Boosted Lithium-Ion Transport Kinetics in n-Type Siloxene Anodes Enabled by Selective Nucleophilic Substitution of Phosphorus
Corresponding Author: Dong‑Wan Kim
Nano-Micro Letters,
Vol. 16 (2024), Article Number: 219
Abstract
Doped two-dimensional (2D) materials hold significant promise for advancing many technologies, such as microelectronics, optoelectronics, and energy storage. Herein, n-type 2D oxidized Si nanosheets, namely n-type siloxene (n-SX), are employed as Li-ion battery anodes. Via thermal evaporation of sodium hypophosphite at 275 °C, P atoms are effectively incorporated into siloxene (SX) without compromising its 2D layered morphology and unique Kautsky-type crystal structure. Further, selective nucleophilic substitution occurs, with only Si atoms being replaced by P atoms in the O3≡Si–H tetrahedra. The resulting n-SX possesses two delocalized electrons arising from the presence of two electron donor types: (i) P atoms residing in Si sites and (ii) H vacancies. The doping concentrations are varied by controlling the amount of precursors or their mean free paths. Even at 2000 mA g−1, the n-SX electrode with the optimized doping concentration (6.7 × 1019 atoms cm−3) delivers a capacity of 594 mAh g−1 with a 73% capacity retention after 500 cycles. These improvements originate from the enhanced kinetics of charge transport processes, including electronic conduction, charge transfer, and solid-state diffusion. The approach proposed herein offers an unprecedented route for engineering SX anodes to boost Li-ion storage.
Highlights:
1 Extrinsic doping is proposed as a novel route to enhance the intrinsic properties of the two-dimensional oxidized Si nanosheet (namely, siloxene) anode for Li-ion batteries.
2 Fabrication of P-doped n-type siloxene is revealed to be possible through selective nucleophilic substitution of Si atoms in siloxene with P atoms.
3 Due to boosted charge transport kinetics, n-type siloxene (6.7 × 1019 P atoms cm-3) exhibits the excellent storage performance (594 mAh g-1 after 500 cycles) even at 2000 mA g-1.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Y. Gao, Z. Pan, J. Sun, Z. Liu, J. Wang, High-energy batteries: beyond lithium-ion and their long road to commercialisation. Nano-Micro Lett. 14, 94 (2022). https://doi.org/10.1007/s40820-022-00844-2
- X. Su, Q. Wu, J. Li, X. Xiao, A. Lott et al., Silicon-based nanomaterials for lithium-ion batteries: a review. Adv. Energy Mater. 4, 1300882 (2014). https://doi.org/10.1002/aenm.201300882
- Y. An, Y. Tian, C. Wei, Y. Zhang, S. Xiong et al., Recent advances and perspectives of 2D silicon: synthesis and application for energy storage and conversion. Energy Storage Mater. 32, 115–150 (2020). https://doi.org/10.1016/j.ensm.2020.07.006
- B.J. Ryan, M.P. Hanrahan, Y. Wang, U. Ramesh, C.K.A. Nyamekye et al., Silicene, siloxene, or silicane? revealing the structure and optical properties of silicon nanosheets derived from calcium disilicide. Chem. Mater. 32, 795–804 (2020). https://doi.org/10.1021/acs.chemmater.9b04180
- Y. Kumai, S. Shirai, E. Sudo, J. Seki, H. Okamoto et al., Characteristics and structural change of layered polysilane (Si6H6) anode for lithium ion batteries. J. Power. Sources 196, 1503–1507 (2011). https://doi.org/10.1016/j.jpowsour.2010.08.040
- L.C. Loaiza, L. Monconduit, V. Seznec, Siloxene: a potential layered silicon intercalation anode for Na, Li and K ion batteries. J. Power. Sources 417, 99–107 (2019). https://doi.org/10.1016/j.jpowsour.2019.02.030
- R. Fu, K. Zhang, R.P. Zaccaria, H. Huang, Y. Xia et al., Two-dimensional silicon suboxides nanostructures with Si nanodomains confined in amorphous SiO2 derived from siloxene as high performance anode for Li-ion batteries. Nano Energy 39, 546–553 (2017). https://doi.org/10.1016/j.nanoen.2017.07.040
- R. Fu, Y. Li, Y. Wu, C. Shen, C. Fan et al., Controlling siloxene oxidization to tailor SiOx anodes for high performance lithium ion batteries. J. Power. Sources 432, 65–72 (2019). https://doi.org/10.1016/j.jpowsour.2019.05.071
- L.C. Loaiza, N. Dupré, C. Davoisne, L. Madec, L. Monconduit et al., Complex lithiation mechanism of siloxene and germanane: two promising battery electrode materials. J. Electrochem. Soc. 168, 010510 (2021). https://doi.org/10.1149/1945-7111/abd44a
- D.J. Arnot, W. Li, D.C. Bock, C.A. Stackhouse, X. Tong et al., Low-oxidized siloxene nanosheets with high capacity, capacity retention, and rate capability in lithium-based batteries. Adv. Mater. Interfaces 9, 2102238 (2022). https://doi.org/10.1002/admi.202102238
- Y. Zhang, L. Tan, Y. Wu, Y. An, Y. Liu et al., Self-healing and ultrastable anode based on room temperature liquid metal reinforced two-dimensional siloxene for high-performance lithium-ion batteries. Appl. Mater. Today 26, 101300 (2022). https://doi.org/10.1016/j.apmt.2021.101300
- Y. Zhang, Y. Wu, Y. An, C. Wei, L. Tan et al., Ultrastable and high-rate 2D siloxene anode enabled by covalent organic framework engineering for advanced lithium-ion batteries. Small Methods 6, e2200306 (2022). https://doi.org/10.1002/smtd.202200306
