Rational Design of Layered SnS2 on Ultralight Graphene Fiber Fabrics as Binder-Free Anodes for Enhanced Practical Capacity of Sodium-Ion Batteries
Corresponding Author: Chaohe Xu
Nano-Micro Letters,
Vol. 11 (2019), Article Number: 66
Abstract
Generally, the practical capacity of an electrode should include the weight of non-active components such as current collector, polymer binder, and conductive additives, which were as high as 70 wt% in current reported works, seriously limiting the practical capacity. This work pioneered the usage of ultralight reduced graphene fiber (rGF) fabrics as conductive scaffolds, aiming to reduce the weight of non-active components and enhance the practical capacity. Ultrathin SnS2 nanosheets/rGF hybrids were prepared and used as binder-free electrodes of sodium-ion batteries (SIBs). The interfused graphene fibers endow the electrode a porous, continuous, and conductive network. The in situ phase transformation from SnO2 to SnS2 could preserve the strong interfacial interactions between SnS2 and graphene. Benefitting from these, the designed binder-free electrode delivers a high specific capacity of 500 mAh g−1 after 500 cycles at a current rate of 0.5 A g−1 with almost 100% Coulombic efficiency. Furthermore, the weight percentage of SnS2 in the whole electrode could reach up to 67.2 wt%, much higher than that of common electrode configurations using Cu foil, Al foil, or carbon cloth, significantly highlighting the ultralight characters and advantages of the rGF fabrics for using as binder-free electrodes of SIBs.
Highlights:
1 Layered SnS2 nanosheets/reduced graphene fiber (SnS2@rGF) hybrid fabrics were fabricated as binder-free electrodes.
2 Ultralight rGF fabrics could increase the active materials loading to a high level of 67.2 wt% in the whole electrode, which is much higher than that of traditional slurry coating electrodes by using Cu or Al foil as current collectors.
3 The practical capacity based on the weight of electrode could increase to as high as ~ 538 mAh g−1 exceeding to the slurry coating electrodes.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- V. Palomares, P. Serras, I. Villaluenga, K.B. Hueso, J. Carretero-González, T. Rojo, Na-ion batteries, recent advances and present challenges to become low cost energy storage systems. Energy Environ. Sci. 5(3), 5884–5901 (2012). https://doi.org/10.1039/c2ee02781j
- S.P. Ong, V.L. Chevrier, G. Hautier, A. Jain, C. Moore, S. Kim, X. Ma, G. Ceder, Voltage, stability and diffusion barrier differences between sodium-ion and lithium-ion intercalation materials. Energy Environ. Sci. 4(9), 3680–3688 (2011). https://doi.org/10.1039/c1ee01782a
- M. Huang, B. Xi, Z. Feng, J. Liu, J. Feng, Y. Qian, S.X. Facile, Synthesis of N, O-codoped hard carbon at the kilogram scale for fast capacitive sodium storage man. J. Mater. Chem. A 6, 16465–16474 (2018). https://doi.org/10.1039/C8TA06160B
- Y.X. Wang, S.L. Chou, H.K. Liu, S.X. Dou, Reduced graphene oxide with superior cycling stability and rate capability for sodium storage. Carbon 57, 202–208 (2013). https://doi.org/10.1016/j.carbon.2013.01.064
- B.-W. Zhang, T. Sheng, Y.-D. Liu, Y.-X. Wang, L. Zhang et al., Atomic cobalt as an efficient electrocatalyst in sulfur cathodes for superior room-temperature sodium-sulfur batteries. Nat. Commun. 9(1), 4082 (2018). https://doi.org/10.1038/s41467-018-06144-x
- Y. Fu, Q. Wei, G. Zhang, S. Sun, Advanced phosphorus-based materials for lithium/sodium-ion batteries: recent developments and future perspectives. Adv. Energy Mater. 8, 1702849 (2018). https://doi.org/10.1002/aenm.201702849
- A. Beda, P.L. Taberna, P. Simon, C.M. Ghimbeu, Hard carbons derived from green phenolic resins for Na-ion batteries. Carbon 139, 248–257 (2018). https://doi.org/10.1016/j.carbon.2018.06.036
