Multifunctional MXene/Carbon Nanotube Janus Film for Electromagnetic Shielding and Infrared Shielding/Detection in Harsh Environments
Corresponding Author: Chong Min Koo
Nano-Micro Letters,
Vol. 16 (2024), Article Number: 216
Abstract
Multifunctional, flexible, and robust thin films capable of operating in demanding harsh temperature environments are crucial for various cutting-edge applications. This study presents a multifunctional Janus film integrating highly-crystalline Ti3C2Tx MXene and mechanically-robust carbon nanotube (CNT) film through strong hydrogen bonding. The hybrid film not only exhibits high electrical conductivity (4250 S cm−1), but also demonstrates robust mechanical strength and durability in both extremely low and high temperature environments, showing exceptional resistance to thermal shock. This hybrid Janus film of 15 μm thickness reveals remarkable multifunctionality, including efficient electromagnetic shielding effectiveness of 72 dB in X band frequency range, excellent infrared (IR) shielding capability with an average emissivity of 0.09 (a minimal value of 0.02), superior thermal camouflage performance over a wide temperature range (− 1 to 300 °C) achieving a notable reduction in the radiated temperature by 243 °C against a background temperature of 300 °C, and outstanding IR detection capability characterized by a 44% increase in resistance when exposed to 250 W IR radiation. This multifunctional MXene/CNT Janus film offers a feasible solution for electromagnetic shielding and IR shielding/detection under challenging conditions.
Highlights:
1 A multifunctional Janus film is fabricated by integrating highly-crystalline and oxidation-resistant Ti3C2Tx MXene with carbon nanotube (CNT) film through strong hydrogen bonding, which exhibits high electrical conductivity of 4250 S cm−1 and robust mechanical strength of 77 MPa.
2 The MXene/CNT Janus film of 15 μm thickness demonstrates efficient electromagnetic interference shielding of 72 dB, low infrared (IR) emissivity of 0.09 and hence superior thermal camouflage performance, and outstanding IR detection capability, while maintaining its integrity equally at room temperature as well as under extreme conditions.
3 This multifunctional MXene/CNT Janus film offers a practical solution for electromagnetic shielding and IR shielding/detection in challenging conditions.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- F. Shahzad, M. Alhabeb, C.B. Hatter, B. Anasori, S. Man Hong et al., Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science 353, 1137–1140 (2016). https://doi.org/10.1126/science.aag2421
- A. Iqbal, F. Shahzad, K. Hantanasirisakul, M.K. Kim, J. Kwon et al., Anomalous absorption of electromagnetic waves by 2D transition metal carbonitride Ti3CNT x (MXene). Science 369, 446–450 (2020). https://doi.org/10.1126/science.aba7977
- M. Han, C.E. Shuck, R. Rakhmanov, D. Parchment, B. Anasori et al., Beyond Ti3C2Tx: MXenes for electromagnetic interference shielding. ACS Nano 14, 5008–5016 (2020). https://doi.org/10.1021/acsnano.0c01312
- X. Fan, S. Li, W. Zhang, W. Xu, Recent progress in two-dimensional nanomaterials of graphene and MXenes for thermal camouflage. Ceram. Int. 49, 5559–5572 (2023). https://doi.org/10.1016/j.ceramint.2022.12.034
- K. Shafique, B.A. Khawaja, F. Sabir, S. Qazi, M. Mustaqim, Internet of Things (IoT) for next-generation smart systems: a review of current challenges, future trends and prospects for emerging 5G-IoT scenarios. IEEE Access 8, 23022–23040 (2020). https://doi.org/10.1109/ACCESS.2020.2970118
- K.Y. Fang, Y.J. Wang, Y.C. Zhao, F. Fang, Infrared stealth nanofibrous composites with thermal adaptability and mechanical flexibility. Compos. Sci. Technol. 201, 108483 (2021). https://doi.org/10.1016/j.compscitech.2020.108483
- X. Ni, S. Yu, X. Su, F. Chen, Detection spectrum optimization of stealth aircraft targets from a space-based infrared platform. Opt. Quantum Electron. 54, 151 (2022). https://doi.org/10.1007/s11082-021-03451-4
- Z.H. Zeng, N. Wu, J.J. Wei, Y.F. Yang, T.T. Wu et al., Porous and ultra-flexible crosslinked MXene/polyimide composites for multifunctional electromagnetic interference shielding. Nano-Micro Lett. 14, 59 (2022). https://doi.org/10.1007/s40820-022-00800-0