- H. Shen, Y. An, Q. Man, J. Wang, C. Liu et al., Controlled prelithiation of siloxene nanosheet anodes enables high performance 5 V-class lithium-ion batteries. Chem. Eng. J. 454, 140136 (2023). https://doi.org/10.1016/j.cej.2022.140136
- Y. Wang, L. Zhou, J. Huang, X. Wang, X. Xu et al., Highly stable lithium–sulfur batteries promised by siloxene: an effective cathode material to regulate the adsorption and conversion of polysulfides. Adv. Funct. Mater. 30, 1910331 (2020). https://doi.org/10.1002/adfm.201910331
- K. Krishnamoorthy, P. Pazhamalai, S.-J. Kim, Two-dimensional siloxene nanosheets: novel high-performance supercapacitor electrode materials. Energy Environ. Sci. 11, 1595–1602 (2018). https://doi.org/10.1039/c8ee00160j
- J. Li, L. Gao, F. Pan, C. Gong, L. Sun et al., Engineering strategies for suppressing the shuttle effect in lithium–sulfur batteries. Nano-Micro Lett. 16, 12 (2023). https://doi.org/10.1007/s40820-023-01223-1
- Z. Lin, K. Fan, T. Liu, Z. Xu, G. Chen et al., Mitigating lattice distortion of high-voltage LiCoO2 via core-shell structure induced by cationic heterogeneous co-doping for lithium-ion batteries. Nano-Micro Lett. 16, 48 (2023). https://doi.org/10.1007/s40820-023-01269-1
- S.-Y. Seo, G. Moon, O.F.N. Okello, M.Y. Park, C. Han et al., Reconfigurable photo-induced doping of two-dimensional van der Waals semiconductors using different photon energies. Nat. Electron. 4, 38–44 (2021). https://doi.org/10.1038/s41928-020-00512-6
- M. Ge, J. Rong, X. Fang, C. Zhou, Porous doped silicon nanowires for lithium ion battery anode with long cycle life. Nano Lett. 12, 2318–2323 (2012). https://doi.org/10.1021/nl300206e
- Y. Domi, H. Usui, M. Shimizu, Y. Kakimoto, H. Sakaguchi, Effect of phosphorus-doping on electrochemical performance of silicon negative electrodes in lithium-ion batteries. ACS Appl. Mater. Interfaces 8, 7125–7132 (2016). https://doi.org/10.1021/acsami.6b00386
- S. Huang, L.-Z. Cheong, D. Wang, C. Shen, Nanostructured phosphorus doped silicon/graphite composite as anode for high-performance lithium-ion batteries. ACS Appl. Mater. Interfaces 9, 23672–23678 (2017). https://doi.org/10.1021/acsami.7b04361
- G. Lv, B. Zhu, X. Li, C. Chen, J. Li et al., Simultaneous perforation and doping of Si nanops for lithium-ion battery anode. ACS Appl. Mater. Interfaces 9, 44452–44457 (2017). https://doi.org/10.1021/acsami.7b12898
- J. Im, E.K. Jang, S. Kim, S. Yoon, D.-H. Kim et al., Two-dimensional, P-doped Si/SiOx alternating veneer-like microps for high-capacity lithium-ion battery composite. Chem. Eng. J. 402, 126292 (2020). https://doi.org/10.1016/j.cej.2020.126292
- M. Salah, C. Hall, P. Murphy, C. Francis, R. Kerr et al., Doped and reactive silicon thin film anodes for lithium ion batteries: a review. J. Power. Sources 506, 230194 (2021). https://doi.org/10.1016/j.jpowsour.2021.230194
- I.P. Gordon, W. Xu, S. Randak, T.R. Jow, N.P. Stadie, Stabilizing effects of phosphorus-doped silicon nanop anodes in lithium-ion batteries. Chem. Mater. 35, 549–557 (2023). https://doi.org/10.1021/acs.chemmater.2c02983
- Y.C. Cheng, Z.Y. Zhu, U. Schwingenschlögl, Doped silicene: evidence of a wide stability range. EPL Europhys. Lett. 95, 17005 (2011). https://doi.org/10.1209/0295-5075/95/17005
- Z. Ni, H. Zhong, X. Jiang, R. Quhe, G. Luo et al., Tunable band gap and doping type in silicene by surface adsorption: towards tunneling transistors. Nanoscale 6, 7609–7618 (2014). https://doi.org/10.1039/C4NR00028E
- L.-D. Zhang, F. Yang, Y. Yao, Possible electric-field-induced superconducting states in doped silicene. Sci. Rep. 5, 8203 (2015). https://doi.org/10.1038/srep08203
- R. Pablo-Pedro, M.A. Magaña-Fuentes, M. Videa, J. Kong, M. Li et al., Understanding disorder in 2D materials: the case of carbon doping of silicene. Nano Lett. 20, 6336–6343 (2020). https://doi.org/10.1021/acs.nanolett.0c01775
- X. Chen, P. Wang, J. Jin, B. Song, P. He, Effect of transition metal and nitrogen co-doping on quantum capacitance of silicene-based electrode materials. J. Phys. Chem. C 126, 5682–5690 (2022). https://doi.org/10.1021/acs.jpcc.1c09834
- A.Y. Galashev, A.S. Vorob’ev, Ab initio study of the electronic properties of a silicene anode subjected to transmutation doping. Int. J. Mol. Sci. 24, 2864 (2023). https://doi.org/10.3390/ijms24032864
- K.A. González, C.D. Núñez, P.A. Orellana, L. Rosales, Tuning the thermoelectric properties of doped silicene nanoribbon heterostructures. Front. Phys. 10, 1091325 (2023). https://doi.org/10.3389/fphy.2022.1091325
- V.N. Hoang, Study of antimony-doped silicene nanoribbons in the electric field. Macromol. Symp. 410, 2100279 (2023). https://doi.org/10.1002/masy.202100279
- R. Zhang, Y. Hou, X. Guo, X. Chen, W. Li et al., Elucidating the effects of B/Al doping on the structure stability and electrochemical properties of silicene using DFT. Phys. Chem. Chem. Phys. 25, 26353–26359 (2023). https://doi.org/10.1039/d3cp03116k
