Highly Efficient Back-End-of-Line Compatible Flexible Si-Based Optical Memristive Crossbar Array for Edge Neuromorphic Physiological Signal Processing and Bionic Machine Vision
Corresponding Author: Nazek El‑Atab
Nano-Micro Letters,
Vol. 16 (2024), Article Number: 238
Abstract
The emergence of the Internet-of-Things is anticipated to create a vast market for what are known as smart edge devices, opening numerous opportunities across countless domains, including personalized healthcare and advanced robotics. Leveraging 3D integration, edge devices can achieve unprecedented miniaturization while simultaneously boosting processing power and minimizing energy consumption. Here, we demonstrate a back-end-of-line compatible optoelectronic synapse with a transfer learning method on health care applications, including electroencephalogram (EEG)-based seizure prediction, electromyography (EMG)-based gesture recognition, and electrocardiogram (ECG)-based arrhythmia detection. With experiments on three biomedical datasets, we observe the classification accuracy improvement for the pretrained model with 2.93% on EEG, 4.90% on ECG, and 7.92% on EMG, respectively. The optical programming property of the device enables an ultra-low power (2.8 × 10−13 J) fine-tuning process and offers solutions for patient-specific issues in edge computing scenarios. Moreover, the device exhibits impressive light-sensitive characteristics that enable a range of light-triggered synaptic functions, making it promising for neuromorphic vision application. To display the benefits of these intricate synaptic properties, a 5 × 5 optoelectronic synapse array is developed, effectively simulating human visual perception and memory functions. The proposed flexible optoelectronic synapse holds immense potential for advancing the fields of neuromorphic physiological signal processing and artificial visual systems in wearable applications.
Highlights:
1 A novel optoelectronic synapse compatible with existing chip technology is demonstrated. This device excels in mimicking memory and learning functions using light, making it ideal for future neuromorphic computing in biomedicine.
2 Our design surpasses previous models with its ability to switch between short-term and long-term memory states using light pulses.
3 Experiments on real-world biomedical data (electroencephalogram, electromyography, electrocardiogram) showed significant improvement in classification accuracy. This highlights the device's potential for advanced physiological signal processing and wearable health monitoring systems.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- F. Zhou, Y. Chai, Near-sensor and in-sensor computing. Nat. Electron. 3, 664–671 (2020). https://doi.org/10.1038/s41928-020-00501-9
- V.M. Ho, J.A. Lee, K.C. Martin, The cell biology of synaptic plasticity. Science 333, 623 (2011). https://doi.org/10.1126/science.1209168
- K. Liang, R. Wang, B. Huo, H. Ren, D. Li et al., Fully printed optoelectronic synaptic transistors based on quantum dot-metal oxide semiconductor heterojunctions. ACS Nano 16, 8651–8661 (2022). https://doi.org/10.1021/acsnano.2c00439
- N. Ilyas, J. Wang, C. Li, D. Li, H. Fu et al., Nanostructured materials and architectures for advanced optoelectronic synaptic devices. Adv. Funct. Mater. 32, 2110976 (2022). https://doi.org/10.1002/adfm.202110976
- X. Han, Z. Xu, W. Wu, X. Liu, P. Yan et al., Recent progress in optoelectronic synapses for artificial visual-perception system. Small Struct. 1, 2000029 (2020). https://doi.org/10.1002/sstr.202000029
- K. Zhu, S. Pazos, F. Aguirre, Y. Shen, Y. Yuan et al., Hybrid 2D-CMOS microchips for memristive applications. Nature 618, 57–62 (2023). https://doi.org/10.1038/s41586-023-05973-1
- Y. Zheng, H. Ravichandran, T.F. Schranghamer, N. Trainor, J.M. Redwing et al., Hardware implementation of Bayesian network based on two-dimensional memtransistors. Nat. Commun. 13, 5578 (2022). https://doi.org/10.1038/s41467-022-33053-x
- L. Mennel, J. Symonowicz, S. Wachter, D.K. Polyushkin, A.J. Molina-Mendoza et al., Ultrafast machine vision with 2D material neural network image sensors. Nature 579, 62–66 (2020). https://doi.org/10.1038/s41586-020-2038-x
- Z. Zhang, S. Wang, C. Liu, R. Xie, W. Hu et al., All-in-one two-dimensional retinomorphic hardware device for motion detection and recognition. Nat. Nanotechnol. 17, 27–32 (2022). https://doi.org/10.1038/s41565-021-01003-1
- L. Sun, Z. Wang, J. Jiang, Y. Kim, B. Joo et al., In-sensor reservoir computing for language learning via two-dimensional memristors. Sci. Adv. 7, eabg1455 (2021). https://doi.org/10.1126/sciadv.abg1455
- V.L. Feigin, A.A. Abajobir, K.H. Abate, F. Abd-Allah, A.M. Abdulle, Global, regional, and national burden of neurological disorders during 1990–2015: a systematic analysis for the global burden of disease study 2015. Lancet Neurol. 16, 877–897 (2017). https://doi.org/10.1016/S1474-4422(17)30299-5
