, J. Song, S. Han, J. Shin, Y.-T. Yu et al., Drastic improvement in photoelectrochemical water splitting performance over prolonged reaction time using new carrier-guiding semiconductor nanostructures. J. Mater. Chem. A 10, 9821–9829 (2022). https://doi.org/10.1039/D2TA01711C
J. Wu, When Group-III nitrides go infrared: new properties and perspectives. J. Appl. Phys. J. Appl. Phys. 106, 011101 (2009). https://doi.org/10.1063/1.3155798
S. Chu, S. Vanka, Y. Wang, J. Gim, Y. Wang et al., Solar water oxidation by an InGaN nanowire photoanode with a bandgap of 1.7 eV. ACS Energy Lett. 3, 307–314 (2018). https://doi.org/10.1021/acsenergylett.7b01138
S. Vanka, B. Zhou, R.A. Awni, Z. Song, F.A. Chowdhury et al., InGaN/Si double-junction photocathode for unassisted solar water splitting. ACS Energy Lett. 5, 3741–3751 (2020). https://doi.org/10.1021/acsenergylett.0c01583
X. Guan, F.A. Chowdhury, N. Pant, L. Guo, L. Vayssieres et al., Efficient unassisted overall photocatalytic seawater splitting on GaN-based nanowire arrays. J. Phys. Chem. C 122, 13797–13802 (2018). https://doi.org/10.1021/acs.jpcc.8b00875
P. Zhou, I.A. Navid, Y. Ma, Y. Xiao, P. Wang, et al., Solar-to-hydrogen efficiency of more than 9% in photocatalytic water splitting. Nature 613, 66–70 (2023). https://doi.org/10.1038/s41586-022-05399-1
Y. Wang, Y. Wu, K. Sun, Z. Mi, A quadruple-band metal–nitride nanowire artificial photosynthesis system for high efficiency photocatalytic overall solar water splitting. Mater. Horiz. 6, 1454–1462 (2019). https://doi.org/10.1039/C9MH00257J
X. Guan, F.A. Chowdhury, Y. Wang, N. Pant, S. Vanka et al., Making of an industry-friendly artificial photosynthesis device. ACS Energy Lett. 3, 2230–2231 (2018). https://doi.org/10.1021/acsenergylett.8b01377
M.G. Kibria, F.A. Chowdhury, S. Zhao, B. AlOtaibi, M.L. Trudeau et al., Visible light-driven efficient overall water splitting using p-type metal-nitride nanowire arrays. Nat. Commun. 6, 6797 (2015). https://doi.org/10.1038/ncomms7797
F.A. Chowdhury, M.L. Trudeau, H. Guo, Z. Mi, A photochemical diode artificial photosynthesis system for unassisted high efficiency overall pure water splitting. Nat. Commun. 9, 1707 (2018). https://doi.org/10.1038/s41467-018-04067-1
Z. Wang, Y. Gu, L. Wang, Revisiting solar hydrogen production through photovoltaic-electrocatalytic and photoelectrochemical water splitting. Front. Energy 15, 596–599 (2021). https://doi.org/10.1007/s11708-021-0745-0
H. He, Q. Zhang, Z. Wang, S. Pan, Y. Zhao et al., Advances and practical prospects for bias-free photovoltaic-driven electrochemical water splitting systems. Adv. Energy Mater. 14, 2303713 (2024). https://doi.org/10.1002/aenm.202303713
Y.-C. Kao, H.-M. Chou, S.-C. Hsu, A. Lin, C.-C. Lin et al., Performance comparison of III–V//Si and III–V//InGaAs multi-junction solar cells fabricated by the combination of mechanical stacking and wire bonding. Sci. Rep. 9, 4308 (2019). https://doi.org/10.1038/s41598-019-40727-y
C.-W. Huang, C.-H. Liao, C.-H. Wu, J.C.S. Wu, Photocatalytic water splitting to produce hydrogen using multi-junction solar cell with different deposited thin films. Sol. Energy Mater. Sol. Cells 107, 322–328 (2012). https://doi.org/10.1016/j.solmat.2012.07.003
Z. Li, S. Fang, H. Sun, R.-J. Chung, X. Fang et al., Solar hydrogen. Adv. Energy Mater. 13, 2203019 (2023). https://doi.org/10.1002/aenm.202203019
S.A. Bonke, M. Wiechen, D.R. MacFarlane, L. Spiccia, Renewable fuels from concentrated solar power: towards practical artificial photosynthesis. Energy Environ. Sci. 8, 2791–2796 (2015). https://doi.org/10.1039/C5EE02214B
B. Turan, J.-P. Becker, F. Urbain, F. Finger, U. Rau et al., Upscaling of integrated photoelectrochemical water-splitting devices to large areas. Nat. Commun. 7, 12681 (2016). https://doi.org/10.1038/ncomms12681
S.-Y. Liu, J.K. Sheu, Y.-C. Lin, Y.-T. Chen, S.J. Tu et al., InGaN working electrodes with assisted bias generated from GaAs solar cells for efficient water splitting. Opt. Express 21, A991–A996 (2013). https://doi.org/10.1364/OE.21.00A991
