High Density 3D Carbon Tube Nanoarray Electrode Boosting the Capacitance of Filter Capacitor
Corresponding Author: Bingqing Wei
Nano-Micro Letters,
Vol. 16 (2024), Article Number: 235
Abstract
Electric double-layer capacitors (EDLCs) with fast frequency response are regarded as small-scale alternatives to the commercial bulky aluminum electrolytic capacitors. Creating carbon-based nanoarray electrodes with precise alignment and smooth ion channels is crucial for enhancing EDLCs’ performance. However, controlling the density of macropore-dominated nanoarray electrodes poses challenges in boosting the capacitance of line-filtering EDLCs. Herein, a simple technique to finely adjust the vertical-pore diameter and inter-spacing in three-dimensional nanoporous anodic aluminum oxide (3D-AAO) template is achieved, and 3D compactly arranged carbon tube (3D-CACT) nanoarrays are created as electrodes for symmetrical EDLCs using nanoporous 3D-AAO template-assisted chemical vapor deposition of carbon. The 3D-CACT electrodes demonstrate a high surface area of 253.0 m2 g−1, a D/G band intensity ratio of 0.94, and a C/O atomic ratio of 8. As a result, the high-density 3D-CT nanoarray-based sandwich-type EDLCs demonstrate a record high specific areal capacitance of 3.23 mF cm−2 at 120 Hz and exceptional fast frequency response due to the vertically aligned and highly ordered nanoarray of closely packed CT units. The 3D-CT nanoarray electrode-based EDLCs could serve as line filters in integrated circuits, aiding power system miniaturization.
Highlights:
1 A novel method is developed for precise control over the structure of 3D anodic aluminum oxide templates, enabling fine-tuning of both the vertical pore diameter and interspace within the templates.
2 3D carbon tube nanoarrays featuring significantly thinner and denser tubes are constructed as high-quality electrodes for miniaturized filter capacitors.
3 The 3D compactly arranged carbon tube-based capacitor achieves a remarkable specific areal capacitance of 3.23 mF cm−2 with a phase angle of − 80.2° at 120 Hz.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- P. Huang, C. Lethien, S. Pinaud, K. Brousse, R. Laloo et al., On-chip and freestanding elastic carbon films for micro-supercapacitors. Science 351, 691–695 (2016). https://doi.org/10.1126/science.aad3345
- M.F. El-Kady, R.B. Kaner, Scalable fabrication of high-power graphene micro-supercapacitors for flexible and on-chip energy storage. Nat. Commun. 4, 1475–1483 (2013). https://doi.org/10.1038/ncomms2446
- Y.K. Sun, Z. Chen, H.J. Noh, D.J. Lee, H.G. Jung et al., Nanostructured high-energy cathode materials for advanced lithium batteries. Nat. Mater. 11, 942–947 (2012). https://doi.org/10.1038/nmat3435
- C. Zhu, R.E. Usiskin, Y. Yu, J. Maier, The nanoscale circuitry of battery electrodes. Science 358, eaao2808–eaao2815 (2017). https://doi.org/10.1126/science.aao2808
- W. Cheng, J. Fu, H. Hu, D. Ho, Interlayer structure engineering of mxene-based capacitor-type electrode for hybrid micro-supercapacitor toward battery-level energy density. Adv. Sci. 8, e2100775–e2100787 (2021). https://doi.org/10.1002/advs.202100775
- Y. Wang, N. Chen, B. Zhou, X. Zhou, B. Pu et al., NH3-induced in situ etching strategy derived 3D-interconnected porous mxene/carbon dots films for high performance flexible supercapacitors. Nano-Micro Lett. 15, 231–242 (2023). https://doi.org/10.1007/s40820-023-01204-4
- J.R. Miller, R.A. Outlaw, B.C. Holloway, Graphene double-layer capacitor with AC line-filtering performance. Science 329, 1637–1639 (2010). https://doi.org/10.1126/science.1194372