- H. Li, F. Tian, J. Yang, M. Sawan, N. El-Atab, NMBNN: noise-adaptive memristive Bayesian neural network for energy-efficient edge health care. 2023 IEEE Biomedical Circuits and Systems Conference (BioCAS). Toronto, ON, Canada. IEEE, (2023)., pp. 1–5. https://doi.org/10.1109/BioCAS58349.2023.10388528
- H. Li, J. Wang, S. Zhao, F. Tian, J. Yang et al., Real-time biosignal recording and machine-learning analysis system. in 2022 IEEE 4th International Conference on Artificial Intelligence Circuits and Systems (AICAS). Incheon, Republic of Korea, IEEE, (2022). pp. 427–430. https://doi.org/10.1109/AICAS54282.2022.9869982
- A.Y. Hannun, P. Rajpurkar, M. Haghpanahi, G.H. Tison, C. Bourn et al., Cardiologist-level arrhythmia detection and classification in ambulatory electrocardiograms using a deep neural network. Nat. Med. 25, 65–69 (2019). https://doi.org/10.1038/s41591-018-0268-3
- J. L. Kuo, H. W. Chen, E. R. Hsieh, S. S. Chung, T. P. Chen, et al., Electronics for Radiation Detection. in 2018 IEEE Symposium on VLSI Technology, IEEE, Honolulu, HI, USA, June 2018. https://doi.org/10.1201/9781315222608
- S. Yu, B. Gao, Z. Fang, H. Yu, J. Kang et al., A neuromorphic visual system using RRAM synaptic devices with Sub-pJ energy and tolerance to variability: Experimental characterization and large-scale modeling. in 2012 International Electron Devices Meeting. San Francisco, CA, USA. IEEE, (2012). pp. 10.4.1–10.4.4
- W. Choi, M. Kwak, S. Heo, K. Lee, S. Lee et al., Hardware neural network using hybrid synapses via transfer learning: WOx nano-resistors and TiOx RRAM synapse for energy-efficient edge-AI sensor. in 2021 IEEE International Electron Devices Meeting (IEDM). San Francisco, CA, USA. IEEE, (2021). pp. 23.1.1–23.1.4
- C.-S. Poon, K. Zhou, Neuromorphic silicon neurons and large-scale neural networks: challenges and opportunities. Front. Neurosci. 5, 108 (2011). https://doi.org/10.3389/fnins.2011.00108
- K.C. Eldred, S.E. Hadyniak, K.A. Hussey, B. Brenerman, P.W. Zhang et al., Thyroid hormone signaling specifies cone subtypes in human retinal organoids. Science 362, eaau6348 (2018). https://doi.org/10.1126/science.aau6348
- Q.-B. Zhu, B. Li, D.-D. Yang, C. Liu, S. Feng et al., A flexible ultrasensitive optoelectronic sensor array for neuromorphic vision systems. Nat. Commun. 12, 1798 (2021). https://doi.org/10.1038/s41467-021-22047-w
- D. Kumar, H. Li, U.K. Das, A.M. Syed, N. El-Atab, Flexible solution-processable black-phosphorus-based optoelectronic memristive synapses for neuromorphic computing and artificial visual perception applications. Adv. Mater. 35, e2300446 (2023). https://doi.org/10.1002/adma.202300446
- C. Wan, P. Cai, M. Wang, Y. Qian, W. Huang et al., Artificial sensory memory. Adv. Mater. 32, 1902434 (2020). https://doi.org/10.1002/adma.201902434
- H. Jang, C. Liu, H. Hinton, M.-H. Lee, H. Kim et al., An atomically thin optoelectronic machine vision processor. Adv. Mater. 32, 2002431 (2020). https://doi.org/10.1002/adma.202002431
- L. Gu, S. Poddar, Y. Lin, Z. Long, D. Zhang et al., A biomimetic eye with a hemispherical perovskite nanowire array retina. Nature 581, 278–282 (2020). https://doi.org/10.1038/s41586-020-2285-x
- G.J. Lee, C. Choi, D.-H. Kim, Y.M. Song, Artificial eyes: bioinspired artificial eyes: optic components, digital cameras, and visual prostheses. Adv. Funct. Mater. 28, 1870168 (2018). https://doi.org/10.1002/adfm.201870168
- Y.M. Song, Y. Xie, V. Malyarchuk, J. Xiao, I. Jung et al., Digital cameras with designs inspired by the arthropod eye. Nature 497, 95–99 (2013). https://doi.org/10.1038/nature12083
- D. Kumar, L. Joharji, H. Li, A. Rezk, A. Nayfeh et al., Artificial visual perception neural system using a solution-processable MoS2-based in-memory light sensor. Light Sci. Appl. 12, 109 (2023). https://doi.org/10.1038/s41377-023-01166-7
- S. Chen, A. Bermak, Arbitrated time-to-first spike CMOS image sensor with on-chip histogram equalization. IEEE Trans. Very Large Scale Integr. VLSI Syst. 15, 346–357 (2007). https://doi.org/10.1109/TVLSI.2007.893624
- Y.L. Cun, Y. Bengio, G. Hinton, Deep learning. Nature 521, 436–444 (2015). https://doi.org/10.1038/nature14539
- S. Yu, B. Gao, Z. Fang, H. Yu, J. Kang et al., A low energy oxide-based electronic synaptic device for neuromorphic visual systems with tolerance to device variation. Adv. Mater. 25, 1774–1779 (2013). https://doi.org/10.1002/adma.201203680
- Y. Wang, Z. Lv, J. Chen, Z. Wang, Y. Zhou et al., Photonic synapses based on inorganic perovskite quantum dots for neuromorphic computing. Adv. Mater. 30, 1802883 (2018). https://doi.org/10.1002/adma.201802883
- F. Zhou, Z. Zhou, J. Chen, T.H. Choy, J. Wang et al., Optoelectronic resistive random access memory for neuromorphic vision sensors. Nat. Nanotechnol. 14, 776–782 (2019). https://doi.org/10.1038/s41565-019-0501-3