- D.D.L. Chung, Electromagnetic interference shielding effectiveness of carbon materials. Carbon 39, 279–285 (2001). https://doi.org/10.1016/S0008-6223(00)00184-6
- N.C. Das, Y. Liu, K. Yang, W. Peng, S. Maiti et al., Single-walled carbon nanotube/poly(methyl methacrylate) composites for electromagnetic interference shielding. Polym. Eng. Sci. 49, 1627–1634 (2009). https://doi.org/10.1002/pen.21384
- M.H. Al-Saleh, W.H. Saadeh, U. Sundararaj, EMI shielding effectiveness of carbon based nanostructured polymeric materials: a comparative study. Carbon 60, 146–156 (2013). https://doi.org/10.1016/j.carbon.2013.04.008
- H.-B. Zhang, Q. Yan, W.-G. Zheng, Z. He, Z.-Z. Yu, Tough graphene–polymer microcellular foams for electromagnetic interference shielding. ACS Appl. Mater. Interfaces 3, 918–924 (2011). https://doi.org/10.1021/am200021v
- J.-M. Thomassin, C. Jérôme, T. Pardoen, C. Bailly, I. Huynen et al., Polymer/carbon based composites as electromagnetic interference (EMI) shielding materials. Mater. Sci. Eng. R. Rep. 74, 211–232 (2013). https://doi.org/10.1016/j.mser.2013.06.001
- H. Liu, S. Wu, C. You, N. Tian, Y. Li et al., Recent progress in morphological engineering of carbon materials for electromagnetic interference shielding. Carbon 172, 569–596 (2021). https://doi.org/10.1016/j.carbon.2020.10.067
- P. Kumar, F. Shahzad, S. Yu, S.M. Hong, Y.-H. Kim et al., Large-area reduced graphene oxide thin film with excellent thermal conductivity and electromagnetic interference shielding effectiveness. Carbon 94, 494–500 (2015). https://doi.org/10.1016/j.carbon.2015.07.032
- S.H. Lee, S. Yu, F. Shahzad, W.N. Kim, C. Park et al., Density-tunable lightweight polymer composites with dual-functional ability of efficient EMI shielding and heat dissipation. Nanoscale 9, 13432–13440 (2017). https://doi.org/10.1039/C7NR02618H
- R. Kumar, S. Sahoo, E. Joanni, R.K. Singh, W.K. Tan et al., Recent progress on carbon-based composite materials for microwave electromagnetic interference shielding. Carbon 177, 304–331 (2021). https://doi.org/10.1016/j.carbon.2021.02.091
- N. Wu, Q. Hu, R. Wei, X. Mai, N. Naik et al., Review on the electromagnetic interference shielding properties of carbon based materials and their novel composites: recent progress, challenges and prospects. Carbon 176, 88–105 (2021). https://doi.org/10.1016/j.carbon.2021.01.124
- P. Kumar, S. Yu, F. Shahzad, S.M. Hong, Y.-H. Kim et al., Ultrahigh electrically and thermally conductive self-aligned graphene/polymer composites using large-area reduced graphene oxides. Carbon 101, 120–128 (2016). https://doi.org/10.1016/j.carbon.2016.01.088
- F. Shahzad, P. Kumar, S. Yu, S. Lee, Y.-H. Kim et al., Sulfur-doped graphene laminates for EMI shielding applications. J. Mater. Chem. C 3, 9802–9810 (2015). https://doi.org/10.1039/c5tc02166a
- F. Shahzad, P. Kumar, Y.-H. Kim, S.M. Hong, C.M. Koo, Biomass-derived thermally annealed interconnected sulfur-doped graphene as a shield against electromagnetic interference. ACS Appl. Mater. Interfaces 8, 9361–9369 (2016). https://doi.org/10.1021/acsami.6b00418
- S.H. Lee, J.Y. Kim, C.M. Koo, W.N. Kim, Effects of processing methods on the electrical conductivity, electromagnetic parameters, and EMI shielding effectiveness of polypropylene/nickel-coated carbon fiber composites. Macromol. Res. 25, 936–943 (2017). https://doi.org/10.1007/s13233-017-5113-x
- S.-U. Chae, S. Yi, J. Yoon, J.C. Hyun, S. Doo et al., Highly defective Ti3CNTx-MXene-based fiber membrane anode for lithium metal batteries. Energy Storage Mater. 52, 76–84 (2022). https://doi.org/10.1016/j.ensm.2022.07.025
- Z. Deng, L. Li, P. Tang, C. Jiao, Z.Z. Yu et al., Controllable surface-grafted MXene inks for electromagnetic wave modulation and infrared anti-counterfeiting applications. ACS Nano 16, 16976–16986 (2022). https://doi.org/10.1021/acsnano.2c07084
- Y. Li, H. Shao, Z. Lin, J. Lu, L. Liu et al., A general Lewis acidic etching route for preparing MXenes with enhanced electrochemical performance in non-aqueous electrolyte. Nat. Mater. 19, 894–899 (2020). https://doi.org/10.1038/s41563-020-0657-0
- V. Kamysbayev, A.S. Filatov, H. Hu, X. Rui, F. Lagunas et al., Covalent surface modifications and superconductivity of two-dimensional metal carbide MXenes. Science 369, 979–983 (2020). https://doi.org/10.1126/science.aba8311
