Impact of Transition Metal Layer Vacancy on the Structure and Performance of P2 Type Layered Sodium Cathode Material
Corresponding Author: Seung‑Taek Myung
Nano-Micro Letters,
Vol. 16 (2024), Article Number: 239
Abstract
This study explores the impact of introducing vacancy in the transition metal layer of rationally designed Na0.6[Ni0.3Ru0.3Mn0.4]O2 (NRM) cathode material. The incorporation of Ru, Ni, and vacancy enhances the structural stability during extensive cycling, increases the operation voltage, and induces a capacity increase while also activating oxygen redox, respectively, in Na0.7[Ni0.2VNi0.1Ru0.3Mn0.4]O2 (V-NRM) compound. Various analytical techniques including transmission electron microscopy, X-ray absorption near edge spectroscopy, operando X-ray diffraction, and operando differential electrochemical mass spectrometry are employed to assess changes in the average oxidation states and structural distortions. The results demonstrate that V-NRM exhibits higher capacity than NRM and maintains a moderate capacity retention of 81% after 100 cycles. Furthermore, the formation of additional lone-pair electrons in the O 2p orbital enables V-NRM to utilize more capacity from the oxygen redox validated by density functional calculation, leading to a widened dominance of the OP4 phase without releasing O2 gas. These findings offer valuable insights for the design of advanced high-capacity cathode materials with improved performance and sustainability in sodium-ion batteries.
Highlights:
1 Vacancy in the transition metal layer of sodium cathode material induces the formation lone-pair electrons in the O 2p orbital.
2 Material delivers more capacity from the oxygen redox validated by density functional calculation.
3 Widened dominance of the OP4 phase without releasing O2 gas.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J.-Y. Hwang, S.-T. Myung, Y.-K. Sun, Sodium-ion batteries: present and future. Chem. Soc. Rev. 46, 3529–3614 (2017). https://doi.org/10.1039/c6cs00776g
- N. Yabuuchi, K. Kubota, M. Dahbi, S. Komaba, Research development on sodium-ion batteries. Chem. Rev. 114, 11636–11682 (2014). https://doi.org/10.1021/cr500192f
- C. Vaalma, D. Buchholz, M. Weil, S. Passerini, A cost and resource analysis of sodium-ion batteries. Nat. Rev. Mater. 3, 18013 (2018). https://doi.org/10.1038/natrevmats.2018.13
- P.K. Nayak, L. Yang, W. Brehm, P. Adelhelm, From lithium-ion to sodium-ion batteries: advantages, challenges, and surprises. Angew. Chem. Int. Ed. 57, 102–120 (2018). https://doi.org/10.1002/anie.201703772
- X. Cao, H. Li, Y. Qiao, M. Jia, P. He et al., Achieving stable anionic redox chemistry in Li-excess O2-type layered oxide cathode via chemical ion-exchange strategy. Energy Storage Mater. 38, 1–8 (2021). https://doi.org/10.1016/j.ensm.2021.02.047
- N. Voronina, J.H. Yu, H.J. Kim, N. Yaqoob, O. Guillon et al., Engineering transition metal layers for long lasting anionic redox in layered sodium manganese oxide. Adv. Funct. Mater. 33, 2210423 (2023). https://doi.org/10.1002/adfm.202210423
- J.H. Yu, N. Voronina, N. Yaqoob, S. Kim, A.K. Paidi et al., Migration of Mg in Na–O–Mg configuration for oxygen redox of sodium cathode. ACS Energy Lett. 9, 145–152 (2024). https://doi.org/10.1021/acsenergylett.3c02388
