Transient Response and Ionic Dynamics in Organic Electrochemical Transistors
Corresponding Author: Wei Ma
Nano-Micro Letters,
Vol. 16 (2024), Article Number: 233
Abstract
The rapid development of organic electrochemical transistors (OECTs) has ushered in a new era in organic electronics, distinguishing itself through its application in a variety of domains, from high-speed logic circuits to sensitive biosensors, and neuromorphic devices like artificial synapses and organic electrochemical random-access memories. Despite recent strides in enhancing OECT performance, driven by the demand for superior transient response capabilities, a comprehensive understanding of the complex interplay between charge and ion transport, alongside electron–ion interactions, as well as the optimization strategies, remains elusive. This review aims to bridge this gap by providing a systematic overview on the fundamental working principles of OECT transient responses, emphasizing advancements in device physics and optimization approaches. We review the critical aspect of transient ion dynamics in both volatile and non-volatile applications, as well as the impact of materials, morphology, device structure strategies on optimizing transient responses. This paper not only offers a detailed overview of the current state of the art, but also identifies promising avenues for future research, aiming to drive future performance advancements in diversified applications.
Highlights:
1 Transient response plays a crucial role as a performance indicator for organic electrochemical transistors (OECTs), particularly in their application in high-speed logic circuits and neuromorphic computing systems.
2 This review presents a systematic overview on the fundamental principles underlying OECT transient responses, emphasizing the essential roles of transient electron and ion dynamics, as well as structural evolution, in both volatile and non-volatile behaviors.
3 We also discuss the materials, morphology, device structure strategies on optimizing transient responses.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J. Rivnay, S. Inal, A. Salleo, R.M. Owens, M. Berggren et al., Organic electrochemical transistors. Nat. Rev. Mater. 3, 17086 (2018). https://doi.org/10.1038/natrevmats.2017.86
- Y. van de Burgt, A. Melianas, S.T. Keene, G. Malliaras, A. Salleo, Organic electronics for neuromorphic computing. Nat. Electron. 1, 386–397 (2018). https://doi.org/10.1038/s41928-018-0103-3
- P.C. Harikesh, C.Y. Yang, D. Tu, J.Y. Gerasimov, A.M. Dar et al., Organic electrochemical neurons and synapses with ion mediated spiking. Nat. Commun. 13, 901 (2022). https://doi.org/10.1038/s41467-022-28483-6
- S. Wang, X. Chen, C. Zhao, Y. Kong, B. Lin, Y. Wu et al., An organic electrochemical transistor for multi-modal sensing, memory and processing. Nat. Electron. 6, 281–291 (2023). https://doi.org/10.1038/s41928-023-00950-y
- T. Sarkar, K. Lieberth, A. Pavlou, T. Frank, V. Mailaender et al., An organic artificial spiking neuron for in situ neuromorphic sensing and biointerfacing. Nat. Electron. 5, 774–783 (2022). https://doi.org/10.1038/s41928-022-00859-y
- Y. Zhong, A. Koklu, D. Villalva, Y. Zhang, L.H. Hernandez et al., An organic electrochemical transistor integrated photodetector for high quality photoplethysmogram signal acquisition. Adv. Funct. Mater. 33, 2211479 (2022). https://doi.org/10.1002/adfm.202211479
- D.A. Bernards, D.J. Macaya, M. Nikolou, J.A. DeFranco, S. Takamatsu et al., Enzymatic sensing with organic electrochemical transistors. J. Mater. Chem. 18, 116–120 (2008). https://doi.org/10.1039/B713122D
- P. Romele, M. Ghittorelli, Z.M. Kovács-Vajna, F. Torricelli, Ion buffering and interface charge enable high performance electronics with organic electrochemical transistors. Nat. Commun. 10, 3044 (2019). https://doi.org/10.1038/s41467-019-11073-4
- Y. Wang, S. Wustoni, J. Surgailis, Y. Zhong, A. Koklu et al., Designing organic mixed conductors for electrochemical transistor applications. Nat. Rev. Mater. 9, 249–265 (2024). https://doi.org/10.1038/s41578-024-00652-7
- Y. Yao, W. Huang, J. Chen, G. Wang, H. Chen et al., Flexible complementary circuits operating at sub-0.5 V via hybrid organic–inorganic electrolyte-gated transistors. Proc. Natl. Acad. Sci. USA 118, e2111790118 (2021). https://doi.org/10.1073/pnas.2111790118
- Y. Yao, W. Huang, J. Chen, X. Liu, L. Bai et al., Flexible and stretchable organic electrochemical transistors for physiological sensing devices. Adv. Mater. 35, 2209906 (2023). https://doi.org/10.1002/adma.202209906
- W. Wang, Z. Li, M. Li, L. Fang, F. Chen et al., High-transconductance, highly elastic, durable and recyclable all-polymer electrochemical transistors with 3D micro-engineered interfaces. Nano Micro Lett. 14, 184 (2022). https://doi.org/10.1007/s40820-022-00930-5
- D. Khodagholy, J. Rivnay, M. Sessolo, M. Gurfinkel, P. Leleux et al., High transconductance organic electrochemical transistors. Nat. Commun. 4, 2133 (2013). https://doi.org/10.1038/ncomms3133
- A. Saleh, A. Koklu, I. Uguz, A.-M. Pappa, S. Inal, Bioelectronic interfaces of organic electrochemical transistors. Nat. Rev. Bioeng. (2024). https://doi.org/10.1038/s44222-024-00180-7
- X. Wang, Z. Zhang, P. Li, J. Xu, Y. Zheng et al., Ultrastable n-type semiconducting fiber organic electrochemical transistors for highly sensitive biosensors. Adv. Mater., 2400287 (2024). https://doi.org/10.1002/adma.202400287
- J. Ko, X. Wu, A. Surendran, B.T. Muhammad, W.L. Leong, Self-healable organic electrochemical transistor with high transconductance, fast response, and long-term stability. ACS Appl. Mater. Interfaces 12, 33979–33988 (2020). https://doi.org/10.1021/acsami.0c07913
- A. Nawaz, Q. Liu, W.L. Leong, K.E. Fairfull-Smith, P. Sonar, Organic electrochemical transistors for in vivo bioelectronics. Adv. Mater. 33, 2101874 (2021). https://doi.org/10.1002/adma.202101874
- I. Uguz, D. Ohayon, S. Yilmaz, S. Griggs, R. Sheelamanthula et al., Complementary integration of organic electrochemical transistors for front- end amplifier circuits of flexible neural implants. Sci. Adv. 10, eadi9710 (2024). https://doi.org/10.1126/sciadv.adi9710
- E.J. Fuller, S.T. Keene, A. Melianas, Z. Wang, S. Agarwal et al., Parallel programming of an ionic floating-gate memory array for scalable neuromorphic computing. Science 364, 570–574 (2019). https://doi.org/10.1126/science.aaw5581
- A. Melianas, T.J. Quill, G. LeCroy, Y. Tuchman, H.V. Loo et al., Temperature-resilient solid-state organic artificial synapses for neuromorphic computing. Sci. Adv. 6, eabb2958 (2020). https://doi.org/10.1126/sciadv.abb2958
- P. Gkoupidenis, Y. Zhang, H. Kleemann, H. Ling, F. Santoro et al., Organic mixed conductors for bioinspired electronics. Nat. Rev. Mater. 9, 134–149 (2023). https://doi.org/10.1038/s41578-023-00622-5
- W. Huang, J. Chen, Y. Yao, D. Zheng, X. Ji et al., Vertical organic electrochemical transistors for complementary circuits. Nature 613, 496–502 (2023). https://doi.org/10.1038/s41586-022-05592-2
- M. Skowrons, A. Schander, A.G.P. Negron, B. Lüssem, The trade‐off between transconductance and speed for vertical organic electrochemical transistors. Adv. Electron. Mater., 2300673 (2024). https://doi.org/10.1002/aelm.202300673
- C. Cea, Z. Zhao, D.J. Wisniewski, G.D. Spyropoulos, A. Polyravas et al., Integrated internal ion-gated organic electrochemical transistors for stand-alone conformable bioelectronics. Nat. Mater. 22, 1227–1235 (2023). https://doi.org/10.1038/s41563-023-01599-w
- E.R.W. van Doremaele, P. Gkoupidenis, Y. van de Burgt, Towards organic neuromorphic devices for adaptive sensing and novel computing paradigms in bioelectronics. J. Mater. Chem. C 7, 12754–12760 (2019). https://doi.org/10.1039/C9TC03247A
- E.R.W. van Doremaele, X. Ji, J. Rivnay, Y. van de Burgt, A retrainable neuromorphic biosensor for on-chip learning and classification. Nat. Electron. 6, 765–770 (2023). https://doi.org/10.1038/s41928-023-01020-z
- J.T. Friedlein, R.R. McLeod, J. Rivnay, Device physics of organic electrochemical transistors. Org. Electron. 63, 398–414 (2018). https://doi.org/10.1016/j.orgel.2018.09.010
- M. Cucchi, A. Weissbach, L.M. Bongartz, R. Kantelberg, H. Tseng et al., Thermodynamics of organic electrochemical transistors. Nat. Commun. 13, 4514 (2022). https://doi.org/10.1038/s41467-022-32182-7
- D.A. Bernards, G.G. Malliaras, Steady-state and transient behavior of organic electrochemical transistors. Adv. Funct. Mater. 17, 3538–3544 (2007). https://doi.org/10.1002/adfm.200601239
- V. Kaphle, P.R. Paudel, D. Dahal, R.K. Radha Krishnan, B. Lüssem, Finding the equilibrium of organic electrochemical transistors. Nat. Commun. 11, 2515 (2020). https://doi.org/10.1038/s41467-020-16252-2
- S.T. Keene, J.E.M. Laulainen, R. Pandya, M. Moser, C. Schnedermann et al., Hole-limited electrochemical doping in conjugated polymers. Nat. Mater. 22, 1121–1127 (2023). https://doi.org/10.1038/s41563-023-01601-5
- E. Stavrinidou, P. Leleux, H. Rajaona, D. Khodagholy, J. Rivnay et al., Direct measurement of ion mobility in a conducting polymer. Adv. Mater. 25, 4488–4493 (2013). https://doi.org/10.1002/adma.201301240
- R. Wu, X. Ji, Q. Ma, B.D. Paulsen, J. Tropp et al., Direct quantification of ion composition and mobility in organic mixed ionic- electronic conductors. Sci. Adv. 10, eadn8628 (2024). https://doi.org/10.1126/sciadv.adn8628
- X. Ji, B.D. Paulsen, G.K.K. Chik, R. Wu, Y. Yin et al., Mimicking associative learning using an ion-trapping non-volatile synaptic organic electrochemical transistor. Nat. Commun. 12, 2480 (2021). https://doi.org/10.1038/s41467-021-22680-5