- A. VahidMohammadi, J. Rosen, Y. Gogotsi, The world of two-dimensional carbides and nitrides (MXenes). Science 372, eabf1581 (2021). https://doi.org/10.1126/science.abf1581
- M.R. Lukatskaya, S. Kota, Z. Lin, M.-Q. Zhao, N. Shpigel et al., Ultra-high-rate pseudocapacitive energy storage in two-dimensional transition metal carbides. Nat. Energy 2, 17105 (2017). https://doi.org/10.1038/nenergy.2017.105
- C. Zhang, L. McKeon, M.P. Kremer, S.-H. Park, O. Ronan et al., Additive-free MXene inks and direct printing of micro-supercapacitors. Nat. Commun. 10, 1795 (2019). https://doi.org/10.1038/s41467-019-09398-1
- K. Hantanasirisakul, Y. Gogotsi, Electronic and optical properties of 2D transition metal carbides and nitrides (MXenes). Adv. Mater. 30, e1804779 (2018). https://doi.org/10.1002/adma.201804779
- S.J. Kim, H.-J. Koh, C.E. Ren, O. Kwon, K. Maleski et al., Metallic Ti3C2Tx MXene gas sensors with ultrahigh signal-to-noise ratio. ACS Nano 12, 986–993 (2018). https://doi.org/10.1021/acsnano.7b07460
- T.H. Park, S. Yu, M. Koo, H. Kim, E.H. Kim et al., Shape-adaptable 2D titanium carbide (MXene) heater. ACS Nano 13, 6835–6844 (2019). https://doi.org/10.1021/acsnano.9b01602
- X. Xie, C. Chen, N. Zhang, Z.-R. Tang, J. Jiang et al., Microstructure and surface control of MXene films for water purification. Nat. Sustain. 2, 856–862 (2019). https://doi.org/10.1038/s41893-019-0373-4
- T. Yun, H. Kim, A. Iqbal, Y.S. Cho, G.S. Lee et al., Electromagnetic shielding of monolayer MXene assemblies. Adv. Mater. 32, e1906769 (2020). https://doi.org/10.1002/adma.201906769
- M. Malaki, A. Maleki, R.S. Varma, MXenes and ultrasonication. J. Mater. Chem. A 7, 10843–10857 (2019). https://doi.org/10.1039/c9ta01850f
- A. Iqbal, H. Kim, J.M. Oh, J. Chae, J. Kim et al., Effect of substitutional oxygen on properties of Ti3 C2Tx MXene produced using recycled TiO2 source. Small Methods 7, e2201715 (2023). https://doi.org/10.1002/smtd.202201715
- A. Iqbal, J. Hong, T.Y. Ko, C.M. Koo, Improving oxidation stability of 2D MXenes: synthesis, storage media, and conditions. Nano Converg. 8, 9 (2021). https://doi.org/10.1186/s40580-021-00259-6
- S. Doo, A. Chae, D. Kim, T. Oh, T.Y. Ko et al., Mechanism and kinetics of oxidation reaction of aqueous Ti3C2Tx suspensions at different pHs and temperatures. ACS Appl. Mater. Interfaces 13, 22855–22865 (2021). https://doi.org/10.1021/acsami.1c04663
- X. Sang, Y. Xie, M.W. Lin, M. Alhabeb, K.L. Van Aken et al., Atomic defects in monolayer titanium carbide (Ti3C2Tx) MXene. ACS Nano 10, 9193–9200 (2016). https://doi.org/10.1021/acsnano.6b05240
- T.S. Mathis, K. Maleski, A. Goad, A. Sarycheva, M. Anayee et al., Modified MAX phase synthesis for environmentally stable and highly conductive Ti3C2 MXene. ACS Nano 15, 6420–6429 (2021). https://doi.org/10.1021/acsnano.0c08357
- A. Iqbal, P. Sambyal, J. Kwon, M. Han, J. Hong et al., Enhanced absorption of electromagnetic waves in Ti3C2Tx MXene films with segregated polymer inclusions. Compos. Sci. Technol. 213, 108878 (2021). https://doi.org/10.1016/j.compscitech.2021.108878
- X. Wu, B. Han, H.-B. Zhang, X. Xie, T. Tu et al., Compressible, durable and conductive polydimethylsiloxane-coated MXene foams for high-performance electromagnetic interference shielding. Chem. Eng. J. 381, 122622 (2020). https://doi.org/10.1016/j.cej.2019.122622
- C.-Z. Qi, X. Wu, J. Liu, X.-J. Luo, H.-B. Zhang et al., Highly conductive calcium ion-reinforced MXene/sodium alginate aerogel meshes by direct ink writing for electromagnetic interference shielding and Joule heating. J. Mater. Sci. Technol. 135, 213–220 (2023). https://doi.org/10.1016/j.jmst.2022.06.046
- L.-X. Liu, W. Chen, H.-B. Zhang, L. Ye, Z. Wang et al., Super-tough and environmentally stable aramid. Nanofiber@MXene coaxial fibers with outstanding electromagnetic interference shielding efficiency. Nano-Micro Lett. 14, 111 (2022). https://doi.org/10.1007/s40820-022-00853-1
- G.-M. Weng, J. Li, M. Alhabeb, C. Karpovich, H. Wang et al., Layer-by-layer assembly of cross-functional semi-transparent MXene-carbon nanotubes composite films for next-generation electromagnetic interference shielding. Adv. Funct. Mater. 28, 1803360 (2018). https://doi.org/10.1002/adfm.201803360