- S. Wang, C.-Y. Wang, P. Wang, C. Wang, Z.-A. Li et al., Networking retinomorphic sensor with memristive crossbar for brain-inspired visual perception. Natl. Sci. Rev. 8, nwaa172 (2020). https://doi.org/10.1093/nsr/nwaa172
- H. Tan, G. Liu, X. Zhu, H. Yang, B. Chen et al., An optoelectronic resistive switching memory with integrated demodulating and arithmetic functions. Adv. Mater. 27, 2797–2803 (2015). https://doi.org/10.1002/adma.201500039
- T. Leydecker, M. Herder, E. Pavlica, G. Bratina, S. Hecht et al., Flexible non-volatile optical memory thin-film transistor device with over 256 distinct levels based on an organic bicomponent blend. Nat. Nanotechnol. 11, 769–775 (2016). https://doi.org/10.1038/nnano.2016.87
- P. Russo, M. Xiao, R. Liang, N.Y. Zhou, UV-induced multilevel current amplification memory effect in zinc oxide rods resistive switching devices. Adv. Funct. Mater. 28, 1706230 (2018). https://doi.org/10.1002/adfm.201706230
- H. Lee, W. Manorotkul, J. Lee, J. Kwon, Y.D. Suh et al., Nanowire-on-nanowire: all-nanowire electronics by on-demand selective integration of hierarchical heterogeneous nanowires. ACS Nano 11, 12311–12317 (2017). https://doi.org/10.1021/acsnano.7b06098
- Z. Zhou, Y. Pei, J. Zhao, G. Fu, X. Yan, Visible light responsive optoelectronic memristor device based on CeOx/ZnO structure for artificial vision system. Appl. Phys. Lett. 118, 191103 (2021). https://doi.org/10.1063/5.0047403
- Y. Chen, S. Zhu, Q. Wei, Y. Xia, A. Li et al., Light-controlled stateful logic operations using optoelectronic switches based on p-Si/HfO2 heterostructures. Appl. Phys. Lett. 112, 063503 (2018). https://doi.org/10.1063/1.5018226
- M.M. Shulaker, T.F. Wu, M.M. Sabry, Wei H., H.-S. Philip Wong et al., Monolithic 3D integration: a path from concept to reality design, automation & test in europe conference & exhibition (DATE), 2015. March 9–13, 2015. Grenoble, France. New Jersey: IEEE Conference Publications, (2015). https://doi.org/10.7873/date.2015.1111
- M. Patel, D.D. Kumbhar, J. Gosai, M.R. Sekhar, A.T. Mallajosyula et al., Hybrid perovskite-based flexible and stable memristor by complete solution process for neuromorphic computing. Adv. Electron. Mater. 9, 2200908 (2023). https://doi.org/10.1002/aelm.202200908
- A. Liang, J. Zhang, F. Wang, Y. Jiang, K. Hu et al., Transparent HfO x-based memristor with robust flexibility and synapse characteristics by interfacial control of oxygen vacancies movement. Nanotechnology 32, 145202 (2021). https://doi.org/10.1088/1361-6528/abd3c7
- S. Biswas, A.D. Paul, P. Das, P. Tiwary, H.J. Edwards et al., Impact of AlOy interfacial layer on resistive switching performance of flexible HfOₓ/AlOy ReRAMs. IEEE Trans. Electron Devices 68, 3787–3793 (2021). https://doi.org/10.1109/TED.2021.3084554
- R. Zhang, H. Huang, Q. Xia, C. Ye, X. Wei et al., Role of oxygen vacancies at the TiO2/HfO2 interface in flexible oxide-based resistive switching memory. Adv. Electron. Mater. 5, 1800833 (2019). https://doi.org/10.1002/aelm.201800833
- Y. Wang, M. Cao, J. Bian, Q. Li, J. Su, Flexible ZnO nanosheet-based artificial synapses prepared by low-temperature process for high recognition accuracy neuromorphic computing. Adv. Funct. Mater. 32, 2209907 (2022). https://doi.org/10.1002/adfm.202209907
- P.-X. Chen, D. Panda, T.-Y. Tseng, All oxide based flexible multi-folded invisible synapse as vision photo-receptor. Sci. Rep. 13, 1454 (2023). https://doi.org/10.1038/s41598-023-28505-3
- S. Zhu, B. Sun, G. Zhou, T. Guo, C. Ke et al., In-depth physical mechanism analysis and wearable applications of HfO x-based flexible memristors. ACS Appl. Mater. Interfaces 15, 5420–5431 (2023). https://doi.org/10.1021/acsami.2c16569
- P. Pal, K.-J. Lee, S. Thunder, S. De, P.-T. Huang et al., Bending resistant multibit memristor for flexible precision inference engine application. IEEE Trans. Electron Devices 69, 4737–4743 (2022). https://doi.org/10.1109/TED.2022.3186965
- S. Kim, Y. Abbas, Y.R. Jeon, A.S. Sokolov, B. Ku et al., Engineering synaptic characteristics of TaOx/HfO2 bi-layered resistive switching device. Nanotechnology 29, 415204 (2018). https://doi.org/10.1088/1361-6528/aad64c
- Y. Sun, J. Wang, D. He, M. Yang, C. Jiang et al., Enhanced resistive switching uniformity in HfO2/TiO2 NWA memristor for synaptic simulation. Appl. Phys. Lett. 122, 133501 (2023). https://doi.org/10.1063/5.0140746
- Y. Yang, X. Zhu, Z. Ma, H. Hu, T. Chen et al., Artificial HfO2/TiOx synapses with controllable memory window and high uniformity for brain-inspired computing. Nanomaterials 13, 605 (2023). https://doi.org/10.3390/nano13030605
- A. Saleem, D. Kumar, A. Singh, S. Rajasekaran, T.-Y. Tseng, Oxygen vacancy transition in HfOx-based flexible, robust, and synaptic Bi-layer memristor for neuromorphic and wearable applications. Adv. Mater. Technol. 7, 2101208 (2022). https://doi.org/10.1002/admt.202101208