- F. Han, O. Qian, G. Meng, D. Lin, G. Chen et al., Structurally integrated 3D carbon tube grid-based high-performance filter capacitor. Science 377, 1004–1007 (2022). https://doi.org/10.1126/science.abh4380
- Y. Hu, M. Wu, F. Chi, G. Lai, P. Li et al., Ultralow-resistance electrochemical capacitor for integrable line filtering. Nature 624, 74–79 (2023). https://doi.org/10.1038/s41586-023-06712-2
- M. Zhao, Y. Qin, X. Wang, L. Wang, Q. Jin et al., PEDOT:PSS/Ketjenblack holey nanosheets with ultrahigh areal capacitance for kHz AC line-filtering micro-supercapacitors. Adv. Funct. Mater. (2023). https://doi.org/10.1002/adfm.202313495
- Z. Zhang, Z. Wang, F. Wang, T. Qin, H. Zhu et al., A laser-processed carbon-titanium carbide heterostructure electrode for high-frequency micro-supercapacitors. Small 19, 2300747–2300755 (2023). https://doi.org/10.1002/smll.202300747
- F. Wang, Z. Guo, Z. Wang, H. Zhu, G. Zhao et al., Laser-induced transient self-organization of TiNx nano-filament percolated networks for high performance surface-mountable filter capacitors. Adv. Mater. 35, 2210038–2210050 (2023). https://doi.org/10.1002/adma.202210038
- M. Zhang, K. Dong, S.S. Garakani, A.K. Kheirabad, I. Manke et al., Bridged carbon fabric membrane with boosted performance in AC line-filtering capacitors. Adv. Sci. 9, e2105072–e2105079 (2022). https://doi.org/10.1002/advs.202105072
- Y. Wen, H. Chen, M. Wu, C. Li, Vertically oriented mxene bridging the frequency response and capacity density gap for AC-filtering pseudocapacitors. Adv. Funct. Mater. 32, 2111613–2111622 (2022). https://doi.org/10.1002/adfm.202111613
- Z. Li, X. Wang, L. Zhao, F. Chi, C. Gao et al., Aqueous hybrid electrochemical capacitors with ultra-high energy density approaching for thousand-volts alternating current line filtering. Nat. Commun. 13, 6359–6369 (2022). https://doi.org/10.1038/s41467-022-34082-2
- J. Zhang, K. Wang, P. Lu, J. Gao, Z. Cao et al., Wood-like low-tortuosity thick electrode for micro-redoxcapacitor with ultrahigh areal energy density and steady power output. Adv. Funct. Mater. 34, 2310775–2310785 (2023). https://doi.org/10.1002/adfm.202310775
- C. Zhang, H. Du, K. Ma, Z. Yuan, Ultrahigh-rate supercapacitor based on carbon nano-onion/graphene hybrid structure toward compact alternating current filter. Adv. Energy Mater. 10, 2002132–2002148 (2020). https://doi.org/10.1002/aenm.202002132
- M. Zhang, W. Wang, L. Tan, M. Eriksson, M. Wu et al., From wood to thin porous carbon membrane: Ancient materials for modern ultrafast electrochemical capacitors in alternating current line filtering. Energy Stor. Mater. 35, 327–333 (2021). https://doi.org/10.1016/j.ensm.2020.11.007
- F. Chi, Y. Hu, W. He, C. Weng, H. Cheng et al., Graphene ionogel ultra-fast filter supercapacitor with 4 V workable window and 150 °C operable temperature. Small 18, e2200916–e2200923 (2022). https://doi.org/10.1002/smll.202200916
- S. Wu, Y. Yang, M. Sun, T. Zhang, S. Huang et al., Dilute aqueous-aprotic electrolyte towards robust Zn-ion hybrid supercapacitor with high operation voltage and long lifespan. Nano-Micro Lett. 16, 161–172 (2024). https://doi.org/10.1007/s40820-024-01372-x
- J. Lin, Z. Peng, Y. Liu, F. Ruiz-Zepeda, R. Ye et al., Laser-induced porous graphene films from commercial polymers. Nat. Commun. 5, 5714–5721 (2014). https://doi.org/10.1038/ncomms6714
- M. Cai, R.A. Quinlan, R.A. Quinlan, D. Premathilake, S.M. Butler et al., Fast response, vertically oriented graphene nanosheet electric double layer capacitors synthesized from C2H2. ACS Nano 8, 5873–5882 (2014). https://doi.org/10.1021/nn5009319
- Z.S. Wu, Z. Liu, K. Parvez, X. Feng, K. Mullen, Ultrathin printable graphene supercapacitors with AC line-filtering performance. Adv. Mater. 27, 3669–3675 (2015). https://doi.org/10.1002/adma.201501208