- B. Li, B. Xi, Z. Feng, Y. Lin, J. Liu, J. Feng, Y. Qian, Hierarchical porous nanosheets constructed by graphene-coated, interconnected TiO2 nanoparticles for ultrafast sodium storage. Adv. Mater. 30, 1705788 (2018). https://doi.org/10.1002/adma.201705788
- L. Li, Z. Chen, M. Zhang, Mo2C embedded in S-doped carbon nano fi bers for high-rate performance and long-life time Na-ion batteries. Solid State Ion. 323, 151–156 (2018). https://doi.org/10.1016/j.ssi.2018.06.004
- L. Li, S. Peng, N. Bucher, H.Y. Chen, N. Shen et al., Large-scale synthesis of highly uniform Fe1−xS nanostructures as a high-rate anode for sodium ion batteries. Nano Energy 37, 81–89 (2017). https://doi.org/10.1016/j.nanoen.2017.05.012
- X. Xie, Z. Ao, D. Su, J. Zhang, G. Wang, MoS2/graphene composite anodes with enhanced performance for sodium-ion batteries: the role of the two-dimensional heterointerface. Adv. Funct. Mater. 25(9), 1393–1403 (2015). https://doi.org/10.1002/adfm.201404078
- C. Zhao, C. Yu, M. Zhang, Q. Sun, S. Li et al., Enhanced sodium storage capability enabled by super wide-interlayer-spacing MoS2 integrated on carbon fibers. Nano Energy 41, 66–74 (2017). https://doi.org/10.1016/j.nanoen.2017.08.030
- J. Feng, S. Xiong, Rationally incorporated MoS2/SnS2 nanoparticles on graphene sheets for lithium-ion and sodium-ion batteries. ACS Appl. Mater. Interfaces 9, 27697–27706 (2017). https://doi.org/10.1021/acsami.7b06572
- D. Yin, Z. Chen, Sn-interspersed MoS2/C nanosheets with high capacity for Na+/K+ storage. J. Phys. Chem. Solids 126, 72–77 (2019). https://doi.org/10.1016/j.jpcs.2018.10.029
- X. Xiong, G. Wang, Y. Lin, Y. Wang, X. Ou et al., Enhancing sodium ion battery performance by strongly binding nanostructured Sb2S3 on sulfur-doped graphene sheets. ACS Nano 10(12), 10953–10959 (2016). https://doi.org/10.1021/acsnano.6b05653
- Q. Chen, S. Sun, T. Zhai, M. Yang, X. Zhao, H. Xia, Yolk-shell NiS2 nanoparticle-embedded carbon fibers for flexible fiber-shaped sodium battery. Adv. Energy Mater. 8, 1800054 (2018). https://doi.org/10.1002/aenm.201800054
- Y. Liu, X.Y. Yu, Y. Fang, X. Zhu, J. Bao, X. Zhou, X.W. Lou, Confining SnS2 ultrathin nanosheets in hollow carbon nanostructures for efficient capacitive sodium storage. Joule 2(4), 725–735 (2018). https://doi.org/10.1016/j.joule.2018.01.004
- J. Cui, S. Yao, Z. Lu, J.Q. Huang, W.G. Chong, F. Ciucci, J.K. Kim, Revealing pseudocapacitive mechanisms of metal dichalcogenide SnS2/graphene-CNT aerogels for high-energy Na hybrid capacitors. Adv. Energy Mater. 8, 1702488 (2018). https://doi.org/10.1002/aenm.201702488
- X. Wang, X. Li, Q. Li, H. Li, J. Xu et al., Improved electrochemical performance based on nanostructured SnS2@CoS2–rGO composite anode for sodium-ion batteries. Nano-Micro Lett. 10(3), 1–12 (2018). https://doi.org/10.1007/s40820-018-0200-x
- MathSciNet
- P. He, Y. Fang, X.Y. Yu, X.W.D. Lou, Hierarchical nanotubes constructed by carbon-coated ultrathin SnS nanosheets for fast capacitive sodium storage. Angew. Chem. Int. Ed. 56(40), 12202–12205 (2017). https://doi.org/10.1002/anie.201706652
- J. Choi, N.R. Kim, K. Lim, K. Ku, H.J. Yoon et al., Sulfide-based nanohybrid for high-performance anode of sodium-ion batteries. Small 13, 1700767 (2017). https://doi.org/10.1002/smll.201700767
- B. Li, B. Xi, F. Wu, H. Mao, J. Liu, J. Feng, One-step in situ formation of N-doped carbon nanosheet 3D porous networks/TiO2 hybrids with ultrafast sodium storage. Adv. Energy Mater. 9, 1803070 (2018). https://doi.org/10.1002/aenm.201803070
- C. Ma, J. Xu, J. Alvarado, B. Qu, J. Somerville, J.Y. Lee, Y.S. Meng, Investigating the energy storage mechanism of SnS2-rGO composite anode for advanced Na-ion batteries. Chem. Mater. 27(16), 5633–5640 (2015). https://doi.org/10.1021/acs.chemmater.5b01984