- S. Chandrasekaran, F.M. Simanjuntak, D. Panda, T.-Y. Tseng, Enhanced synaptic linearity in ZnO-based invisible memristive synapse by introducing double pulsing scheme. IEEE Trans. Electron Devices 66, 4722–4726 (2019). https://doi.org/10.1109/TED.2019.2941764
- M. Kumar, S. Abbas, J. Kim, All-oxide-based highly transparent photonic synapse for neuromorphic computing. ACS Appl. Mater. Interfaces 10, 34370–34376 (2018). https://doi.org/10.1021/acsami.8b10870
- D.-C. Hu, R. Yang, L. Jiang, X. Guo, Memristive synapses with photoelectric plasticity realized in ZnO1–x/AlOy heterojunction. ACS Appl. Mater. Interfaces 10, 6463–6470 (2018). https://doi.org/10.1021/acsami.8b01036
- X. Shan, C. Zhao, Y. Lin, J. Liu, X. Zhang et al., Optoelectronic synaptic device based on ZnO/HfOx heterojunction for high-performance neuromorphic vision system. Appl. Phys. Lett. 121, 263501 (2022). https://doi.org/10.1063/5.0129642
- C.-L. Hsu, A. Saleem, A. Singh, D. Kumar, T.-Y. Tseng, Enhanced linearity in CBRAM synapse by post oxide deposition annealing for neuromorphic computing applications. IEEE Trans. Electron Devices 68, 5578–5584 (2021). https://doi.org/10.1109/TED.2021.3112109
- H. Jiang, L. Han, P. Lin, Z. Wang, M.H. Jang et al., Sub-10 nm Ta channel responsible for superior performance of a HfO2 memristor. Sci. Rep. 6, 28525 (2016). https://doi.org/10.1038/srep28525
- L. Liu, W. Xiong, Y. Liu, K. Chen, Z. Xu et al., Designing high-performance storage in HfO2/BiFeO3 memristor for artificial synapse applications. Adv. Electron. Mater. 6, 1901012 (2020). https://doi.org/10.1002/aelm.201901012
- P.S. Subin, P.S. Midhun, A. Antony, K.J. Saji, M.K. Jayaraj, Optoelectronic synaptic plasticity mimicked in ZnO-based artificial synapse for neuromorphic image sensing application. Mater. Today Commun. 33, 104232 (2022). https://doi.org/10.1016/j.mtcomm.2022.104232
- W. Zhang, Z. Guo, Y. Dai, J. Lei, J. Wang et al., Effects of stacking sequence and top electrode configuration on switching behaviors in ZnO-HfO2 hybrid resistive memories. Ceram. Int. 49, 35973–35981 (2023). https://doi.org/10.1016/j.ceramint.2023.08.277
- N. Jain, S.K. Sharma, R. Kumawat, P.K. Jain, D. Kumar et al., Resistive switching, endurance and retention properties of ZnO/HfO2 bilayer heterostructure memory device. Micro Nanostruct. 169, 207366 (2022). https://doi.org/10.1016/j.micrna.2022.207366
- M. Noh, D. Ju, S. Cho, S. Kim, The enhanced performance of neuromorphic computing hardware in an ITO/ZnO/HfOx/W bilayer-structured memory device. Nanomaterials 13, 2856 (2023). https://doi.org/10.3390/nano13212856
- L. Ma, G. Wang, S. Wang, D. Chen, Simulation of In-situ training in spike neural network based on non-ideal memristors. IEEE J. Electron Devices Soc. 11, 497–502 (2023). https://doi.org/10.1109/JEDS.2023.3311763
- S. Shrivastava, L.B. Keong, S. Pratik, A.S. Lin, T.-Y. Tseng, Fully photon controlled synaptic memristor for neuro-inspired computing. Adv. Electron. Mater. 9, 2201093 (2023). https://doi.org/10.1002/aelm.202201093
- D. Kumar, L.B. Keong, N. El-Atab, T.-Y. Tseng, Enhanced synaptic features of ZnO/TaOx bilayer invisible memristor for brain-inspired computing. IEEE Electron Device Lett. 43, 2093–2096 (2022). https://doi.org/10.1109/LED.2022.3217983
- J. Meng, T. Wang, H. Zhu, L. Ji, W. Bao et al., Integrated In-sensor computing optoelectronic device for environment-adaptable artificial retina perception application. Nano Lett. 22, 81–89 (2022). https://doi.org/10.1021/acs.nanolett.1c03240
- R.A. John, F. Liu, N.A. Chien, M.R. Kulkarni, C. Zhu et al., Synergistic gating of electro-iono-photoactive 2D chalcogenide neuristors: coexistence of hebbian and homeostatic synaptic metaplasticity. Adv. Mater. 30, e1800220 (2018). https://doi.org/10.1002/adma.201800220
- Y. Wang, G. Zhou, B. Sun, W. Wang, J. Li et al., Ag/HfOx/Pt unipolar memristor for high-efficiency logic operation. J. Phys. Chem. Lett. 13, 8019–8025 (2022). https://doi.org/10.1021/acs.jpclett.2c01906
- D. Kumar, P.S. Kalaga, D.S. Ang, Visible light detection and memory capabilities in MgO/HfO₂ bilayer-based transparent structure for photograph sensing. IEEE Trans. Electron Devices 67, 4274–4280 (2020). https://doi.org/10.1109/TED.2020.3014271
- D. Kumar, S. Shrivastava, A. Saleem, A. Singh, H. Lee et al., Highly efficient invisible TaOx/ZTO bilayer memristor for neuromorphic computing and image sensing. ACS Appl. Electron. Mater. 4, 2180–2190 (2022). https://doi.org/10.1021/acsaelm.1c01152
- S.D. Baek, P. Biswas, J.W. Kim, Y.C. Kim, T.I. Lee et al., Low-temperature facile synthesis of Sb-doped p-type ZnO nanodisks and its application in homojunction light-emitting diode. ACS Appl. Mater. Interfaces 8, 13018–13026 (2016). https://doi.org/10.1021/acsami.6b03258