- R.J. Clément, J. Billaud, A. Robert Armstrong, G. Singh, T. Rojo et al., Structurally stable Mg-doped P2-Na2/3Mn1−yMgyO2 sodium-ion battery cathodes with high rate performance: insights from electrochemical, NMR and diffraction studies. Energy Environ. Sci. 9, 3240–3251 (2016). https://doi.org/10.1039/C6EE01750A
- P. Lavela, J. Leyva, J.L. Tirado, Sustainable, low Ni-containing Mg-doped layered oxides as cathodes for sodium-ion batteries. Dalton Trans. 52, 17289–17298 (2023). https://doi.org/10.1039/d3dt02988c
- N. Voronina, S.-T. Myung, Recent advances in electrode materials with anion redox chemistry for sodium-ion batteries. Energy Mater. Adv. 2021, 9819521 (2021). https://doi.org/10.34133/2021/9819521
- A. Konarov, J.H. Jo, J.U. Choi, Z. Bakenov, H. Yashiro et al., Exceptionally highly stable cycling performance and facile oxygen-redox of manganese-based cathode materials for rechargeable sodium batteries. Nano Energy 59, 197–206 (2019). https://doi.org/10.1016/j.nanoen.2019.02.042
- X. Bai, M. Sathiya, B. Mendoza-Sánchez, A. Iadecola, J. Vergnet et al., Anionic Redox Activity in a Newly Zn-Doped Sodium Layered Oxide P2-Na2/3Mn1−yZnyO2 (0 < y < 0.23). Adv. Energy Mater. 8, 1–12 (2018). https://doi.org/10.1002/aenm.201802379
- S. Ong, W. Richards, G. Ceder, A.J. Toumar, S. Dacek, Vacancy ordering in O3-type layered metal oxide sodium-ion battery cathodes. Phys. Rev. Appl. 4, 064002 (2015). https://doi.org/10.1103/PhysRevApplied.4.064002
- J.-H. Park, I.-H. Ko, J. Lee, S. Park, D. Kim et al., Anionic redox reactions in cathodes for sodium-ion batteries. ChemElectroChem 8, 625–643 (2021). https://doi.org/10.1002/celc.202001383
- A. Massaro, A. Langella, C. Gerbaldi, G.A. Elia, A.B. Muñoz-García et al., Ru-doping of P2-NaxMn0.75Ni0.25O2-layered oxides for high-energy Na-ion battery cathodes: first-principles insights on activation and control of reversible oxide redox chemistry. ACS Appl. Energy Mater. 5, 10721–10730 (2022). https://doi.org/10.1021/acsaem.2c01455
- J. Xiao, X. Li, K. Tang, D. Wang, M. Long et al., Recent progress of emerging cathode materials for sodium ion batteries. Mater. Chem. Front. 5, 3735–3764 (2021). https://doi.org/10.1039/d1qm00179e
- H.J. Kim, A. Konarov, J.H. Jo, J.U. Choi, K. Ihm et al., Controlled oxygen redox for excellent power capability in layered sodium-based compounds. Adv. Energy Mater. 9, 1901181 (2019). https://doi.org/10.1002/aenm.201901181
- A. Konarov, H.J. Kim, J.-H. Jo, N. Voronina, Y. Lee et al., High-voltage oxygen-redox-based cathode for rechargeable sodium-ion batteries. Adv. Energy Mater. 10, 2001111 (2020). https://doi.org/10.1002/aenm.202001111
- N. Voronina, N. Yaqoob, H.J. Kim, K.-S. Lee, H.-D. Lim et al., A new approach to stable cationic and anionic redox activity in O3-layered cathode for sodium-ion batteries. Adv. Energy Mater. 11, 2100901 (2021). https://doi.org/10.1002/aenm.202100901
- M.L. Kalapsazova, K.L. Kostov, R.R. Kukeva, E.N. Zhecheva, R.K. Stoyanova, Oxygen-storage materials to stabilize the oxygen redox activity of three-layered sodium transition metal oxides. J. Phys. Chem. Lett. 12, 7804–7811 (2021). https://doi.org/10.1021/acs.jpclett.1c01982
- M.H.N. Assadi, M. Okubo, A. Yamada, Y. Tateyama, Oxygen redox in hexagonal layered NaxTMO3 (TM = 4d elements) for high capacity Na ion batteries. J. Mater. Chem. A 6, 3747–3753 (2018). https://doi.org/10.1039/C7TA10826E