K. Fujii, S. Nakamura, M. Sugiyama, K. Watanabe, B. Bagheri et al., Characteristics of hydrogen generation from water splitting by polymer electrolyte electrochemical cell directly connected with concentrated photovoltaic cell. Int. J. Hydrog. Energy 38, 14424–14432 (2013). https://doi.org/10.1016/j.ijhydene.2013.07.010
J. Jia, L.C. Seitz, J.D. Benck, Y. Huo, Y. Chen et al., Solar water splitting by photovoltaic-electrolysis with a solar-to-hydrogen efficiency over 30. Nat. Commun. 7, 13237 (2016). https://doi.org/10.1038/ncomms13237
M.A. Nadeem, H. Idriss, Effect of PH, temperature, and low light flux on the performance (16% STH) of coupled triple junction solar cell to water electrolysis. J. Power. Sources 459, 228074 (2020). https://doi.org/10.1016/j.jpowsour.2020.228074
Z.N. Zahran, Y. Miseki, E.A. Mohamed, Y. Tsubonouchi, K. Makita et al., Perfect matching factor between a customized double-junction GaAs photovoltaic device and an electrolyzer for efficient solar water splitting. ACS Appl. Energy Mater. 5, 8241–8253 (2022). https://doi.org/10.1021/acsaem.2c00768
A. Nakamura, Y. Ota, K. Koike, Y. Hidaka, K. Nishioka et al., A 24.4% solar to hydrogen energy conversion efficiency by combining concentrator photovoltaic modules and electrochemical cells. Appl. Phys. Express 8, 107101 (2015). https://doi.org/10.7567/apex.8.107101
S.M. Bashir, M.A. Nadeem, M. Al-Oufi, M. Al-Hakami, T.T. Isimjan et al., Sixteen percent solar-to-hydrogen efficiency using a power-matched alkaline electrolyzer and a high concentrated solar cell: effect of operating parameters. ACS Omega 5, 10510–10518 (2020). https://doi.org/10.1021/acsomega.0c00749
M.A. Khan, I. Al-Shankiti, A. Ziani, H. Idriss, Demonstration of green hydrogen production using solar energy at 28% efficiency and evaluation of its economic viability. Sustain. Energy Fuels 5, 1085–1094 (2021). https://doi.org/10.1039/D0SE01761B
S. Rau, S. Vierrath, J. Ohlmann, A. Fallisch, D. Lackner et al., Highly efficient solar hydrogen generation—an integrated concept joining III–V solar cells with PEM electrolysis cells. Energy Technol. 2, 43–53 (2014). https://doi.org/10.1002/ente.201300116
G. Peharz, F. Dimroth, U. Wittstadt, Solar hydrogen production by water splitting with a conversion efficiency of 18%. Int. J. Hydrog. Energy 32, 3248–3252 (2007). https://doi.org/10.1016/j.ijhydene.2007.04.036
O. Khaselev, High-efficiency integrated multijunction photovoltaic/electrolysis systems for hydrogen production. Int. J. Hydrog. Energy 26, 127–132 (2001). https://doi.org/10.1016/s0360-3199(00)00039-2
T.J. Jacobsson, V. Fjällström, M. Sahlberg, M. Edoff, T. Edvinsson, A monolithic device for solar water splitting based on series interconnected thin film absorbers reaching over 10% solar-to-hydrogen efficiency. Energy Environ. Sci. 6, 3676–3683 (2013). https://doi.org/10.1039/C3EE42519C
C.R. Cox, J.Z. Lee, D.G. Nocera, T. Buonassisi, Ten-percent solar-to-fuel conversion with nonprecious materials. Proc. Natl. Acad. Sci. U.S.A. 111, 14057–14061 (2014). https://doi.org/10.1073/pnas.1414290111
H. Song, S. Oh, H. Yoon, K.-H. Kim, S. Ryu et al., Bifunctional NiFe inverse opal electrocatalysts with heterojunction Si solar cells for 954%-efficient unassisted solar water splitting. Nano Energy 42, 1–7 (2017). https://doi.org/10.1016/j.nanoen.2017.10.028
G. Liu, K. Du, S. Haussener, K. Wang, Charge transport in two-photon semiconducting structures for solar fuels. Chemsuschem 9, 2878–2904 (2016). https://doi.org/10.1002/cssc.201600773
B. Liu, S. Wang, G. Zhang, Z. Gong, B. Wu et al., Tandem cells for unbiased photoelectrochemical water splitting. Chem. Soc. Rev. 52, 4644–4671 (2023). https://doi.org/10.1039/D3CS00145H
J.F. Geisz, R.M. France, K.L. Schulte, M.A. Steiner, A.G. Norman et al., Six-junction III–V solar cells with 47.1% conversion efficiency under 143 Suns concentration. Nat. Energy 5, 326–335 (2020). https://doi.org/10.1038/s41560-020-0598-5
Y. Zheng, M. Ma, H. Shao, Recent advances in efficient and scalable solar hydrogen production through water splitting. Carbon Neutrality 2, 23 (2023). https://doi.org/10.1007/s43979-023-00064-6
Y. Wang, J. Schwartz, J. Gim, R. Hovden, Z. Mi, Stable unassisted solar water splitting on semiconductor photocathodes protected by multifunctional GaN nanostructures. ACS Energy Lett. 4, 1541–1548 (2019). https://doi.org/10.1021/acsenergylett.9b00549