- L. Zhuo, Y. Wu, L. Wang, Y. Yu, X. Zhang, F. Zhao, One-step hydrothermal synthesis of SnS2/graphene composites as anode material for highly efficient rechargeable lithium ion batteries. RSC Adv. 2(12), 5084 (2012). https://doi.org/10.1039/c2ra00002d
- S. Chen, K. Xing, J. Wen, M. Wen, Q. Wu, Y. Cui, Hierarchical assembly and superior sodium storage properties of a sea-sponge structured C/SnS@C nanocomposite. J. Mater. Chem. A 6(17), 7631–7638 (2018). https://doi.org/10.1039/c8ta00833g
- B. Luo, Y. Hu, X. Zhu, T. Qiu, L. Zhi et al., Controllable growth of SnS2 nanostructures on nanocarbon surfaces for lithium-ion and sodium-ion storage with high rate capability. J. Mater. Chem. A 6(4), 1462–1472 (2018). https://doi.org/10.1039/c7ta09757c
- T. Zhou, W.K. Pang, C. Zhang, J. Yang, Z. Chen, H.K. Liu, Z. Guo, Enhanced sodium-ion battery performance by structural phase transition from two-dimensional hexagonal-SnS2 to orthorhombic-SnS. ACS Nano 8(8), 8323–8333 (2014). https://doi.org/10.1021/nn503582c
- Y. Wang, N. Xiao, Z. Wang, Y. Tang, H. Li et al., Ultrastable and high-capacity carbon nanofiber anode derived from pitch/polyacrylonitrile hybrid for flexible sodium-ion batteries. Carbon 135, 187–194 (2018). https://doi.org/10.1016/j.carbon.2018.04.031
- H.G. Wang, Z. Wu, F.L. Meng, D.L. Ma, X.L. Huang, L.M. Wang, X.B. Zhang, Nitrogen-doped porous carbon nanosheets as low-cost, high-performance anode material for sodium-ion batteries. Chemsuschem 6(1), 56–60 (2013). https://doi.org/10.1002/cssc.201200680
- Y. Zhang, P. Zhu, L. Huang, J. Xie, S. Zhang, G. Cao, X. Zhao, Few-layered SnS2 on few-layered reduced graphene oxide as Na-ion battery anode with ultralong cycle life and superior rate capability. Adv. Funct. Mater. 25(3), 481–489 (2015). https://doi.org/10.1002/adfm.201402833
- Y. Jiang, M. Wei, J. Feng, Y. Ma, S. Xiong, Enhancing the cycling stability of Na-ion batteries by bonding SnS2 ultrafine nanocrystals on amino-functionalized graphene hybrid nanosheets. Energy Environ. Sci. 9(4), 1430–1438 (2016). https://doi.org/10.1039/c5ee03262h
- C. Wu, X. Tong, Y. Ai, D.L. Peng, Y. Jiang, Z.M. Wang, A review: enhanced anodes of Li/Na-ion batteries based on yolk–shell structured nanomaterials. Nano-Micro Lett. 10, 40 (2018). https://doi.org/10.1007/s40820-018-0194-4
- S. Li, Z. Zhao, C. Li, Z. Liu, D. Li, SnS2@C hollow nanospheres with robust structural stability as high-performance anodes for sodium ion batteries. Nano-Micro Lett. 11, 14 (2019). https://doi.org/10.1007/s40820-019-0243-7
- Z. Ma, Y. Lyu, H. Yang, Q. Li, B. Guo, A. Nie, Systematic investigation of the Binder’s role in the electrochemical performance of tin sul fi de electrodes in SIBs. J. Power Sources 401, 195–203 (2018). https://doi.org/10.1016/j.jpowsour.2018.08.081
- J.G. Wang, H. Sun, H. Liu, D. Jin, R. Zhou, B. Wei, Edge-oriented SnS2 nanosheet arrays on carbon paper as advanced binder-free anodes for Li-ion and Na-ion batteries. J. Mater. Chem. A 5(44), 23115–23122 (2017). https://doi.org/10.1039/c7ta07553g
- F. Pei, L. Lin, D. Ou, Z. Zheng, S. Mo, X. Fang, N. Zheng, Self-supporting sulfur cathodes enabled by two-dimensional carbon yolk-shell nanosheets for high-energy-density lithium-sulfur batteries. Nat. Commun. 8, 482 (2017). https://doi.org/10.1038/s41467-017-00575-8
- Y. Liao, C. Chen, D. Yin, Y. Cai, R. He, M. Li, Improved-Na+/K+ storage properties of ReSe2–carbon nanofibers based on graphene modifications. Nano-Micro Lett. 11, 22 (2019). https://doi.org/10.1007/s40820-019-0248-2
- X. Wei, W. Li, J.A. Shi, L. Gu, Y. Yu, FeS@C on carbon cloth as flexible electrode for both lithium and sodium storage. ACS Appl. Mater. Interfaces 7(50), 27804–27809 (2015). https://doi.org/10.1021/acsami.5b09062
- J. Xu, Q. Wang, X. Wang, Q. Xiang, B. Liang, D. Chen, G. Shen, Flexible asymmetric supercapacitors based upon Co9S8 nanorod//Co3O4@RuO2 nanosheet arrays on carbon cloth. ACS Nano 7(6), 5453–5462 (2013). https://doi.org/10.1021/nn401450s