- B. Mortemard de Boisse, S.-I. Nishimura, E. Watanabe, L. Lander, A. Tsuchimoto et al., Highly reversible oxygen-redox chemistry at 4.1 V in Na4/7–x[□1/7Mn6/7]O2 (□: Mn vacancy). Adv. Energy Mater. 8, 1800409 (2018). https://doi.org/10.1002/aenm.201800409
- H. Gao, J. Li, F. Zhang, C. Li, J. Xiao et al., Revealing the potential and challenges of high-entropy layered cathodes for sodium-based energy storage. Adv. Energy Mater. (2024). https://doi.org/10.1002/aenm.202304529
- J. Xiao, Y. Xiao, J. Li, C. Gong, X. Nie et al., Advanced nanoengineering strategies endow high-performance layered transition-metaloxide cathodes for sodium-ion batteries. SmartMat 4, e1211 (2023). https://doi.org/10.1002/smm2.1211
- Y.-F. Zhu, Y. Xiao, S.-X. Dou, Y.-M. Kang, S.-L. Chou, Spinel/Post-spinel engineering on layered oxide cathodes for sodium-ion batteries. eScience 1, 13–27 (2021). https://doi.org/10.1016/j.esci.2021.10.003
- Q. Wang, J. Li, H. Jin, S. Xin, H. Gao, Prussian-blue materials: Revealing new opportunities for rechargeable batteries. InfoMat 4, e12311 (2022). https://doi.org/10.1002/inf2.12311
- M. Wang, Q. Wang, X. Ding, Y. Wang, Y. Xin et al., The prospect and challenges of sodium-ion batteries for low-temperature conditions. Interdiscip. Mater. 1, 373–395 (2022). https://doi.org/10.1002/idm2.12040
- A. Rudola, C.J. Wright, J. Barker, Reviewing the safe shipping of lithium-ion and sodium-ion cells: a materials chemistry perspective. Energy Mater. Adv. 2021, 9798460 (2021). https://doi.org/10.34133/2021/9798460
- Q. Shen, Y. Liu, X. Zhao, J. Jin, Y. Wang et al., Transition-metal vacancy manufacturing and sodium-site doping enable a high-performance layered oxide cathode through cationic and anionic redox chemistry. Adv. Funct. Mater. 31, 2106923 (2021). https://doi.org/10.1002/adfm.202106923
- J. Jin, Y. Liu, X. Zhao, H. Liu, S. Deng et al., Annealing in Argon universally upgrades the Na-storage performance of Mn-based layered oxide cathodes by creating bulk oxygen vacancies. Angew. Chem. Int. Ed. 62, e202219230 (2023). https://doi.org/10.1002/anie.202219230
- Q. Shen, Y. Liu, L. Jiao, X. Qu, J. Chen, Current state-of-the-art characterization techniques for probing the layered oxide cathode materials of sodium-ion batteries. Energy Storage Mater. 35, 400–430 (2021). https://doi.org/10.1016/j.ensm.2020.11.002
- N. Voronina, M.-Y. Shin, H.-J. Kim, N. Yaqoob, O. Guillon et al., Hysteresis-suppressed reversible oxygen-redox cathodes for sodium-ion batteries. Adv. Energy Mater. 12, 2103939 (2022). https://doi.org/10.1002/aenm.202103939
- X.-L. Li, T. Wang, Y. Yuan, X.-Y. Yue, Q.-C. Wang et al., Whole-voltage-range oxygen redox in P2-layered cathode materials for sodium-ion batteries. Adv. Mater. 33, e2008194 (2021). https://doi.org/10.1002/adma.202008194
- L. Yang, Z. Liu, S. Liu, M. Han, Q. Zhang et al., Superiority of native vacancies in activating anionic redox in P2-type Na2/3[Mn7/9Mg1/9□1/9]O2. Nano Energy 78, 105172 (2020). https://doi.org/10.1016/j.nanoen.2020.105172
- X. Bai, A. Iadecola, J.-M. Tarascon, P. Rozier, Decoupling the effect of vacancies and electropositive cations on the anionic redox processes in Na based P2-type layered oxides. Energy Storage Mater. 31, 146–155 (2020). https://doi.org/10.1016/j.ensm.2020.05.032