E. Verlage, S. Hu, R. Liu, R.J.R. Jones, K. Sun et al., A monolithically integrated, intrinsically safe, 10% efficient, solar-driven water-splitting system based on active, stable earth-abundant electrocatalysts in conjunction with tandem III–V light absorbers protected by amorphous TiO2 films. Energy Environ. Sci. 8, 3166–3172 (2015). https://doi.org/10.1039/C5EE01786F
M.M. May, H.-J. Lewerenz, D. Lackner, F. Dimroth, T. Hannappel, Efficient direct solar-to-hydrogen conversion by in situ interface transformation of a tandem structure. Nat. Commun. 6, 8286 (2015). https://doi.org/10.1038/ncomms9286
O. Khaselev, J.A. Turner, A monolithic photovoltaic-photoelectrochemical device for hydrogen production via water splitting. Science 280, 425–427 (1998). https://doi.org/10.1126/science.280.5362.425
W.-H. Cheng, M.H. Richter, M.M. May, J. Ohlmann, D. Lackner et al., Monolithic photoelectrochemical device for direct water splitting with 19% efficiency. ACS Energy Lett. 3, 1795–1800 (2018). https://doi.org/10.1021/acsenergylett.8b00920
S. Okamoto, M. Deguchi, S. Yotsuhashi, Modulated III–V triple-junction solar cell wireless device for efficient water splitting. J. Phys. Chem. C 121, 1393–1398 (2017). https://doi.org/10.1021/acs.jpcc.6b07991
M. Ben-Naim, R.J. Britto, C.W. Aldridge, R. Mow, M.A. Steiner et al., Addressing the stability gap in photoelectrochemistry: molybdenum disulfide protective catalysts for tandem III–V unassisted solar water splitting. ACS Energy Lett. 5, 2631–2640 (2020). https://doi.org/10.1021/acsenergylett.0c01132
Q. Wang, K. Domen, Particulate photocatalysts for light-driven water splitting: mechanisms, challenges, and design strategies. Chem. Rev. 120, 919–985 (2020). https://doi.org/10.1021/acs.chemrev.9b00201
P. Varadhan, H.-C. Fu, Y.-C. Kao, R.-H. Horng, J.-H. He, An efficient and stable photoelectrochemical system with 9% solar-to-hydrogen conversion efficiency via InGaP/GaAs double junction. Nat. Commun. 10, 5282 (2019). https://doi.org/10.1038/s41467-019-12977-x
M.A. Steiner, C.D. Barraugh, C.W. Aldridge, I.B. Alvarez, D.J. Friedman et al., Photoelectrochemical water splitting using strain-balanced multiple quantum well photovoltaic cells. Sustain. Energy Fuels 3, 2837–2844 (2019). https://doi.org/10.1039/c9se00276f
J.H. Kim, D. Hansora, P. Sharma, J.-W. Jang, J.S. Lee, Toward practical solar hydrogen production–an artificial photosynthetic leaf-to-farm challenge. Chem. Soc. Rev. 48, 1908–1971 (2019). https://doi.org/10.1039/c8cs00699g
H. Charles, R.C. Pawar, H. Khan, C.S. Lee, Photocatalyst engineering for water-based CO2 reduction under visible light irradiation to enhance CO selectivity: a review of recent advances. Int. J. Precis. Eng. Manuf. Green Technol. 10, 1061–1091 (2023). https://doi.org/10.1007/s40684-023-00511-w
M. Zhang, M. Lu, Z.-L. Lang, J. Liu, M. Liu et al., Semiconductor/covalent-organic-framework Z-scheme heterojunctions for artificial photosynthesis. Angew. Chem. Int. Ed. Engl. 59, 6500–6506 (2020). https://doi.org/10.1002/anie.202000929
W. Zhang, A.R. Mohamed, W.J. Ong, Z-scheme photocatalytic systems for carbon dioxide reduction: where are we now? Angew. Chem. Int. Ed. 59, 22894–22915 (2020). https://doi.org/10.1002/anie.201914925
J. Nozik, R. Memming, Physical chemistry of semiconductor-liquid interfaces. J. Phys. Chem. 100, 13061–13078 (1996)
S.W. Boettcher, S.Z. Oener, M.C. Lonergan, Y. Surendranath, S. Ardo et al., Potentially confusing: potentials in electrochemistry. ACS Energy Lett. 6, 261–266 (2021). https://doi.org/10.1021/acsenergylett.0c02443
L. Caccamo, G. Cocco, G. Martín, H. Zhou, S. Fundling et al., Insights into interfacial changes and photoelectrochemical stability of InxGa1–xN (0001) photoanode surfaces in liquid environments. ACS Appl. Mater. Interfaces 8, 8232–8238 (2016). https://doi.org/10.1021/acsami.5b12583
J.H. Park, A. Mandal, S. Kang, U. Chatterjee, J.S. Kim et al., Hydrogen generation using non-polar coaxial InGaN/GaN multiple quantum well structure formed on hollow n-GaN nanowires. Sci. Rep. 6, 31996 (2016). https://doi.org/10.1038/srep31996