- Y. Zhang, Q. Gao, S. Zhang, X. Fan, J. Qin et al., rGO/MXene sandwich-structured film at spunlace non-woven fabric substrate: application to EMI shielding and electrical heating. J. Colloid Interface Sci. 614, 194–204 (2022). https://doi.org/10.1016/j.jcis.2022.01.030
- L. Li, S. Zhao, X.-J. Luo, H.-B. Zhang, Z.-Z. Yu, Smart MXene-Based Janus films with multi-responsive actuation capability and high electromagnetic interference shielding performances. Carbon 175, 594–602 (2021). https://doi.org/10.1016/j.carbon.2020.10.090
- J. Liu, Z. Liu, H.-B. Zhang, W. Chen, Z. Zhao et al., Ultrastrong and highly conductive MXene-based films for high-performance electromagnetic interference shielding. Adv. Electron. Mater. 6, 1901094 (2020). https://doi.org/10.1002/aelm.201901094
- K. Chen, M. Liu, Y. Shi, H. Wang, L. Fu et al., Multi-hierarchical flexible composites towards superior fire safety and electromagnetic interference shielding. Nano Res. 15, 9531–9543 (2022). https://doi.org/10.1007/s12274-022-4883-6
- L. Liu, Z. Ma, M. Zhu, L. Liu, J. Dai et al., Superhydrophobic self-extinguishing cotton fabrics for electromagnetic interference shielding and human motion detection. J. Mater. Sci. Technol. 132, 59–68 (2023). https://doi.org/10.1016/j.jmst.2022.05.036
- T. Oh, S. Lee, H. Kim, T.Y. Ko, S.J. Kim et al., Fast and high-yield anhydrous synthesis of Ti3C2Tx MXene with high electrical conductivity and exceptional mechanical strength. Small 18, 2270246 (2022). https://doi.org/10.1002/smll.202270246
- W.-T. Cao, F.-F. Chen, Y.-J. Zhu, Y.-G. Zhang, Y.-Y. Jiang et al., Binary strengthening and toughening of MXene/cellulose nanofiber composite paper with nacre-inspired structure and superior electromagnetic interference shielding properties. ACS Nano 12, 4583–4593 (2018). https://doi.org/10.1021/acsnano.8b00997
- Y. Shi, C. Liu, Z. Duan, B. Yu, M. Liu et al., Interface engineering of MXene towards super-tough and strong polymer nanocomposites with high ductility and excellent fire safety. Chem. Eng. J. 399, 125829 (2020). https://doi.org/10.1016/j.cej.2020.125829
- F. Xie, F. Jia, L. Zhuo, Z. Lu, L. Si et al., Ultrathin MXene/aramid nanofiber composite paper with excellent mechanical properties for efficient electromagnetic interference shielding. Nanoscale 11, 23382–23391 (2019). https://doi.org/10.1039/c9nr07331k
- Y. Liu, Y. Wang, N. Wu, M. Han, W. Liu et al., Diverse structural design strategies of MXene-based macrostructure for high-performance electromagnetic interference shielding. Nano-Micro Lett. 15, 240 (2023). https://doi.org/10.1007/s40820-023-01203-5
- T. Tang, S. Wang, Y. Jiang, Z. Xu, Y. Chen et al., Flexible and flame-retarding phosphorylated MXene/polypropylene composites for efficient electromagnetic interference shielding. J. Mater. Sci. Technol. 111, 66–75 (2022). https://doi.org/10.1016/j.jmst.2021.08.091
- H. Wang, K. Chen, Y. Shi, Y. Zhu, S. Jiang et al., Flame retardant and multifunctional BC/MXene/MSiCnw/FRTPU aerogel composites with superior electromagnetic interference shielding via “Consolidating” method. Chem. Eng. J. 474, 145904 (2023). https://doi.org/10.1016/j.cej.2023.145904
- T. Okada, R. Ishige, S. Ando, Analysis of thermal radiation properties of polyimide and polymeric materials based on ATR-IR spectroscopy. J. Photopolym. Sci. Technol. 29, 251–254 (2016). https://doi.org/10.2494/photopolymer.29.251
- A. Iqbal, T. Hassan, Z. Gao, F. Shahzad, C.M. Koo, MXene-incorporated 1D/2D nano-carbons for electromagnetic shielding: a review. Carbon 203, 542–560 (2023). https://doi.org/10.1016/j.carbon.2022.11.104
- X. Huang, J. Huang, G. Zhou, Y. Wei, P. Wu et al., Gelation-assisted assembly of large-area, highly aligned, and environmentally stable MXene films with an excellent trade-off between mechanical and electrical properties. Small 18, e2200829 (2022). https://doi.org/10.1002/smll.202200829
- R. Cheng, B. Wang, J. Zeng, J. Li, J. Xu et al., Janus-inspired flexible cellulose nanofiber-assisted MXene/Silver nanowire papers with fascinating mechanical properties for efficient electromagnetic interference shielding. Carbon 202, 314–324 (2023). https://doi.org/10.1016/j.carbon.2022.10.079