- J.H. Kim, R. Halaksa, I.Y. Jo, H. Ahn, P.A. Gilhooly-Finn et al., Peculiar transient behaviors of organic electrochemical transistors governed by ion injection directionality. Nat. Commun. 14, 7577 (2023). https://doi.org/10.1038/s41467-023-42840-z
- B.D. Paulsen, S. Fabiano, J. Rivnay Mixed ionic-electronic transport in polymers. Annu. Rev. Mater. Res. 51, 73–99 (2021). https://doi.org/10.1146/annurev-matsci-080619-101319
- L.Q. Flagg, C.G. Bischak, J.W. Onorato, R.B. Rashid, C.K. Luscombe et al., Polymer crystallinity controls water uptake in glycol side-chain polymer organic electrochemical transistors. J. Am. Chem. Soc. 141, 4345–4354 (2019). https://doi.org/10.1021/jacs.8b12640
- J.T. Friedlein, S.E. Shaheen, G.G. Malliaras, R.R. McLeod Optical measurements revealing nonuniform hole mobility in organic electrochemical transistors. Adv. Electron. Mater. 1, 1500189 (2015). https://doi.org/10.1002/aelm.201500189
- R. Wu, D. Meli, J. Strzalka, S. Narayanan, Q. Zhang et al., Bridging length scales in organic mixed ionic–electronic conductors through internal strain and mesoscale dynamics. Nat. Mater. 23, 648–655 (2024). https://doi.org/10.1038/s41563-024-01813-3
- C.M. Proctor, J. Rivnay, G.G. Malliaras, Understanding volumetric capacitance in conducting polymers. J. Polym. Sci., Part B Polym. Phys. 54, 1433–1436 (2016). https://doi.org/10.1002/polb.24038
- J. Rivnay, P. Leleux, M. Ferro, M. Sessolo, A. Williamson et al., High-performance transistors for bioelectronics through tuning of channel thickness. Sci. Adv. 1, e1400251 (2015). https://doi.org/10.1126/sciadv.1400251
- G.C. Faria, D.T. Duong, A. Salleo, On the transient response of organic electrochemical transistors. Org. Electron. 45, 215–221 (2017). https://doi.org/10.1016/j.orgel.2017.03.021
- J.T. Friedlein, M.J. Donahue, S.E. Shaheen, G.G. Malliaras, R.R. McLeod, Microsecond response in organic electrochemical transistors: exceeding the ionic speed limit. Adv. Mater. 28, 8398–8404 (2016). https://doi.org/10.1002/adma.201602684
- P. Andersson Ersman, R. Lassnig, J. Strandberg, D. Tu, V. Keshmiri et al., All-printed large-scale integrated circuits based on organic electrochemical transistors. Nat. Commun. 10, 5053 (2019). https://doi.org/10.1038/s41467-019-13079-4
- J. Guo, S.E. Chen, R. Giridharagopal, C.G. Bischak, J.W. Onorato et al., Understanding asymmetric switching times in accumulation mode organic electrochemical transistors. Nat. Mater. 23, 656–663 (2024). https://doi.org/10.1038/s41563-024-01875-3
- P.R. Paudel, J. Tropp, V. Kaphle, J.D. Azoulay, B. Lüssem, Organic electrochemical transistors–from device models to a targeted design of materials. J. Mater. Chem. C 9, 9761–9790 (2021). https://doi.org/10.1039/D1TC01601F
- P.R. Paudel, M. Skowrons, D. Dahal, R.K. Radha Krishnan, B. Lüssem, The transient response of organic electrochemical transistors. Adv. Theory Simul. 5, 2100563 (2022). https://doi.org/10.1002/adts.202100563
- B.D. Paulsen, Wu R., C.J. Takacs, H.-G. Steinrück, J. Strzalka et al., Time-resolved structural kinetics of an organic mixed ionic–electronic conductor. Adv. Mater. 32, 2003404 (2020). https://doi.org/10.1002/adma.202003404
- G. Rebetez, O. Bardagot, J. Affolter, J. Réhault, N. Banerji, What drives the kinetics and doping level in the electrochemical reactions of PEDOT:PSS? Adv. Funct. Mater. 32, 2105821 (2022). https://doi.org/10.1002/adfm.202105821
- R. Wu, B.D. Paulsen, Q. Ma, J. Rivnay, Mass and charge transport kinetics in an organic mixed ionic–electronic conductor. Chem. Mater. 34, 9699–9710 (2022). https://doi.org/10.1021/acs.chemmater.2c02476
- Y. van de Burgt, E. Lubberman, E.J. Fuller, S.T. Keene, G.C. Faria et al., A non-volatile organic electrochemical device as a low-voltage artificial synapse for neuromorphic computing. Nat. Mater. 16, 414–418 (2017). https://doi.org/10.1038/nmat4856
- R. Shameem, L.M. Bongartz, A. Weissbach, H. Kleemann, K. Leo, Hysteresis in organic electrochemical transistors: relation to the electrochemical properties of the semiconductor. Appl. Sci. 13, 5754 (2023). https://doi.org/10.3390/app13095754
- A. Weissbach, L.M. Bongartz, M. Cucchi, H. Tseng, K. Leo et al., Photopatternable solid electrolyte for integrable organic electrochemical transistors: operation and hysteresis. J. Mater. Chem. C 10, 2656–2662 (2022). https://doi.org/10.1039/D1TC04230K
- J. Bisquert, Hysteresis in organic electrochemical transistors: distinction of capacitive and inductive effects. J. Phys. Chem. Lett. 14, 10951–10958 (2023). https://doi.org/10.1021/acs.jpclett.3c03062
- J. Surgailis, A. Savva, V. Druet, B.D. Paulsen, R. Wu et al., Mixed conduction in an n‐type organic semiconductor in the absence of hydrophilic side-chains. Adv. Funct. Mater. 31, 2010165 (2021). https://doi.org/10.1002/adfm.202010165
- Z. Zhou, X. Wu, T.L.D. Tam, C.G. Tang, S. Chen et al., Highly stable ladder‐type conjugated polymer based organic electrochemical transistors for low power and signal processing‐free surface electromyogram triggered robotic hand control. Adv. Funct. Mater. 34, 2305780 (2023). https://doi.org/10.1002/adfm.202305780
- M. Moser, J. Gladisch, S. Ghosh, T. Hidalgo, J.F. Ponder et al., Controlling electrochemically induced volume changes in conjugated polymers by chemical design: from theory to devices. Adv. Funct. Mater. 31, 2100723 (2021). https://doi.org/10.1002/adfm.202100723
- J. Guo, L.Q. Flagg, D.K. Tran, S.E. Chen, R. Li et al., Hydration of a side-chain-free n-type semiconducting ladder polymer driven by electrochemical doping. J. Am. Chem. Soc. 145, 1866–1876 (2023). https://doi.org/10.1021/jacs.2c11468
- H.-Y. Wu, J.-D. Huang, S.Y. Jeong, T. Liu, Z. Wu et al., Stable organic electrochemical neurons based on p-type and n-type ladder polymers. Mater. Horiz. 10, 4213–4223 (2023). https://doi.org/10.1039/D3MH00858D
- A. Savva, C. Cendra, A. Giugni, B. Torre, J. Surgailis et al., Influence of water on the performance of organic electrochemical transistors. Chem. Mater. 31, 927–937 (2019). https://doi.org/10.1021/acs.chemmater.8b04335
- F. Bonafè, F. Decataldo, B. Fraboni, T. Cramer, Charge carrier mobility in organic mixed ionic–electronic conductors by the electrolyte-gated van der Pauw method. Adv. Electron. Mater. 7, 2100086 (2021). https://doi.org/10.1002/aelm.202100086
- S. Griggs, A. Marks, D. Meli, G. Rebetez, O. Bardagot et al., The effect of residual palladium on the performance of organic electrochemical transistors. Nat. Commun. 13, 7964 (2022). https://doi.org/10.1038/s41467-022-35573-y
- B.D. Paulsen, A. Giovannitti, R. Wu, J. Strzalka, Q. Zhang et al., Electrochemistry of thin films with in situ/operando grazing incidence X-ray scattering: bypassing electrolyte scattering for high fidelity time resolved studies. Small 17, e2103213 (2021). https://doi.org/10.1002/smll.202103213
- R.K. Hallani, B.D. Paulsen, A.J. Petty 2nd., R. Sheelamanthula, M. Moser et al., Regiochemistry-driven organic electrochemical transistor performance enhancement in ethylene glycol-functionalized polythiophenes. J. Am. Chem. Soc. 143, 11007–11018 (2021). https://doi.org/10.1021/jacs.1c03516
- P. Schmode, A. Savva, R. Kahl, D. Ohayon, F. Meichsner et al., The key role of side chain linkage in structure formation and mixed conduction of ethylene glycol substituted polythiophenes. ACS Appl. Mater. Interfaces 12, 13029–13039 (2020). https://doi.org/10.1021/acsami.9b21604
- T.J. Quill, G. LeCroy, A. Melianas, D. Rawlings, Q. Thiburce et al., Ion pair uptake in ion gel devices based on organic mixed ionic–electronic conductors. Adv. Funct. Mater. 31, 2104301 (2021). https://doi.org/10.1002/adfm.202104301
- S.-M. Kim, C.-H. Kim, Y. Kim, N. Kim, W.-J. Lee et al., Influence of PEDOT: PSS crystallinity and composition on electrochemical transistor performance and long-term stability. Nat. Commun. 9, 3858 (2018). https://doi.org/10.1038/s41467-018-06084-6
- I.P. Maria, B.D. Paulsen, A. Savva, D. Ohayon, R. Wu et al., The effect of alkyl spacers on the mixed ionic-electronic conduction properties of n-type polymers. Adv. Funct. Mater. 31, 2008718 (2021). https://doi.org/10.1002/adfm.202008718
- C. Cendra, A. Giovannitti, A. Savva, V. Venkatraman, I. McCulloch et al., Role of the anion on the transport and structure of organic mixed conductors. Adv. Funct. Mater. 29, 1807034 (2018). https://doi.org/10.1002/adfm.201807034
- N.A. Kukhta, A. Marks, C.K. Luscombe, Molecular design strategies toward improvement of charge injection and ionic conduction in organic mixed ionic-electronic conductors for organic electrochemical transistors. Chem. Rev. 122, 4325–4355 (2022). https://doi.org/10.1021/acs.chemrev.1c00266
- L.Q. Flagg, L.E. Asselta, N. D’Antona, T. Nicolini, N. Stingelin et al., In situ studies of the swelling by an electrolyte in electrochemical doping of ethylene glycol-substituted polythiophene. ACS Appl. Mater. Interfaces 14, 29052–29060 (2022). https://doi.org/10.1021/acsami.2c06169
- B.D. Paulsen, K. Tybrandt, E. Stavrinidou, J. Rivnay, Organic mixed ionic-electronic conductors. Nat. Mater. 19, 13–26 (2020). https://doi.org/10.1038/s41563-019-0435-z
- A. Savva, R. Hallani, C. Cendra, J. Surgailis, T.C. Hidalgo et al., Balancing ionic and electronic conduction for high-performance organic electrochemical transistors. Adv. Funct. Mater. 30, 1907657 (2020). https://doi.org/10.1002/adfm.201907657
- A. Savva, S. Wustoni, S. Inal, Ionic-to-electronic coupling efficiency in PEDOT: PSS films operated in aqueous electrolytes. J. Mater. Chem. C 6, 12023–12030 (2018). https://doi.org/10.1039/C8TC02195C
- E. Zeglio, O. Inganäs, Active materials for organic electrochemical transistors. Adv. Mater. 30, 1800941 (2018). https://doi.org/10.1002/adma.201800941
- P. Li, T. Lei, Molecular design strategies for high-performance organic electrochemical transistors. J. Polym. Sci. 60, 377–392 (2021). https://doi.org/10.1002/pol.20210503