M. Alqahtani, S. Sathasivam, A. Alhassan, F. Cui, S. BenJaber et al., InGaN/GaN multiple quantum well photoanode modified with cobalt oxide for water oxidation. ACS Appl. Energy Mater. 1, 6417–6424 (2018). https://doi.org/10.1021/acsaem.8b01387
C.W. Lee, F.-W. Lin, P.-H. Liao, M.-L. Lee, J.-K. Sheu, Stable photoelectrochemical water splitting using p–n GaN junction decorated with nickel oxides as photoanodes. J. Phys. Chem. C 125, 16776–16783 (2021). https://doi.org/10.1021/acs.jpcc.1c04208
K. Maeda, Photocatalytic water splitting using semiconductor ps: history and recent developments. J. Photochem. Photobiol. C Photochem. Rev. 12, 237–268 (2011). https://doi.org/10.1016/j.jphotochemrev.2011.07.001
M. Saruyama, C.M. Pelicano, T. Teranishi, Bridging electrocatalyst and cocatalyst studies for solar hydrogen production via water splitting. Chem. Sci. 13, 2824–2840 (2022). https://doi.org/10.1039/d1sc06015e
D. Kang, T.W. Kim, S.R. Kubota, A.C. Cardiel, H.G. Cha et al., Electrochemical synthesis of photoelectrodes and catalysts for use in solar water splitting. Chem. Rev. 115, 12839–12887 (2015). https://doi.org/10.1021/acs.chemrev.5b00498
M. Kumar, B. Meena, P. Subramanyam, D. Suryakala, C. Subrahmanyam, Recent trends in photoelectrochemical water splitting: the role of cocatalysts. NPG Asia Mater. 14, 88 (2022). https://doi.org/10.1038/s41427-022-00436-x
L. Tian, X. Guan, S. Zong, A. Dai, J. Qu, Cocatalysts for photocatalytic overall water splitting: a mini review. Catalysts 13, 1–19 (2023). https://doi.org/10.3390/catal13020355
Q. Wang, J. Liu, Q. Li, J. Yang, Stability of photocathodes: a review on principles, design, and strategies. Chemsuschem 16, e202202186 (2023). https://doi.org/10.1002/cssc.202202186
Y. Xiao, X. Kong, S. Vanka, W.J. Dong, G. Zeng et al., Oxynitrides enabled photoelectrochemical water splitting with over 3, 000 hrs stable operation in practical two-electrode configuration. Nat. Commun. 14, 2047 (2023). https://doi.org/10.1038/s41467-023-37754-9
M.G. Kibria, R. Qiao, W. Yang, I. Boukahil, X. Kong et al., Atomic-scale origin of long-term stability and high performance of p-GaN nanowire arrays for photocatalytic overall pure water splitting. Adv. Mater. 28, 8388–8397 (2016). https://doi.org/10.1002/adma.201602274
S. Han, S. Noh, J. Shin, Y.-T. Yu, I.-S. Seo et al., Photoelectrochemical water-splitting using GaN pyramidal dots and their long-term stability in the two-electrode configuration. J. Mater. Chem. A 10, 10355–10362 (2022). https://doi.org/10.1039/D2TA01361D
C.A. Nelson, N.R. Monahan, X.-Y. Zhu, Exceeding the Shockley-Queisser limit in solar energy conversion. Energy Environ. Sci. 6, 3508–3519 (2013). https://doi.org/10.1039/C3EE42098A
W. Hou, S.B. Cronin, A review of surface plasmon resonance-enhanced photocatalysis. Adv. Funct. Mater. 23, 1612–1619 (2013). https://doi.org/10.1002/adfm.201202148
H. Karimi-Maleh, B. Kumar, S. Rajendran, J. Qin, S. Vadivel et al., Tuning of metal oxides photocatalytic performance using Ag nanops integration. J. Mol. Liq. 314, 113588 (2020). https://doi.org/10.1016/j.molliq.2020.113588
T. Bak, J. Nowotny, M. Rekas, C.C. Sorrell, Photo-electrochemical hydrogen generation from water using solar energy. Materials-related aspects. Int. J. Hydrog. Energy 27, 991–1022 (2002). https://doi.org/10.1016/s0360-3199(02)00022-8
T. Takata, J. Jiang, Y. Sakata, M. Nakabayashi, N. Shibata et al., Photocatalytic water splitting with a quantum efficiency of almost unity. Nature 581, 411–414 (2020). https://doi.org/10.1038/s41586-020-2278-9
M. Valenti, M.P. Jonsson, G. Biskos, A. Schmidt-Ott, W.A. Smith, Plasmonic nanop-semiconductor composites for efficient solar water splitting. J. Mater. Chem. A 4, 17891–17912 (2016). https://doi.org/10.1039/C6TA06405A
J.-K. Oh, D.-Y. Um, B. Chandran, S.-U. Kim, C.-R. Lee et al., Low-leakage Current core-shell AlGaN nanorod LED device operating in the ultraviolet-B band. ACS Appl. Mater. Interfaces 16, 9020–9029 (2024). https://doi.org/10.1021/acsami.3c17356
N. Wu, Plasmonic metal–semiconductor photocatalysts and photoelectrochemical cells: a review. Nanoscale 10, 2679–2696 (2018). https://doi.org/10.1039/C7NR08487K