- F. Chi, C. Li, Q. Zhou, M. Zhang, J. Chen et al., Graphene-based organic electrochemical capacitors for AC line filtering. Adv. Energy Mater. 7, 1700591–1700597 (2017). https://doi.org/10.1002/aenm.201700591
- J. Ye, H. Tan, S. Wu, K. Ni, F. Pan et al., Direct laser writing of graphene made from chemical vapor deposition for flexible, integratable micro-supercapacitors with ultrahigh power output. Adv. Mater. 30, e1801384–e1801391 (2018). https://doi.org/10.1002/adma.201801384
- S. Xu, Y. Wen, Z. Chen, N. Ji, Z. Zou et al., Vertical graphene arrays as electrodes for ultra-high energy density AC line-filtering capacitors. Angew. Chem. Int. Ed. 60, 24505–24509 (2021). https://doi.org/10.1002/anie.202111468
- D. Pech, M. Brunet, H. Durou, P. Huang, V. Mochalin et al., Ultrahigh-power micrometre-sized supercapacitors based on onion-like carbon. Nat. Nanotechnol. 5, 651–654 (2010). https://doi.org/10.1038/nnano.2010.162
- C. Wang, S.V. Tang, S. Qu, Z. He, B. Peng et al., Design of efficient, reliable, and wide-band filter electrochemical capacitors via matching positive with negative electrodes. Joule (2024). https://doi.org/10.1016/j.joule.2024.01.014
- M. Wu, F. Chi, H. Geng, H. Ma, M. Zhang et al., Arbitrary waveform AC line filtering applicable to hundreds of volts based on aqueous electrochemical capacitors. Nat. Commun. 10, 2855–2863 (2019). https://doi.org/10.1038/s41467-019-10886-7
- J. Lin, C. Zhang, Z. Yan, Y. Zhu, Z. Peng et al., 3-dimensional graphene carbon nanotube carpet-based microsupercapacitors with high electrochemical performance. Nano Lett. 13, 72–78 (2013). https://doi.org/10.1021/nl3034976
- Q. Li, S. Sun, A.D. Smith, P. Lundgren, Y. Fu et al., Compact and low loss electrochemical capacitors using a graphite/carbon nanotube hybrid material for miniaturized systems. J. Power. Sources 412, 374–383 (2019). https://doi.org/10.1016/j.jpowsour.2018.11.052
- Z. Cao, H. Hu, D. Ho, Micro-redoxcapacitor: A hybrid architecture out of the notorious energy-power density dilemma. Adv. Funct. Mater. 32, 2111805–2111814 (2022). https://doi.org/10.1002/adfm.202111805
- Z. Cao, G. Liang, D. Ho, C. Zhi, H. Hu, Interlayer injection of low-valence Zn atoms to activate MXene-based micro-redox capacitors with battery-type voltage plateaus. Adv. Funct. Mater. 33, 2303060–2303070 (2023). https://doi.org/10.1002/adfm.202303060
- J. Park, W. Kim, History and perspectives on ultrafast supercapacitors for AC line filtering. Adv. Energy Mater. 11, 2003306–2003333 (2021). https://doi.org/10.1002/aenm.202003306
- H. Tang, Y. Tian, Z.S. Wu, Y.J. Zeng, Y. Wang et al., AC line filter electrochemical capacitors: materials, morphology and configuration. Energy Environ. Mater. 5, 1060–1083 (2022). https://doi.org/10.1002/eem2.12285
- S. Xu, M. Wu, J. Zhang, Ultrafast electrochemical capacitors with carbon related materials as electrodes for AC line filtering. Chemistry 28, e202200237 (2022). https://doi.org/10.1002/chem.202200237
- H. Sun, L. Mei, J. Liang, Z. Zhao, C. Lee et al., Three-dimensional holey-graphene/niobia composite architectures for ultrahigh-rate energy storage. Science 356, 599–604 (2017). https://doi.org/10.1126/science.aam5852
- S. Li, D. Liu, G. Wang, P. Ma, X. Wang et al., Vertical 3D nanostructures boost efficient hydrogen production coupled with glycerol oxidation under alkaline conditions. Nano-Micro Lett. 15, 189–201 (2023). https://doi.org/10.1007/s40820-023-01150-1
- J. Qiu, Y. Duan, S. Li, H. Zhao, W. Ma et al., Insights into nano- and micro-structured scaffolds for advanced electrochemical energy storage. Nano-Micro Lett. 16, 130 (2024). https://doi.org/10.1007/s40820-024-01341-4