- B. Bai, L. Qiu, Y. Yuan, L. Song, J. Xiong et al., Nitrogen doped siloxene and composite with graphene for high performance fiber-based supercapacitors. J. Energy Storage 63, 106984 (2023). https://doi.org/10.1016/j.est.2023.106984
- K. Guo, D. Fan, J. Bao, Y. Li, D. Xu, Atomic-level phosphorus-doped ultrathin Pt nanodendrites as efficient electrocatalysts. Adv. Funct. Mater. 32, 2208057 (2022). https://doi.org/10.1002/adfm.202208057
- P. Feng, J. Wu, Z. Fan, B. Ma, Y. Li et al., Boosting photocatalytic conversion of formic acid to CO over P-doped CdS. Chem. Commun. 59, 14253–14256 (2023). https://doi.org/10.1039/d3cc04586b
- D. Liu, X. Li, L. Wei, T. Zhang, A. Wang et al., Disproportionation of hypophosphite and phosphite. Dalton Trans. 46, 6366–6378 (2017). https://doi.org/10.1039/c7dt00243b
- H. Nakano, M. Ishii, H. Nakamura, Preparation and structure of novel siloxene nanosheets. Chem. Commun. (2005). https://doi.org/10.1039/b500758e
- S.I. Kim, W.-J. Kim, J.G. Kang, D.-W. Kim, Intermolecular interaction engineering to enhance lithium-ion storage in two-dimensional oxidized silicon nanosheet anodes. Chem. Eng. J. 467, 143364 (2023). https://doi.org/10.1016/j.cej.2023.143364
- X. Hui, S. Sharma, M. Sharifuzzaman, M.A. Zahed, Y.D. Shin et al., Siloxene-functionalized laser-induced graphene via C–O–Si bonding for high-performance heavy metal sensing patch applications. Small 18, e2201247 (2022). https://doi.org/10.1002/smll.202201247
- H. Li, Y. Wang, X. Dai, Y. Gao, G. Lu et al., Tailoring the lateral size of two-dimensional silicon nanomaterials to produce highly stable and efficient deep-blue emissive silicene-like quantum dots. J. Mater. Chem. C 9, 10065–10072 (2021). https://doi.org/10.1039/D1TC02043A
- H.D. Fuchs, M. Stutzmann, M.S. Brandt, M. Rosenbauer, J. Weber et al., Porous silicon and siloxene: vibrational and structural properties. Phys. Rev. B Condens. Matter 48, 8172–8189 (1993). https://doi.org/10.1103/physrevb.48.8172
- S. Bae, M. Kim, G. Kang, H.-S. Lee, I.S. Kim et al., Efficient full-color daytime radiative cooling with diffuse-reflection-dominant cholesteric liquid crystals. Chem. Eng. J. 483, 149245 (2024). https://doi.org/10.1016/j.cej.2024.149245
- K. Krishnamoorthy, P. Pazhamalai, V.K. Mariappan, S.S. Nardekar, S. Sahoo et al., Probing the energy conversion process in piezoelectric-driven electrochemical self-charging supercapacitor power cell using piezoelectrochemical spectroscopy. Nat. Commun. 11, 2351 (2020). https://doi.org/10.1038/s41467-020-15808-6
- H. Ubara, T. Imura, A. Hiraki, I. Hirabayashi, K. Morigaki, Structural change from crystalline to amorphous states in siloxene by thermal annealing. J. Non Cryst. Solids 59, 641–644 (1983). https://doi.org/10.1016/0022-3093(83)90665-8
- P. Pazhamalai, K. Krishnamoorthy, S. Sahoo, V.K. Mariappan, S.J. Kim, Understanding the thermal treatment effect of two-dimensional siloxene sheets and the origin of superior electrochemical energy storage performances. ACS Appl. Mater. Interfaces 11, 624–633 (2019). https://doi.org/10.1021/acsami.8b15323
- J. Yang, E.G. Wang, Reaction of water on silica surfaces. Curr. Opin. Solid State Mater. Sci. 10, 33–39 (2006). https://doi.org/10.1016/j.cossms.2006.02.001
- M. Kim, B.-K. Ju, J.G. Kang, Hierarchical multiscale engineered Fe3O4/Ni electrodes with ultrafast supercapacitive energy storage for alternate current line-filtering. Small Sci. 3, 2370003 (2023). https://doi.org/10.1002/smsc.202370003
- Y. Xu, T. Liu, Y. Huang, J. Zhu, R. Zhu, Role of phosphate concentration in control for phosphate removal and recovery by layered double hydroxides. Environ. Sci. Pollut. Res. Int. 27, 16612–16623 (2020). https://doi.org/10.1007/s11356-020-08102-x
- W.B. Ying, Y. Mizokawa, Y. Kamiura, K. Kawamoto, W.Y. Yang, The chemical composition changes of silicon and phosphorus in the process of native oxide formation of heavily phosphorus doped silicon. Appl. Surf. Sci. 181, 1–14 (2001). https://doi.org/10.1016/S0169-4332(01)00202-1
- M. Lee, S. Kim, D.-H. Ko, Chemical state analysis of heavily phosphorus-doped epitaxial silicon films grown on Si (100) by X-ray photoelectron spectroscopy. Appl. Surf. Sci. 443, 131–137 (2018). https://doi.org/10.1016/j.apsusc.2018.02.203
- D.B. Mawhinney, J.A. Glass, J.T. Yates, FTIR study of the oxidation of porous silicon. J. Phys. Chem. B 101, 1202–1206 (1997). https://doi.org/10.1021/jp963322r
- Z. Liu, J. Ai, M. Sun, F. Han, Z. Li et al., Phosphorous-doped graphite layers with outstanding electrocatalytic activities for the oxygen and hydrogen evolution reactions in water electrolysis. Adv. Funct. Mater. 30, 1910741 (2020). https://doi.org/10.1002/adfm.201910741
- J. Albero, A. Vidal, A. Migani, P. Concepción, L. Blancafort et al., Phosphorus-doped graphene as a metal-free material for thermochemical water reforming at unusually mild conditions. ACS Sustainable Chem. Eng. 7, 838–846 (2019). https://doi.org/10.1021/acssuschemeng.8b04462