- M. Mao, F. Yan, C. Cui, J. Ma, M. Zhang, T. Wang, Pipe-wire TiO2 − Sn@carbon nanofibers paper anodes for lithium and sodium ion batteries. Nano Lett. 17, 3830–3836 (2017). https://doi.org/10.1021/acs.nanolett.7b01152
- J. Xia, L. Liu, S. Jamil, J. Xie, H. Yan et al., Free-standing SnS/C nanofiber anodes for ultralong cycle-life lithium-ion batteries and sodium-ion batteries. Energy Storage Mater. 17, 1–11 (2018). https://doi.org/10.1016/j.ensm.2018.08.005
- H. Wang, D. Chao, J. Liu, J. Lin, Z.X. Shen, Nanoengineering of 2D tin sulfide nanoflake arrays incorporated on polyaniline nanofibers with boosted capacitive behavior. 2D Mater. 5, 031005 (2018). https://doi.org/10.1088/2053-1583/aabd12
- J. Wan, F. Shen, W. Luo, L. Zhou, J. Dai et al., In situ transmission electron microscopy observation of sodiation–desodiation in a long cycle, high-capacity reduced graphene oxide sodium-ion battery anode. Chem. Mater. 28, 6528–6535 (2016). https://doi.org/10.1021/acs.chemmater.6b01959
- Z. Xu, H. Sun, X. Zhao, C. Gao, Ultrastrong fibers assembled from giant graphene oxide sheets. Adv. Mater. 25(2), 188–193 (2013). https://doi.org/10.1002/adma.201203448
- P. Lian, X. Zhu, S. Liang, Z. Li, W. Yang, H. Wang, High reversible capacity of SnO2/graphene nanocomposite as an anode material for lithium-ion batteries. Electrochim. Acta 56(12), 4532–4539 (2011). https://doi.org/10.1016/j.electacta.2011.01.126
- A.C. Ferrari, J.C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri et al., Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 97, 187401 (2006). https://doi.org/10.1103/PhysRevLett.97.187401
- G. Xin, T. Yao, H. Sun, S.M. Scott, D. Shao, G. Wang, J. Lian, Highly thermally conductive and mechanically strong graphene fibers. Science 349(6252), 1083–1087 (2015). https://doi.org/10.1017/CBO9781107415324.004
- S. Wang, B. Yang, Y. Liu, Synthesis of a hierarchical SnS2 nanostructure for efficient adsorption of Rhodamine B dye. J. Colloid Interface Sci. 507, 225–233 (2017). https://doi.org/10.1016/j.jcis.2017.07.053
- P. Sinsermsuksakul, L. Sun, S.W. Lee, H.H. Park, S.B. Kim, C. Yang, R.G. Gordon, Overcoming efficiency limitations of SnS-based solar cells. Adv. Energy Mater. 4, 1400496 (2014). https://doi.org/10.1002/aenm.201400496
- X. Xiong, C. Yang, G. Wang, Y. Lin, X. Ou et al., SnS nanoparticles electrostatically anchored on three-dimensional N-doped graphene as an active and durable anode for sodium-ion batteries. Energy Environ. Sci. 10(8), 1757–1763 (2017). https://doi.org/10.1039/c7ee01628j
- W. Sun, X. Rui, D. Yang, Z. Sun, B. Li et al., Two-dimensional tin disulfide nanosheets for enhanced sodium storage. ACS Nano 9(11), 11371–11381 (2015). https://doi.org/10.1021/acsnano.5b05229
- Y. Zhao, B. Guo, Q. Yao, J. Li, J. Zhang, K. Hou, L. Guan, A rational microstructure design of SnS2-carbon composites for superior sodium storage performance. Nanoscale 10(17), 7999–8008 (2018). https://doi.org/10.1039/c8nr01783b
- Y. Sun, Y. Xia, J.M. Melillo, F.P. Bowles, J.M. Melillo et al., Shape-controlled synthesis of gold and silver nanoparticles. Science 298(5601), 2176–2179 (2002). https://doi.org/10.1126/science.1077229
- M. Dirican, Y. Lu, Y. Ge, O. Yildiz, X. Zhang, Carbon-confined SnO2-electrodeposited porous carbon nanofiber composite as high-capacity sodium-ion battery anode material. ACS Appl. Mater. Interfaces 7(33), 18387–18396 (2015). https://doi.org/10.1021/acsami.5b04338
- X. Xie, D. Su, S. Chen, J. Zhang, S. Dou, G. Wang, SnS2 nanoplatelet@graphene nanocomposites as high-capacity anode materials for sodium-ion batteries. Chem. Asian J. 9(6), 1611–1617 (2014). https://doi.org/10.1002/asia.201400018
- Y. Wen, K. He, Y. Zhu, F. Han, Y. Xu et al., Expanded graphite as superior anode for sodium-ion batteries. Nat. Commun. 5, 4033 (2014). https://doi.org/10.1038/ncomms5033