- K. Okhotnikov, T. Charpentier, S. Cadars, Supercell program: a combinatorial structure-generation approach for the local-level modeling of atomic substitutions and partial occupancies in crystals. J. Cheminform. 8, 17 (2016). https://doi.org/10.1186/s13321-016-0129-3
- P.E. Blöchl, Projector augmented-wave method. Phys. Rev. B Condens. Matter 50, 17953–17979 (1994). https://doi.org/10.1103/physrevb.50.17953
- J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996). https://doi.org/10.1103/physrevlett.77.3865
- J. Heyd, G.E. Scuseria, M. Ernzerhof, Hybrid functionals based on a screened Coulomb potential. J. Chem. Phys. 118, 8207–8215 (2003). https://doi.org/10.1063/1.1564060
- X. Liu, S. Wang, L. Wang, K. Wang, X. Wu et al., Stabilizing the high-voltage cycle performance of LiNi0.8Co0.1Mn0.1O2 cathode material by Mg doping. J. Power. Sources 438, 227017 (2019). https://doi.org/10.1016/j.jpowsour.2019.227017
- P. Senthil Kumar, A. Sakunthala, M. Prabu, M.V. Reddy, R. Joshi, Structure and electrical properties of lithium nickel manganese oxide (LiNi0.5Mn0.5O2) prepared by P123 assisted hydrothermal route. Solid State Ion. 267, 1–8 (2014). https://doi.org/10.1016/j.ssi.2014.09.002
- S.-T. Myung, S. Komaba, K. Kurihara, K. Hosoya, N. Kumagai et al., Synthesis of Li [(Ni0.5Mn0.5)1-xLix]O2 by emulsion drying method and impact of excess Li on structural and electrochemical properties. Chem. Mater. 18, 1658–1666 (2006). https://doi.org/10.1021/cm052704j
- D.G. Archer, Thermodynamic properties of import to environmental processes and remediation. II. previous thermodynamic property values for nickel and some of its compounds. J. Phys. Chem. Ref. Data 28, 1485–1507 (1999). https://doi.org/10.1063/1.556044
- C. Mallika, O.M. Sreedharan, Standard Gibbs energies of formation of RuO2 (s) and LaRuO3(s) by oxide e.m.f. measurements. J. Less Common Met. 162, 51–60 (1990). https://doi.org/10.1016/0022-5088(90)90458-V
- K.T. Jacob, A. Kumar, G. Rajitha, Y. Waseda, Thermodynamic data for Mn3O4, Mn2O3 and MnO2. High Temp. Mater. Process. 30, 459–472 (2011). https://doi.org/10.1515/htmp.2011.069
- E. McCalla, A.W. Rowe, J. Camardese, J.R. Dahn, The role of metal site vacancies in promoting Li–Mn–Ni–O layered solid solutions. Chem. Mater. 25, 2716–2721 (2013). https://doi.org/10.1021/cm401461m
- A. Tsuchimoto, X.-M. Shi, K. Kawai, B. Mortemard de Boisse, J. Kikkawa et al., Nonpolarizing oxygen-redox capacity without O–O dimerization in Na2Mn3O7. Nat. Commun. 12, 631 (2021). https://doi.org/10.1038/s41467-020-20643-w
- B. Song, M. Tang, E. Hu, O.J. Borkiewicz, K.M. Wiaderek et al., Understanding the low-voltage hysteresis of anionic redox in Na2Mn3O7. Chem. Mater. 31, 3756–3765 (2019). https://doi.org/10.1021/acs.chemmater.9b00772
- Z. Xiao, W. Zuo, X. Liu, J. Xie, H. He et al., Insights of the electrochemical reversibility of P2-type sodium manganese oxide cathodes via modulation of transition metal vacancies. ACS Appl. Mater. Interfaces 13, 38305–38314 (2021). https://doi.org/10.1021/acsami.1c09544
- J.-Y. Hwang, J. Kim, T.-Y. Yu, Y.-K. Sun, A new P2-type layered oxide cathode with extremely high energy density for sodium-ion batteries. Adv. Energy Mater. 9, 1803346 (2019). https://doi.org/10.1002/aenm.201803346