- J. Maier, Defect chemistry: composition, transport, and reactions in the solid state; part II: kinetics. Angew. Chem. Int. Ed. 32, 313–335 (1993). https://doi.org/10.1002/anie.199303133
- S. Mondal, T.K. Mondal, Y.K. Su, S.K. Saha, Photoluminescence and photo-induced conductivity in 2D siloxene nanosheet for optoelectronic applications. J. Colloid Interface Sci. 562, 453–460 (2020). https://doi.org/10.1016/j.jcis.2019.11.095
- A. Luchechko, V. Vasyltsiv, L. Kostyk, O. Tsvetkova, A.I. Popov, Shallow and deep trap levels in X-ray irradiated β-Ga2O3: Mg. Nucl. Instrum. Meth. Phys. Res. Sect. B Beam Interact Mater. At. 441, 12–17 (2019). https://doi.org/10.1016/j.nimb.2018.12.045
- K. Kandpal, J. Singh, N. Gupta, C. Shekhar, Effect of thickness on the properties of ZnO thin films prepared by reactive RF sputtering. J. Mater. Sci. Mater. Electron. 29, 14501–14507 (2018). https://doi.org/10.1007/s10854-018-9584-0
- C.E. Housecroft, A.G. Sharpe, Inorganic chemistry, 5th edn. (Pearson Education, London, 2018)
- W.-J. Kim, J.G. Kang, D.-W. Kim, Blood clot-inspired viscoelastic fibrin gel: new aqueous binder for silicon anodes in lithium ion batteries. Energy Storage Mater. 45, 730–740 (2022). https://doi.org/10.1016/j.ensm.2021.12.024
- Q. Pan, P. Zuo, S. Lou, T. Mu, C. Du et al., Micro-sized spherical silicon@carbon@graphene prepared by spray drying as anode material for lithium-ion batteries. J. Alloys Compd. 723, 434–440 (2017). https://doi.org/10.1016/j.jallcom.2017.06.217
- W.-J. Kim, J.G. Kang, D.-W. Kim, Fibrin biopolymer hydrogel-templated 3D interconnected Si@C framework for lithium ion battery anodes. Appl. Surf. Sci. 551, 149439 (2021). https://doi.org/10.1016/j.apsusc.2021.149439
- S.H. Choi, W.-J. Kim, B.-H. Lee, S.-C. Kim, J.G. Kang et al., Rational design of one-pot solvent-assisted synthesis for multi-functional Sn-substituted superionic Li argyrodite solid electrolytes. J. Mater. Chem. A 11, 14690–14704 (2023). https://doi.org/10.1039/D3TA01955A
- J.B. Park, C. Choi, S.W. Jung, B.C. Min, J.H. Park et al., Designing chemically replaced interfacial layer via unveiling the influence of Zn crystal facets for practical Zn-metal anodes. Adv. Mater. 36, e2308684 (2024). https://doi.org/10.1002/adma.202308684
- R. Ruffo, S.S. Hong, C.K. Chan, R.A. Huggins, Y. Cui, Impedance analysis of silicon nanowire lithium ion battery anodes. J. Phys. Chem. C 113, 11390–11398 (2009). https://doi.org/10.1021/jp901594g
- Y. Gao, L. Fan, R. Zhou, X. Du, Z. Jiao et al., High-performance silicon-rich microp anodes for lithium-ion batteries enabled by internal stress mitigation. Nano-Micro Lett. 15, 222 (2023). https://doi.org/10.1007/s40820-023-01190-7
- J. Maier, Defect chemistry: composition, transport, and reactions in the solid state; part II: kinetics. Angew. Chem. Int. Ed. 32, 528–542 (1993). https://doi.org/10.1002/anie.199305281
- C. Liu, H. Fu, Y. Pei, J. Wu, V. Pisharodi et al., Understanding the electrochemical potential and diffusivity of MnO/C nanocomposites at various charge/discharge states. J. Mater. Chem. A 7, 7831–7842 (2019). https://doi.org/10.1039/C9TA00056A
- K. Jang, H. Yoon, J.S. Hyoung, D.S.A. Pratama, C.W. Lee et al., Enhancement of hydrogen evolution activity by tailoring the electronic structure in ruthenium-heteroatom-doped cobalt iron phosphide nanoframes. Appl. Catal. B Environ. 341, 123327 (2024). https://doi.org/10.1016/j.apcatb.2023.123327
- I. Kovalenko, B. Zdyrko, A. Magasinski, B. Hertzberg, Z. Milicev et al., A major constituent of brown algae for use in high-capacity Li-ion batteries. Science 334, 75–79 (2011). https://doi.org/10.1126/science.1209150
- G. Yang, S. Zhang, S. Weng, X. Li, X. Wang et al., Anionic effect on enhancing the stability of a solid electrolyte interphase film for lithium deposition on graphite. Nano Lett. 21, 5316–5323 (2021). https://doi.org/10.1021/acs.nanolett.1c01436
- B. Koo, H. Kim, Y. Cho, K.T. Lee, N.S. Choi et al., A highly cross-linked polymeric binder for high-performance silicon negative electrodes in lithium ion batteries. Angew. Chem. Int. Ed. 51, 8762–8767 (2012). https://doi.org/10.1002/anie.201201568
- H. Shin, J. Park, S. Han, A.M. Sastry, W. Lu, Component-/ structure-dependent elasticity of solid electrolyte interphase layer in Li-ion batteries: Experimental and computational studies. J. Power. Sources 277, 169–179 (2015). https://doi.org/10.1016/j.jpowsour.2014.11.120
- C.C. Nguyen, T. Yoon, D.M. Seo, P. Guduru, B.L. Lucht, Systematic investigation of binders for silicon anodes: interactions of binder with silicon ps and electrolytes and effects of binders on solid electrolyte interphase formation. ACS Appl. Mater. Interfaces 8, 12211–12220 (2016). https://doi.org/10.1021/acsami.6b03357
- O. Park, J.-I. Lee, M.-J. Chun, J.-T. Yeon, S. Yoo et al., High-performance Si anodes with a highly conductive and thermally stable titanium silicide coating layer. RSC Adv. 3, 2538–2542 (2013). https://doi.org/10.1039/C2RA23365G