- D. Ohayon, A. Savva, W. Du, B.D. Paulsen, I. Uguz et al., Influence of side chains on the n-type organic electrochemical transistor performance. ACS Appl. Mater. Interfaces 13, 4253–4266 (2021). https://doi.org/10.1021/acsami.0c18599
- A. Giovannitti, D.-T. Sbircea, S. Inal, C.B. Nielsen, E. Bandiello et al., Controlling the mode of operation of organic transistors through side-chain engineering. Proc. Natl. Acad. Sci. U.S.A. 113, 12017–12022 (2016). https://doi.org/10.1073/pnas.1608780113
- K. Hou, S. Chen, A. Moudgil, X. Wu, T.L.D. Tam et al., High performance, flexible, and thermally stable all-solid-state organic electrochemical transistor based on thermoplastic polyurethane ion gel. ACS Appl. Electronic Mater. 5, 2215–2226 (2023). https://doi.org/10.1021/acsaelm.3c00091
- X. Wu, S. Chen, M. Moser, A. Moudgil, S. Griggs et al., High performing solid-state organic electrochemical transistors enabled by glycolated polythiophene and ion-gel electrolyte with a wide operation temperature range from −50 to 110 °C. Adv. Funct. Mater. 33, 2209354 (2022). https://doi.org/10.1002/adfm.202209354
- S. Pecqueur, D. Guérin, D. Vuillaume, F. Alibart, Cation discrimination in organic electrochemical transistors by dual frequency sensing. Org. Electron. 57, 232–238 (2018). https://doi.org/10.1016/j.orgel.2018.03.020
- G. Tarabella, C. Santato, S.Y. Yang, S. Iannotta, G.G. Malliaras et al., Effect of the gate electrode on the response of organic electrochemical transistors. Appl. Phys. Lett. 97, 123304 (2010). https://doi.org/10.1063/1.3491216
- B. Lin, M. Wang, C. Zhao, S. Wang, K. Chen et al., Flexible organic integrated electronics for self-powered multiplexed ocular monitoring. NPJ Flex. Electron. 6, 77 (2022). https://doi.org/10.1038/s41528-022-00211-6
- D. Khodagholy, V.F. Curto, K.J. Fraser, M. Gurfinkel, R. Byrne et al., Organic electrochemical transistor incorporating an ionogel as a solid state electrolyte for lactate sensing. J. Mater. Chem. 22, 4440–4443 (2012). https://doi.org/10.1039/C2JM15716K
- C. Liao, M. Zhang, L. Niu, Z. Zheng, F. Yan, Highly selective and sensitive glucose sensors based on organic electrochemical transistors with graphene-modified gate electrodes. J. Mater. Chem. B 1, 3820–3829 (2013). https://doi.org/10.1039/c3tb20451k
- A.F. Paterson, H. Faber, A. Savva, G. Nikiforidis, M. Gedda et al., On the role of contact resistance and electrode modification in organic electrochemical transistors. Adv. Mater. 31, e1902291 (2019). https://doi.org/10.1002/adma.201902291
- A. Polyravas, V. Curto, N. Schaefer, A. Bonaccini, A. Guimera et al., Impact of contact overlap on transconductance and noise in organic electrochemical transistors. Flex. Print. Electron. 4, 044003 (2019). https://doi.org/10.1088/2058-8585/ab4dc4
- J. Rivnay, S. Inal, B.A. Collins, M. Sessolo, E. Stavrinidou et al., Structural control of mixed ionic and electronic transport in conducting polymers. Nat. Commun. 7, 11287 (2016). https://doi.org/10.1038/ncomms11287
- K.K. Liu, P. Li, Y. Lei, Z. Zhang, X. Pan Et al., J‐type self‐assembled supramolecular polymers for high‐performance and fast‐response n‐type organic electrochemical transistors. Adv. Funct. Mater. 33, 2300049 (2023). https://doi.org/10.1002/adfm.202300049
- Y. Kim, H. Noh, B.D. Paulsen, J. Kim, I.Y. Jo et al., Strain‐engineering induced anisotropic crystallite orientation and maximized carrier mobility for high‐performance microfiber-based organic bioelectronic devices. Adv. Mater. 33, 2007550 (2021). https://doi.org/10.1002/adma.202007550
- L. Huang, Z. Wang, J. Chen, B. Wang, Y. Chen et al., Porous semiconducting polymers enable high-performance electrochemical transistors. Adv. Mater. 33, 2007041 (2021). https://doi.org/10.1002/adma.202007041
- M. Barker, T. Nicolini, Y.A. Yaman, D. Thuau, O. Siscan et al., Conjugated polymer blends for faster organic mixed conductors. Mater. Horiz. 10, 248–256 (2023). https://doi.org/10.1039/d2mh00861k
- M. Stephen, X. Wu, T. Li, T. Salim, K. Hou et al., Crown ether enabled enhancement of ionic–electronic properties of PEDOT:PSS. Mater. Horiz. 9, 2408–2415 (2022). https://doi.org/10.1039/d2mh00496h
- L.V. Lingstedt, M. Ghittorelli, H. Lu, D.A. Koutsouras, T. Marszalek et al., Effect of DMSO solvent treatments on the performance of PEDOT:PSS based organic electrochemical transistors. Adv. Electron. Mater. 5, 1800804 (2019). https://doi.org/10.1002/aelm.201800804
- R. He, A. Lv, X. Jiang, C. Cai, Y. Wang et al., Organic electrochemical transistor based on hydrophobic polymer tuned by ionic gels. Angew. Chem. Int. Ed. 62, e202304549 (2023). https://doi.org/10.1002/anie.202304549
- S. Han, S. Yamamoto, A.G. Polyravas, G.G. Malliaras, Microfabricated ion-selective transistors with fast and super‐nernstian response. Adv. Mater. 32, 2004790 (2020). https://doi.org/10.1002/adma.202004790
- I.B. Dimov, M. Moser, G.G. Malliaras, I. McCulloch, Semiconducting polymers for neural applications. Chem. Rev. 122, 4356–4396 (2022). https://doi.org/10.1021/acs.chemrev.1c00685
- A. Savva, D. Ohayon, J. Surgailis, A. Paterson, T. Hidalgo et al., Solvent engineering for high-performance n-type organic electrochemical transistors. Adv. Electron. Mater. 5, 1900249 (2019). https://doi.org/10.1002/aelm.201900249
- X. Wu, A. Surendran, J. Ko, O. Filonik, E.M. Herzig et al., Ionic-liquid doping enables high transconductance, fast response time, and high ion sensitivity in organic electrochemical transistors. Adv. Mater. 31, e1805544 (2019). https://doi.org/10.1002/adma.201805544
- D. Ohayon, L.Q. Flagg, A. Giugni, S. Wustoni, R. Li et al., Salts as additives: a route to improve performance and stability of n-type organic electrochemical transistors. ACS Mater. Au 3, 242–254 (2023). https://doi.org/10.1021/acsmaterialsau.2c00072
- P. Schmode, D. Ohayon, P.M. Reichstein, A. Savva, S. Inal et al., High-performance organic electrochemical transistors based on conjugated polyelectrolyte copolymers. Chem. Mater. 31, 5286–5295 (2019). https://doi.org/10.1021/acs.chemmater.9b01722
- A.F. Paterson, A. Savva, S. Wustoni, L. Tsetseris, B.D. Paulsen et al., Water stable molecular n-doping produces organic electrochemical transistors with high transconductance and record stability. Nat. Commun. 11, 3004 (2020). https://doi.org/10.1038/s41467-020-16648-0
- L. Lan, J. Chen, Y. Wang, P. Li, Y. Yu et al., Facilely accessible porous conjugated polymers toward high-performance and flexible organic electrochemical transistors. Chem. Mater. 34, 1666–1676 (2022). https://doi.org/10.1021/acs.chemmater.1c03797
- Y. Peng, L. Gao, C. Liu, J. Deng, M. Xie et al., Stretchable organic electrochemical transistors via three-dimensional porous elastic semiconducting films for artificial synaptic applications. Nano Res. 16, 10206–10214 (2023). https://doi.org/10.1007/s12274-023-5633-y
- A. Zhang, H. Bai, L. Li, Breath figure: a nature-inspired preparation method for ordered porous films. Chem. Rev. 115, 9801–9868 (2015). https://doi.org/10.1021/acs.chemrev.5b00069
- S. Chen, K. Hou, T. Li, X. Wu, Z. Wang et al., Ultra-lightweight, highly permeable, and waterproof fibrous organic electrochemical transistors for on-skin bioelectronics. Adv. Mater. Technol. 8, 2200611 (2022). https://doi.org/10.1002/admt.202200611
- X. Zhang, B. Wang, L. Huang, W. Huang, Z. Wang et al., Breath figure-derived porous semiconducting films for organic electronics. Sci. Adv. 6, eaaz1042 (2020). https://doi.org/10.1126/sciadv.aaz1042
- A. Koklu, S. Wustoni, V.-E. Musteata, D. Ohayon, M. Moser et al., Microfluidic integrated organic electrochemical transistor with a nanoporous membrane for amyloid-β detection. ACS Nano 15, 8130–8141 (2021). https://doi.org/10.1021/acsnano.0c09893
- H.-S. Tseng, Y.-L. Chen, P.-Y. Zhang, Y.-S. Hsiao, Additive blending effects on PEDOT: PSS composite films for wearable organic electrochemical transistors. ACS Appl. Mater. Interfaces 16, 13384–13398 (2024). https://doi.org/10.1021/acsami.3c14961
- J. Song, H. Liu, Z. Zhao, X. Guo, C.K. Liu et al., 2D metal-organic frameworks for ultraflexible electrochemical transistors with high transconductance and fast response speeds. Sci. Adv. 9, eadd9627 (2023). https://doi.org/10.1126/sciadv.add9627
- C.-H. Hsu, S.-R. Huang, J.-Y. Lai, G.-H. Cai, M.-D. Tsai et al., Enhancing the response speed of organic electrochemical transistors via ion liquid/metal–organic framework-embedded semiconducting polymers. Adv. Electron. Mater. 10, 2300645 (2024). https://doi.org/10.1002/aelm.202300645
- J.W. Moon, D.U. Lim, Y.N. Kim, J.H. Kim, J.H. Kim et al., High-speed operation of electrochemical logic circuits depending on 3D construction of transistor architectures. Adv. Funct. Mater. 33, 2305440 (2023). https://doi.org/10.1002/adfm.202305440
- Y. Zhong, Q. Liang, Z. Chen, F. Ye, M. Yao et al., High-performance fiber-shaped vertical organic electrochemical transistors patterned by surface photolithography. Chem. Mater. 35, 9739–9746 (2023). https://doi.org/10.1021/acs.chemmater.3c02237
- J. Kim, R.M. Pankow, Y. Cho, I.D. Duplessis, F. Qin et al., Monolithically integrated high-density vertical organic electrochemical transistor arrays and complementary circuits. Nat. Electron. 7, 234–243 (2024). https://doi.org/10.1038/s41928-024-01127-x
- M.J. Donahue, A. Williamson, X. Strakosas, J.T. Friedlein, R.R. McLeod et al., High-performance vertical organic electrochemical transistors. Adv. Mater. 30, 1705031 (2018). https://doi.org/10.1002/adma.201705031
- H. Kleemann, K. Krechan, A. Fischer, K. Leo, A review of vertical organic transistors. Adv. Funct. Mater. 30, 1907113 (2020). https://doi.org/10.1002/adfm.201907113