- C. Ma, W.-T. Cao, W. Zhang, M.-G. Ma, W.-M. Sun et al., Wearable, ultrathin and transparent bacterial celluloses/MXene film with Janus structure and excellent mechanical property for electromagnetic interference shielding. Chem. Eng. J. 403, 126438 (2021). https://doi.org/10.1016/j.cej.2020.126438
- M. Alhabeb, K. Maleski, B. Anasori, P. Lelyukh, L. Clark et al., Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene). Chem. Mater. 29, 7633–7644 (2017). https://doi.org/10.1021/acs.chemmater.7b02847
- H. Song, S.-Y. Jeon, Y. Jeong, Fabrication of a coaxial high performance fiber lithium-ion battery supported by a cotton yarn electrolyte reservoir. Carbon 147, 441–450 (2019). https://doi.org/10.1016/j.carbon.2019.02.081
- J. Song, S. Kim, S. Yoon, D. Cho, Y. Jeong, Enhanced spinnability of carbon nanotube fibers by surfactant addition. Fibres Polym. 15, 762–766 (2014). https://doi.org/10.1007/s12221-014-0762-2
- S. Ji, W.H. Tanveer, W. Yu, S. Kang, G.Y. Cho et al., Surface engineering of nanoporous substrate for solid oxide fuel cells with atomic layer-deposited electrolyte. Beilstein J. Nanotechnol. 6, 1805–1810 (2015). https://doi.org/10.3762/bjnano.6.184
- S.-H. Lee, J. Park, H.-R. Kim, J. Lee, K.-H. Lee, Synthesis of high-quality carbon nanotube fibers by controlling the effects of sulfur on the catalyst agglomeration during the direct spinning process. RSC Adv. 5, 41894–41900 (2015). https://doi.org/10.1039/C5RA04691B
- J. Halim, K.M. Cook, M. Naguib, P. Eklund, Y. Gogotsi et al., X-ray photoelectron spectroscopy of select multi-layered transition metal carbides (MXenes). Appl. Surf. Sci. 362, 406–417 (2016). https://doi.org/10.1016/j.apsusc.2015.11.089
- A. Abnavi, M. Faramarzi, Z. Sanaee, S. Ghasemi, SnO2 nanowires on carbon nanotube film as a high performance anode material for flexible Li-ion batteries. J. Nanostruct. 8, 288–293 (2018). https://doi.org/10.22052/JNS.2018.03.008
- M.M. Ngoma, M. Mathaba, K. Moothi, Effect of carbon nanotubes loading and pressure on the performance of a polyethersulfone (PES)/carbon nanotubes (CNT) membrane. Sci. Rep. 11, 23805 (2021). https://doi.org/10.1038/s41598-021-03042-z
- S. Iijima, Helical microtubules of graphitic carbon. Nature 354, 56–58 (1991). https://doi.org/10.1038/354056a0
- S.-J. Park, S.-J. Park, Effect of ozone-treated single-walled carbon nanotubes on interfacial properties and fracture toughness of carbon fiber-reinforced epoxy composites. Compos. Part A Appl. Sci. Manuf. 137, 105937 (2020). https://doi.org/10.1016/j.compositesa.2020.105937
- J. Luo, Y. Liu, H. Wei, B. Wang, K.-H. Wu et al., A green and economical vapor-assisted ozone treatment process for surface functionalization of carbon nanotubes. Green Chem. 19, 1052–1062 (2017). https://doi.org/10.1039/C6GC02806C
- J. Chen, X. Yuan, F. Lyu, Q. Zhong, H. Hu et al., Integrating MXene nanosheets with cobalt-tipped carbon nanotubes for an efficient oxygen reduction reaction. J. Mater. Chem. A 7, 1281–1286 (2019). https://doi.org/10.1039/c8ta10574j
- Q. Xue, H. Zhang, M. Zhu, Z. Pei, H. Li et al., Photoluminescent Ti3 C2 MXene quantum dots for multicolor cellular imaging. Adv. Mater. 29, 1604847 (2017). https://doi.org/10.1002/adma.201604847
- X. Li, C. Zeng, G. Fan, Magnetic RuCo nanops supported on two-dimensional titanium carbide as highly active catalysts for the hydrolysis of ammonia borane. Int. J. Hydrog. Energy 40, 9217–9224 (2015). https://doi.org/10.1016/j.ijhydene.2015.05.168
- Y. Li, X. Zhou, J. Wang, Q. Deng, M. Li et al., Facile preparation of in situ coated Ti3C2Tx/Ni0.5Zn0.5Fe2O4 composites and their electromagnetic performance. RSC Adv. 7, 24698–24708 (2017). https://doi.org/10.1039/C7RA03402D
- X. He, S. Li, R. Shen, Y. Ma, L. Zhang et al., A high-performance waterborne polymeric composite coating with long-term anti-corrosive property based on phosphorylation of chitosan-functionalized Ti3C2Tx MXene. Adv. Compos. Hybrid Mater. 5, 1699–1711 (2022). https://doi.org/10.1007/s42114-021-00392-0
- S. Wan, X. Li, Y. Chen, N. Liu, Y. Du et al., High-strength scalable MXene films through bridging-induced densification. Science 374, 96–99 (2021). https://doi.org/10.1126/science.abg2026
- J. Hong, J. Kwon, D. Im, J. Ko, C.Y. Nam et al., Best practices for correlating electrical conductivity with broadband EMI shielding in binary filler-based conducting polymer composites. Chem. Eng. J. 455, 140528 (2023). https://doi.org/10.1016/j.cej.2022.140528