- H.Q. Pham, G.J. Chung, J. Han, E.H. Hwang, Y.G. Kwon et al., Interface stabilization via lithium bis(fluorosulfonyl)imide additive as a key for promoted performance of graphite‖LiCoO2 pouch cell under-20 °C. J. Chem. Phys. 152, 094709 (2020). https://doi.org/10.1063/1.5144280
- M. Xu, L. Zhou, L. Xing, W. Li, B.L. Lucht, Experimental and theoretical investigations on 4, 5-dimethyl-[1, 3]dioxol-2-one as solid electrolyte interface forming additive for lithium-ion batteries. Electrochim. Acta 55, 6743–6748 (2010). https://doi.org/10.1016/j.electacta.2010.05.096
- S. Malmgren, K. Ciosek, R. Lindblad, S. Plogmaker, J. Kühn et al., Consequences of air exposure on the lithiated graphite SEI. Electrochim. Acta 105, 83–91 (2013). https://doi.org/10.1016/j.electacta.2013.04.118
- J.H. Scofield, Hartree-Slater subshell photoionization cross-sections at 1254 and 1487 eV. J. Electron Spectrosc. Relat. Phenom. 8, 129–137 (1976). https://doi.org/10.1016/0368-2048(76)80015-1
- G. Greczynski, L. Hultman, A step-by-step guide to perform X-ray photoelectron spectroscopy. J. Appl. Phys. 132, 011101 (2022). https://doi.org/10.1063/5.0086359
References
Y. Gao, Z. Pan, J. Sun, Z. Liu, J. Wang, High-energy batteries: beyond lithium-ion and their long road to commercialisation. Nano-Micro Lett. 14, 94 (2022). https://doi.org/10.1007/s40820-022-00844-2
X. Su, Q. Wu, J. Li, X. Xiao, A. Lott et al., Silicon-based nanomaterials for lithium-ion batteries: a review. Adv. Energy Mater. 4, 1300882 (2014). https://doi.org/10.1002/aenm.201300882
Y. An, Y. Tian, C. Wei, Y. Zhang, S. Xiong et al., Recent advances and perspectives of 2D silicon: synthesis and application for energy storage and conversion. Energy Storage Mater. 32, 115–150 (2020). https://doi.org/10.1016/j.ensm.2020.07.006
B.J. Ryan, M.P. Hanrahan, Y. Wang, U. Ramesh, C.K.A. Nyamekye et al., Silicene, siloxene, or silicane? revealing the structure and optical properties of silicon nanosheets derived from calcium disilicide. Chem. Mater. 32, 795–804 (2020). https://doi.org/10.1021/acs.chemmater.9b04180
Y. Kumai, S. Shirai, E. Sudo, J. Seki, H. Okamoto et al., Characteristics and structural change of layered polysilane (Si6H6) anode for lithium ion batteries. J. Power. Sources 196, 1503–1507 (2011). https://doi.org/10.1016/j.jpowsour.2010.08.040
L.C. Loaiza, L. Monconduit, V. Seznec, Siloxene: a potential layered silicon intercalation anode for Na, Li and K ion batteries. J. Power. Sources 417, 99–107 (2019). https://doi.org/10.1016/j.jpowsour.2019.02.030
R. Fu, K. Zhang, R.P. Zaccaria, H. Huang, Y. Xia et al., Two-dimensional silicon suboxides nanostructures with Si nanodomains confined in amorphous SiO2 derived from siloxene as high performance anode for Li-ion batteries. Nano Energy 39, 546–553 (2017). https://doi.org/10.1016/j.nanoen.2017.07.040
R. Fu, Y. Li, Y. Wu, C. Shen, C. Fan et al., Controlling siloxene oxidization to tailor SiOx anodes for high performance lithium ion batteries. J. Power. Sources 432, 65–72 (2019). https://doi.org/10.1016/j.jpowsour.2019.05.071
L.C. Loaiza, N. Dupré, C. Davoisne, L. Madec, L. Monconduit et al., Complex lithiation mechanism of siloxene and germanane: two promising battery electrode materials. J. Electrochem. Soc. 168, 010510 (2021). https://doi.org/10.1149/1945-7111/abd44a
D.J. Arnot, W. Li, D.C. Bock, C.A. Stackhouse, X. Tong et al., Low-oxidized siloxene nanosheets with high capacity, capacity retention, and rate capability in lithium-based batteries. Adv. Mater. Interfaces 9, 2102238 (2022). https://doi.org/10.1002/admi.202102238
Y. Zhang, L. Tan, Y. Wu, Y. An, Y. Liu et al., Self-healing and ultrastable anode based on room temperature liquid metal reinforced two-dimensional siloxene for high-performance lithium-ion batteries. Appl. Mater. Today 26, 101300 (2022). https://doi.org/10.1016/j.apmt.2021.101300
Y. Zhang, Y. Wu, Y. An, C. Wei, L. Tan et al., Ultrastable and high-rate 2D siloxene anode enabled by covalent organic framework engineering for advanced lithium-ion batteries. Small Methods 6, e2200306 (2022). https://doi.org/10.1002/smtd.202200306
H. Shen, Y. An, Q. Man, J. Wang, C. Liu et al., Controlled prelithiation of siloxene nanosheet anodes enables high performance 5 V-class lithium-ion batteries. Chem. Eng. J. 454, 140136 (2023). https://doi.org/10.1016/j.cej.2022.140136
Y. Wang, L. Zhou, J. Huang, X. Wang, X. Xu et al., Highly stable lithium–sulfur batteries promised by siloxene: an effective cathode material to regulate the adsorption and conversion of polysulfides. Adv. Funct. Mater. 30, 1910331 (2020). https://doi.org/10.1002/adfm.201910331
K. Krishnamoorthy, P. Pazhamalai, S.-J. Kim, Two-dimensional siloxene nanosheets: novel high-performance supercapacitor electrode materials. Energy Environ. Sci. 11, 1595–1602 (2018). https://doi.org/10.1039/c8ee00160j
J. Li, L. Gao, F. Pan, C. Gong, L. Sun et al., Engineering strategies for suppressing the shuttle effect in lithium–sulfur batteries. Nano-Micro Lett. 16, 12 (2023). https://doi.org/10.1007/s40820-023-01223-1