- G.D. Spyropoulos, J.N. Gelinas, D. Khodagholy, Internal ion-gated organic electrochemical transistor: a building block for integrated bioelectronics. Sci. Adv. 5, eaau7378 (2019). https://doi.org/10.1126/sciadv.aau7378
- C. Cea, G.D. Spyropoulos, P. Jastrzebska-Perfect, J.J. Ferrero, J.N. Gelinas et al., Enhancement-mode ion-based transistor as a comprehensive interface and real-time processing unit for in vivo electrophysiology. Nat. Mater. 19, 679–686 (2020). https://doi.org/10.1038/s41563-020-0638-3
- S.Y. Yeung, A. Veronica, Y. Li, I.M. Hsing, High-performance internal ion‐gated organic electrochemical transistors for high-frequency bioimpedance analysis. Adv. Mater. Technol. 8, 2201116 (2022). https://doi.org/10.1002/admt.202201116
- X. Wu, M. Stephen, T.C. Hidalgo, T. Salim, J. Surgailis et al., Ionic-liquid induced morphology tuning of PEDOT:PSS for high-performance organic electrochemical transistors. Adv. Funct. Mater. 32, 2108510 (2021). https://doi.org/10.1002/adfm.202108510
- S. Inal, J. Rivnay, A.I. Hofmann, I. Uguz, M. Mumtaz et al., Organic electrochemical transistors based on PEDOT with different anionic polyelectrolyte dopants. J. Polym. Sci. B: Polym. Phys. 54, 147–151 (2015). https://doi.org/10.1002/polb.23938
- M. Wu, K. Yao, N. Huang, H. Li, J. Zhou et al., Ultrathin, soft, bioresorbable organic electrochemical transistors for transient spatiotemporal mapping of brain activity. Adv. Sci. 10, 2300504 (2023). https://doi.org/10.1002/advs.202300504
- J. Brodsky, I. Gablech, L. Migliaccio, M. Havlicek, M.J. Donahue et al., Downsizing the channel length of vertical organic electrochemical transistors. ACS Appl. Mater. Interfaces 15, 27002–27009 (2023). https://doi.org/10.1021/acsami.3c02049
- Y. Yan, Q. Chen, X. Wu, X. Wang, E. Li et al., High-performance organic electrochemical transistors with nanoscale channel length and their application to artificial synapse. ACS Appl. Mater. Interfaces 12, 49915–49925 (2020). https://doi.org/10.1021/acsami.0c15553
- V. Athanasiou, S. Pecqueur, D. Vuillaume, Z. Konkoli, On a generic theory of the organic electrochemical transistor dynamics. Org. Electron. 72, 39–49 (2019). https://doi.org/10.1016/j.orgel.2019.05.040
- P. Gkoupidenis, D.A. Koutsouras, G.G. Malliaras, Neuromorphic device architectures with global connectivity through electrolyte gating. Nat. Commun. 8, 15448 (2017). https://doi.org/10.1038/ncomms15448
- S.T. Keene, C. Lubrano, S. Kazemzadeh, A. Melianas, Y. Tuchman et al., A biohybrid synapse with neurotransmitter-mediated plasticity. Nat. Mater. 19, 969–973 (2020). https://doi.org/10.1038/s41563-020-0703-y
- W. Xu, S.-Y. Min, H. Hwang, T.-W. Lee, Organic core-sheath nanowire artificial synapses with femtojoule energy consumption. Sci. Adv. 2, e1501326 (2016). https://doi.org/10.1126/sciadv.1501326
- H. Shim, K. Sim, F. Ershad, P. Yang, A. Thukral et al., Stretchable elastic synaptic transistors for neurologically integrated soft engineering systems. Sci. Adv. 5, eaax4961 (2019). https://doi.org/10.1126/sciadv.aax4961
- Y. Lee, J.Y. Oh, T.W. Lee, Neuromorphic skin based on emerging artificial synapses. Adv. Mater. Technol. 7, 2200193 (2022). https://doi.org/10.1002/admt.202200193
- Y. Kim, A. Chortos, W. Xu, Y. Liu, J.Y. Oh et al., A bioinspired flexible organic artificial afferent nerve. Science 360, 998–1003 (2018). https://doi.org/10.1126/science.aao0098
- J.Y. Gerasimov, R. Gabrielsson, R. Forchheimer, E. Stavrinidou, D.T. Simon et al., An evolvable organic electrochemical transistor for neuromorphic applications. Adv. Sci. 6, 1801339 (2019). https://doi.org/10.1002/advs.201801339
- T.D. Nguyen, T.Q. Trung, Y. Lee, N.-E. Lee, Stretchable and stable electrolyte-gated organic electrochemical transistor synapse with a nafion membrane for enhanced synaptic properties. Adv. Eng. Mater. 24, 2100918 (2021). https://doi.org/10.1002/adem.202100918
- Y. Zhang, G. Ye, T.P.A. van der Pol, J. Dong, E.R.W. van Doremaele et al., High-performance organic electrochemical transistors and neuromorphic devices comprising naphthalenediimide-dialkoxybithiazole copolymers bearing glycol ether pendant groups. Adv. Funct. Mater. 32, 2201593 (2022). https://doi.org/10.1002/adfm.202201593
- F. Mariani, F. Decataldo, F. Bonafè, M. Tessarolo, T. Cramer et al., High-endurance long-term potentiation in neuromorphic organic electrochemical transistors by PEDOT: PSS electrochemical polymerization on the gate electrode. ACS Appl. Mater. Interfaces (2023). https://doi.org/10.1021/acsami.3c10576
- Y. Wang, A. Koklu, Y. Zhong, T. Chang, K. Guo et al., Acceptor functionalization via green chemistry enables high-performance n-type organic electrochemical transistors for biosensing, memory applications. Adv. Funct. Mater. 34, 2304103 (2024). https://doi.org/10.1002/adfm.202304103
- H. Liu, A. Yang, J. Song, N. Wang, P. Lam et al., Ultrafast, sensitive, and portable detection of COVID-19 IgG using flexible organic electrochemical transistors. Sci. Adv. 7, eabg8387 (2021). https://doi.org/10.1126/sciadv.abg8387
- A. Moudgil, K. Hou, T. Li, W.L. Leong, Biocompatible solid-state ion-sensitive organic electrochemical transistor for physiological multi-ions sensing. Adv. Mater. Technol. 8, 2300605 (2023). https://doi.org/10.1002/admt.202300605
- M. Sensi, G. Migatti, V. Beni, T.M. D’Alvise, T. Weil et al., Monitoring DNA hybridization with organic electrochemical transistors functionalized with polydopamine. Macromol. Mater. Eng. 307, 2100880 (2022). https://doi.org/10.1002/mame.202100880
- C. Chen, Q. Song, W. Lu, Z. Zhang, Y. Yu et al., A sensitive platform for DNA detection based on organic electrochemical transistor and nucleic acid self-assembly signal amplification. RSC Adv. 11, 37917–37922 (2021). https://doi.org/10.1039/d1ra07375c
- R.-X. He, M. Zhang, F. Tan, P.H.M. Leung, X.-Z. Zhao et al., Detection of bacteria with organic electrochemical transistors. J. Mater. Chem. 22, 22072–22076 (2012). https://doi.org/10.1039/c2jm33667g
- C. Diacci, J.W. Lee, P. Janson, G. Dufil, G. Méhes et al., Real-time monitoring of glucose export from isolated chloroplasts using an organic electrochemical transistor. Adv. Mater. Technol. 5, 1900262 (2019). https://doi.org/10.1002/admt.201900262
- R. Zhang, C. Zhao, W. Ma, H. Yan, Self-powered intelligent tactile-sensing system based on organic electrochemical transistors. ACS Appl. Electron. Mater. 6, 3431–3439 (2024). https://doi.org/10.1021/acsaelm.4c00242
- X. Wang, X. Meng, Y. Zhu, H. Ling, Y. Chen et al., A sub-1V, microwatt power-consumption iontronic pressure sensor based on organic electrochemical transistors. IEEE Electron Device Lett. 42, 46–49 (2021). https://doi.org/10.1109/led.2020.3042310
- Shuai Chen, A. Surendran, Xihu Wu, W.L. Leong, Contact modulated ionic transfer doping in all-solid-state organic electrochemical transistor for ultra-high sensitive tactile perception at low operating voltage. Adv. Funct. Mater. 30, 2006186 (2020). https://doi.org/10.1002/adfm.202006186
- K. Chen, H. Hu, I. Song, H.B. Gobeze, W.-J. Lee et al., Organic optoelectronic synapse based on photon-modulated electrochemical doping. Nat. Photonics 17, 629–637 (2023). https://doi.org/10.1038/s41566-023-01232-x
- V. Druet, D. Ohayon, C.E. Petoukhoff, Y. Zhong, N. Alshehri et al., A single n-type semiconducting polymer-based photo-electrochemical transistor. Nat. Commun. 14, 5481 (2023). https://doi.org/10.1038/s41467-023-41313-7
- P.C. Harikesh, C.Y. Yang, D. Tu, J.Y. Gerasimov, A.M. Dar et al., Organic electrochemical neurons and synapses with ion mediated spiking. Nat. Commun. 13, 901 (2022). https://doi.org/10.1038/s41467-022-28483-6
- Y. Yan, Q. Chen, X. Wang, Y. Liu, R. Yu et al., Vertical channel inorganic/organic hybrid electrochemical phototransistors with ultrahigh responsivity and fast response speed. ACS Appl. Mater. Interfaces 13, 7498–7509 (2021). https://doi.org/10.1021/acsami.0c20704
- L. Almulla, V. Druet, C.E. Petoukhoff, W. Shan, N. Alshehri et al., N-Type polymeric mixed conductors for all-in-one aqueous electrolyte gated photoelectrochemical transistors. Mater. Horiz. (2024). https://doi.org/10.1039/D4MH00267A
- J. Song, G. Tang, J. Cao, H. Liu, Z. Zhao et al., Perovskite solar cell-gated organic electrochemical transistors for flexible photodetectors with ultrahigh sensitivity and fast response. Adv. Mater. 35, e2207763 (2023). https://doi.org/10.1002/adma.202207763
- J. Song, P. Lin, Y.-F. Ruan, W.-W. Zhao, W. Wei et al., Organic photo-electrochemical transistor-based biosensor: a proof-of-concept study toward highly sensitive DNA detection. Adv. Healthc. Mater. 7, e1800536 (2018). https://doi.org/10.1002/adhm.201800536
- F. Decataldo, I. Gualandi, M. Tessarolo, E. Scavetta, B. Fraboni, Transient-doped organic electrochemical transistors working in current-enhancing mode as sensing devices for low concentration of oxygen dissolved in solution. APL Mater. 8, 091103 (2020). https://doi.org/10.1063/5.0015232
- F. Torricelli, D.Z. Adrahtas, Z. Bao, M. Berggren, F. Biscarini et al., Electrolyte-gated transistors for enhanced performance bioelectronics. Nat. Rev. Methods 1, 66 (2021). https://doi.org/10.1038/s43586-021-00065-8
- A. Koklu, S. Wustoni, K. Guo, R. Silva, L. Salvigni et al., Convection driven ultrarapid protein detection via nanobody-functionalized organic electrochemical transistors. Adv. Mater. 34, e2202972 (2022). https://doi.org/10.1002/adma.202202972
- X. Ji, X. Lin, J. Rivnay, Organic electrochemical transistors as on-site signal amplifiers for electrochemical aptamer-based sensing. Nat. Commun. 14, 1665 (2023). https://doi.org/10.1038/s41467-023-37402-2
- A. Moudgil, W.L. Leong, Highly sensitive transistor sensor for biochemical sensing and health monitoring applications: a review. IEEE Sens. J. 23, 8028–8041 (2023). https://doi.org/10.1109/jsen.2023.3253841