- L. Yin, S. Chai, J. Huang, X. Kong, L. Pan, Preparation of hierarchical SnS2/SnO2 anode with enhanced electrochemical performances for lithium-ion battery. Electrochim. Acta 238, 168–177 (2017). https://doi.org/10.1016/j.electacta.2017.03.183
- B. Qu, C. Ma, G. Ji, C. Xu, J. Xu, Y.S. Meng, T. Wang, J.Y. Lee, Layered SnS2-reduced graphene oxide composite—a high-capacity, high-rate, and long-cycle life sodium-ion battery anode material. Adv. Mater. 26(23), 3854–3859 (2014). https://doi.org/10.1002/adma.201306314
- M. Forsyth, H. Yoon, F. Chen, H. Zhu, D.R. MacFarlane, M. Armand, P.C. Howlett, Novel Na+ ion diffusion mechanism in mixed organic-inorganic ionic liquid electrolyte leading to high Na+ transference number and stable, high rate electrochemical cycling of sodium cells. J. Phys. Chem. C 120(8), 4276–4286 (2016). https://doi.org/10.1021/acs.jpcc.5b11746
- P. Wang, X. Li, X. Li, H. Shan, D. Li, X. Sun, Paulownia tomentosa derived porous carbon with enhanced sodium storage. J. Mater. Res. 33, 1236–1248 (2018). https://doi.org/10.1557/jmr.2017.452
References
V. Palomares, P. Serras, I. Villaluenga, K.B. Hueso, J. Carretero-González, T. Rojo, Na-ion batteries, recent advances and present challenges to become low cost energy storage systems. Energy Environ. Sci. 5(3), 5884–5901 (2012). https://doi.org/10.1039/c2ee02781j
S.P. Ong, V.L. Chevrier, G. Hautier, A. Jain, C. Moore, S. Kim, X. Ma, G. Ceder, Voltage, stability and diffusion barrier differences between sodium-ion and lithium-ion intercalation materials. Energy Environ. Sci. 4(9), 3680–3688 (2011). https://doi.org/10.1039/c1ee01782a
M. Huang, B. Xi, Z. Feng, J. Liu, J. Feng, Y. Qian, S.X. Facile, Synthesis of N, O-codoped hard carbon at the kilogram scale for fast capacitive sodium storage man. J. Mater. Chem. A 6, 16465–16474 (2018). https://doi.org/10.1039/C8TA06160B
Y.X. Wang, S.L. Chou, H.K. Liu, S.X. Dou, Reduced graphene oxide with superior cycling stability and rate capability for sodium storage. Carbon 57, 202–208 (2013). https://doi.org/10.1016/j.carbon.2013.01.064
B.-W. Zhang, T. Sheng, Y.-D. Liu, Y.-X. Wang, L. Zhang et al., Atomic cobalt as an efficient electrocatalyst in sulfur cathodes for superior room-temperature sodium-sulfur batteries. Nat. Commun. 9(1), 4082 (2018). https://doi.org/10.1038/s41467-018-06144-x
Y. Fu, Q. Wei, G. Zhang, S. Sun, Advanced phosphorus-based materials for lithium/sodium-ion batteries: recent developments and future perspectives. Adv. Energy Mater. 8, 1702849 (2018). https://doi.org/10.1002/aenm.201702849
A. Beda, P.L. Taberna, P. Simon, C.M. Ghimbeu, Hard carbons derived from green phenolic resins for Na-ion batteries. Carbon 139, 248–257 (2018). https://doi.org/10.1016/j.carbon.2018.06.036
B. Li, B. Xi, Z. Feng, Y. Lin, J. Liu, J. Feng, Y. Qian, Hierarchical porous nanosheets constructed by graphene-coated, interconnected TiO2 nanoparticles for ultrafast sodium storage. Adv. Mater. 30, 1705788 (2018). https://doi.org/10.1002/adma.201705788
L. Li, Z. Chen, M. Zhang, Mo2C embedded in S-doped carbon nano fi bers for high-rate performance and long-life time Na-ion batteries. Solid State Ion. 323, 151–156 (2018). https://doi.org/10.1016/j.ssi.2018.06.004
L. Li, S. Peng, N. Bucher, H.Y. Chen, N. Shen et al., Large-scale synthesis of highly uniform Fe1−xS nanostructures as a high-rate anode for sodium ion batteries. Nano Energy 37, 81–89 (2017). https://doi.org/10.1016/j.nanoen.2017.05.012
X. Xie, Z. Ao, D. Su, J. Zhang, G. Wang, MoS2/graphene composite anodes with enhanced performance for sodium-ion batteries: the role of the two-dimensional heterointerface. Adv. Funct. Mater. 25(9), 1393–1403 (2015). https://doi.org/10.1002/adfm.201404078