Z. Lin, K. Fan, T. Liu, Z. Xu, G. Chen et al., Mitigating lattice distortion of high-voltage LiCoO2 via core-shell structure induced by cationic heterogeneous co-doping for lithium-ion batteries. Nano-Micro Lett. 16, 48 (2023). https://doi.org/10.1007/s40820-023-01269-1
S.-Y. Seo, G. Moon, O.F.N. Okello, M.Y. Park, C. Han et al., Reconfigurable photo-induced doping of two-dimensional van der Waals semiconductors using different photon energies. Nat. Electron. 4, 38–44 (2021). https://doi.org/10.1038/s41928-020-00512-6
M. Ge, J. Rong, X. Fang, C. Zhou, Porous doped silicon nanowires for lithium ion battery anode with long cycle life. Nano Lett. 12, 2318–2323 (2012). https://doi.org/10.1021/nl300206e
Y. Domi, H. Usui, M. Shimizu, Y. Kakimoto, H. Sakaguchi, Effect of phosphorus-doping on electrochemical performance of silicon negative electrodes in lithium-ion batteries. ACS Appl. Mater. Interfaces 8, 7125–7132 (2016). https://doi.org/10.1021/acsami.6b00386
S. Huang, L.-Z. Cheong, D. Wang, C. Shen, Nanostructured phosphorus doped silicon/graphite composite as anode for high-performance lithium-ion batteries. ACS Appl. Mater. Interfaces 9, 23672–23678 (2017). https://doi.org/10.1021/acsami.7b04361
G. Lv, B. Zhu, X. Li, C. Chen, J. Li et al., Simultaneous perforation and doping of Si nanops for lithium-ion battery anode. ACS Appl. Mater. Interfaces 9, 44452–44457 (2017). https://doi.org/10.1021/acsami.7b12898
J. Im, E.K. Jang, S. Kim, S. Yoon, D.-H. Kim et al., Two-dimensional, P-doped Si/SiOx alternating veneer-like microps for high-capacity lithium-ion battery composite. Chem. Eng. J. 402, 126292 (2020). https://doi.org/10.1016/j.cej.2020.126292
M. Salah, C. Hall, P. Murphy, C. Francis, R. Kerr et al., Doped and reactive silicon thin film anodes for lithium ion batteries: a review. J. Power. Sources 506, 230194 (2021). https://doi.org/10.1016/j.jpowsour.2021.230194
I.P. Gordon, W. Xu, S. Randak, T.R. Jow, N.P. Stadie, Stabilizing effects of phosphorus-doped silicon nanop anodes in lithium-ion batteries. Chem. Mater. 35, 549–557 (2023). https://doi.org/10.1021/acs.chemmater.2c02983
Y.C. Cheng, Z.Y. Zhu, U. Schwingenschlögl, Doped silicene: evidence of a wide stability range. EPL Europhys. Lett. 95, 17005 (2011). https://doi.org/10.1209/0295-5075/95/17005
Z. Ni, H. Zhong, X. Jiang, R. Quhe, G. Luo et al., Tunable band gap and doping type in silicene by surface adsorption: towards tunneling transistors. Nanoscale 6, 7609–7618 (2014). https://doi.org/10.1039/C4NR00028E
L.-D. Zhang, F. Yang, Y. Yao, Possible electric-field-induced superconducting states in doped silicene. Sci. Rep. 5, 8203 (2015). https://doi.org/10.1038/srep08203
R. Pablo-Pedro, M.A. Magaña-Fuentes, M. Videa, J. Kong, M. Li et al., Understanding disorder in 2D materials: the case of carbon doping of silicene. Nano Lett. 20, 6336–6343 (2020). https://doi.org/10.1021/acs.nanolett.0c01775
X. Chen, P. Wang, J. Jin, B. Song, P. He, Effect of transition metal and nitrogen co-doping on quantum capacitance of silicene-based electrode materials. J. Phys. Chem. C 126, 5682–5690 (2022). https://doi.org/10.1021/acs.jpcc.1c09834
A.Y. Galashev, A.S. Vorob’ev, Ab initio study of the electronic properties of a silicene anode subjected to transmutation doping. Int. J. Mol. Sci. 24, 2864 (2023). https://doi.org/10.3390/ijms24032864
K.A. González, C.D. Núñez, P.A. Orellana, L. Rosales, Tuning the thermoelectric properties of doped silicene nanoribbon heterostructures. Front. Phys. 10, 1091325 (2023). https://doi.org/10.3389/fphy.2022.1091325
V.N. Hoang, Study of antimony-doped silicene nanoribbons in the electric field. Macromol. Symp. 410, 2100279 (2023). https://doi.org/10.1002/masy.202100279
R. Zhang, Y. Hou, X. Guo, X. Chen, W. Li et al., Elucidating the effects of B/Al doping on the structure stability and electrochemical properties of silicene using DFT. Phys. Chem. Chem. Phys. 25, 26353–26359 (2023). https://doi.org/10.1039/d3cp03116k
B. Bai, L. Qiu, Y. Yuan, L. Song, J. Xiong et al., Nitrogen doped siloxene and composite with graphene for high performance fiber-based supercapacitors. J. Energy Storage 63, 106984 (2023). https://doi.org/10.1016/j.est.2023.106984
K. Guo, D. Fan, J. Bao, Y. Li, D. Xu, Atomic-level phosphorus-doped ultrathin Pt nanodendrites as efficient electrocatalysts. Adv. Funct. Mater. 32, 2208057 (2022). https://doi.org/10.1002/adfm.202208057
P. Feng, J. Wu, Z. Fan, B. Ma, Y. Li et al., Boosting photocatalytic conversion of formic acid to CO over P-doped CdS. Chem. Commun. 59, 14253–14256 (2023). https://doi.org/10.1039/d3cc04586b
D. Liu, X. Li, L. Wei, T. Zhang, A. Wang et al., Disproportionation of hypophosphite and phosphite. Dalton Trans. 46, 6366–6378 (2017). https://doi.org/10.1039/c7dt00243b
H. Nakano, M. Ishii, H. Nakamura, Preparation and structure of novel siloxene nanosheets. Chem. Commun. (2005). https://doi.org/10.1039/b500758e