- P. Lin, F. Yan, H.L.W. Chan, Ion-sensitive properties of organic electrochemical transistors. ACS Appl. Mater. Interfaces 2, 1637–1641 (2010). https://doi.org/10.1021/am100154e
- V.N. Balaji, P.B. Srinivas, M.K. Singh, Neuromorphic advancements architecture design and its implementations technique. Mater. Today Proc. 51, 850–853 (2022). https://doi.org/10.1016/j.matpr.2021.06.273
- C. Dai, Y. Yang, H. Xiong, X. Wang, J. Gou et al., Accurately detecting trace-level infectious agents by an electro-enhanced graphene transistor. Adv. Funct. Mater. 33, 2300151 (2023). https://doi.org/10.1002/adfm.202300151
- E. Genco, F. Modena, L. Sarcina, K. Björkström, C. Brunetti et al., A single-molecule bioelectronic portable array for early diagnosis of pancreatic cancer precursors. Adv. Mater. 35, e2304102 (2023). https://doi.org/10.1002/adma.202304102
- D.W. Kim, J.C. Yang, S. Lee, S. Park, Neuromorphic processing of pressure signal using integrated sensor-synaptic device capable of selective and reversible short- and long-term plasticity operation. ACS Appl. Mater. Interfaces 12, 23207–23216 (2020). https://doi.org/10.1021/acsami.0c03904
References
J. Rivnay, S. Inal, A. Salleo, R.M. Owens, M. Berggren et al., Organic electrochemical transistors. Nat. Rev. Mater. 3, 17086 (2018). https://doi.org/10.1038/natrevmats.2017.86
Y. van de Burgt, A. Melianas, S.T. Keene, G. Malliaras, A. Salleo, Organic electronics for neuromorphic computing. Nat. Electron. 1, 386–397 (2018). https://doi.org/10.1038/s41928-018-0103-3
P.C. Harikesh, C.Y. Yang, D. Tu, J.Y. Gerasimov, A.M. Dar et al., Organic electrochemical neurons and synapses with ion mediated spiking. Nat. Commun. 13, 901 (2022). https://doi.org/10.1038/s41467-022-28483-6
S. Wang, X. Chen, C. Zhao, Y. Kong, B. Lin, Y. Wu et al., An organic electrochemical transistor for multi-modal sensing, memory and processing. Nat. Electron. 6, 281–291 (2023). https://doi.org/10.1038/s41928-023-00950-y
T. Sarkar, K. Lieberth, A. Pavlou, T. Frank, V. Mailaender et al., An organic artificial spiking neuron for in situ neuromorphic sensing and biointerfacing. Nat. Electron. 5, 774–783 (2022). https://doi.org/10.1038/s41928-022-00859-y
Y. Zhong, A. Koklu, D. Villalva, Y. Zhang, L.H. Hernandez et al., An organic electrochemical transistor integrated photodetector for high quality photoplethysmogram signal acquisition. Adv. Funct. Mater. 33, 2211479 (2022). https://doi.org/10.1002/adfm.202211479
D.A. Bernards, D.J. Macaya, M. Nikolou, J.A. DeFranco, S. Takamatsu et al., Enzymatic sensing with organic electrochemical transistors. J. Mater. Chem. 18, 116–120 (2008). https://doi.org/10.1039/B713122D
P. Romele, M. Ghittorelli, Z.M. Kovács-Vajna, F. Torricelli, Ion buffering and interface charge enable high performance electronics with organic electrochemical transistors. Nat. Commun. 10, 3044 (2019). https://doi.org/10.1038/s41467-019-11073-4
Y. Wang, S. Wustoni, J. Surgailis, Y. Zhong, A. Koklu et al., Designing organic mixed conductors for electrochemical transistor applications. Nat. Rev. Mater. 9, 249–265 (2024). https://doi.org/10.1038/s41578-024-00652-7
Y. Yao, W. Huang, J. Chen, G. Wang, H. Chen et al., Flexible complementary circuits operating at sub-0.5 V via hybrid organic–inorganic electrolyte-gated transistors. Proc. Natl. Acad. Sci. USA 118, e2111790118 (2021). https://doi.org/10.1073/pnas.2111790118
Y. Yao, W. Huang, J. Chen, X. Liu, L. Bai et al., Flexible and stretchable organic electrochemical transistors for physiological sensing devices. Adv. Mater. 35, 2209906 (2023). https://doi.org/10.1002/adma.202209906
W. Wang, Z. Li, M. Li, L. Fang, F. Chen et al., High-transconductance, highly elastic, durable and recyclable all-polymer electrochemical transistors with 3D micro-engineered interfaces. Nano Micro Lett. 14, 184 (2022). https://doi.org/10.1007/s40820-022-00930-5
D. Khodagholy, J. Rivnay, M. Sessolo, M. Gurfinkel, P. Leleux et al., High transconductance organic electrochemical transistors. Nat. Commun. 4, 2133 (2013). https://doi.org/10.1038/ncomms3133
A. Saleh, A. Koklu, I. Uguz, A.-M. Pappa, S. Inal, Bioelectronic interfaces of organic electrochemical transistors. Nat. Rev. Bioeng. (2024). https://doi.org/10.1038/s44222-024-00180-7
X. Wang, Z. Zhang, P. Li, J. Xu, Y. Zheng et al., Ultrastable n-type semiconducting fiber organic electrochemical transistors for highly sensitive biosensors. Adv. Mater., 2400287 (2024). https://doi.org/10.1002/adma.202400287
J. Ko, X. Wu, A. Surendran, B.T. Muhammad, W.L. Leong, Self-healable organic electrochemical transistor with high transconductance, fast response, and long-term stability. ACS Appl. Mater. Interfaces 12, 33979–33988 (2020). https://doi.org/10.1021/acsami.0c07913
A. Nawaz, Q. Liu, W.L. Leong, K.E. Fairfull-Smith, P. Sonar, Organic electrochemical transistors for in vivo bioelectronics. Adv. Mater. 33, 2101874 (2021). https://doi.org/10.1002/adma.202101874
I. Uguz, D. Ohayon, S. Yilmaz, S. Griggs, R. Sheelamanthula et al., Complementary integration of organic electrochemical transistors for front- end amplifier circuits of flexible neural implants. Sci. Adv. 10, eadi9710 (2024). https://doi.org/10.1126/sciadv.adi9710
E.J. Fuller, S.T. Keene, A. Melianas, Z. Wang, S. Agarwal et al., Parallel programming of an ionic floating-gate memory array for scalable neuromorphic computing. Science 364, 570–574 (2019). https://doi.org/10.1126/science.aaw5581
A. Melianas, T.J. Quill, G. LeCroy, Y. Tuchman, H.V. Loo et al., Temperature-resilient solid-state organic artificial synapses for neuromorphic computing. Sci. Adv. 6, eabb2958 (2020). https://doi.org/10.1126/sciadv.abb2958
P. Gkoupidenis, Y. Zhang, H. Kleemann, H. Ling, F. Santoro et al., Organic mixed conductors for bioinspired electronics. Nat. Rev. Mater. 9, 134–149 (2023). https://doi.org/10.1038/s41578-023-00622-5
W. Huang, J. Chen, Y. Yao, D. Zheng, X. Ji et al., Vertical organic electrochemical transistors for complementary circuits. Nature 613, 496–502 (2023). https://doi.org/10.1038/s41586-022-05592-2
M. Skowrons, A. Schander, A.G.P. Negron, B. Lüssem, The trade‐off between transconductance and speed for vertical organic electrochemical transistors. Adv. Electron. Mater., 2300673 (2024). https://doi.org/10.1002/aelm.202300673
C. Cea, Z. Zhao, D.J. Wisniewski, G.D. Spyropoulos, A. Polyravas et al., Integrated internal ion-gated organic electrochemical transistors for stand-alone conformable bioelectronics. Nat. Mater. 22, 1227–1235 (2023). https://doi.org/10.1038/s41563-023-01599-w
E.R.W. van Doremaele, P. Gkoupidenis, Y. van de Burgt, Towards organic neuromorphic devices for adaptive sensing and novel computing paradigms in bioelectronics. J. Mater. Chem. C 7, 12754–12760 (2019). https://doi.org/10.1039/C9TC03247A
E.R.W. van Doremaele, X. Ji, J. Rivnay, Y. van de Burgt, A retrainable neuromorphic biosensor for on-chip learning and classification. Nat. Electron. 6, 765–770 (2023). https://doi.org/10.1038/s41928-023-01020-z
J.T. Friedlein, R.R. McLeod, J. Rivnay, Device physics of organic electrochemical transistors. Org. Electron. 63, 398–414 (2018). https://doi.org/10.1016/j.orgel.2018.09.010
M. Cucchi, A. Weissbach, L.M. Bongartz, R. Kantelberg, H. Tseng et al., Thermodynamics of organic electrochemical transistors. Nat. Commun. 13, 4514 (2022). https://doi.org/10.1038/s41467-022-32182-7
D.A. Bernards, G.G. Malliaras, Steady-state and transient behavior of organic electrochemical transistors. Adv. Funct. Mater. 17, 3538–3544 (2007). https://doi.org/10.1002/adfm.200601239
V. Kaphle, P.R. Paudel, D. Dahal, R.K. Radha Krishnan, B. Lüssem, Finding the equilibrium of organic electrochemical transistors. Nat. Commun. 11, 2515 (2020). https://doi.org/10.1038/s41467-020-16252-2
S.T. Keene, J.E.M. Laulainen, R. Pandya, M. Moser, C. Schnedermann et al., Hole-limited electrochemical doping in conjugated polymers. Nat. Mater. 22, 1121–1127 (2023). https://doi.org/10.1038/s41563-023-01601-5
E. Stavrinidou, P. Leleux, H. Rajaona, D. Khodagholy, J. Rivnay et al., Direct measurement of ion mobility in a conducting polymer. Adv. Mater. 25, 4488–4493 (2013). https://doi.org/10.1002/adma.201301240
R. Wu, X. Ji, Q. Ma, B.D. Paulsen, J. Tropp et al., Direct quantification of ion composition and mobility in organic mixed ionic- electronic conductors. Sci. Adv. 10, eadn8628 (2024). https://doi.org/10.1126/sciadv.adn8628
X. Ji, B.D. Paulsen, G.K.K. Chik, R. Wu, Y. Yin et al., Mimicking associative learning using an ion-trapping non-volatile synaptic organic electrochemical transistor. Nat. Commun. 12, 2480 (2021). https://doi.org/10.1038/s41467-021-22680-5
J.H. Kim, R. Halaksa, I.Y. Jo, H. Ahn, P.A. Gilhooly-Finn et al., Peculiar transient behaviors of organic electrochemical transistors governed by ion injection directionality. Nat. Commun. 14, 7577 (2023). https://doi.org/10.1038/s41467-023-42840-z
B.D. Paulsen, S. Fabiano, J. Rivnay Mixed ionic-electronic transport in polymers. Annu. Rev. Mater. Res. 51, 73–99 (2021). https://doi.org/10.1146/annurev-matsci-080619-101319
L.Q. Flagg, C.G. Bischak, J.W. Onorato, R.B. Rashid, C.K. Luscombe et al., Polymer crystallinity controls water uptake in glycol side-chain polymer organic electrochemical transistors. J. Am. Chem. Soc. 141, 4345–4354 (2019). https://doi.org/10.1021/jacs.8b12640
J.T. Friedlein, S.E. Shaheen, G.G. Malliaras, R.R. McLeod Optical measurements revealing nonuniform hole mobility in organic electrochemical transistors. Adv. Electron. Mater. 1, 1500189 (2015). https://doi.org/10.1002/aelm.201500189