- S. Eom, S.H. Jeong, S.J. Lee, Y.H. Jung, J.-H. Kim, Mitigating the P2–O2 phase transition of Ni–Co–Mn based layered oxide for improved sodium-ion batteries via interlayered structural modulation. Mater. Today Energy 38, 101449 (2023). https://doi.org/10.1016/j.mtener.2023.101449
- M. Bianchini, E. Gonzalo, N.E. Drewett, N. Ortiz-Vitoriano, J.M. López del Amo et al., Layered P2–O3 sodium-ion cathodes derived from earth abundant elements. J. Mater. Chem. A 6, 3552–3559 (2018). https://doi.org/10.1039/C7TA11180K
- R. Berthelot, M. Pollet, D. Carlier, C. Delmas, Reinvestigation of the OP4-(Li/Na)CoO2-Layered system and first evidence of the (Li/Na/Na)CoO2 phase with OPP9 oxygen stacking. Inorg. Chem. 50, 2420–2430 (2011). https://doi.org/10.1021/ic102218w
- S. Wang, C. Sun, N. Wang, Q. Zhang, Ni- and/or Mn-based layered transition metal oxides as cathode materials for sodium ion batteries: status, challenges and countermeasures. J. Mater. Chem. A 7, 10138–10158 (2019). https://doi.org/10.1039/C8TA12441H
References
J.-Y. Hwang, S.-T. Myung, Y.-K. Sun, Sodium-ion batteries: present and future. Chem. Soc. Rev. 46, 3529–3614 (2017). https://doi.org/10.1039/c6cs00776g
N. Yabuuchi, K. Kubota, M. Dahbi, S. Komaba, Research development on sodium-ion batteries. Chem. Rev. 114, 11636–11682 (2014). https://doi.org/10.1021/cr500192f
C. Vaalma, D. Buchholz, M. Weil, S. Passerini, A cost and resource analysis of sodium-ion batteries. Nat. Rev. Mater. 3, 18013 (2018). https://doi.org/10.1038/natrevmats.2018.13
P.K. Nayak, L. Yang, W. Brehm, P. Adelhelm, From lithium-ion to sodium-ion batteries: advantages, challenges, and surprises. Angew. Chem. Int. Ed. 57, 102–120 (2018). https://doi.org/10.1002/anie.201703772
X. Cao, H. Li, Y. Qiao, M. Jia, P. He et al., Achieving stable anionic redox chemistry in Li-excess O2-type layered oxide cathode via chemical ion-exchange strategy. Energy Storage Mater. 38, 1–8 (2021). https://doi.org/10.1016/j.ensm.2021.02.047
N. Voronina, J.H. Yu, H.J. Kim, N. Yaqoob, O. Guillon et al., Engineering transition metal layers for long lasting anionic redox in layered sodium manganese oxide. Adv. Funct. Mater. 33, 2210423 (2023). https://doi.org/10.1002/adfm.202210423
J.H. Yu, N. Voronina, N. Yaqoob, S. Kim, A.K. Paidi et al., Migration of Mg in Na–O–Mg configuration for oxygen redox of sodium cathode. ACS Energy Lett. 9, 145–152 (2024). https://doi.org/10.1021/acsenergylett.3c02388
R.J. Clément, J. Billaud, A. Robert Armstrong, G. Singh, T. Rojo et al., Structurally stable Mg-doped P2-Na2/3Mn1−yMgyO2 sodium-ion battery cathodes with high rate performance: insights from electrochemical, NMR and diffraction studies. Energy Environ. Sci. 9, 3240–3251 (2016). https://doi.org/10.1039/C6EE01750A
P. Lavela, J. Leyva, J.L. Tirado, Sustainable, low Ni-containing Mg-doped layered oxides as cathodes for sodium-ion batteries. Dalton Trans. 52, 17289–17298 (2023). https://doi.org/10.1039/d3dt02988c
N. Voronina, S.-T. Myung, Recent advances in electrode materials with anion redox chemistry for sodium-ion batteries. Energy Mater. Adv. 2021, 9819521 (2021). https://doi.org/10.34133/2021/9819521
A. Konarov, J.H. Jo, J.U. Choi, Z. Bakenov, H. Yashiro et al., Exceptionally highly stable cycling performance and facile oxygen-redox of manganese-based cathode materials for rechargeable sodium batteries. Nano Energy 59, 197–206 (2019). https://doi.org/10.1016/j.nanoen.2019.02.042