- J.B. Roldán, E. Miranda, D. Maldonado, A.N. Mikhaylov, N.V. Agudov et al., Variability in resistive memories. Adv. Intell. Syst. 5, 2200338 (2023). https://doi.org/10.1002/aisy.202200338
- J. Yang, A. Yoon, D. Lee, S. Song, I.J. Jung et al., Wafer-scale memristor array based on aligned grain boundaries of 2D molybdenum ditelluride for application to artificial synapses. Adv. Funct. Mater. 34, 2309455 (2024). https://doi.org/10.1002/adfm.202309455
- M. Lanza, F. Hui, C. Wen, A.C. Ferrari, Resistive switching crossbar arrays based on layered materials. Adv. Mater. 35, e2205402 (2023). https://doi.org/10.1002/adma.202205402
- M. Lanza, R. Waser, D. Ielmini, J.J. Yang, L. Goux et al., Standards for the characterization of endurance in resistive switching devices. ACS Nano 15, 17214–17231 (2021). https://doi.org/10.1021/acsnano.1c06980
- Z. Ma, J. Ge, W. Chen, X. Cao, S. Diao et al., Reliable memristor based on ultrathin native silicon oxide. ACS Appl. Mater. Interfaces 14, 21207–21216 (2022). https://doi.org/10.1021/acsami.2c03266
- C. Yang, B. Sun, G. Zhou, T. Guo, C. Ke et al., Photoelectric memristor-based machine vision for artificial intelligence applications. ACS Mater. Lett. 5, 504–526 (2023). https://doi.org/10.1021/acsmaterialslett.2c00911
- R.C. Atkinson, R.M. Shiffrin, Human memory: a proposed system and its control processes, in Psychology of Learning and Motivation. (Elsevier, Amsterdam, 1968), pp.89–195. https://doi.org/10.1016/s0079-7421(08)60422-3
References
F. Zhou, Y. Chai, Near-sensor and in-sensor computing. Nat. Electron. 3, 664–671 (2020). https://doi.org/10.1038/s41928-020-00501-9
V.M. Ho, J.A. Lee, K.C. Martin, The cell biology of synaptic plasticity. Science 333, 623 (2011). https://doi.org/10.1126/science.1209168
K. Liang, R. Wang, B. Huo, H. Ren, D. Li et al., Fully printed optoelectronic synaptic transistors based on quantum dot-metal oxide semiconductor heterojunctions. ACS Nano 16, 8651–8661 (2022). https://doi.org/10.1021/acsnano.2c00439
N. Ilyas, J. Wang, C. Li, D. Li, H. Fu et al., Nanostructured materials and architectures for advanced optoelectronic synaptic devices. Adv. Funct. Mater. 32, 2110976 (2022). https://doi.org/10.1002/adfm.202110976
X. Han, Z. Xu, W. Wu, X. Liu, P. Yan et al., Recent progress in optoelectronic synapses for artificial visual-perception system. Small Struct. 1, 2000029 (2020). https://doi.org/10.1002/sstr.202000029
K. Zhu, S. Pazos, F. Aguirre, Y. Shen, Y. Yuan et al., Hybrid 2D-CMOS microchips for memristive applications. Nature 618, 57–62 (2023). https://doi.org/10.1038/s41586-023-05973-1
Y. Zheng, H. Ravichandran, T.F. Schranghamer, N. Trainor, J.M. Redwing et al., Hardware implementation of Bayesian network based on two-dimensional memtransistors. Nat. Commun. 13, 5578 (2022). https://doi.org/10.1038/s41467-022-33053-x
L. Mennel, J. Symonowicz, S. Wachter, D.K. Polyushkin, A.J. Molina-Mendoza et al., Ultrafast machine vision with 2D material neural network image sensors. Nature 579, 62–66 (2020). https://doi.org/10.1038/s41586-020-2038-x
Z. Zhang, S. Wang, C. Liu, R. Xie, W. Hu et al., All-in-one two-dimensional retinomorphic hardware device for motion detection and recognition. Nat. Nanotechnol. 17, 27–32 (2022). https://doi.org/10.1038/s41565-021-01003-1
L. Sun, Z. Wang, J. Jiang, Y. Kim, B. Joo et al., In-sensor reservoir computing for language learning via two-dimensional memristors. Sci. Adv. 7, eabg1455 (2021). https://doi.org/10.1126/sciadv.abg1455
V.L. Feigin, A.A. Abajobir, K.H. Abate, F. Abd-Allah, A.M. Abdulle, Global, regional, and national burden of neurological disorders during 1990–2015: a systematic analysis for the global burden of disease study 2015. Lancet Neurol. 16, 877–897 (2017). https://doi.org/10.1016/S1474-4422(17)30299-5
H. Li, F. Tian, J. Yang, M. Sawan, N. El-Atab, NMBNN: noise-adaptive memristive Bayesian neural network for energy-efficient edge health care. 2023 IEEE Biomedical Circuits and Systems Conference (BioCAS). Toronto, ON, Canada. IEEE, (2023)., pp. 1–5. https://doi.org/10.1109/BioCAS58349.2023.10388528
H. Li, J. Wang, S. Zhao, F. Tian, J. Yang et al., Real-time biosignal recording and machine-learning analysis system. in 2022 IEEE 4th International Conference on Artificial Intelligence Circuits and Systems (AICAS). Incheon, Republic of Korea, IEEE, (2022). pp. 427–430. https://doi.org/10.1109/AICAS54282.2022.9869982
A.Y. Hannun, P. Rajpurkar, M. Haghpanahi, G.H. Tison, C. Bourn et al., Cardiologist-level arrhythmia detection and classification in ambulatory electrocardiograms using a deep neural network. Nat. Med. 25, 65–69 (2019). https://doi.org/10.1038/s41591-018-0268-3
J. L. Kuo, H. W. Chen, E. R. Hsieh, S. S. Chung, T. P. Chen, et al., Electronics for Radiation Detection. in 2018 IEEE Symposium on VLSI Technology, IEEE, Honolulu, HI, USA, June 2018. https://doi.org/10.1201/9781315222608