R. Wu, D. Meli, J. Strzalka, S. Narayanan, Q. Zhang et al., Bridging length scales in organic mixed ionic–electronic conductors through internal strain and mesoscale dynamics. Nat. Mater. 23, 648–655 (2024). https://doi.org/10.1038/s41563-024-01813-3
C.M. Proctor, J. Rivnay, G.G. Malliaras, Understanding volumetric capacitance in conducting polymers. J. Polym. Sci., Part B Polym. Phys. 54, 1433–1436 (2016). https://doi.org/10.1002/polb.24038
J. Rivnay, P. Leleux, M. Ferro, M. Sessolo, A. Williamson et al., High-performance transistors for bioelectronics through tuning of channel thickness. Sci. Adv. 1, e1400251 (2015). https://doi.org/10.1126/sciadv.1400251
G.C. Faria, D.T. Duong, A. Salleo, On the transient response of organic electrochemical transistors. Org. Electron. 45, 215–221 (2017). https://doi.org/10.1016/j.orgel.2017.03.021
J.T. Friedlein, M.J. Donahue, S.E. Shaheen, G.G. Malliaras, R.R. McLeod, Microsecond response in organic electrochemical transistors: exceeding the ionic speed limit. Adv. Mater. 28, 8398–8404 (2016). https://doi.org/10.1002/adma.201602684
P. Andersson Ersman, R. Lassnig, J. Strandberg, D. Tu, V. Keshmiri et al., All-printed large-scale integrated circuits based on organic electrochemical transistors. Nat. Commun. 10, 5053 (2019). https://doi.org/10.1038/s41467-019-13079-4
J. Guo, S.E. Chen, R. Giridharagopal, C.G. Bischak, J.W. Onorato et al., Understanding asymmetric switching times in accumulation mode organic electrochemical transistors. Nat. Mater. 23, 656–663 (2024). https://doi.org/10.1038/s41563-024-01875-3
P.R. Paudel, J. Tropp, V. Kaphle, J.D. Azoulay, B. Lüssem, Organic electrochemical transistors–from device models to a targeted design of materials. J. Mater. Chem. C 9, 9761–9790 (2021). https://doi.org/10.1039/D1TC01601F
P.R. Paudel, M. Skowrons, D. Dahal, R.K. Radha Krishnan, B. Lüssem, The transient response of organic electrochemical transistors. Adv. Theory Simul. 5, 2100563 (2022). https://doi.org/10.1002/adts.202100563
B.D. Paulsen, Wu R., C.J. Takacs, H.-G. Steinrück, J. Strzalka et al., Time-resolved structural kinetics of an organic mixed ionic–electronic conductor. Adv. Mater. 32, 2003404 (2020). https://doi.org/10.1002/adma.202003404
G. Rebetez, O. Bardagot, J. Affolter, J. Réhault, N. Banerji, What drives the kinetics and doping level in the electrochemical reactions of PEDOT:PSS? Adv. Funct. Mater. 32, 2105821 (2022). https://doi.org/10.1002/adfm.202105821
R. Wu, B.D. Paulsen, Q. Ma, J. Rivnay, Mass and charge transport kinetics in an organic mixed ionic–electronic conductor. Chem. Mater. 34, 9699–9710 (2022). https://doi.org/10.1021/acs.chemmater.2c02476
Y. van de Burgt, E. Lubberman, E.J. Fuller, S.T. Keene, G.C. Faria et al., A non-volatile organic electrochemical device as a low-voltage artificial synapse for neuromorphic computing. Nat. Mater. 16, 414–418 (2017). https://doi.org/10.1038/nmat4856
R. Shameem, L.M. Bongartz, A. Weissbach, H. Kleemann, K. Leo, Hysteresis in organic electrochemical transistors: relation to the electrochemical properties of the semiconductor. Appl. Sci. 13, 5754 (2023). https://doi.org/10.3390/app13095754
A. Weissbach, L.M. Bongartz, M. Cucchi, H. Tseng, K. Leo et al., Photopatternable solid electrolyte for integrable organic electrochemical transistors: operation and hysteresis. J. Mater. Chem. C 10, 2656–2662 (2022). https://doi.org/10.1039/D1TC04230K
J. Bisquert, Hysteresis in organic electrochemical transistors: distinction of capacitive and inductive effects. J. Phys. Chem. Lett. 14, 10951–10958 (2023). https://doi.org/10.1021/acs.jpclett.3c03062
J. Surgailis, A. Savva, V. Druet, B.D. Paulsen, R. Wu et al., Mixed conduction in an n‐type organic semiconductor in the absence of hydrophilic side-chains. Adv. Funct. Mater. 31, 2010165 (2021). https://doi.org/10.1002/adfm.202010165
Z. Zhou, X. Wu, T.L.D. Tam, C.G. Tang, S. Chen et al., Highly stable ladder‐type conjugated polymer based organic electrochemical transistors for low power and signal processing‐free surface electromyogram triggered robotic hand control. Adv. Funct. Mater. 34, 2305780 (2023). https://doi.org/10.1002/adfm.202305780
M. Moser, J. Gladisch, S. Ghosh, T. Hidalgo, J.F. Ponder et al., Controlling electrochemically induced volume changes in conjugated polymers by chemical design: from theory to devices. Adv. Funct. Mater. 31, 2100723 (2021). https://doi.org/10.1002/adfm.202100723
J. Guo, L.Q. Flagg, D.K. Tran, S.E. Chen, R. Li et al., Hydration of a side-chain-free n-type semiconducting ladder polymer driven by electrochemical doping. J. Am. Chem. Soc. 145, 1866–1876 (2023). https://doi.org/10.1021/jacs.2c11468
H.-Y. Wu, J.-D. Huang, S.Y. Jeong, T. Liu, Z. Wu et al., Stable organic electrochemical neurons based on p-type and n-type ladder polymers. Mater. Horiz. 10, 4213–4223 (2023). https://doi.org/10.1039/D3MH00858D
A. Savva, C. Cendra, A. Giugni, B. Torre, J. Surgailis et al., Influence of water on the performance of organic electrochemical transistors. Chem. Mater. 31, 927–937 (2019). https://doi.org/10.1021/acs.chemmater.8b04335
F. Bonafè, F. Decataldo, B. Fraboni, T. Cramer, Charge carrier mobility in organic mixed ionic–electronic conductors by the electrolyte-gated van der Pauw method. Adv. Electron. Mater. 7, 2100086 (2021). https://doi.org/10.1002/aelm.202100086
S. Griggs, A. Marks, D. Meli, G. Rebetez, O. Bardagot et al., The effect of residual palladium on the performance of organic electrochemical transistors. Nat. Commun. 13, 7964 (2022). https://doi.org/10.1038/s41467-022-35573-y
B.D. Paulsen, A. Giovannitti, R. Wu, J. Strzalka, Q. Zhang et al., Electrochemistry of thin films with in situ/operando grazing incidence X-ray scattering: bypassing electrolyte scattering for high fidelity time resolved studies. Small 17, e2103213 (2021). https://doi.org/10.1002/smll.202103213
R.K. Hallani, B.D. Paulsen, A.J. Petty 2nd., R. Sheelamanthula, M. Moser et al., Regiochemistry-driven organic electrochemical transistor performance enhancement in ethylene glycol-functionalized polythiophenes. J. Am. Chem. Soc. 143, 11007–11018 (2021). https://doi.org/10.1021/jacs.1c03516
P. Schmode, A. Savva, R. Kahl, D. Ohayon, F. Meichsner et al., The key role of side chain linkage in structure formation and mixed conduction of ethylene glycol substituted polythiophenes. ACS Appl. Mater. Interfaces 12, 13029–13039 (2020). https://doi.org/10.1021/acsami.9b21604
T.J. Quill, G. LeCroy, A. Melianas, D. Rawlings, Q. Thiburce et al., Ion pair uptake in ion gel devices based on organic mixed ionic–electronic conductors. Adv. Funct. Mater. 31, 2104301 (2021). https://doi.org/10.1002/adfm.202104301
S.-M. Kim, C.-H. Kim, Y. Kim, N. Kim, W.-J. Lee et al., Influence of PEDOT: PSS crystallinity and composition on electrochemical transistor performance and long-term stability. Nat. Commun. 9, 3858 (2018). https://doi.org/10.1038/s41467-018-06084-6
I.P. Maria, B.D. Paulsen, A. Savva, D. Ohayon, R. Wu et al., The effect of alkyl spacers on the mixed ionic-electronic conduction properties of n-type polymers. Adv. Funct. Mater. 31, 2008718 (2021). https://doi.org/10.1002/adfm.202008718
C. Cendra, A. Giovannitti, A. Savva, V. Venkatraman, I. McCulloch et al., Role of the anion on the transport and structure of organic mixed conductors. Adv. Funct. Mater. 29, 1807034 (2018). https://doi.org/10.1002/adfm.201807034
N.A. Kukhta, A. Marks, C.K. Luscombe, Molecular design strategies toward improvement of charge injection and ionic conduction in organic mixed ionic-electronic conductors for organic electrochemical transistors. Chem. Rev. 122, 4325–4355 (2022). https://doi.org/10.1021/acs.chemrev.1c00266
L.Q. Flagg, L.E. Asselta, N. D’Antona, T. Nicolini, N. Stingelin et al., In situ studies of the swelling by an electrolyte in electrochemical doping of ethylene glycol-substituted polythiophene. ACS Appl. Mater. Interfaces 14, 29052–29060 (2022). https://doi.org/10.1021/acsami.2c06169
B.D. Paulsen, K. Tybrandt, E. Stavrinidou, J. Rivnay, Organic mixed ionic-electronic conductors. Nat. Mater. 19, 13–26 (2020). https://doi.org/10.1038/s41563-019-0435-z
A. Savva, R. Hallani, C. Cendra, J. Surgailis, T.C. Hidalgo et al., Balancing ionic and electronic conduction for high-performance organic electrochemical transistors. Adv. Funct. Mater. 30, 1907657 (2020). https://doi.org/10.1002/adfm.201907657
A. Savva, S. Wustoni, S. Inal, Ionic-to-electronic coupling efficiency in PEDOT: PSS films operated in aqueous electrolytes. J. Mater. Chem. C 6, 12023–12030 (2018). https://doi.org/10.1039/C8TC02195C
E. Zeglio, O. Inganäs, Active materials for organic electrochemical transistors. Adv. Mater. 30, 1800941 (2018). https://doi.org/10.1002/adma.201800941
P. Li, T. Lei, Molecular design strategies for high-performance organic electrochemical transistors. J. Polym. Sci. 60, 377–392 (2021). https://doi.org/10.1002/pol.20210503
D. Ohayon, A. Savva, W. Du, B.D. Paulsen, I. Uguz et al., Influence of side chains on the n-type organic electrochemical transistor performance. ACS Appl. Mater. Interfaces 13, 4253–4266 (2021). https://doi.org/10.1021/acsami.0c18599
A. Giovannitti, D.-T. Sbircea, S. Inal, C.B. Nielsen, E. Bandiello et al., Controlling the mode of operation of organic transistors through side-chain engineering. Proc. Natl. Acad. Sci. U.S.A. 113, 12017–12022 (2016). https://doi.org/10.1073/pnas.1608780113
K. Hou, S. Chen, A. Moudgil, X. Wu, T.L.D. Tam et al., High performance, flexible, and thermally stable all-solid-state organic electrochemical transistor based on thermoplastic polyurethane ion gel. ACS Appl. Electronic Mater. 5, 2215–2226 (2023). https://doi.org/10.1021/acsaelm.3c00091
X. Wu, S. Chen, M. Moser, A. Moudgil, S. Griggs et al., High performing solid-state organic electrochemical transistors enabled by glycolated polythiophene and ion-gel electrolyte with a wide operation temperature range from −50 to 110 °C. Adv. Funct. Mater. 33, 2209354 (2022). https://doi.org/10.1002/adfm.202209354