H. Chen, P. Wang, X. Wang, X. Wang, L. Rao et al., 3D InGaN nanowire arrays on oblique pyramid-textured Si (311) for light trapping and solar water splitting enhancement. Nano Energy 83, 105768 (2021). https://doi.org/10.1016/j.nanoen.2021.105768
Z. Zhang, J.T.J. Yates, Band bending in semiconductors: chemical and physical consequences at surfaces and interfaces. Chem. Rev. 112, 5520–5551 (2012). https://doi.org/10.1021/cr3000626
Y. Nosaka, A.Y. Nosaka, Generation and detection of reactive oxygen species in photocatalysis. Chem. Rev. 117, 11302–11336 (2017). https://doi.org/10.1021/acs.chemrev.7b00161
S. Chen, T. Takata, K. Domen, Particulate photocatalysts for overall water splitting. Nat. Rev. Mater. 2, 17050 (2017). https://doi.org/10.1038/natrevmats.2017.50
J. Wu, Y. Huang, W. Ye, Y. Li, CO2 reduction: from the electrochemical to photochemical approach. Adv. Sci. 4, 1700194 (2017). https://doi.org/10.1002/advs.392
C.E. Creissen, M. Fontecave, Solar-driven electrochemical CO2 reduction with heterogeneous catalysts. Adv. Energy Mater. 11, 2002652 (2021). https://doi.org/10.1002/aenm.202002652
Y. Li, Z. Ma, S. Hou, Q. Liu, G. Yan et al., Recent progress in hydrogen: from solar to solar cell. J. Mater. Sci. Technol. 176, 236–257 (2024). https://doi.org/10.1016/j.jmst.2023.08.030
A. Polman, M. Knight, E.C. Garnett, B. Ehrler, W.C. Sinke, Photovoltaic materials: present efficiencies and future challenges. Science 352, eaad4424 (2016). https://doi.org/10.1126/science.aad4424
A. Grimm, W.A. de Jong, G.J. Kramer, Renewable hydrogen production: a techno-economic comparison of photoelectrochemical cells and photovoltaic-electrolysis. Int. J. Hydrog. Energy 45, 22545–22555 (2020). https://doi.org/10.1016/j.ijhydene.2020.06.092
L. Pan, J.H. Kim, M.T. Mayer, M.-K. Son, A. Ummadisingu et al., Boosting the performance of Cu2O photocathodes for unassisted solar water splitting devices. Nat. Catal. 1, 412–420 (2018). https://doi.org/10.1038/s41929-018-0077-6
D. Kang, J.L. Young, H. Lim, W.E. Klein, H. Chen et al., Printed assemblies of GaAs photoelectrodes with decoupled optical and reactive interfaces for unassisted solar water splitting. Nat. Energy 2, 17043 (2017). https://doi.org/10.1038/nenergy.2017.43
J. Lin, W. Wang, G. Li, Modulating surface/interface structure of emerging InGaN nanowires for efficient photoelectrochemical water splitting. Adv. Funct. Mater. 30, 2005677 (2020). https://doi.org/10.1002/adfm.202005677
W.J. Dong, Z. Mi, One-dimensional III-nitrides: towards ultrahigh efficiency, ultrahigh stability artificial photosynthesis. J. Mater. Chem. A 11, 5427–5459 (2023). https://doi.org/10.1039/d2ta09967e
M. Powalla, S. Paetel, E. Ahlswede, R. Wuerz, C.D. Wessendorf et al., Thin-film solar cells exceeding 22% solar cell efficiency: an overview on CdTe-, Cu(In, Ga)Se2-, and perovskite-based materials. Appl. Phys. Rev. 5, 041602 (2018). https://doi.org/10.1063/1.5061809
J.W. Ager, M.R. Shaner, K.A. Walczak, I.D. Sharp, S. Ardo, Experimental demonstrations of spontaneous, solar-driven photoelectrochemical water splitting. Energy Environ. Sci. 8, 2811–2824 (2015). https://doi.org/10.1039/c5ee00457h
K. Wang, L. Zheng, Y. Hou, A. Nozariasbmarz, B. Poudel et al., Overcoming Shockley-Queisser limit using halide perovskite platform? Joule 6, 756–771 (2022). https://doi.org/10.1016/j.joule.2022.01.009
N.-T. Suen, S.-F. Hung, Q. Quan, N. Zhang, Y.-J. Xu et al., Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives. Chem. Soc. Rev. 46, 337–365 (2017). https://doi.org/10.1039/C6CS00328A
Y. Yang, P. Li, X. Zheng, W. Sun, S.X. Dou et al., Anion-exchange membrane water electrolyzers and fuel cells. Chem. Soc. Rev. 51, 9620–9693 (2022). https://doi.org/10.1039/d2cs00038e
F. Yilmaz, M.T. Balta, R. Selbaş, RETRACTED: a review of solar based hydrogen production methods. Renew. Sustain. Energy Rev. 56, 171–178 (2016). https://doi.org/10.1016/j.rser.2015.11.060
M.G. Walter, E.L. Warren, J.R. McKone, S.W. Boettcher, Q. Mi et al., Solar water splitting cells. Chem. Rev. 110, 6446–6473 (2010). https://doi.org/10.1021/cr1002326