S. Yu, B. Gao, Z. Fang, H. Yu, J. Kang et al., A neuromorphic visual system using RRAM synaptic devices with Sub-pJ energy and tolerance to variability: Experimental characterization and large-scale modeling. in 2012 International Electron Devices Meeting. San Francisco, CA, USA. IEEE, (2012). pp. 10.4.1–10.4.4
W. Choi, M. Kwak, S. Heo, K. Lee, S. Lee et al., Hardware neural network using hybrid synapses via transfer learning: WOx nano-resistors and TiOx RRAM synapse for energy-efficient edge-AI sensor. in 2021 IEEE International Electron Devices Meeting (IEDM). San Francisco, CA, USA. IEEE, (2021). pp. 23.1.1–23.1.4
C.-S. Poon, K. Zhou, Neuromorphic silicon neurons and large-scale neural networks: challenges and opportunities. Front. Neurosci. 5, 108 (2011). https://doi.org/10.3389/fnins.2011.00108
K.C. Eldred, S.E. Hadyniak, K.A. Hussey, B. Brenerman, P.W. Zhang et al., Thyroid hormone signaling specifies cone subtypes in human retinal organoids. Science 362, eaau6348 (2018). https://doi.org/10.1126/science.aau6348
Q.-B. Zhu, B. Li, D.-D. Yang, C. Liu, S. Feng et al., A flexible ultrasensitive optoelectronic sensor array for neuromorphic vision systems. Nat. Commun. 12, 1798 (2021). https://doi.org/10.1038/s41467-021-22047-w
D. Kumar, H. Li, U.K. Das, A.M. Syed, N. El-Atab, Flexible solution-processable black-phosphorus-based optoelectronic memristive synapses for neuromorphic computing and artificial visual perception applications. Adv. Mater. 35, e2300446 (2023). https://doi.org/10.1002/adma.202300446
C. Wan, P. Cai, M. Wang, Y. Qian, W. Huang et al., Artificial sensory memory. Adv. Mater. 32, 1902434 (2020). https://doi.org/10.1002/adma.201902434
H. Jang, C. Liu, H. Hinton, M.-H. Lee, H. Kim et al., An atomically thin optoelectronic machine vision processor. Adv. Mater. 32, 2002431 (2020). https://doi.org/10.1002/adma.202002431
L. Gu, S. Poddar, Y. Lin, Z. Long, D. Zhang et al., A biomimetic eye with a hemispherical perovskite nanowire array retina. Nature 581, 278–282 (2020). https://doi.org/10.1038/s41586-020-2285-x
G.J. Lee, C. Choi, D.-H. Kim, Y.M. Song, Artificial eyes: bioinspired artificial eyes: optic components, digital cameras, and visual prostheses. Adv. Funct. Mater. 28, 1870168 (2018). https://doi.org/10.1002/adfm.201870168
Y.M. Song, Y. Xie, V. Malyarchuk, J. Xiao, I. Jung et al., Digital cameras with designs inspired by the arthropod eye. Nature 497, 95–99 (2013). https://doi.org/10.1038/nature12083
D. Kumar, L. Joharji, H. Li, A. Rezk, A. Nayfeh et al., Artificial visual perception neural system using a solution-processable MoS2-based in-memory light sensor. Light Sci. Appl. 12, 109 (2023). https://doi.org/10.1038/s41377-023-01166-7
S. Chen, A. Bermak, Arbitrated time-to-first spike CMOS image sensor with on-chip histogram equalization. IEEE Trans. Very Large Scale Integr. VLSI Syst. 15, 346–357 (2007). https://doi.org/10.1109/TVLSI.2007.893624
Y.L. Cun, Y. Bengio, G. Hinton, Deep learning. Nature 521, 436–444 (2015). https://doi.org/10.1038/nature14539
S. Yu, B. Gao, Z. Fang, H. Yu, J. Kang et al., A low energy oxide-based electronic synaptic device for neuromorphic visual systems with tolerance to device variation. Adv. Mater. 25, 1774–1779 (2013). https://doi.org/10.1002/adma.201203680
Y. Wang, Z. Lv, J. Chen, Z. Wang, Y. Zhou et al., Photonic synapses based on inorganic perovskite quantum dots for neuromorphic computing. Adv. Mater. 30, 1802883 (2018). https://doi.org/10.1002/adma.201802883
F. Zhou, Z. Zhou, J. Chen, T.H. Choy, J. Wang et al., Optoelectronic resistive random access memory for neuromorphic vision sensors. Nat. Nanotechnol. 14, 776–782 (2019). https://doi.org/10.1038/s41565-019-0501-3
S. Wang, C.-Y. Wang, P. Wang, C. Wang, Z.-A. Li et al., Networking retinomorphic sensor with memristive crossbar for brain-inspired visual perception. Natl. Sci. Rev. 8, nwaa172 (2020). https://doi.org/10.1093/nsr/nwaa172
H. Tan, G. Liu, X. Zhu, H. Yang, B. Chen et al., An optoelectronic resistive switching memory with integrated demodulating and arithmetic functions. Adv. Mater. 27, 2797–2803 (2015). https://doi.org/10.1002/adma.201500039
T. Leydecker, M. Herder, E. Pavlica, G. Bratina, S. Hecht et al., Flexible non-volatile optical memory thin-film transistor device with over 256 distinct levels based on an organic bicomponent blend. Nat. Nanotechnol. 11, 769–775 (2016). https://doi.org/10.1038/nnano.2016.87
P. Russo, M. Xiao, R. Liang, N.Y. Zhou, UV-induced multilevel current amplification memory effect in zinc oxide rods resistive switching devices. Adv. Funct. Mater. 28, 1706230 (2018). https://doi.org/10.1002/adfm.201706230
H. Lee, W. Manorotkul, J. Lee, J. Kwon, Y.D. Suh et al., Nanowire-on-nanowire: all-nanowire electronics by on-demand selective integration of hierarchical heterogeneous nanowires. ACS Nano 11, 12311–12317 (2017). https://doi.org/10.1021/acsnano.7b06098