S. Pecqueur, D. Guérin, D. Vuillaume, F. Alibart, Cation discrimination in organic electrochemical transistors by dual frequency sensing. Org. Electron. 57, 232–238 (2018). https://doi.org/10.1016/j.orgel.2018.03.020
G. Tarabella, C. Santato, S.Y. Yang, S. Iannotta, G.G. Malliaras et al., Effect of the gate electrode on the response of organic electrochemical transistors. Appl. Phys. Lett. 97, 123304 (2010). https://doi.org/10.1063/1.3491216
B. Lin, M. Wang, C. Zhao, S. Wang, K. Chen et al., Flexible organic integrated electronics for self-powered multiplexed ocular monitoring. NPJ Flex. Electron. 6, 77 (2022). https://doi.org/10.1038/s41528-022-00211-6
D. Khodagholy, V.F. Curto, K.J. Fraser, M. Gurfinkel, R. Byrne et al., Organic electrochemical transistor incorporating an ionogel as a solid state electrolyte for lactate sensing. J. Mater. Chem. 22, 4440–4443 (2012). https://doi.org/10.1039/C2JM15716K
C. Liao, M. Zhang, L. Niu, Z. Zheng, F. Yan, Highly selective and sensitive glucose sensors based on organic electrochemical transistors with graphene-modified gate electrodes. J. Mater. Chem. B 1, 3820–3829 (2013). https://doi.org/10.1039/c3tb20451k
A.F. Paterson, H. Faber, A. Savva, G. Nikiforidis, M. Gedda et al., On the role of contact resistance and electrode modification in organic electrochemical transistors. Adv. Mater. 31, e1902291 (2019). https://doi.org/10.1002/adma.201902291
A. Polyravas, V. Curto, N. Schaefer, A. Bonaccini, A. Guimera et al., Impact of contact overlap on transconductance and noise in organic electrochemical transistors. Flex. Print. Electron. 4, 044003 (2019). https://doi.org/10.1088/2058-8585/ab4dc4
J. Rivnay, S. Inal, B.A. Collins, M. Sessolo, E. Stavrinidou et al., Structural control of mixed ionic and electronic transport in conducting polymers. Nat. Commun. 7, 11287 (2016). https://doi.org/10.1038/ncomms11287
K.K. Liu, P. Li, Y. Lei, Z. Zhang, X. Pan Et al., J‐type self‐assembled supramolecular polymers for high‐performance and fast‐response n‐type organic electrochemical transistors. Adv. Funct. Mater. 33, 2300049 (2023). https://doi.org/10.1002/adfm.202300049
Y. Kim, H. Noh, B.D. Paulsen, J. Kim, I.Y. Jo et al., Strain‐engineering induced anisotropic crystallite orientation and maximized carrier mobility for high‐performance microfiber-based organic bioelectronic devices. Adv. Mater. 33, 2007550 (2021). https://doi.org/10.1002/adma.202007550
L. Huang, Z. Wang, J. Chen, B. Wang, Y. Chen et al., Porous semiconducting polymers enable high-performance electrochemical transistors. Adv. Mater. 33, 2007041 (2021). https://doi.org/10.1002/adma.202007041
M. Barker, T. Nicolini, Y.A. Yaman, D. Thuau, O. Siscan et al., Conjugated polymer blends for faster organic mixed conductors. Mater. Horiz. 10, 248–256 (2023). https://doi.org/10.1039/d2mh00861k
M. Stephen, X. Wu, T. Li, T. Salim, K. Hou et al., Crown ether enabled enhancement of ionic–electronic properties of PEDOT:PSS. Mater. Horiz. 9, 2408–2415 (2022). https://doi.org/10.1039/d2mh00496h
L.V. Lingstedt, M. Ghittorelli, H. Lu, D.A. Koutsouras, T. Marszalek et al., Effect of DMSO solvent treatments on the performance of PEDOT:PSS based organic electrochemical transistors. Adv. Electron. Mater. 5, 1800804 (2019). https://doi.org/10.1002/aelm.201800804
R. He, A. Lv, X. Jiang, C. Cai, Y. Wang et al., Organic electrochemical transistor based on hydrophobic polymer tuned by ionic gels. Angew. Chem. Int. Ed. 62, e202304549 (2023). https://doi.org/10.1002/anie.202304549
S. Han, S. Yamamoto, A.G. Polyravas, G.G. Malliaras, Microfabricated ion-selective transistors with fast and super‐nernstian response. Adv. Mater. 32, 2004790 (2020). https://doi.org/10.1002/adma.202004790
I.B. Dimov, M. Moser, G.G. Malliaras, I. McCulloch, Semiconducting polymers for neural applications. Chem. Rev. 122, 4356–4396 (2022). https://doi.org/10.1021/acs.chemrev.1c00685
A. Savva, D. Ohayon, J. Surgailis, A. Paterson, T. Hidalgo et al., Solvent engineering for high-performance n-type organic electrochemical transistors. Adv. Electron. Mater. 5, 1900249 (2019). https://doi.org/10.1002/aelm.201900249
X. Wu, A. Surendran, J. Ko, O. Filonik, E.M. Herzig et al., Ionic-liquid doping enables high transconductance, fast response time, and high ion sensitivity in organic electrochemical transistors. Adv. Mater. 31, e1805544 (2019). https://doi.org/10.1002/adma.201805544
D. Ohayon, L.Q. Flagg, A. Giugni, S. Wustoni, R. Li et al., Salts as additives: a route to improve performance and stability of n-type organic electrochemical transistors. ACS Mater. Au 3, 242–254 (2023). https://doi.org/10.1021/acsmaterialsau.2c00072
P. Schmode, D. Ohayon, P.M. Reichstein, A. Savva, S. Inal et al., High-performance organic electrochemical transistors based on conjugated polyelectrolyte copolymers. Chem. Mater. 31, 5286–5295 (2019). https://doi.org/10.1021/acs.chemmater.9b01722
A.F. Paterson, A. Savva, S. Wustoni, L. Tsetseris, B.D. Paulsen et al., Water stable molecular n-doping produces organic electrochemical transistors with high transconductance and record stability. Nat. Commun. 11, 3004 (2020). https://doi.org/10.1038/s41467-020-16648-0
L. Lan, J. Chen, Y. Wang, P. Li, Y. Yu et al., Facilely accessible porous conjugated polymers toward high-performance and flexible organic electrochemical transistors. Chem. Mater. 34, 1666–1676 (2022). https://doi.org/10.1021/acs.chemmater.1c03797
Y. Peng, L. Gao, C. Liu, J. Deng, M. Xie et al., Stretchable organic electrochemical transistors via three-dimensional porous elastic semiconducting films for artificial synaptic applications. Nano Res. 16, 10206–10214 (2023). https://doi.org/10.1007/s12274-023-5633-y
A. Zhang, H. Bai, L. Li, Breath figure: a nature-inspired preparation method for ordered porous films. Chem. Rev. 115, 9801–9868 (2015). https://doi.org/10.1021/acs.chemrev.5b00069
S. Chen, K. Hou, T. Li, X. Wu, Z. Wang et al., Ultra-lightweight, highly permeable, and waterproof fibrous organic electrochemical transistors for on-skin bioelectronics. Adv. Mater. Technol. 8, 2200611 (2022). https://doi.org/10.1002/admt.202200611
X. Zhang, B. Wang, L. Huang, W. Huang, Z. Wang et al., Breath figure-derived porous semiconducting films for organic electronics. Sci. Adv. 6, eaaz1042 (2020). https://doi.org/10.1126/sciadv.aaz1042
A. Koklu, S. Wustoni, V.-E. Musteata, D. Ohayon, M. Moser et al., Microfluidic integrated organic electrochemical transistor with a nanoporous membrane for amyloid-β detection. ACS Nano 15, 8130–8141 (2021). https://doi.org/10.1021/acsnano.0c09893
H.-S. Tseng, Y.-L. Chen, P.-Y. Zhang, Y.-S. Hsiao, Additive blending effects on PEDOT: PSS composite films for wearable organic electrochemical transistors. ACS Appl. Mater. Interfaces 16, 13384–13398 (2024). https://doi.org/10.1021/acsami.3c14961
J. Song, H. Liu, Z. Zhao, X. Guo, C.K. Liu et al., 2D metal-organic frameworks for ultraflexible electrochemical transistors with high transconductance and fast response speeds. Sci. Adv. 9, eadd9627 (2023). https://doi.org/10.1126/sciadv.add9627
C.-H. Hsu, S.-R. Huang, J.-Y. Lai, G.-H. Cai, M.-D. Tsai et al., Enhancing the response speed of organic electrochemical transistors via ion liquid/metal–organic framework-embedded semiconducting polymers. Adv. Electron. Mater. 10, 2300645 (2024). https://doi.org/10.1002/aelm.202300645
J.W. Moon, D.U. Lim, Y.N. Kim, J.H. Kim, J.H. Kim et al., High-speed operation of electrochemical logic circuits depending on 3D construction of transistor architectures. Adv. Funct. Mater. 33, 2305440 (2023). https://doi.org/10.1002/adfm.202305440
Y. Zhong, Q. Liang, Z. Chen, F. Ye, M. Yao et al., High-performance fiber-shaped vertical organic electrochemical transistors patterned by surface photolithography. Chem. Mater. 35, 9739–9746 (2023). https://doi.org/10.1021/acs.chemmater.3c02237
J. Kim, R.M. Pankow, Y. Cho, I.D. Duplessis, F. Qin et al., Monolithically integrated high-density vertical organic electrochemical transistor arrays and complementary circuits. Nat. Electron. 7, 234–243 (2024). https://doi.org/10.1038/s41928-024-01127-x
M.J. Donahue, A. Williamson, X. Strakosas, J.T. Friedlein, R.R. McLeod et al., High-performance vertical organic electrochemical transistors. Adv. Mater. 30, 1705031 (2018). https://doi.org/10.1002/adma.201705031
H. Kleemann, K. Krechan, A. Fischer, K. Leo, A review of vertical organic transistors. Adv. Funct. Mater. 30, 1907113 (2020). https://doi.org/10.1002/adfm.201907113
G.D. Spyropoulos, J.N. Gelinas, D. Khodagholy, Internal ion-gated organic electrochemical transistor: a building block for integrated bioelectronics. Sci. Adv. 5, eaau7378 (2019). https://doi.org/10.1126/sciadv.aau7378
C. Cea, G.D. Spyropoulos, P. Jastrzebska-Perfect, J.J. Ferrero, J.N. Gelinas et al., Enhancement-mode ion-based transistor as a comprehensive interface and real-time processing unit for in vivo electrophysiology. Nat. Mater. 19, 679–686 (2020). https://doi.org/10.1038/s41563-020-0638-3
S.Y. Yeung, A. Veronica, Y. Li, I.M. Hsing, High-performance internal ion‐gated organic electrochemical transistors for high-frequency bioimpedance analysis. Adv. Mater. Technol. 8, 2201116 (2022). https://doi.org/10.1002/admt.202201116
X. Wu, M. Stephen, T.C. Hidalgo, T. Salim, J. Surgailis et al., Ionic-liquid induced morphology tuning of PEDOT:PSS for high-performance organic electrochemical transistors. Adv. Funct. Mater. 32, 2108510 (2021). https://doi.org/10.1002/adfm.202108510
S. Inal, J. Rivnay, A.I. Hofmann, I. Uguz, M. Mumtaz et al., Organic electrochemical transistors based on PEDOT with different anionic polyelectrolyte dopants. J. Polym. Sci. B: Polym. Phys. 54, 147–151 (2015). https://doi.org/10.1002/polb.23938