- F. Han, G. Meng, F. Zhou, L. Song, X. Li et al., Dielectric capacitors with three-dimensional nanoscale interdigital electrodes for energy storage. Sci. Adv. 1, e1500605–e1500611 (2015). https://doi.org/10.1126/sciadv.1500605
- F. Han, G. Meng, Q. Xu, X. Zhu, X. Zhao et al., Alumina-sheathed nanocables with cores consisting of various structures and materials. Angew. Chem. Int. Ed. 50, 2036–2040 (2011). https://doi.org/10.1002/anie.201007151
- W. Lee, K. Schwirn, M. Steinhart, E. Pippel, R. Scholz et al., Structural engineering of nanoporous anodic aluminium oxide by pulse anodization of aluminium. Nat. Nanotechnol. 3, 234–239 (2008). https://doi.org/10.1038/nnano.2008.54
- F. Han, G. Meng, D. Lin, G. Chen, S. Zhang et al., Ultrahigh-power electrochemical double-layer capacitors based on structurally integrated 3D carbon tube arrays. Nano Res. 16, 12849–12854 (2023). https://doi.org/10.1007/s12274-023-6263-0
- S. Zhang, F. Han, Q. Pan, D. Lin, X. Zhu et al., 3D grid of carbon tubes with Mn3O4-NPs/CNTs filled in their inner cavity as ultrahigh-rate and stable lithium anode. Energy Environ. Mater. 6, e12586–e12593 (2023). https://doi.org/10.1002/eem2.12586
- S. Zhang, F. Han, Q. Pan, D. Lin, G. Chen et al., Enhancing electrochemical energy storage capacity and rate performance of the anode with a 3D interconnected carbon tube-NiO-SnO2 composite scaffold. Sci. China Mater. 66, 3493–3500 (2023). https://doi.org/10.1007/s40843-023-2526-8
- G. Chen, F. Han, D. Lin, S. Zhang, Q. Pan et al., Three-dimensional multi-layer carbon tube electrodes for AC line-filtering capacitors. Joule 8, 1080–1091 (2024). https://doi.org/10.1016/j.joule.2024.01.026
- S.Z. Kure-Chu, K. Osaka, H. Yashiro, H. Segawa, K. Wada et al., Controllable fabrication of networked three-dimensional nanoporous anodic alumina films on low-purity Al materials. J. Electrochem. Soc. 162, C24–C34 (2014). https://doi.org/10.1149/2.0511501jes
- J. Vanpaemel, A.M. Abd-Elnaiem, S. De Gendt, P.M. Vereecken, The formation mechanism of 3D porous anodized aluminum oxide templates from an aluminum film with copper impurities. J. Phys. Chem. C 119, 2105–2112 (2015). https://doi.org/10.1021/jp508142m
- Y. Fan, Z. Yi, G. Song, Z. Wang, C. Chen et al., Self-standing graphitized hybrid nanocarbon electrodes towards high-frequency supercapacitors. Carbon 185, 630–640 (2021). https://doi.org/10.1016/j.carbon.2021.09.059
- W. Zhao, J. Yang, Y. Shang, B. Yang, D. Han et al., 3D carbon nanotube-mesoporous carbon sponge with short pore channels for high-power lithium-ion capacitor cathodes. Carbon 203, 479–489 (2023). https://doi.org/10.1016/j.carbon.2022.12.009
- S. Suh, K. Kim, J. Park, W. Kim, Ultrafast flexible PEDOT:PSS supercapacitor with outstanding volumetric capacitance for AC line filtering. Chem. Eng. J. 463, 142377–142386 (2023). https://doi.org/10.1016/j.cej.2023.142377
- M. Wu, K. Sun, J. He, Q. Huang, W. Zhan et al., Hierarchically 3D fibrous electrode for high-performance flexible AC-line filtering in fluctuating energy harvesters. Adv. Funct. Mater. 33, 2305039–2305049 (2023). https://doi.org/10.1002/adfm.202305039
- Z. Li, L. Zhao, X. Zheng, P. Lin, X. Li et al., Continuous PEDOT:PSS nanomesh film: towards aqueous AC line filtering capacitor with ultrahigh energy density. Chem. Eng. J. 430, 133012–133019 (2022). https://doi.org/10.1016/j.cej.2021.133012
- C. Li, X. Li, G. Liu, W. Yu, Z. Yang et al., Microcrack arrays in dense graphene films for fast-ion-diffusion supercapacitors. Small 19, e2301533 (2023). https://doi.org/10.1002/smll.202301533
- X. Feng, X. Shi, J. Ning, D. Wang, J. Zhang et al., Recent advances in micro-supercapacitors for AC line-filtering performance: from fundamental models to emerging applications. eScience 1, 124–140 (2021). https://doi.org/10.1016/j.esci.2021.11.005