Z. Zhou, Y. Pei, J. Zhao, G. Fu, X. Yan, Visible light responsive optoelectronic memristor device based on CeOx/ZnO structure for artificial vision system. Appl. Phys. Lett. 118, 191103 (2021). https://doi.org/10.1063/5.0047403
Y. Chen, S. Zhu, Q. Wei, Y. Xia, A. Li et al., Light-controlled stateful logic operations using optoelectronic switches based on p-Si/HfO2 heterostructures. Appl. Phys. Lett. 112, 063503 (2018). https://doi.org/10.1063/1.5018226
M.M. Shulaker, T.F. Wu, M.M. Sabry, Wei H., H.-S. Philip Wong et al., Monolithic 3D integration: a path from concept to reality design, automation & test in europe conference & exhibition (DATE), 2015. March 9–13, 2015. Grenoble, France. New Jersey: IEEE Conference Publications, (2015). https://doi.org/10.7873/date.2015.1111
M. Patel, D.D. Kumbhar, J. Gosai, M.R. Sekhar, A.T. Mallajosyula et al., Hybrid perovskite-based flexible and stable memristor by complete solution process for neuromorphic computing. Adv. Electron. Mater. 9, 2200908 (2023). https://doi.org/10.1002/aelm.202200908
A. Liang, J. Zhang, F. Wang, Y. Jiang, K. Hu et al., Transparent HfO x-based memristor with robust flexibility and synapse characteristics by interfacial control of oxygen vacancies movement. Nanotechnology 32, 145202 (2021). https://doi.org/10.1088/1361-6528/abd3c7
S. Biswas, A.D. Paul, P. Das, P. Tiwary, H.J. Edwards et al., Impact of AlOy interfacial layer on resistive switching performance of flexible HfOₓ/AlOy ReRAMs. IEEE Trans. Electron Devices 68, 3787–3793 (2021). https://doi.org/10.1109/TED.2021.3084554
R. Zhang, H. Huang, Q. Xia, C. Ye, X. Wei et al., Role of oxygen vacancies at the TiO2/HfO2 interface in flexible oxide-based resistive switching memory. Adv. Electron. Mater. 5, 1800833 (2019). https://doi.org/10.1002/aelm.201800833
Y. Wang, M. Cao, J. Bian, Q. Li, J. Su, Flexible ZnO nanosheet-based artificial synapses prepared by low-temperature process for high recognition accuracy neuromorphic computing. Adv. Funct. Mater. 32, 2209907 (2022). https://doi.org/10.1002/adfm.202209907
P.-X. Chen, D. Panda, T.-Y. Tseng, All oxide based flexible multi-folded invisible synapse as vision photo-receptor. Sci. Rep. 13, 1454 (2023). https://doi.org/10.1038/s41598-023-28505-3
S. Zhu, B. Sun, G. Zhou, T. Guo, C. Ke et al., In-depth physical mechanism analysis and wearable applications of HfO x-based flexible memristors. ACS Appl. Mater. Interfaces 15, 5420–5431 (2023). https://doi.org/10.1021/acsami.2c16569
P. Pal, K.-J. Lee, S. Thunder, S. De, P.-T. Huang et al., Bending resistant multibit memristor for flexible precision inference engine application. IEEE Trans. Electron Devices 69, 4737–4743 (2022). https://doi.org/10.1109/TED.2022.3186965
S. Kim, Y. Abbas, Y.R. Jeon, A.S. Sokolov, B. Ku et al., Engineering synaptic characteristics of TaOx/HfO2 bi-layered resistive switching device. Nanotechnology 29, 415204 (2018). https://doi.org/10.1088/1361-6528/aad64c
Y. Sun, J. Wang, D. He, M. Yang, C. Jiang et al., Enhanced resistive switching uniformity in HfO2/TiO2 NWA memristor for synaptic simulation. Appl. Phys. Lett. 122, 133501 (2023). https://doi.org/10.1063/5.0140746
Y. Yang, X. Zhu, Z. Ma, H. Hu, T. Chen et al., Artificial HfO2/TiOx synapses with controllable memory window and high uniformity for brain-inspired computing. Nanomaterials 13, 605 (2023). https://doi.org/10.3390/nano13030605
A. Saleem, D. Kumar, A. Singh, S. Rajasekaran, T.-Y. Tseng, Oxygen vacancy transition in HfOx-based flexible, robust, and synaptic Bi-layer memristor for neuromorphic and wearable applications. Adv. Mater. Technol. 7, 2101208 (2022). https://doi.org/10.1002/admt.202101208
S. Chandrasekaran, F.M. Simanjuntak, D. Panda, T.-Y. Tseng, Enhanced synaptic linearity in ZnO-based invisible memristive synapse by introducing double pulsing scheme. IEEE Trans. Electron Devices 66, 4722–4726 (2019). https://doi.org/10.1109/TED.2019.2941764
M. Kumar, S. Abbas, J. Kim, All-oxide-based highly transparent photonic synapse for neuromorphic computing. ACS Appl. Mater. Interfaces 10, 34370–34376 (2018). https://doi.org/10.1021/acsami.8b10870
D.-C. Hu, R. Yang, L. Jiang, X. Guo, Memristive synapses with photoelectric plasticity realized in ZnO1–x/AlOy heterojunction. ACS Appl. Mater. Interfaces 10, 6463–6470 (2018). https://doi.org/10.1021/acsami.8b01036
X. Shan, C. Zhao, Y. Lin, J. Liu, X. Zhang et al., Optoelectronic synaptic device based on ZnO/HfOx heterojunction for high-performance neuromorphic vision system. Appl. Phys. Lett. 121, 263501 (2022). https://doi.org/10.1063/5.0129642
C.-L. Hsu, A. Saleem, A. Singh, D. Kumar, T.-Y. Tseng, Enhanced linearity in CBRAM synapse by post oxide deposition annealing for neuromorphic computing applications. IEEE Trans. Electron Devices 68, 5578–5584 (2021). https://doi.org/10.1109/TED.2021.3112109
H. Jiang, L. Han, P. Lin, Z. Wang, M.H. Jang et al., Sub-10 nm Ta channel responsible for superior performance of a HfO2 memristor. Sci. Rep. 6, 28525 (2016). https://doi.org/10.1038/srep28525