C. Zhao, C. Yu, M. Zhang, Q. Sun, S. Li et al., Enhanced sodium storage capability enabled by super wide-interlayer-spacing MoS2 integrated on carbon fibers. Nano Energy 41, 66–74 (2017). https://doi.org/10.1016/j.nanoen.2017.08.030
J. Feng, S. Xiong, Rationally incorporated MoS2/SnS2 nanoparticles on graphene sheets for lithium-ion and sodium-ion batteries. ACS Appl. Mater. Interfaces 9, 27697–27706 (2017). https://doi.org/10.1021/acsami.7b06572
D. Yin, Z. Chen, Sn-interspersed MoS2/C nanosheets with high capacity for Na+/K+ storage. J. Phys. Chem. Solids 126, 72–77 (2019). https://doi.org/10.1016/j.jpcs.2018.10.029
X. Xiong, G. Wang, Y. Lin, Y. Wang, X. Ou et al., Enhancing sodium ion battery performance by strongly binding nanostructured Sb2S3 on sulfur-doped graphene sheets. ACS Nano 10(12), 10953–10959 (2016). https://doi.org/10.1021/acsnano.6b05653
Q. Chen, S. Sun, T. Zhai, M. Yang, X. Zhao, H. Xia, Yolk-shell NiS2 nanoparticle-embedded carbon fibers for flexible fiber-shaped sodium battery. Adv. Energy Mater. 8, 1800054 (2018). https://doi.org/10.1002/aenm.201800054
Y. Liu, X.Y. Yu, Y. Fang, X. Zhu, J. Bao, X. Zhou, X.W. Lou, Confining SnS2 ultrathin nanosheets in hollow carbon nanostructures for efficient capacitive sodium storage. Joule 2(4), 725–735 (2018). https://doi.org/10.1016/j.joule.2018.01.004
J. Cui, S. Yao, Z. Lu, J.Q. Huang, W.G. Chong, F. Ciucci, J.K. Kim, Revealing pseudocapacitive mechanisms of metal dichalcogenide SnS2/graphene-CNT aerogels for high-energy Na hybrid capacitors. Adv. Energy Mater. 8, 1702488 (2018). https://doi.org/10.1002/aenm.201702488
X. Wang, X. Li, Q. Li, H. Li, J. Xu et al., Improved electrochemical performance based on nanostructured SnS2@CoS2–rGO composite anode for sodium-ion batteries. Nano-Micro Lett. 10(3), 1–12 (2018). https://doi.org/10.1007/s40820-018-0200-x
MathSciNet
P. He, Y. Fang, X.Y. Yu, X.W.D. Lou, Hierarchical nanotubes constructed by carbon-coated ultrathin SnS nanosheets for fast capacitive sodium storage. Angew. Chem. Int. Ed. 56(40), 12202–12205 (2017). https://doi.org/10.1002/anie.201706652
J. Choi, N.R. Kim, K. Lim, K. Ku, H.J. Yoon et al., Sulfide-based nanohybrid for high-performance anode of sodium-ion batteries. Small 13, 1700767 (2017). https://doi.org/10.1002/smll.201700767
B. Li, B. Xi, F. Wu, H. Mao, J. Liu, J. Feng, One-step in situ formation of N-doped carbon nanosheet 3D porous networks/TiO2 hybrids with ultrafast sodium storage. Adv. Energy Mater. 9, 1803070 (2018). https://doi.org/10.1002/aenm.201803070
C. Ma, J. Xu, J. Alvarado, B. Qu, J. Somerville, J.Y. Lee, Y.S. Meng, Investigating the energy storage mechanism of SnS2-rGO composite anode for advanced Na-ion batteries. Chem. Mater. 27(16), 5633–5640 (2015). https://doi.org/10.1021/acs.chemmater.5b01984
L. Zhuo, Y. Wu, L. Wang, Y. Yu, X. Zhang, F. Zhao, One-step hydrothermal synthesis of SnS2/graphene composites as anode material for highly efficient rechargeable lithium ion batteries. RSC Adv. 2(12), 5084 (2012). https://doi.org/10.1039/c2ra00002d
S. Chen, K. Xing, J. Wen, M. Wen, Q. Wu, Y. Cui, Hierarchical assembly and superior sodium storage properties of a sea-sponge structured C/SnS@C nanocomposite. J. Mater. Chem. A 6(17), 7631–7638 (2018). https://doi.org/10.1039/c8ta00833g
B. Luo, Y. Hu, X. Zhu, T. Qiu, L. Zhi et al., Controllable growth of SnS2 nanostructures on nanocarbon surfaces for lithium-ion and sodium-ion storage with high rate capability. J. Mater. Chem. A 6(4), 1462–1472 (2018). https://doi.org/10.1039/c7ta09757c
T. Zhou, W.K. Pang, C. Zhang, J. Yang, Z. Chen, H.K. Liu, Z. Guo, Enhanced sodium-ion battery performance by structural phase transition from two-dimensional hexagonal-SnS2 to orthorhombic-SnS. ACS Nano 8(8), 8323–8333 (2014). https://doi.org/10.1021/nn503582c