M. Wu, K. Yao, N. Huang, H. Li, J. Zhou et al., Ultrathin, soft, bioresorbable organic electrochemical transistors for transient spatiotemporal mapping of brain activity. Adv. Sci. 10, 2300504 (2023). https://doi.org/10.1002/advs.202300504
J. Brodsky, I. Gablech, L. Migliaccio, M. Havlicek, M.J. Donahue et al., Downsizing the channel length of vertical organic electrochemical transistors. ACS Appl. Mater. Interfaces 15, 27002–27009 (2023). https://doi.org/10.1021/acsami.3c02049
Y. Yan, Q. Chen, X. Wu, X. Wang, E. Li et al., High-performance organic electrochemical transistors with nanoscale channel length and their application to artificial synapse. ACS Appl. Mater. Interfaces 12, 49915–49925 (2020). https://doi.org/10.1021/acsami.0c15553
V. Athanasiou, S. Pecqueur, D. Vuillaume, Z. Konkoli, On a generic theory of the organic electrochemical transistor dynamics. Org. Electron. 72, 39–49 (2019). https://doi.org/10.1016/j.orgel.2019.05.040
P. Gkoupidenis, D.A. Koutsouras, G.G. Malliaras, Neuromorphic device architectures with global connectivity through electrolyte gating. Nat. Commun. 8, 15448 (2017). https://doi.org/10.1038/ncomms15448
S.T. Keene, C. Lubrano, S. Kazemzadeh, A. Melianas, Y. Tuchman et al., A biohybrid synapse with neurotransmitter-mediated plasticity. Nat. Mater. 19, 969–973 (2020). https://doi.org/10.1038/s41563-020-0703-y
W. Xu, S.-Y. Min, H. Hwang, T.-W. Lee, Organic core-sheath nanowire artificial synapses with femtojoule energy consumption. Sci. Adv. 2, e1501326 (2016). https://doi.org/10.1126/sciadv.1501326
H. Shim, K. Sim, F. Ershad, P. Yang, A. Thukral et al., Stretchable elastic synaptic transistors for neurologically integrated soft engineering systems. Sci. Adv. 5, eaax4961 (2019). https://doi.org/10.1126/sciadv.aax4961
Y. Lee, J.Y. Oh, T.W. Lee, Neuromorphic skin based on emerging artificial synapses. Adv. Mater. Technol. 7, 2200193 (2022). https://doi.org/10.1002/admt.202200193
Y. Kim, A. Chortos, W. Xu, Y. Liu, J.Y. Oh et al., A bioinspired flexible organic artificial afferent nerve. Science 360, 998–1003 (2018). https://doi.org/10.1126/science.aao0098
J.Y. Gerasimov, R. Gabrielsson, R. Forchheimer, E. Stavrinidou, D.T. Simon et al., An evolvable organic electrochemical transistor for neuromorphic applications. Adv. Sci. 6, 1801339 (2019). https://doi.org/10.1002/advs.201801339
T.D. Nguyen, T.Q. Trung, Y. Lee, N.-E. Lee, Stretchable and stable electrolyte-gated organic electrochemical transistor synapse with a nafion membrane for enhanced synaptic properties. Adv. Eng. Mater. 24, 2100918 (2021). https://doi.org/10.1002/adem.202100918
Y. Zhang, G. Ye, T.P.A. van der Pol, J. Dong, E.R.W. van Doremaele et al., High-performance organic electrochemical transistors and neuromorphic devices comprising naphthalenediimide-dialkoxybithiazole copolymers bearing glycol ether pendant groups. Adv. Funct. Mater. 32, 2201593 (2022). https://doi.org/10.1002/adfm.202201593
F. Mariani, F. Decataldo, F. Bonafè, M. Tessarolo, T. Cramer et al., High-endurance long-term potentiation in neuromorphic organic electrochemical transistors by PEDOT: PSS electrochemical polymerization on the gate electrode. ACS Appl. Mater. Interfaces (2023). https://doi.org/10.1021/acsami.3c10576
Y. Wang, A. Koklu, Y. Zhong, T. Chang, K. Guo et al., Acceptor functionalization via green chemistry enables high-performance n-type organic electrochemical transistors for biosensing, memory applications. Adv. Funct. Mater. 34, 2304103 (2024). https://doi.org/10.1002/adfm.202304103
H. Liu, A. Yang, J. Song, N. Wang, P. Lam et al., Ultrafast, sensitive, and portable detection of COVID-19 IgG using flexible organic electrochemical transistors. Sci. Adv. 7, eabg8387 (2021). https://doi.org/10.1126/sciadv.abg8387
A. Moudgil, K. Hou, T. Li, W.L. Leong, Biocompatible solid-state ion-sensitive organic electrochemical transistor for physiological multi-ions sensing. Adv. Mater. Technol. 8, 2300605 (2023). https://doi.org/10.1002/admt.202300605
M. Sensi, G. Migatti, V. Beni, T.M. D’Alvise, T. Weil et al., Monitoring DNA hybridization with organic electrochemical transistors functionalized with polydopamine. Macromol. Mater. Eng. 307, 2100880 (2022). https://doi.org/10.1002/mame.202100880
C. Chen, Q. Song, W. Lu, Z. Zhang, Y. Yu et al., A sensitive platform for DNA detection based on organic electrochemical transistor and nucleic acid self-assembly signal amplification. RSC Adv. 11, 37917–37922 (2021). https://doi.org/10.1039/d1ra07375c
R.-X. He, M. Zhang, F. Tan, P.H.M. Leung, X.-Z. Zhao et al., Detection of bacteria with organic electrochemical transistors. J. Mater. Chem. 22, 22072–22076 (2012). https://doi.org/10.1039/c2jm33667g
C. Diacci, J.W. Lee, P. Janson, G. Dufil, G. Méhes et al., Real-time monitoring of glucose export from isolated chloroplasts using an organic electrochemical transistor. Adv. Mater. Technol. 5, 1900262 (2019). https://doi.org/10.1002/admt.201900262
R. Zhang, C. Zhao, W. Ma, H. Yan, Self-powered intelligent tactile-sensing system based on organic electrochemical transistors. ACS Appl. Electron. Mater. 6, 3431–3439 (2024). https://doi.org/10.1021/acsaelm.4c00242
X. Wang, X. Meng, Y. Zhu, H. Ling, Y. Chen et al., A sub-1V, microwatt power-consumption iontronic pressure sensor based on organic electrochemical transistors. IEEE Electron Device Lett. 42, 46–49 (2021). https://doi.org/10.1109/led.2020.3042310
Shuai Chen, A. Surendran, Xihu Wu, W.L. Leong, Contact modulated ionic transfer doping in all-solid-state organic electrochemical transistor for ultra-high sensitive tactile perception at low operating voltage. Adv. Funct. Mater. 30, 2006186 (2020). https://doi.org/10.1002/adfm.202006186
K. Chen, H. Hu, I. Song, H.B. Gobeze, W.-J. Lee et al., Organic optoelectronic synapse based on photon-modulated electrochemical doping. Nat. Photonics 17, 629–637 (2023). https://doi.org/10.1038/s41566-023-01232-x
V. Druet, D. Ohayon, C.E. Petoukhoff, Y. Zhong, N. Alshehri et al., A single n-type semiconducting polymer-based photo-electrochemical transistor. Nat. Commun. 14, 5481 (2023). https://doi.org/10.1038/s41467-023-41313-7
P.C. Harikesh, C.Y. Yang, D. Tu, J.Y. Gerasimov, A.M. Dar et al., Organic electrochemical neurons and synapses with ion mediated spiking. Nat. Commun. 13, 901 (2022). https://doi.org/10.1038/s41467-022-28483-6
Y. Yan, Q. Chen, X. Wang, Y. Liu, R. Yu et al., Vertical channel inorganic/organic hybrid electrochemical phototransistors with ultrahigh responsivity and fast response speed. ACS Appl. Mater. Interfaces 13, 7498–7509 (2021). https://doi.org/10.1021/acsami.0c20704
L. Almulla, V. Druet, C.E. Petoukhoff, W. Shan, N. Alshehri et al., N-Type polymeric mixed conductors for all-in-one aqueous electrolyte gated photoelectrochemical transistors. Mater. Horiz. (2024). https://doi.org/10.1039/D4MH00267A
J. Song, G. Tang, J. Cao, H. Liu, Z. Zhao et al., Perovskite solar cell-gated organic electrochemical transistors for flexible photodetectors with ultrahigh sensitivity and fast response. Adv. Mater. 35, e2207763 (2023). https://doi.org/10.1002/adma.202207763
J. Song, P. Lin, Y.-F. Ruan, W.-W. Zhao, W. Wei et al., Organic photo-electrochemical transistor-based biosensor: a proof-of-concept study toward highly sensitive DNA detection. Adv. Healthc. Mater. 7, e1800536 (2018). https://doi.org/10.1002/adhm.201800536
F. Decataldo, I. Gualandi, M. Tessarolo, E. Scavetta, B. Fraboni, Transient-doped organic electrochemical transistors working in current-enhancing mode as sensing devices for low concentration of oxygen dissolved in solution. APL Mater. 8, 091103 (2020). https://doi.org/10.1063/5.0015232
F. Torricelli, D.Z. Adrahtas, Z. Bao, M. Berggren, F. Biscarini et al., Electrolyte-gated transistors for enhanced performance bioelectronics. Nat. Rev. Methods 1, 66 (2021). https://doi.org/10.1038/s43586-021-00065-8
A. Koklu, S. Wustoni, K. Guo, R. Silva, L. Salvigni et al., Convection driven ultrarapid protein detection via nanobody-functionalized organic electrochemical transistors. Adv. Mater. 34, e2202972 (2022). https://doi.org/10.1002/adma.202202972
X. Ji, X. Lin, J. Rivnay, Organic electrochemical transistors as on-site signal amplifiers for electrochemical aptamer-based sensing. Nat. Commun. 14, 1665 (2023). https://doi.org/10.1038/s41467-023-37402-2
A. Moudgil, W.L. Leong, Highly sensitive transistor sensor for biochemical sensing and health monitoring applications: a review. IEEE Sens. J. 23, 8028–8041 (2023). https://doi.org/10.1109/jsen.2023.3253841
P. Lin, F. Yan, H.L.W. Chan, Ion-sensitive properties of organic electrochemical transistors. ACS Appl. Mater. Interfaces 2, 1637–1641 (2010). https://doi.org/10.1021/am100154e
V.N. Balaji, P.B. Srinivas, M.K. Singh, Neuromorphic advancements architecture design and its implementations technique. Mater. Today Proc. 51, 850–853 (2022). https://doi.org/10.1016/j.matpr.2021.06.273
C. Dai, Y. Yang, H. Xiong, X. Wang, J. Gou et al., Accurately detecting trace-level infectious agents by an electro-enhanced graphene transistor. Adv. Funct. Mater. 33, 2300151 (2023). https://doi.org/10.1002/adfm.202300151
E. Genco, F. Modena, L. Sarcina, K. Björkström, C. Brunetti et al., A single-molecule bioelectronic portable array for early diagnosis of pancreatic cancer precursors. Adv. Mater. 35, e2304102 (2023). https://doi.org/10.1002/adma.202304102
D.W. Kim, J.C. Yang, S. Lee, S. Park, Neuromorphic processing of pressure signal using integrated sensor-synaptic device capable of selective and reversible short- and long-term plasticity operation. ACS Appl. Mater. Interfaces 12, 23207–23216 (2020). https://doi.org/10.1021/acsami.0c03904