L. Liu, W. Xiong, Y. Liu, K. Chen, Z. Xu et al., Designing high-performance storage in HfO2/BiFeO3 memristor for artificial synapse applications. Adv. Electron. Mater. 6, 1901012 (2020). https://doi.org/10.1002/aelm.201901012
P.S. Subin, P.S. Midhun, A. Antony, K.J. Saji, M.K. Jayaraj, Optoelectronic synaptic plasticity mimicked in ZnO-based artificial synapse for neuromorphic image sensing application. Mater. Today Commun. 33, 104232 (2022). https://doi.org/10.1016/j.mtcomm.2022.104232
W. Zhang, Z. Guo, Y. Dai, J. Lei, J. Wang et al., Effects of stacking sequence and top electrode configuration on switching behaviors in ZnO-HfO2 hybrid resistive memories. Ceram. Int. 49, 35973–35981 (2023). https://doi.org/10.1016/j.ceramint.2023.08.277
N. Jain, S.K. Sharma, R. Kumawat, P.K. Jain, D. Kumar et al., Resistive switching, endurance and retention properties of ZnO/HfO2 bilayer heterostructure memory device. Micro Nanostruct. 169, 207366 (2022). https://doi.org/10.1016/j.micrna.2022.207366
M. Noh, D. Ju, S. Cho, S. Kim, The enhanced performance of neuromorphic computing hardware in an ITO/ZnO/HfOx/W bilayer-structured memory device. Nanomaterials 13, 2856 (2023). https://doi.org/10.3390/nano13212856
L. Ma, G. Wang, S. Wang, D. Chen, Simulation of In-situ training in spike neural network based on non-ideal memristors. IEEE J. Electron Devices Soc. 11, 497–502 (2023). https://doi.org/10.1109/JEDS.2023.3311763
S. Shrivastava, L.B. Keong, S. Pratik, A.S. Lin, T.-Y. Tseng, Fully photon controlled synaptic memristor for neuro-inspired computing. Adv. Electron. Mater. 9, 2201093 (2023). https://doi.org/10.1002/aelm.202201093
D. Kumar, L.B. Keong, N. El-Atab, T.-Y. Tseng, Enhanced synaptic features of ZnO/TaOx bilayer invisible memristor for brain-inspired computing. IEEE Electron Device Lett. 43, 2093–2096 (2022). https://doi.org/10.1109/LED.2022.3217983
J. Meng, T. Wang, H. Zhu, L. Ji, W. Bao et al., Integrated In-sensor computing optoelectronic device for environment-adaptable artificial retina perception application. Nano Lett. 22, 81–89 (2022). https://doi.org/10.1021/acs.nanolett.1c03240
R.A. John, F. Liu, N.A. Chien, M.R. Kulkarni, C. Zhu et al., Synergistic gating of electro-iono-photoactive 2D chalcogenide neuristors: coexistence of hebbian and homeostatic synaptic metaplasticity. Adv. Mater. 30, e1800220 (2018). https://doi.org/10.1002/adma.201800220
Y. Wang, G. Zhou, B. Sun, W. Wang, J. Li et al., Ag/HfOx/Pt unipolar memristor for high-efficiency logic operation. J. Phys. Chem. Lett. 13, 8019–8025 (2022). https://doi.org/10.1021/acs.jpclett.2c01906
D. Kumar, P.S. Kalaga, D.S. Ang, Visible light detection and memory capabilities in MgO/HfO₂ bilayer-based transparent structure for photograph sensing. IEEE Trans. Electron Devices 67, 4274–4280 (2020). https://doi.org/10.1109/TED.2020.3014271
D. Kumar, S. Shrivastava, A. Saleem, A. Singh, H. Lee et al., Highly efficient invisible TaOx/ZTO bilayer memristor for neuromorphic computing and image sensing. ACS Appl. Electron. Mater. 4, 2180–2190 (2022). https://doi.org/10.1021/acsaelm.1c01152
S.D. Baek, P. Biswas, J.W. Kim, Y.C. Kim, T.I. Lee et al., Low-temperature facile synthesis of Sb-doped p-type ZnO nanodisks and its application in homojunction light-emitting diode. ACS Appl. Mater. Interfaces 8, 13018–13026 (2016). https://doi.org/10.1021/acsami.6b03258
J.B. Roldán, E. Miranda, D. Maldonado, A.N. Mikhaylov, N.V. Agudov et al., Variability in resistive memories. Adv. Intell. Syst. 5, 2200338 (2023). https://doi.org/10.1002/aisy.202200338
J. Yang, A. Yoon, D. Lee, S. Song, I.J. Jung et al., Wafer-scale memristor array based on aligned grain boundaries of 2D molybdenum ditelluride for application to artificial synapses. Adv. Funct. Mater. 34, 2309455 (2024). https://doi.org/10.1002/adfm.202309455
M. Lanza, F. Hui, C. Wen, A.C. Ferrari, Resistive switching crossbar arrays based on layered materials. Adv. Mater. 35, e2205402 (2023). https://doi.org/10.1002/adma.202205402
M. Lanza, R. Waser, D. Ielmini, J.J. Yang, L. Goux et al., Standards for the characterization of endurance in resistive switching devices. ACS Nano 15, 17214–17231 (2021). https://doi.org/10.1021/acsnano.1c06980
Z. Ma, J. Ge, W. Chen, X. Cao, S. Diao et al., Reliable memristor based on ultrathin native silicon oxide. ACS Appl. Mater. Interfaces 14, 21207–21216 (2022). https://doi.org/10.1021/acsami.2c03266
C. Yang, B. Sun, G. Zhou, T. Guo, C. Ke et al., Photoelectric memristor-based machine vision for artificial intelligence applications. ACS Mater. Lett. 5, 504–526 (2023). https://doi.org/10.1021/acsmaterialslett.2c00911
R.C. Atkinson, R.M. Shiffrin, Human memory: a proposed system and its control processes, in Psychology of Learning and Motivation. (Elsevier, Amsterdam, 1968), pp.89–195. https://doi.org/10.1016/s0079-7421(08)60422-3