Y. Wang, N. Xiao, Z. Wang, Y. Tang, H. Li et al., Ultrastable and high-capacity carbon nanofiber anode derived from pitch/polyacrylonitrile hybrid for flexible sodium-ion batteries. Carbon 135, 187–194 (2018). https://doi.org/10.1016/j.carbon.2018.04.031
H.G. Wang, Z. Wu, F.L. Meng, D.L. Ma, X.L. Huang, L.M. Wang, X.B. Zhang, Nitrogen-doped porous carbon nanosheets as low-cost, high-performance anode material for sodium-ion batteries. Chemsuschem 6(1), 56–60 (2013). https://doi.org/10.1002/cssc.201200680
Y. Zhang, P. Zhu, L. Huang, J. Xie, S. Zhang, G. Cao, X. Zhao, Few-layered SnS2 on few-layered reduced graphene oxide as Na-ion battery anode with ultralong cycle life and superior rate capability. Adv. Funct. Mater. 25(3), 481–489 (2015). https://doi.org/10.1002/adfm.201402833
Y. Jiang, M. Wei, J. Feng, Y. Ma, S. Xiong, Enhancing the cycling stability of Na-ion batteries by bonding SnS2 ultrafine nanocrystals on amino-functionalized graphene hybrid nanosheets. Energy Environ. Sci. 9(4), 1430–1438 (2016). https://doi.org/10.1039/c5ee03262h
C. Wu, X. Tong, Y. Ai, D.L. Peng, Y. Jiang, Z.M. Wang, A review: enhanced anodes of Li/Na-ion batteries based on yolk–shell structured nanomaterials. Nano-Micro Lett. 10, 40 (2018). https://doi.org/10.1007/s40820-018-0194-4
S. Li, Z. Zhao, C. Li, Z. Liu, D. Li, SnS2@C hollow nanospheres with robust structural stability as high-performance anodes for sodium ion batteries. Nano-Micro Lett. 11, 14 (2019). https://doi.org/10.1007/s40820-019-0243-7
Z. Ma, Y. Lyu, H. Yang, Q. Li, B. Guo, A. Nie, Systematic investigation of the Binder’s role in the electrochemical performance of tin sul fi de electrodes in SIBs. J. Power Sources 401, 195–203 (2018). https://doi.org/10.1016/j.jpowsour.2018.08.081
J.G. Wang, H. Sun, H. Liu, D. Jin, R. Zhou, B. Wei, Edge-oriented SnS2 nanosheet arrays on carbon paper as advanced binder-free anodes for Li-ion and Na-ion batteries. J. Mater. Chem. A 5(44), 23115–23122 (2017). https://doi.org/10.1039/c7ta07553g
F. Pei, L. Lin, D. Ou, Z. Zheng, S. Mo, X. Fang, N. Zheng, Self-supporting sulfur cathodes enabled by two-dimensional carbon yolk-shell nanosheets for high-energy-density lithium-sulfur batteries. Nat. Commun. 8, 482 (2017). https://doi.org/10.1038/s41467-017-00575-8
Y. Liao, C. Chen, D. Yin, Y. Cai, R. He, M. Li, Improved-Na+/K+ storage properties of ReSe2–carbon nanofibers based on graphene modifications. Nano-Micro Lett. 11, 22 (2019). https://doi.org/10.1007/s40820-019-0248-2
X. Wei, W. Li, J.A. Shi, L. Gu, Y. Yu, FeS@C on carbon cloth as flexible electrode for both lithium and sodium storage. ACS Appl. Mater. Interfaces 7(50), 27804–27809 (2015). https://doi.org/10.1021/acsami.5b09062
J. Xu, Q. Wang, X. Wang, Q. Xiang, B. Liang, D. Chen, G. Shen, Flexible asymmetric supercapacitors based upon Co9S8 nanorod//Co3O4@RuO2 nanosheet arrays on carbon cloth. ACS Nano 7(6), 5453–5462 (2013). https://doi.org/10.1021/nn401450s
M. Mao, F. Yan, C. Cui, J. Ma, M. Zhang, T. Wang, Pipe-wire TiO2 − Sn@carbon nanofibers paper anodes for lithium and sodium ion batteries. Nano Lett. 17, 3830–3836 (2017). https://doi.org/10.1021/acs.nanolett.7b01152
J. Xia, L. Liu, S. Jamil, J. Xie, H. Yan et al., Free-standing SnS/C nanofiber anodes for ultralong cycle-life lithium-ion batteries and sodium-ion batteries. Energy Storage Mater. 17, 1–11 (2018). https://doi.org/10.1016/j.ensm.2018.08.005
H. Wang, D. Chao, J. Liu, J. Lin, Z.X. Shen, Nanoengineering of 2D tin sulfide nanoflake arrays incorporated on polyaniline nanofibers with boosted capacitive behavior. 2D Mater. 5, 031005 (2018). https://doi.org/10.1088/2053-1583/aabd12
J. Wan, F. Shen, W. Luo, L. Zhou, J. Dai et al., In situ transmission electron microscopy observation of sodiation–desodiation in a long cycle, high-capacity reduced graphene oxide sodium-ion battery anode. Chem. Mater. 28, 6528–6535 (2016). https://doi.org/10.1021/acs.chemmater.6b01959