X. Bai, M. Sathiya, B. Mendoza-Sánchez, A. Iadecola, J. Vergnet et al., Anionic Redox Activity in a Newly Zn-Doped Sodium Layered Oxide P2-Na2/3Mn1−yZnyO2 (0 < y < 0.23). Adv. Energy Mater. 8, 1–12 (2018). https://doi.org/10.1002/aenm.201802379
S. Ong, W. Richards, G. Ceder, A.J. Toumar, S. Dacek, Vacancy ordering in O3-type layered metal oxide sodium-ion battery cathodes. Phys. Rev. Appl. 4, 064002 (2015). https://doi.org/10.1103/PhysRevApplied.4.064002
J.-H. Park, I.-H. Ko, J. Lee, S. Park, D. Kim et al., Anionic redox reactions in cathodes for sodium-ion batteries. ChemElectroChem 8, 625–643 (2021). https://doi.org/10.1002/celc.202001383
A. Massaro, A. Langella, C. Gerbaldi, G.A. Elia, A.B. Muñoz-García et al., Ru-doping of P2-NaxMn0.75Ni0.25O2-layered oxides for high-energy Na-ion battery cathodes: first-principles insights on activation and control of reversible oxide redox chemistry. ACS Appl. Energy Mater. 5, 10721–10730 (2022). https://doi.org/10.1021/acsaem.2c01455
J. Xiao, X. Li, K. Tang, D. Wang, M. Long et al., Recent progress of emerging cathode materials for sodium ion batteries. Mater. Chem. Front. 5, 3735–3764 (2021). https://doi.org/10.1039/d1qm00179e
H.J. Kim, A. Konarov, J.H. Jo, J.U. Choi, K. Ihm et al., Controlled oxygen redox for excellent power capability in layered sodium-based compounds. Adv. Energy Mater. 9, 1901181 (2019). https://doi.org/10.1002/aenm.201901181
A. Konarov, H.J. Kim, J.-H. Jo, N. Voronina, Y. Lee et al., High-voltage oxygen-redox-based cathode for rechargeable sodium-ion batteries. Adv. Energy Mater. 10, 2001111 (2020). https://doi.org/10.1002/aenm.202001111
N. Voronina, N. Yaqoob, H.J. Kim, K.-S. Lee, H.-D. Lim et al., A new approach to stable cationic and anionic redox activity in O3-layered cathode for sodium-ion batteries. Adv. Energy Mater. 11, 2100901 (2021). https://doi.org/10.1002/aenm.202100901
M.L. Kalapsazova, K.L. Kostov, R.R. Kukeva, E.N. Zhecheva, R.K. Stoyanova, Oxygen-storage materials to stabilize the oxygen redox activity of three-layered sodium transition metal oxides. J. Phys. Chem. Lett. 12, 7804–7811 (2021). https://doi.org/10.1021/acs.jpclett.1c01982
M.H.N. Assadi, M. Okubo, A. Yamada, Y. Tateyama, Oxygen redox in hexagonal layered NaxTMO3 (TM = 4d elements) for high capacity Na ion batteries. J. Mater. Chem. A 6, 3747–3753 (2018). https://doi.org/10.1039/C7TA10826E
B. Mortemard de Boisse, S.-I. Nishimura, E. Watanabe, L. Lander, A. Tsuchimoto et al., Highly reversible oxygen-redox chemistry at 4.1 V in Na4/7–x[□1/7Mn6/7]O2 (□: Mn vacancy). Adv. Energy Mater. 8, 1800409 (2018). https://doi.org/10.1002/aenm.201800409
H. Gao, J. Li, F. Zhang, C. Li, J. Xiao et al., Revealing the potential and challenges of high-entropy layered cathodes for sodium-based energy storage. Adv. Energy Mater. (2024). https://doi.org/10.1002/aenm.202304529
J. Xiao, Y. Xiao, J. Li, C. Gong, X. Nie et al., Advanced nanoengineering strategies endow high-performance layered transition-metaloxide cathodes for sodium-ion batteries. SmartMat 4, e1211 (2023). https://doi.org/10.1002/smm2.1211
Y.-F. Zhu, Y. Xiao, S.-X. Dou, Y.-M. Kang, S.-L. Chou, Spinel/Post-spinel engineering on layered oxide cathodes for sodium-ion batteries. eScience 1, 13–27 (2021). https://doi.org/10.1016/j.esci.2021.10.003