S.I. Kim, W.-J. Kim, J.G. Kang, D.-W. Kim, Intermolecular interaction engineering to enhance lithium-ion storage in two-dimensional oxidized silicon nanosheet anodes. Chem. Eng. J. 467, 143364 (2023). https://doi.org/10.1016/j.cej.2023.143364
X. Hui, S. Sharma, M. Sharifuzzaman, M.A. Zahed, Y.D. Shin et al., Siloxene-functionalized laser-induced graphene via C–O–Si bonding for high-performance heavy metal sensing patch applications. Small 18, e2201247 (2022). https://doi.org/10.1002/smll.202201247
H. Li, Y. Wang, X. Dai, Y. Gao, G. Lu et al., Tailoring the lateral size of two-dimensional silicon nanomaterials to produce highly stable and efficient deep-blue emissive silicene-like quantum dots. J. Mater. Chem. C 9, 10065–10072 (2021). https://doi.org/10.1039/D1TC02043A
H.D. Fuchs, M. Stutzmann, M.S. Brandt, M. Rosenbauer, J. Weber et al., Porous silicon and siloxene: vibrational and structural properties. Phys. Rev. B Condens. Matter 48, 8172–8189 (1993). https://doi.org/10.1103/physrevb.48.8172
S. Bae, M. Kim, G. Kang, H.-S. Lee, I.S. Kim et al., Efficient full-color daytime radiative cooling with diffuse-reflection-dominant cholesteric liquid crystals. Chem. Eng. J. 483, 149245 (2024). https://doi.org/10.1016/j.cej.2024.149245
K. Krishnamoorthy, P. Pazhamalai, V.K. Mariappan, S.S. Nardekar, S. Sahoo et al., Probing the energy conversion process in piezoelectric-driven electrochemical self-charging supercapacitor power cell using piezoelectrochemical spectroscopy. Nat. Commun. 11, 2351 (2020). https://doi.org/10.1038/s41467-020-15808-6
H. Ubara, T. Imura, A. Hiraki, I. Hirabayashi, K. Morigaki, Structural change from crystalline to amorphous states in siloxene by thermal annealing. J. Non Cryst. Solids 59, 641–644 (1983). https://doi.org/10.1016/0022-3093(83)90665-8
P. Pazhamalai, K. Krishnamoorthy, S. Sahoo, V.K. Mariappan, S.J. Kim, Understanding the thermal treatment effect of two-dimensional siloxene sheets and the origin of superior electrochemical energy storage performances. ACS Appl. Mater. Interfaces 11, 624–633 (2019). https://doi.org/10.1021/acsami.8b15323
J. Yang, E.G. Wang, Reaction of water on silica surfaces. Curr. Opin. Solid State Mater. Sci. 10, 33–39 (2006). https://doi.org/10.1016/j.cossms.2006.02.001
M. Kim, B.-K. Ju, J.G. Kang, Hierarchical multiscale engineered Fe3O4/Ni electrodes with ultrafast supercapacitive energy storage for alternate current line-filtering. Small Sci. 3, 2370003 (2023). https://doi.org/10.1002/smsc.202370003
Y. Xu, T. Liu, Y. Huang, J. Zhu, R. Zhu, Role of phosphate concentration in control for phosphate removal and recovery by layered double hydroxides. Environ. Sci. Pollut. Res. Int. 27, 16612–16623 (2020). https://doi.org/10.1007/s11356-020-08102-x
W.B. Ying, Y. Mizokawa, Y. Kamiura, K. Kawamoto, W.Y. Yang, The chemical composition changes of silicon and phosphorus in the process of native oxide formation of heavily phosphorus doped silicon. Appl. Surf. Sci. 181, 1–14 (2001). https://doi.org/10.1016/S0169-4332(01)00202-1
M. Lee, S. Kim, D.-H. Ko, Chemical state analysis of heavily phosphorus-doped epitaxial silicon films grown on Si (100) by X-ray photoelectron spectroscopy. Appl. Surf. Sci. 443, 131–137 (2018). https://doi.org/10.1016/j.apsusc.2018.02.203
D.B. Mawhinney, J.A. Glass, J.T. Yates, FTIR study of the oxidation of porous silicon. J. Phys. Chem. B 101, 1202–1206 (1997). https://doi.org/10.1021/jp963322r
Z. Liu, J. Ai, M. Sun, F. Han, Z. Li et al., Phosphorous-doped graphite layers with outstanding electrocatalytic activities for the oxygen and hydrogen evolution reactions in water electrolysis. Adv. Funct. Mater. 30, 1910741 (2020). https://doi.org/10.1002/adfm.201910741
J. Albero, A. Vidal, A. Migani, P. Concepción, L. Blancafort et al., Phosphorus-doped graphene as a metal-free material for thermochemical water reforming at unusually mild conditions. ACS Sustainable Chem. Eng. 7, 838–846 (2019). https://doi.org/10.1021/acssuschemeng.8b04462
J. Maier, Defect chemistry: composition, transport, and reactions in the solid state; part II: kinetics. Angew. Chem. Int. Ed. 32, 313–335 (1993). https://doi.org/10.1002/anie.199303133
S. Mondal, T.K. Mondal, Y.K. Su, S.K. Saha, Photoluminescence and photo-induced conductivity in 2D siloxene nanosheet for optoelectronic applications. J. Colloid Interface Sci. 562, 453–460 (2020). https://doi.org/10.1016/j.jcis.2019.11.095
A. Luchechko, V. Vasyltsiv, L. Kostyk, O. Tsvetkova, A.I. Popov, Shallow and deep trap levels in X-ray irradiated β-Ga2O3: Mg. Nucl. Instrum. Meth. Phys. Res. Sect. B Beam Interact Mater. At. 441, 12–17 (2019). https://doi.org/10.1016/j.nimb.2018.12.045
K. Kandpal, J. Singh, N. Gupta, C. Shekhar, Effect of thickness on the properties of ZnO thin films prepared by reactive RF sputtering. J. Mater. Sci. Mater. Electron. 29, 14501–14507 (2018). https://doi.org/10.1007/s10854-018-9584-0
C.E. Housecroft, A.G. Sharpe, Inorganic chemistry, 5th edn. (Pearson Education, London, 2018)