- D. Zhao, K. Jiang, J. Li, X. Zhu, C. Ke et al., Supercapacitors with alternating current line-filtering performance. BMC Mater. 2, 3–22 (2020). https://doi.org/10.1186/s42833-020-0009-z
- Z. Fan, N. Islam, S.B. Bayne, Towards kilohertz electrochemical capacitors for filtering and pulse energy harvesting. Nano Energy 39, 306–320 (2017). https://doi.org/10.1016/j.nanoen.2017.06.048
- J.R. Miller, R.A. Outlaw, Vertically-oriented graphene electric double layer capacitor designs. J. Electrochem. Soc. 162, A5077–A5082 (2015). https://doi.org/10.1149/2.0121505jes
- L. Wang, L. Zhao, M. Song, L. Xie, X. Wang et al., Alternatingly stacked thin film electrodes-based compact aqueous hybrid electrochemical capacitors for hundred-volts AC line filtering. J. Energy Chem. 78, 158–168 (2022). https://doi.org/10.1016/j.jechem.2022.11.055
- H. Tang, K. Xia, J. Lu, J. Fu, Z. Zhu et al., NiTe2-based electrochemical capacitors with high-capacitance AC line filtering for regulating TENGs to steadily drive LEDs. Nano Energy 84, 105931–105942 (2021). https://doi.org/10.1016/j.nanoen.2021.105931
References
P. Huang, C. Lethien, S. Pinaud, K. Brousse, R. Laloo et al., On-chip and freestanding elastic carbon films for micro-supercapacitors. Science 351, 691–695 (2016). https://doi.org/10.1126/science.aad3345
M.F. El-Kady, R.B. Kaner, Scalable fabrication of high-power graphene micro-supercapacitors for flexible and on-chip energy storage. Nat. Commun. 4, 1475–1483 (2013). https://doi.org/10.1038/ncomms2446
Y.K. Sun, Z. Chen, H.J. Noh, D.J. Lee, H.G. Jung et al., Nanostructured high-energy cathode materials for advanced lithium batteries. Nat. Mater. 11, 942–947 (2012). https://doi.org/10.1038/nmat3435
C. Zhu, R.E. Usiskin, Y. Yu, J. Maier, The nanoscale circuitry of battery electrodes. Science 358, eaao2808–eaao2815 (2017). https://doi.org/10.1126/science.aao2808
W. Cheng, J. Fu, H. Hu, D. Ho, Interlayer structure engineering of mxene-based capacitor-type electrode for hybrid micro-supercapacitor toward battery-level energy density. Adv. Sci. 8, e2100775–e2100787 (2021). https://doi.org/10.1002/advs.202100775
Y. Wang, N. Chen, B. Zhou, X. Zhou, B. Pu et al., NH3-induced in situ etching strategy derived 3D-interconnected porous mxene/carbon dots films for high performance flexible supercapacitors. Nano-Micro Lett. 15, 231–242 (2023). https://doi.org/10.1007/s40820-023-01204-4
J.R. Miller, R.A. Outlaw, B.C. Holloway, Graphene double-layer capacitor with AC line-filtering performance. Science 329, 1637–1639 (2010). https://doi.org/10.1126/science.1194372
F. Han, O. Qian, G. Meng, D. Lin, G. Chen et al., Structurally integrated 3D carbon tube grid-based high-performance filter capacitor. Science 377, 1004–1007 (2022). https://doi.org/10.1126/science.abh4380
Y. Hu, M. Wu, F. Chi, G. Lai, P. Li et al., Ultralow-resistance electrochemical capacitor for integrable line filtering. Nature 624, 74–79 (2023). https://doi.org/10.1038/s41586-023-06712-2
M. Zhao, Y. Qin, X. Wang, L. Wang, Q. Jin et al., PEDOT:PSS/Ketjenblack holey nanosheets with ultrahigh areal capacitance for kHz AC line-filtering micro-supercapacitors. Adv. Funct. Mater. (2023). https://doi.org/10.1002/adfm.202313495
Z. Zhang, Z. Wang, F. Wang, T. Qin, H. Zhu et al., A laser-processed carbon-titanium carbide heterostructure electrode for high-frequency micro-supercapacitors. Small 19, 2300747–2300755 (2023). https://doi.org/10.1002/smll.202300747
F. Wang, Z. Guo, Z. Wang, H. Zhu, G. Zhao et al., Laser-induced transient self-organization of TiNx nano-filament percolated networks for high performance surface-mountable filter capacitors. Adv. Mater. 35, 2210038–2210050 (2023). https://doi.org/10.1002/adma.202210038