- X. Xu, The nature of heat and the absolute zero temperature. Int. J. Fundam. Phys. Sci. 10, 35–39 (2020). https://doi.org/10.14331/ijfps.2020.330140
- C. Wen, B. Zhao, Y. Liu, C. Xu, Y. Wu et al., Flexible MXene-based composite films for multi-spectra defense in radar, infrared and visible light bands. Adv. Funct. Mater. 33, 2214223 (2023). https://doi.org/10.1002/adfm.202214223
- M. Han, D. Zhang, A. Singh, T. Hryhorchuk, C. Eugene Shuck et al., Versatility of infrared properties of MXenes. Mater. Today 64, 31–39 (2023). https://doi.org/10.1016/j.mattod.2023.02.024
- Y. Li, C. Xiong, H. Huang, X. Peng, D. Mei et al., 2D Ti3C2Tx MXenes: visible black but infrared white materials. Adv. Mater. 33, e2103054 (2021). https://doi.org/10.1002/adma.202103054
- R. Afrin, N.A. Shah, M. Abbas, M. Amin, A.S. Bhatti, Design and analysis of functional multiwalled carbon nanotubes for infrared sensors. Sens. Actuators A Phys. 203, 142–148 (2013). https://doi.org/10.1016/j.sna.2013.08.018
- B. Pradhan, R.R. Kohlmeyer, K. Setyowati, H.A. Owen, J. Chen, Advanced carbon nanotube/polymer composite infrared sensors. Carbon 47, 1686–1692 (2009). https://doi.org/10.1016/j.carbon.2009.02.021
References
F. Shahzad, M. Alhabeb, C.B. Hatter, B. Anasori, S. Man Hong et al., Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science 353, 1137–1140 (2016). https://doi.org/10.1126/science.aag2421
A. Iqbal, F. Shahzad, K. Hantanasirisakul, M.K. Kim, J. Kwon et al., Anomalous absorption of electromagnetic waves by 2D transition metal carbonitride Ti3CNT x (MXene). Science 369, 446–450 (2020). https://doi.org/10.1126/science.aba7977
M. Han, C.E. Shuck, R. Rakhmanov, D. Parchment, B. Anasori et al., Beyond Ti3C2Tx: MXenes for electromagnetic interference shielding. ACS Nano 14, 5008–5016 (2020). https://doi.org/10.1021/acsnano.0c01312
X. Fan, S. Li, W. Zhang, W. Xu, Recent progress in two-dimensional nanomaterials of graphene and MXenes for thermal camouflage. Ceram. Int. 49, 5559–5572 (2023). https://doi.org/10.1016/j.ceramint.2022.12.034
K. Shafique, B.A. Khawaja, F. Sabir, S. Qazi, M. Mustaqim, Internet of Things (IoT) for next-generation smart systems: a review of current challenges, future trends and prospects for emerging 5G-IoT scenarios. IEEE Access 8, 23022–23040 (2020). https://doi.org/10.1109/ACCESS.2020.2970118
K.Y. Fang, Y.J. Wang, Y.C. Zhao, F. Fang, Infrared stealth nanofibrous composites with thermal adaptability and mechanical flexibility. Compos. Sci. Technol. 201, 108483 (2021). https://doi.org/10.1016/j.compscitech.2020.108483
X. Ni, S. Yu, X. Su, F. Chen, Detection spectrum optimization of stealth aircraft targets from a space-based infrared platform. Opt. Quantum Electron. 54, 151 (2022). https://doi.org/10.1007/s11082-021-03451-4
Z.H. Zeng, N. Wu, J.J. Wei, Y.F. Yang, T.T. Wu et al., Porous and ultra-flexible crosslinked MXene/polyimide composites for multifunctional electromagnetic interference shielding. Nano-Micro Lett. 14, 59 (2022). https://doi.org/10.1007/s40820-022-00800-0
D.D.L. Chung, Electromagnetic interference shielding effectiveness of carbon materials. Carbon 39, 279–285 (2001). https://doi.org/10.1016/S0008-6223(00)00184-6
N.C. Das, Y. Liu, K. Yang, W. Peng, S. Maiti et al., Single-walled carbon nanotube/poly(methyl methacrylate) composites for electromagnetic interference shielding. Polym. Eng. Sci. 49, 1627–1634 (2009). https://doi.org/10.1002/pen.21384
M.H. Al-Saleh, W.H. Saadeh, U. Sundararaj, EMI shielding effectiveness of carbon based nanostructured polymeric materials: a comparative study. Carbon 60, 146–156 (2013). https://doi.org/10.1016/j.carbon.2013.04.008
H.-B. Zhang, Q. Yan, W.-G. Zheng, Z. He, Z.-Z. Yu, Tough graphene–polymer microcellular foams for electromagnetic interference shielding. ACS Appl. Mater. Interfaces 3, 918–924 (2011). https://doi.org/10.1021/am200021v
J.-M. Thomassin, C. Jérôme, T. Pardoen, C. Bailly, I. Huynen et al., Polymer/carbon based composites as electromagnetic interference (EMI) shielding materials. Mater. Sci. Eng. R. Rep. 74, 211–232 (2013). https://doi.org/10.1016/j.mser.2013.06.001
H. Liu, S. Wu, C. You, N. Tian, Y. Li et al., Recent progress in morphological engineering of carbon materials for electromagnetic interference shielding. Carbon 172, 569–596 (2021). https://doi.org/10.1016/j.carbon.2020.10.067