W.-J. Kim, J.G. Kang, D.-W. Kim, Blood clot-inspired viscoelastic fibrin gel: new aqueous binder for silicon anodes in lithium ion batteries. Energy Storage Mater. 45, 730–740 (2022). https://doi.org/10.1016/j.ensm.2021.12.024
Q. Pan, P. Zuo, S. Lou, T. Mu, C. Du et al., Micro-sized spherical silicon@carbon@graphene prepared by spray drying as anode material for lithium-ion batteries. J. Alloys Compd. 723, 434–440 (2017). https://doi.org/10.1016/j.jallcom.2017.06.217
W.-J. Kim, J.G. Kang, D.-W. Kim, Fibrin biopolymer hydrogel-templated 3D interconnected Si@C framework for lithium ion battery anodes. Appl. Surf. Sci. 551, 149439 (2021). https://doi.org/10.1016/j.apsusc.2021.149439
S.H. Choi, W.-J. Kim, B.-H. Lee, S.-C. Kim, J.G. Kang et al., Rational design of one-pot solvent-assisted synthesis for multi-functional Sn-substituted superionic Li argyrodite solid electrolytes. J. Mater. Chem. A 11, 14690–14704 (2023). https://doi.org/10.1039/D3TA01955A
J.B. Park, C. Choi, S.W. Jung, B.C. Min, J.H. Park et al., Designing chemically replaced interfacial layer via unveiling the influence of Zn crystal facets for practical Zn-metal anodes. Adv. Mater. 36, e2308684 (2024). https://doi.org/10.1002/adma.202308684
R. Ruffo, S.S. Hong, C.K. Chan, R.A. Huggins, Y. Cui, Impedance analysis of silicon nanowire lithium ion battery anodes. J. Phys. Chem. C 113, 11390–11398 (2009). https://doi.org/10.1021/jp901594g
Y. Gao, L. Fan, R. Zhou, X. Du, Z. Jiao et al., High-performance silicon-rich microp anodes for lithium-ion batteries enabled by internal stress mitigation. Nano-Micro Lett. 15, 222 (2023). https://doi.org/10.1007/s40820-023-01190-7
J. Maier, Defect chemistry: composition, transport, and reactions in the solid state; part II: kinetics. Angew. Chem. Int. Ed. 32, 528–542 (1993). https://doi.org/10.1002/anie.199305281
C. Liu, H. Fu, Y. Pei, J. Wu, V. Pisharodi et al., Understanding the electrochemical potential and diffusivity of MnO/C nanocomposites at various charge/discharge states. J. Mater. Chem. A 7, 7831–7842 (2019). https://doi.org/10.1039/C9TA00056A
K. Jang, H. Yoon, J.S. Hyoung, D.S.A. Pratama, C.W. Lee et al., Enhancement of hydrogen evolution activity by tailoring the electronic structure in ruthenium-heteroatom-doped cobalt iron phosphide nanoframes. Appl. Catal. B Environ. 341, 123327 (2024). https://doi.org/10.1016/j.apcatb.2023.123327
I. Kovalenko, B. Zdyrko, A. Magasinski, B. Hertzberg, Z. Milicev et al., A major constituent of brown algae for use in high-capacity Li-ion batteries. Science 334, 75–79 (2011). https://doi.org/10.1126/science.1209150
G. Yang, S. Zhang, S. Weng, X. Li, X. Wang et al., Anionic effect on enhancing the stability of a solid electrolyte interphase film for lithium deposition on graphite. Nano Lett. 21, 5316–5323 (2021). https://doi.org/10.1021/acs.nanolett.1c01436
B. Koo, H. Kim, Y. Cho, K.T. Lee, N.S. Choi et al., A highly cross-linked polymeric binder for high-performance silicon negative electrodes in lithium ion batteries. Angew. Chem. Int. Ed. 51, 8762–8767 (2012). https://doi.org/10.1002/anie.201201568
H. Shin, J. Park, S. Han, A.M. Sastry, W. Lu, Component-/ structure-dependent elasticity of solid electrolyte interphase layer in Li-ion batteries: Experimental and computational studies. J. Power. Sources 277, 169–179 (2015). https://doi.org/10.1016/j.jpowsour.2014.11.120
C.C. Nguyen, T. Yoon, D.M. Seo, P. Guduru, B.L. Lucht, Systematic investigation of binders for silicon anodes: interactions of binder with silicon ps and electrolytes and effects of binders on solid electrolyte interphase formation. ACS Appl. Mater. Interfaces 8, 12211–12220 (2016). https://doi.org/10.1021/acsami.6b03357
O. Park, J.-I. Lee, M.-J. Chun, J.-T. Yeon, S. Yoo et al., High-performance Si anodes with a highly conductive and thermally stable titanium silicide coating layer. RSC Adv. 3, 2538–2542 (2013). https://doi.org/10.1039/C2RA23365G
H.Q. Pham, G.J. Chung, J. Han, E.H. Hwang, Y.G. Kwon et al., Interface stabilization via lithium bis(fluorosulfonyl)imide additive as a key for promoted performance of graphite‖LiCoO2 pouch cell under-20 °C. J. Chem. Phys. 152, 094709 (2020). https://doi.org/10.1063/1.5144280
M. Xu, L. Zhou, L. Xing, W. Li, B.L. Lucht, Experimental and theoretical investigations on 4, 5-dimethyl-[1, 3]dioxol-2-one as solid electrolyte interface forming additive for lithium-ion batteries. Electrochim. Acta 55, 6743–6748 (2010). https://doi.org/10.1016/j.electacta.2010.05.096
S. Malmgren, K. Ciosek, R. Lindblad, S. Plogmaker, J. Kühn et al., Consequences of air exposure on the lithiated graphite SEI. Electrochim. Acta 105, 83–91 (2013). https://doi.org/10.1016/j.electacta.2013.04.118
J.H. Scofield, Hartree-Slater subshell photoionization cross-sections at 1254 and 1487 eV. J. Electron Spectrosc. Relat. Phenom. 8, 129–137 (1976). https://doi.org/10.1016/0368-2048(76)80015-1
G. Greczynski, L. Hultman, A step-by-step guide to perform X-ray photoelectron spectroscopy. J. Appl. Phys. 132, 011101 (2022). https://doi.org/10.1063/5.0086359