M. Zhang, K. Dong, S.S. Garakani, A.K. Kheirabad, I. Manke et al., Bridged carbon fabric membrane with boosted performance in AC line-filtering capacitors. Adv. Sci. 9, e2105072–e2105079 (2022). https://doi.org/10.1002/advs.202105072
Y. Wen, H. Chen, M. Wu, C. Li, Vertically oriented mxene bridging the frequency response and capacity density gap for AC-filtering pseudocapacitors. Adv. Funct. Mater. 32, 2111613–2111622 (2022). https://doi.org/10.1002/adfm.202111613
Z. Li, X. Wang, L. Zhao, F. Chi, C. Gao et al., Aqueous hybrid electrochemical capacitors with ultra-high energy density approaching for thousand-volts alternating current line filtering. Nat. Commun. 13, 6359–6369 (2022). https://doi.org/10.1038/s41467-022-34082-2
J. Zhang, K. Wang, P. Lu, J. Gao, Z. Cao et al., Wood-like low-tortuosity thick electrode for micro-redoxcapacitor with ultrahigh areal energy density and steady power output. Adv. Funct. Mater. 34, 2310775–2310785 (2023). https://doi.org/10.1002/adfm.202310775
C. Zhang, H. Du, K. Ma, Z. Yuan, Ultrahigh-rate supercapacitor based on carbon nano-onion/graphene hybrid structure toward compact alternating current filter. Adv. Energy Mater. 10, 2002132–2002148 (2020). https://doi.org/10.1002/aenm.202002132
M. Zhang, W. Wang, L. Tan, M. Eriksson, M. Wu et al., From wood to thin porous carbon membrane: Ancient materials for modern ultrafast electrochemical capacitors in alternating current line filtering. Energy Stor. Mater. 35, 327–333 (2021). https://doi.org/10.1016/j.ensm.2020.11.007
F. Chi, Y. Hu, W. He, C. Weng, H. Cheng et al., Graphene ionogel ultra-fast filter supercapacitor with 4 V workable window and 150 °C operable temperature. Small 18, e2200916–e2200923 (2022). https://doi.org/10.1002/smll.202200916
S. Wu, Y. Yang, M. Sun, T. Zhang, S. Huang et al., Dilute aqueous-aprotic electrolyte towards robust Zn-ion hybrid supercapacitor with high operation voltage and long lifespan. Nano-Micro Lett. 16, 161–172 (2024). https://doi.org/10.1007/s40820-024-01372-x
J. Lin, Z. Peng, Y. Liu, F. Ruiz-Zepeda, R. Ye et al., Laser-induced porous graphene films from commercial polymers. Nat. Commun. 5, 5714–5721 (2014). https://doi.org/10.1038/ncomms6714
M. Cai, R.A. Quinlan, R.A. Quinlan, D. Premathilake, S.M. Butler et al., Fast response, vertically oriented graphene nanosheet electric double layer capacitors synthesized from C2H2. ACS Nano 8, 5873–5882 (2014). https://doi.org/10.1021/nn5009319
Z.S. Wu, Z. Liu, K. Parvez, X. Feng, K. Mullen, Ultrathin printable graphene supercapacitors with AC line-filtering performance. Adv. Mater. 27, 3669–3675 (2015). https://doi.org/10.1002/adma.201501208
F. Chi, C. Li, Q. Zhou, M. Zhang, J. Chen et al., Graphene-based organic electrochemical capacitors for AC line filtering. Adv. Energy Mater. 7, 1700591–1700597 (2017). https://doi.org/10.1002/aenm.201700591
J. Ye, H. Tan, S. Wu, K. Ni, F. Pan et al., Direct laser writing of graphene made from chemical vapor deposition for flexible, integratable micro-supercapacitors with ultrahigh power output. Adv. Mater. 30, e1801384–e1801391 (2018). https://doi.org/10.1002/adma.201801384
S. Xu, Y. Wen, Z. Chen, N. Ji, Z. Zou et al., Vertical graphene arrays as electrodes for ultra-high energy density AC line-filtering capacitors. Angew. Chem. Int. Ed. 60, 24505–24509 (2021). https://doi.org/10.1002/anie.202111468
D. Pech, M. Brunet, H. Durou, P. Huang, V. Mochalin et al., Ultrahigh-power micrometre-sized supercapacitors based on onion-like carbon. Nat. Nanotechnol. 5, 651–654 (2010). https://doi.org/10.1038/nnano.2010.162
C. Wang, S.V. Tang, S. Qu, Z. He, B. Peng et al., Design of efficient, reliable, and wide-band filter electrochemical capacitors via matching positive with negative electrodes. Joule (2024). https://doi.org/10.1016/j.joule.2024.01.014