P. Kumar, F. Shahzad, S. Yu, S.M. Hong, Y.-H. Kim et al., Large-area reduced graphene oxide thin film with excellent thermal conductivity and electromagnetic interference shielding effectiveness. Carbon 94, 494–500 (2015). https://doi.org/10.1016/j.carbon.2015.07.032
S.H. Lee, S. Yu, F. Shahzad, W.N. Kim, C. Park et al., Density-tunable lightweight polymer composites with dual-functional ability of efficient EMI shielding and heat dissipation. Nanoscale 9, 13432–13440 (2017). https://doi.org/10.1039/C7NR02618H
R. Kumar, S. Sahoo, E. Joanni, R.K. Singh, W.K. Tan et al., Recent progress on carbon-based composite materials for microwave electromagnetic interference shielding. Carbon 177, 304–331 (2021). https://doi.org/10.1016/j.carbon.2021.02.091
N. Wu, Q. Hu, R. Wei, X. Mai, N. Naik et al., Review on the electromagnetic interference shielding properties of carbon based materials and their novel composites: recent progress, challenges and prospects. Carbon 176, 88–105 (2021). https://doi.org/10.1016/j.carbon.2021.01.124
P. Kumar, S. Yu, F. Shahzad, S.M. Hong, Y.-H. Kim et al., Ultrahigh electrically and thermally conductive self-aligned graphene/polymer composites using large-area reduced graphene oxides. Carbon 101, 120–128 (2016). https://doi.org/10.1016/j.carbon.2016.01.088
F. Shahzad, P. Kumar, S. Yu, S. Lee, Y.-H. Kim et al., Sulfur-doped graphene laminates for EMI shielding applications. J. Mater. Chem. C 3, 9802–9810 (2015). https://doi.org/10.1039/c5tc02166a
F. Shahzad, P. Kumar, Y.-H. Kim, S.M. Hong, C.M. Koo, Biomass-derived thermally annealed interconnected sulfur-doped graphene as a shield against electromagnetic interference. ACS Appl. Mater. Interfaces 8, 9361–9369 (2016). https://doi.org/10.1021/acsami.6b00418
S.H. Lee, J.Y. Kim, C.M. Koo, W.N. Kim, Effects of processing methods on the electrical conductivity, electromagnetic parameters, and EMI shielding effectiveness of polypropylene/nickel-coated carbon fiber composites. Macromol. Res. 25, 936–943 (2017). https://doi.org/10.1007/s13233-017-5113-x
S.-U. Chae, S. Yi, J. Yoon, J.C. Hyun, S. Doo et al., Highly defective Ti3CNTx-MXene-based fiber membrane anode for lithium metal batteries. Energy Storage Mater. 52, 76–84 (2022). https://doi.org/10.1016/j.ensm.2022.07.025
Z. Deng, L. Li, P. Tang, C. Jiao, Z.Z. Yu et al., Controllable surface-grafted MXene inks for electromagnetic wave modulation and infrared anti-counterfeiting applications. ACS Nano 16, 16976–16986 (2022). https://doi.org/10.1021/acsnano.2c07084
Y. Li, H. Shao, Z. Lin, J. Lu, L. Liu et al., A general Lewis acidic etching route for preparing MXenes with enhanced electrochemical performance in non-aqueous electrolyte. Nat. Mater. 19, 894–899 (2020). https://doi.org/10.1038/s41563-020-0657-0
V. Kamysbayev, A.S. Filatov, H. Hu, X. Rui, F. Lagunas et al., Covalent surface modifications and superconductivity of two-dimensional metal carbide MXenes. Science 369, 979–983 (2020). https://doi.org/10.1126/science.aba8311
A. VahidMohammadi, J. Rosen, Y. Gogotsi, The world of two-dimensional carbides and nitrides (MXenes). Science 372, eabf1581 (2021). https://doi.org/10.1126/science.abf1581
M.R. Lukatskaya, S. Kota, Z. Lin, M.-Q. Zhao, N. Shpigel et al., Ultra-high-rate pseudocapacitive energy storage in two-dimensional transition metal carbides. Nat. Energy 2, 17105 (2017). https://doi.org/10.1038/nenergy.2017.105
C. Zhang, L. McKeon, M.P. Kremer, S.-H. Park, O. Ronan et al., Additive-free MXene inks and direct printing of micro-supercapacitors. Nat. Commun. 10, 1795 (2019). https://doi.org/10.1038/s41467-019-09398-1
K. Hantanasirisakul, Y. Gogotsi, Electronic and optical properties of 2D transition metal carbides and nitrides (MXenes). Adv. Mater. 30, e1804779 (2018). https://doi.org/10.1002/adma.201804779
S.J. Kim, H.-J. Koh, C.E. Ren, O. Kwon, K. Maleski et al., Metallic Ti3C2Tx MXene gas sensors with ultrahigh signal-to-noise ratio. ACS Nano 12, 986–993 (2018). https://doi.org/10.1021/acsnano.7b07460
T.H. Park, S. Yu, M. Koo, H. Kim, E.H. Kim et al., Shape-adaptable 2D titanium carbide (MXene) heater. ACS Nano 13, 6835–6844 (2019). https://doi.org/10.1021/acsnano.9b01602