H. Nishiyama, T. Yamada, M. Nakabayashi, Y. Maehara, M. Yamaguchi et al., Photocatalytic solar hydrogen production from water on a 100–m2 scale. Nature 598, 304–307 (2021). https://doi.org/10.1038/s41586-021-03907-3
S. Zoller, E. Koepf, D. Nizamian, M. Stephan, A. Patané et al., A solar tower fuel plant for the thermochemical production of kerosene from H2O and CO2. Joule 6, 1606–1616 (2022). https://doi.org/10.1016/j.joule.2022.06.012
R. Schäppi, D. Rutz, F. Dähler, A. Muroyama, P. Haueter et al., Drop-in fuels from sunlight and air. Nature 601, 63–68 (2022). https://doi.org/10.1038/s41586-021-04174-y
A. Vilanova, P. Dias, J. Azevedo, M. Wullenkord, C. Spenke et al., Solar water splitting under natural concentrated sunlight using a 200 cm2 photoelectrochemical-photovoltaic device. J. Power. Sources 454, 227890 (2020). https://doi.org/10.1016/j.jpowsour.2020.227890
G. Segev, J. Kibsgaard, C. Hahn, Z.J. Xu, W.H. (Sophia) Cheng et al., The 2022 solar fuels roadmap. J. Phys. D Appl. Phys. 55, 323003 (2022). https://doi.org/10.1088/1361-6463/ac6f97
M. Dumortier, S. Tembhurne, S. Haussener, Holistic design guidelines for solar hydrogen production by photo-electrochemical routes. Energy Environ. Sci. 8, 3614–3628 (2015). https://doi.org/10.1039/c5ee01821h
B.A. Pinaud, J.D. Benck, L.C. Seitz, A.J. Forman, Z. Chen et al., Technical and economic feasibility of centralized facilities for solar hydrogen production via photocatalysis and photoelectrochemistry. Energy Environ. Sci. 6, 1983–2002 (2013). https://doi.org/10.1039/C3EE40831K
Q. Wang, C. Pornrungroj, S. Linley, E. Reisner, Strategies to improve light utilization in solar fuel synthesis. Nat. Energy 7, 13–24 (2022). https://doi.org/10.1038/s41560-021-00919-1
M.A. Modestino, S. Haussener, An integrated device view on photo-electrochemical solar-hydrogen generation. Annu. Rev. Chem. Biomol. Eng. 6, 13–34 (2015). https://doi.org/10.1146/annurev-chembioeng-061114-123357
I. Holmes-Gentle, S. Tembhurne, C. Suter, S. Haussener, Kilowatt-scale solar hydrogen production system using a concentrated integrated photoelectrochemical device. Nat. Energy 8, 586–596 (2023). https://doi.org/10.1038/s41560-023-01247-2
B. Seger, I.E. Castelli, P.C.K. Vesborg, K.W. Jacobsen, O. Hansen et al., 2-Photon tandem device for water splitting: comparing photocathode first versus photoanode first designs. Energy Environ. Sci. 7, 2397–2413 (2014). https://doi.org/10.1039/C4EE01335B
C. Ding, W. Qin, N. Wang, G. Liu, Z. Wang et al., Solar-to-hydrogen efficiency exceeding 2.5% achieved for overall water splitting with an all earth-abundant dual-photoelectrode. Phys. Chem. Chem. Phys. 16, 15608–15614 (2014). https://doi.org/10.1039/C4CP02391A
B. AlOtaibi, S. Fan, S. Vanka, M.G. Kibria, Z. Mi, A metal-nitride nanowire dual-photoelectrode device for unassisted solar-to-hydrogen conversion under parallel illumination. Nano Lett. 15, 6821–6828 (2015). https://doi.org/10.1021/acs.nanolett.5b02671
W.J. Dong, Y. Xiao, K.R. Yang, Z. Ye, P. Zhou et al., Pt nanoclusters on GaN nanowires for solar-asssisted seawater hydrogen evolution. Nat. Commun. 14, 179 (2023). https://doi.org/10.1038/s41467-023-35782-z
K. Ohkawa, Y. Uetake, M. Velazquez-Rizo, D. Iida, Photoelectrochemical hydrogen generation using graded In-content InGaN photoelectrode structures. Nano Energy 59, 569–573 (2019). https://doi.org/10.1016/j.nanoen.2019.03.011
D.-Y. Um, Y.-H. Ra, J.-H. Park, G.-E. Hong, C.-R. Lee, Near-IR emission of InGaN quasi-quantum dots on non-polar GaN nanowire structures. Nanoscale Adv. 3, 5036–5045 (2021). https://doi.org/10.1039/d1na00338k
D.-Y. Um, B. Chandran, J.-K. Oh, S.-U. Kim, Y.-T. Yu et al., External catalyst-free InGaN photoelectrode for highly efficient energy conversion and H2 generation. Chem. Eng. J. 472, 144997 (2023). https://doi.org/10.1016/j.cej.2023.144997
J.L. Young, M.A. Steiner, H. Döscher, R.M. France, J.A. Turner et al., Direct solar-to-hydrogen conversion via inverted metamorphic multi-junction semiconductor architectures. Nat. Energy 2, 17028 (2017). https://doi.org/10.1038/nenergy.2017.28
Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan Vol. 11007, (Department of Energy, 2015), pp. 1–44.