Q. Wang, J. Li, H. Jin, S. Xin, H. Gao, Prussian-blue materials: Revealing new opportunities for rechargeable batteries. InfoMat 4, e12311 (2022). https://doi.org/10.1002/inf2.12311
M. Wang, Q. Wang, X. Ding, Y. Wang, Y. Xin et al., The prospect and challenges of sodium-ion batteries for low-temperature conditions. Interdiscip. Mater. 1, 373–395 (2022). https://doi.org/10.1002/idm2.12040
A. Rudola, C.J. Wright, J. Barker, Reviewing the safe shipping of lithium-ion and sodium-ion cells: a materials chemistry perspective. Energy Mater. Adv. 2021, 9798460 (2021). https://doi.org/10.34133/2021/9798460
Q. Shen, Y. Liu, X. Zhao, J. Jin, Y. Wang et al., Transition-metal vacancy manufacturing and sodium-site doping enable a high-performance layered oxide cathode through cationic and anionic redox chemistry. Adv. Funct. Mater. 31, 2106923 (2021). https://doi.org/10.1002/adfm.202106923
J. Jin, Y. Liu, X. Zhao, H. Liu, S. Deng et al., Annealing in Argon universally upgrades the Na-storage performance of Mn-based layered oxide cathodes by creating bulk oxygen vacancies. Angew. Chem. Int. Ed. 62, e202219230 (2023). https://doi.org/10.1002/anie.202219230
Q. Shen, Y. Liu, L. Jiao, X. Qu, J. Chen, Current state-of-the-art characterization techniques for probing the layered oxide cathode materials of sodium-ion batteries. Energy Storage Mater. 35, 400–430 (2021). https://doi.org/10.1016/j.ensm.2020.11.002
N. Voronina, M.-Y. Shin, H.-J. Kim, N. Yaqoob, O. Guillon et al., Hysteresis-suppressed reversible oxygen-redox cathodes for sodium-ion batteries. Adv. Energy Mater. 12, 2103939 (2022). https://doi.org/10.1002/aenm.202103939
X.-L. Li, T. Wang, Y. Yuan, X.-Y. Yue, Q.-C. Wang et al., Whole-voltage-range oxygen redox in P2-layered cathode materials for sodium-ion batteries. Adv. Mater. 33, e2008194 (2021). https://doi.org/10.1002/adma.202008194
L. Yang, Z. Liu, S. Liu, M. Han, Q. Zhang et al., Superiority of native vacancies in activating anionic redox in P2-type Na2/3[Mn7/9Mg1/9□1/9]O2. Nano Energy 78, 105172 (2020). https://doi.org/10.1016/j.nanoen.2020.105172
X. Bai, A. Iadecola, J.-M. Tarascon, P. Rozier, Decoupling the effect of vacancies and electropositive cations on the anionic redox processes in Na based P2-type layered oxides. Energy Storage Mater. 31, 146–155 (2020). https://doi.org/10.1016/j.ensm.2020.05.032
K. Okhotnikov, T. Charpentier, S. Cadars, Supercell program: a combinatorial structure-generation approach for the local-level modeling of atomic substitutions and partial occupancies in crystals. J. Cheminform. 8, 17 (2016). https://doi.org/10.1186/s13321-016-0129-3
P.E. Blöchl, Projector augmented-wave method. Phys. Rev. B Condens. Matter 50, 17953–17979 (1994). https://doi.org/10.1103/physrevb.50.17953
J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996). https://doi.org/10.1103/physrevlett.77.3865
J. Heyd, G.E. Scuseria, M. Ernzerhof, Hybrid functionals based on a screened Coulomb potential. J. Chem. Phys. 118, 8207–8215 (2003). https://doi.org/10.1063/1.1564060
X. Liu, S. Wang, L. Wang, K. Wang, X. Wu et al., Stabilizing the high-voltage cycle performance of LiNi0.8Co0.1Mn0.1O2 cathode material by Mg doping. J. Power. Sources 438, 227017 (2019). https://doi.org/10.1016/j.jpowsour.2019.227017