Z. Xu, H. Sun, X. Zhao, C. Gao, Ultrastrong fibers assembled from giant graphene oxide sheets. Adv. Mater. 25(2), 188–193 (2013). https://doi.org/10.1002/adma.201203448
P. Lian, X. Zhu, S. Liang, Z. Li, W. Yang, H. Wang, High reversible capacity of SnO2/graphene nanocomposite as an anode material for lithium-ion batteries. Electrochim. Acta 56(12), 4532–4539 (2011). https://doi.org/10.1016/j.electacta.2011.01.126
A.C. Ferrari, J.C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri et al., Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 97, 187401 (2006). https://doi.org/10.1103/PhysRevLett.97.187401
G. Xin, T. Yao, H. Sun, S.M. Scott, D. Shao, G. Wang, J. Lian, Highly thermally conductive and mechanically strong graphene fibers. Science 349(6252), 1083–1087 (2015). https://doi.org/10.1017/CBO9781107415324.004
S. Wang, B. Yang, Y. Liu, Synthesis of a hierarchical SnS2 nanostructure for efficient adsorption of Rhodamine B dye. J. Colloid Interface Sci. 507, 225–233 (2017). https://doi.org/10.1016/j.jcis.2017.07.053
P. Sinsermsuksakul, L. Sun, S.W. Lee, H.H. Park, S.B. Kim, C. Yang, R.G. Gordon, Overcoming efficiency limitations of SnS-based solar cells. Adv. Energy Mater. 4, 1400496 (2014). https://doi.org/10.1002/aenm.201400496
X. Xiong, C. Yang, G. Wang, Y. Lin, X. Ou et al., SnS nanoparticles electrostatically anchored on three-dimensional N-doped graphene as an active and durable anode for sodium-ion batteries. Energy Environ. Sci. 10(8), 1757–1763 (2017). https://doi.org/10.1039/c7ee01628j
W. Sun, X. Rui, D. Yang, Z. Sun, B. Li et al., Two-dimensional tin disulfide nanosheets for enhanced sodium storage. ACS Nano 9(11), 11371–11381 (2015). https://doi.org/10.1021/acsnano.5b05229
Y. Zhao, B. Guo, Q. Yao, J. Li, J. Zhang, K. Hou, L. Guan, A rational microstructure design of SnS2-carbon composites for superior sodium storage performance. Nanoscale 10(17), 7999–8008 (2018). https://doi.org/10.1039/c8nr01783b
Y. Sun, Y. Xia, J.M. Melillo, F.P. Bowles, J.M. Melillo et al., Shape-controlled synthesis of gold and silver nanoparticles. Science 298(5601), 2176–2179 (2002). https://doi.org/10.1126/science.1077229
M. Dirican, Y. Lu, Y. Ge, O. Yildiz, X. Zhang, Carbon-confined SnO2-electrodeposited porous carbon nanofiber composite as high-capacity sodium-ion battery anode material. ACS Appl. Mater. Interfaces 7(33), 18387–18396 (2015). https://doi.org/10.1021/acsami.5b04338
X. Xie, D. Su, S. Chen, J. Zhang, S. Dou, G. Wang, SnS2 nanoplatelet@graphene nanocomposites as high-capacity anode materials for sodium-ion batteries. Chem. Asian J. 9(6), 1611–1617 (2014). https://doi.org/10.1002/asia.201400018
Y. Wen, K. He, Y. Zhu, F. Han, Y. Xu et al., Expanded graphite as superior anode for sodium-ion batteries. Nat. Commun. 5, 4033 (2014). https://doi.org/10.1038/ncomms5033
L. Yin, S. Chai, J. Huang, X. Kong, L. Pan, Preparation of hierarchical SnS2/SnO2 anode with enhanced electrochemical performances for lithium-ion battery. Electrochim. Acta 238, 168–177 (2017). https://doi.org/10.1016/j.electacta.2017.03.183
B. Qu, C. Ma, G. Ji, C. Xu, J. Xu, Y.S. Meng, T. Wang, J.Y. Lee, Layered SnS2-reduced graphene oxide composite—a high-capacity, high-rate, and long-cycle life sodium-ion battery anode material. Adv. Mater. 26(23), 3854–3859 (2014). https://doi.org/10.1002/adma.201306314
M. Forsyth, H. Yoon, F. Chen, H. Zhu, D.R. MacFarlane, M. Armand, P.C. Howlett, Novel Na+ ion diffusion mechanism in mixed organic-inorganic ionic liquid electrolyte leading to high Na+ transference number and stable, high rate electrochemical cycling of sodium cells. J. Phys. Chem. C 120(8), 4276–4286 (2016). https://doi.org/10.1021/acs.jpcc.5b11746
P. Wang, X. Li, X. Li, H. Shan, D. Li, X. Sun, Paulownia tomentosa derived porous carbon with enhanced sodium storage. J. Mater. Res. 33, 1236–1248 (2018). https://doi.org/10.1557/jmr.2017.452