Q. Chen, G. Fan, H. Fu, Z. Li, Z. Zou, Tandem photoelectrochemical cells for solar water splitting. Adv. Phys. X 3, 1487267 (2018). https://doi.org/10.1080/23746149.2018.1487267
J.L. Young, K.X. Steirer, M.J. Dzara, J.A. Turner, T.G. Deutsch, Remarkable stability of unmodified GaAs photocathodes during hydrogen evolution in acidic electrolyte. J. Mater. Chem. A 4, 2831–2836 (2016). https://doi.org/10.1039/C5TA07648J
S. Xu, E.A. Carter, Theoretical insights into heterogeneous (photo)electrochemical CO2 reduction. Chem. Rev. 119, 6631–6669 (2019). https://doi.org/10.1021/acs.chemrev.8b00481
P. Hou, W. Song, X. Wang, Z. Hu, P. Kang, Well-defined single-atom cobalt catalyst for electrocatalytic flue gas CO2 reduction. Small 16, e2001896 (2020). https://doi.org/10.1002/smll.202001896
J.W. Lim, W.J. Dong, W.S. Cho, C.J. Yoo, J.-L. Lee, CuSx catalysts by Ag-mediated corrosion of Cu for electrochemical reduction of sulfur-containing CO2 gas to HCOOH. ACS Catal. 12, 13174–13185 (2022). https://doi.org/10.1021/acscatal.2c04088
W.J. Dong, I.A. Navid, Y. Xiao, J.W. Lim, J.L. Lee et al., CuS-decorated GaN nanowires on silicon photocathodes for converting CO2 mixture gas to HCOOH. J. Am. Chem. Soc. 143, 10099–10107 (2021). https://doi.org/10.1021/jacs.1c02139
S.N. Habisreutinger, L. Schmidt-Mende, J.K. Stolarczyk, Photocatalytic reduction of CO2 on TiO2 and other semiconductors. Angew. Chem. Int. Ed. 52, 7372–7408 (2013). https://doi.org/10.1002/anie.201207199
L. Wang, W. Chen, D. Zhang, Y. Du, R. Amal et al., Surface strategies for catalytic CO2 reduction: from two-dimensional materials to nanoclusters to single atoms. Chem. Soc. Rev. 48, 5310–5349 (2019). https://doi.org/10.1039/c9cs00163h
S. Back, M.S. Yeom, Y. Jung, Active sites of Au and Ag nanop catalysts for CO2 electroreduction to CO. ACS Catal. 5, 5089–5096 (2015). https://doi.org/10.1021/acscatal.5b00462
D.R. Kauffman, D. Alfonso, C. Matranga, H. Qian, R. Jin, Experimental and computational investigation of Au25 clusters and CO2: a unique interaction and enhanced electrocatalytic activity. J. Am. Chem. Soc. 134, 10237–10243 (2012). https://doi.org/10.1021/ja303259q
B. Zhou, Y. Ma, P. Ou, Z. Ye, X.-Y. Li et al., Light-driven synthesis of C2H6 from CO2 and H2O on a bimetallic AuIr composite supported on InGaN nanowires. Nat. Catal. 6, 987–995 (2023). https://doi.org/10.1038/s41929-023-01023-1
Y. Wang, J. Liu, Y. Wang, Y. Wang, G. Zheng, Efficient solar-driven electrocatalytic CO2 reduction in a redox-medium-assisted system. Nat. Commun. 9, 5003 (2018). https://doi.org/10.1038/s41467-018-07380-x
R.T. Rashid, Y. Chen, X. Liu, F.A. Chowdhury, M. Liu et al., Tunable green syngas generation from CO2 and H2O with sunlight as the only energy input. Proc. Natl. Acad. Sci. U.S.A. 119, e2121174119 (2022). https://doi.org/10.1073/pnas.2121174119
D. Higgins, C. Hahn, C. Xiang, T.F. Jaramillo, A.Z. Weber, Gas-diffusion electrodes for carbon dioxide reduction: a new paradigm. ACS Energy Lett. 4, 317–324 (2019). https://doi.org/10.1021/acsenergylett.8b02035
M.R. Singh, K. Papadantonakis, C. Xiang, N.S. Lewis, An electrochemical engineering assessment of the operational conditions and constraints for solar-driven water-splitting systems at near-neutral pH. Energy Environ. Sci. 8, 2760–2767 (2015). https://doi.org/10.1039/C5EE01721A