M. Wu, F. Chi, H. Geng, H. Ma, M. Zhang et al., Arbitrary waveform AC line filtering applicable to hundreds of volts based on aqueous electrochemical capacitors. Nat. Commun. 10, 2855–2863 (2019). https://doi.org/10.1038/s41467-019-10886-7
J. Lin, C. Zhang, Z. Yan, Y. Zhu, Z. Peng et al., 3-dimensional graphene carbon nanotube carpet-based microsupercapacitors with high electrochemical performance. Nano Lett. 13, 72–78 (2013). https://doi.org/10.1021/nl3034976
Q. Li, S. Sun, A.D. Smith, P. Lundgren, Y. Fu et al., Compact and low loss electrochemical capacitors using a graphite/carbon nanotube hybrid material for miniaturized systems. J. Power. Sources 412, 374–383 (2019). https://doi.org/10.1016/j.jpowsour.2018.11.052
Z. Cao, H. Hu, D. Ho, Micro-redoxcapacitor: A hybrid architecture out of the notorious energy-power density dilemma. Adv. Funct. Mater. 32, 2111805–2111814 (2022). https://doi.org/10.1002/adfm.202111805
Z. Cao, G. Liang, D. Ho, C. Zhi, H. Hu, Interlayer injection of low-valence Zn atoms to activate MXene-based micro-redox capacitors with battery-type voltage plateaus. Adv. Funct. Mater. 33, 2303060–2303070 (2023). https://doi.org/10.1002/adfm.202303060
J. Park, W. Kim, History and perspectives on ultrafast supercapacitors for AC line filtering. Adv. Energy Mater. 11, 2003306–2003333 (2021). https://doi.org/10.1002/aenm.202003306
H. Tang, Y. Tian, Z.S. Wu, Y.J. Zeng, Y. Wang et al., AC line filter electrochemical capacitors: materials, morphology and configuration. Energy Environ. Mater. 5, 1060–1083 (2022). https://doi.org/10.1002/eem2.12285
S. Xu, M. Wu, J. Zhang, Ultrafast electrochemical capacitors with carbon related materials as electrodes for AC line filtering. Chemistry 28, e202200237 (2022). https://doi.org/10.1002/chem.202200237
H. Sun, L. Mei, J. Liang, Z. Zhao, C. Lee et al., Three-dimensional holey-graphene/niobia composite architectures for ultrahigh-rate energy storage. Science 356, 599–604 (2017). https://doi.org/10.1126/science.aam5852
S. Li, D. Liu, G. Wang, P. Ma, X. Wang et al., Vertical 3D nanostructures boost efficient hydrogen production coupled with glycerol oxidation under alkaline conditions. Nano-Micro Lett. 15, 189–201 (2023). https://doi.org/10.1007/s40820-023-01150-1
J. Qiu, Y. Duan, S. Li, H. Zhao, W. Ma et al., Insights into nano- and micro-structured scaffolds for advanced electrochemical energy storage. Nano-Micro Lett. 16, 130 (2024). https://doi.org/10.1007/s40820-024-01341-4
F. Han, G. Meng, F. Zhou, L. Song, X. Li et al., Dielectric capacitors with three-dimensional nanoscale interdigital electrodes for energy storage. Sci. Adv. 1, e1500605–e1500611 (2015). https://doi.org/10.1126/sciadv.1500605
F. Han, G. Meng, Q. Xu, X. Zhu, X. Zhao et al., Alumina-sheathed nanocables with cores consisting of various structures and materials. Angew. Chem. Int. Ed. 50, 2036–2040 (2011). https://doi.org/10.1002/anie.201007151
W. Lee, K. Schwirn, M. Steinhart, E. Pippel, R. Scholz et al., Structural engineering of nanoporous anodic aluminium oxide by pulse anodization of aluminium. Nat. Nanotechnol. 3, 234–239 (2008). https://doi.org/10.1038/nnano.2008.54
F. Han, G. Meng, D. Lin, G. Chen, S. Zhang et al., Ultrahigh-power electrochemical double-layer capacitors based on structurally integrated 3D carbon tube arrays. Nano Res. 16, 12849–12854 (2023). https://doi.org/10.1007/s12274-023-6263-0
S. Zhang, F. Han, Q. Pan, D. Lin, X. Zhu et al., 3D grid of carbon tubes with Mn3O4-NPs/CNTs filled in their inner cavity as ultrahigh-rate and stable lithium anode. Energy Environ. Mater. 6, e12586–e12593 (2023). https://doi.org/10.1002/eem2.12586