P. Senthil Kumar, A. Sakunthala, M. Prabu, M.V. Reddy, R. Joshi, Structure and electrical properties of lithium nickel manganese oxide (LiNi0.5Mn0.5O2) prepared by P123 assisted hydrothermal route. Solid State Ion. 267, 1–8 (2014). https://doi.org/10.1016/j.ssi.2014.09.002
S.-T. Myung, S. Komaba, K. Kurihara, K. Hosoya, N. Kumagai et al., Synthesis of Li [(Ni0.5Mn0.5)1-xLix]O2 by emulsion drying method and impact of excess Li on structural and electrochemical properties. Chem. Mater. 18, 1658–1666 (2006). https://doi.org/10.1021/cm052704j
D.G. Archer, Thermodynamic properties of import to environmental processes and remediation. II. previous thermodynamic property values for nickel and some of its compounds. J. Phys. Chem. Ref. Data 28, 1485–1507 (1999). https://doi.org/10.1063/1.556044
C. Mallika, O.M. Sreedharan, Standard Gibbs energies of formation of RuO2 (s) and LaRuO3(s) by oxide e.m.f. measurements. J. Less Common Met. 162, 51–60 (1990). https://doi.org/10.1016/0022-5088(90)90458-V
K.T. Jacob, A. Kumar, G. Rajitha, Y. Waseda, Thermodynamic data for Mn3O4, Mn2O3 and MnO2. High Temp. Mater. Process. 30, 459–472 (2011). https://doi.org/10.1515/htmp.2011.069
E. McCalla, A.W. Rowe, J. Camardese, J.R. Dahn, The role of metal site vacancies in promoting Li–Mn–Ni–O layered solid solutions. Chem. Mater. 25, 2716–2721 (2013). https://doi.org/10.1021/cm401461m
A. Tsuchimoto, X.-M. Shi, K. Kawai, B. Mortemard de Boisse, J. Kikkawa et al., Nonpolarizing oxygen-redox capacity without O–O dimerization in Na2Mn3O7. Nat. Commun. 12, 631 (2021). https://doi.org/10.1038/s41467-020-20643-w
B. Song, M. Tang, E. Hu, O.J. Borkiewicz, K.M. Wiaderek et al., Understanding the low-voltage hysteresis of anionic redox in Na2Mn3O7. Chem. Mater. 31, 3756–3765 (2019). https://doi.org/10.1021/acs.chemmater.9b00772
Z. Xiao, W. Zuo, X. Liu, J. Xie, H. He et al., Insights of the electrochemical reversibility of P2-type sodium manganese oxide cathodes via modulation of transition metal vacancies. ACS Appl. Mater. Interfaces 13, 38305–38314 (2021). https://doi.org/10.1021/acsami.1c09544
J.-Y. Hwang, J. Kim, T.-Y. Yu, Y.-K. Sun, A new P2-type layered oxide cathode with extremely high energy density for sodium-ion batteries. Adv. Energy Mater. 9, 1803346 (2019). https://doi.org/10.1002/aenm.201803346
S. Eom, S.H. Jeong, S.J. Lee, Y.H. Jung, J.-H. Kim, Mitigating the P2–O2 phase transition of Ni–Co–Mn based layered oxide for improved sodium-ion batteries via interlayered structural modulation. Mater. Today Energy 38, 101449 (2023). https://doi.org/10.1016/j.mtener.2023.101449
M. Bianchini, E. Gonzalo, N.E. Drewett, N. Ortiz-Vitoriano, J.M. López del Amo et al., Layered P2–O3 sodium-ion cathodes derived from earth abundant elements. J. Mater. Chem. A 6, 3552–3559 (2018). https://doi.org/10.1039/C7TA11180K
R. Berthelot, M. Pollet, D. Carlier, C. Delmas, Reinvestigation of the OP4-(Li/Na)CoO2-Layered system and first evidence of the (Li/Na/Na)CoO2 phase with OPP9 oxygen stacking. Inorg. Chem. 50, 2420–2430 (2011). https://doi.org/10.1021/ic102218w
S. Wang, C. Sun, N. Wang, Q. Zhang, Ni- and/or Mn-based layered transition metal oxides as cathode materials for sodium ion batteries: status, challenges and countermeasures. J. Mater. Chem. A 7, 10138–10158 (2019). https://doi.org/10.1039/C8TA12441H