S. Verma, X. Lu, S. Ma, R.I. Masel, P.J.A. Kenis, The effect of electrolyte composition on the electroreduction of CO2 to CO on Ag based gas diffusion electrodes. Phys. Chem. Chem. Phys. 18, 7075–7084 (2016). https://doi.org/10.1039/c5cp05665a
W.-H. Cheng, M.H. Richter, I. Sullivan, D.M. Larson, C. Xiang et al., CO2 reduction to CO with 19% efficiency in a solar-driven gas diffusion electrode flow cell under outdoor solar illumination. ACS Energy Lett. 5, 470–476 (2020). https://doi.org/10.1021/acsenergylett.9b02576
B. Zhou, P. Ou, N. Pant, S. Cheng, S. Vanka et al., Highly efficient binary copper-iron catalyst for photoelectrochemical carbon dioxide reduction toward methane. Proc. Natl. Acad. Sci. U.S.A. 117, 1330–1338 (2020). https://doi.org/10.1073/pnas.1911159117
Y. Wang, S. Fan, B. AlOtaibi, Y. Wang, L. Li et al., A monolithically integrated Gallium nitride nanowire/silicon solar cell photocathode for selective carbon dioxide reduction to methane. Chemistry 22, 8809–8813 (2016). https://doi.org/10.1002/chem.201601642
S. Chu, P. Ou, P. Ghamari, S. Vanka, B. Zhou et al., Photoelectrochemical CO2 reduction into syngas with the metal/oxide interface. J. Am. Chem. Soc. 140, 7869–7877 (2018). https://doi.org/10.1021/jacs.8b03067
B. Zhou, X. Kong, S. Vanka, S. Cheng, N. Pant et al., A GaN: Sn nanoarchitecture integrated on a silicon platform for converting CO2 to HCOOH by photoelectrocatalysis. Energy Environ. Sci. 12, 2842–2848 (2019). https://doi.org/10.1039/c9ee01339c
S. Chu, P. Ou, R.T. Rashid, Y. Pan, D. Liang et al., Efficient photoelectrochemical conversion of CO2 to syngas by photocathode engineering. Green Energy Environ. 7, 545–553 (2022). https://doi.org/10.1016/j.gee.2020.11.015
Y. Zhang, C. Ye, J. Duan, H. Feng, D. Liu et al., Solar-driven carbon dioxide reduction: a fair evaluation of photovoltaic-biased photoelectrocatalysis and photovoltaic-powered electrocatalysis. Front. Energy Res. 10, 956444 (2022). https://doi.org/10.3389/fenrg.2022.956444
B. AlOtaibi, X. Kong, S. Vanka, S.Y. Woo, A. Pofelski et al., Photochemical carbon dioxide reduction on Mg-doped Ga(In)N nanowire arrays under visible light irradiation. ACS Energy Lett. 1, 246–252 (2016). https://doi.org/10.1021/acsenergylett.6b00119
S. Chu, S. Fan, Y. Wang, D. Rossouw, Y. Wang et al., Tunable syngas production from CO2 and H2O in an aqueous photoelectrochemical cell. Angew. Chem. Int. Ed. 55, 14262–14266 (2016). https://doi.org/10.1002/anie.201606424
J.S. DuChene, G. Tagliabue, A.J. Welch, W.-H. Cheng, H.A. Atwater, Hot hole collection and photoelectrochemical CO2 reduction with plasmonic Au/p-GaN photocathodes. Nano Lett. 18, 2545–2550 (2018). https://doi.org/10.1021/acs.nanolett.8b00241
B.V. Ricketti, E.M. Gauger, A. Fedrizzi, The coherence time of sunlight in the context of natural and artificial light-harvesting. Sci. Rep. 12, 5438 (2022). https://doi.org/10.1038/s41598-022-08693-0
S. Harrison, M. Hayne, Photoelectrolysis using type-II semiconductor heterojunctions. Sci. Rep. 7, 11638 (2017). https://doi.org/10.1038/s41598-017-11971-x
Y. Zhao, M. Xu, X. Huang, J. Lebeau, T. Li et al., Toward high efficiency at high temperatures: recent progress and prospects on InGaN-Based solar cells. Mater. Today Energy 31, 101229 (2023). https://doi.org/10.1016/j.mtener.2022.101229
A.K. Al Sharyani, L. Muruganandam, Photocatalytic degradation of eicosane and phytane compounds using support zinc oxide nanorods under solar simulator irradiation. J. Water Process. Eng. 53, 103837 (2023). https://doi.org/10.1016/j.jwpe.2023.103837