S. Zhang, F. Han, Q. Pan, D. Lin, G. Chen et al., Enhancing electrochemical energy storage capacity and rate performance of the anode with a 3D interconnected carbon tube-NiO-SnO2 composite scaffold. Sci. China Mater. 66, 3493–3500 (2023). https://doi.org/10.1007/s40843-023-2526-8
G. Chen, F. Han, D. Lin, S. Zhang, Q. Pan et al., Three-dimensional multi-layer carbon tube electrodes for AC line-filtering capacitors. Joule 8, 1080–1091 (2024). https://doi.org/10.1016/j.joule.2024.01.026
S.Z. Kure-Chu, K. Osaka, H. Yashiro, H. Segawa, K. Wada et al., Controllable fabrication of networked three-dimensional nanoporous anodic alumina films on low-purity Al materials. J. Electrochem. Soc. 162, C24–C34 (2014). https://doi.org/10.1149/2.0511501jes
J. Vanpaemel, A.M. Abd-Elnaiem, S. De Gendt, P.M. Vereecken, The formation mechanism of 3D porous anodized aluminum oxide templates from an aluminum film with copper impurities. J. Phys. Chem. C 119, 2105–2112 (2015). https://doi.org/10.1021/jp508142m
Y. Fan, Z. Yi, G. Song, Z. Wang, C. Chen et al., Self-standing graphitized hybrid nanocarbon electrodes towards high-frequency supercapacitors. Carbon 185, 630–640 (2021). https://doi.org/10.1016/j.carbon.2021.09.059
W. Zhao, J. Yang, Y. Shang, B. Yang, D. Han et al., 3D carbon nanotube-mesoporous carbon sponge with short pore channels for high-power lithium-ion capacitor cathodes. Carbon 203, 479–489 (2023). https://doi.org/10.1016/j.carbon.2022.12.009
S. Suh, K. Kim, J. Park, W. Kim, Ultrafast flexible PEDOT:PSS supercapacitor with outstanding volumetric capacitance for AC line filtering. Chem. Eng. J. 463, 142377–142386 (2023). https://doi.org/10.1016/j.cej.2023.142377
M. Wu, K. Sun, J. He, Q. Huang, W. Zhan et al., Hierarchically 3D fibrous electrode for high-performance flexible AC-line filtering in fluctuating energy harvesters. Adv. Funct. Mater. 33, 2305039–2305049 (2023). https://doi.org/10.1002/adfm.202305039
Z. Li, L. Zhao, X. Zheng, P. Lin, X. Li et al., Continuous PEDOT:PSS nanomesh film: towards aqueous AC line filtering capacitor with ultrahigh energy density. Chem. Eng. J. 430, 133012–133019 (2022). https://doi.org/10.1016/j.cej.2021.133012
C. Li, X. Li, G. Liu, W. Yu, Z. Yang et al., Microcrack arrays in dense graphene films for fast-ion-diffusion supercapacitors. Small 19, e2301533 (2023). https://doi.org/10.1002/smll.202301533
X. Feng, X. Shi, J. Ning, D. Wang, J. Zhang et al., Recent advances in micro-supercapacitors for AC line-filtering performance: from fundamental models to emerging applications. eScience 1, 124–140 (2021). https://doi.org/10.1016/j.esci.2021.11.005
D. Zhao, K. Jiang, J. Li, X. Zhu, C. Ke et al., Supercapacitors with alternating current line-filtering performance. BMC Mater. 2, 3–22 (2020). https://doi.org/10.1186/s42833-020-0009-z
Z. Fan, N. Islam, S.B. Bayne, Towards kilohertz electrochemical capacitors for filtering and pulse energy harvesting. Nano Energy 39, 306–320 (2017). https://doi.org/10.1016/j.nanoen.2017.06.048
J.R. Miller, R.A. Outlaw, Vertically-oriented graphene electric double layer capacitor designs. J. Electrochem. Soc. 162, A5077–A5082 (2015). https://doi.org/10.1149/2.0121505jes
L. Wang, L. Zhao, M. Song, L. Xie, X. Wang et al., Alternatingly stacked thin film electrodes-based compact aqueous hybrid electrochemical capacitors for hundred-volts AC line filtering. J. Energy Chem. 78, 158–168 (2022). https://doi.org/10.1016/j.jechem.2022.11.055
H. Tang, K. Xia, J. Lu, J. Fu, Z. Zhu et al., NiTe2-based electrochemical capacitors with high-capacitance AC line filtering for regulating TENGs to steadily drive LEDs. Nano Energy 84, 105931–105942 (2021). https://doi.org/10.1016/j.nanoen.2021.105931