X. Xie, C. Chen, N. Zhang, Z.-R. Tang, J. Jiang et al., Microstructure and surface control of MXene films for water purification. Nat. Sustain. 2, 856–862 (2019). https://doi.org/10.1038/s41893-019-0373-4
T. Yun, H. Kim, A. Iqbal, Y.S. Cho, G.S. Lee et al., Electromagnetic shielding of monolayer MXene assemblies. Adv. Mater. 32, e1906769 (2020). https://doi.org/10.1002/adma.201906769
M. Malaki, A. Maleki, R.S. Varma, MXenes and ultrasonication. J. Mater. Chem. A 7, 10843–10857 (2019). https://doi.org/10.1039/c9ta01850f
A. Iqbal, H. Kim, J.M. Oh, J. Chae, J. Kim et al., Effect of substitutional oxygen on properties of Ti3 C2Tx MXene produced using recycled TiO2 source. Small Methods 7, e2201715 (2023). https://doi.org/10.1002/smtd.202201715
A. Iqbal, J. Hong, T.Y. Ko, C.M. Koo, Improving oxidation stability of 2D MXenes: synthesis, storage media, and conditions. Nano Converg. 8, 9 (2021). https://doi.org/10.1186/s40580-021-00259-6
S. Doo, A. Chae, D. Kim, T. Oh, T.Y. Ko et al., Mechanism and kinetics of oxidation reaction of aqueous Ti3C2Tx suspensions at different pHs and temperatures. ACS Appl. Mater. Interfaces 13, 22855–22865 (2021). https://doi.org/10.1021/acsami.1c04663
X. Sang, Y. Xie, M.W. Lin, M. Alhabeb, K.L. Van Aken et al., Atomic defects in monolayer titanium carbide (Ti3C2Tx) MXene. ACS Nano 10, 9193–9200 (2016). https://doi.org/10.1021/acsnano.6b05240
T.S. Mathis, K. Maleski, A. Goad, A. Sarycheva, M. Anayee et al., Modified MAX phase synthesis for environmentally stable and highly conductive Ti3C2 MXene. ACS Nano 15, 6420–6429 (2021). https://doi.org/10.1021/acsnano.0c08357
A. Iqbal, P. Sambyal, J. Kwon, M. Han, J. Hong et al., Enhanced absorption of electromagnetic waves in Ti3C2Tx MXene films with segregated polymer inclusions. Compos. Sci. Technol. 213, 108878 (2021). https://doi.org/10.1016/j.compscitech.2021.108878
X. Wu, B. Han, H.-B. Zhang, X. Xie, T. Tu et al., Compressible, durable and conductive polydimethylsiloxane-coated MXene foams for high-performance electromagnetic interference shielding. Chem. Eng. J. 381, 122622 (2020). https://doi.org/10.1016/j.cej.2019.122622
C.-Z. Qi, X. Wu, J. Liu, X.-J. Luo, H.-B. Zhang et al., Highly conductive calcium ion-reinforced MXene/sodium alginate aerogel meshes by direct ink writing for electromagnetic interference shielding and Joule heating. J. Mater. Sci. Technol. 135, 213–220 (2023). https://doi.org/10.1016/j.jmst.2022.06.046
L.-X. Liu, W. Chen, H.-B. Zhang, L. Ye, Z. Wang et al., Super-tough and environmentally stable aramid. Nanofiber@MXene coaxial fibers with outstanding electromagnetic interference shielding efficiency. Nano-Micro Lett. 14, 111 (2022). https://doi.org/10.1007/s40820-022-00853-1
G.-M. Weng, J. Li, M. Alhabeb, C. Karpovich, H. Wang et al., Layer-by-layer assembly of cross-functional semi-transparent MXene-carbon nanotubes composite films for next-generation electromagnetic interference shielding. Adv. Funct. Mater. 28, 1803360 (2018). https://doi.org/10.1002/adfm.201803360
Y. Zhang, Q. Gao, S. Zhang, X. Fan, J. Qin et al., rGO/MXene sandwich-structured film at spunlace non-woven fabric substrate: application to EMI shielding and electrical heating. J. Colloid Interface Sci. 614, 194–204 (2022). https://doi.org/10.1016/j.jcis.2022.01.030
L. Li, S. Zhao, X.-J. Luo, H.-B. Zhang, Z.-Z. Yu, Smart MXene-Based Janus films with multi-responsive actuation capability and high electromagnetic interference shielding performances. Carbon 175, 594–602 (2021). https://doi.org/10.1016/j.carbon.2020.10.090
J. Liu, Z. Liu, H.-B. Zhang, W. Chen, Z. Zhao et al., Ultrastrong and highly conductive MXene-based films for high-performance electromagnetic interference shielding. Adv. Electron. Mater. 6, 1901094 (2020). https://doi.org/10.1002/aelm.201901094
K. Chen, M. Liu, Y. Shi, H. Wang, L. Fu et al., Multi-hierarchical flexible composites towards superior fire safety and electromagnetic interference shielding. Nano Res. 15, 9531–9543 (2022). https://doi.org/10.1007/s12274-022-4883-6
L. Liu, Z. Ma, M. Zhu, L. Liu, J. Dai et al., Superhydrophobic self-extinguishing cotton fabrics for electromagnetic interference shielding and human motion detection. J. Mater. Sci. Technol. 132, 59–68 (2023). https://doi.org/10.1016/j.jmst.2022.05.036
T. Oh, S. Lee, H. Kim, T.Y. Ko, S.J. Kim et al., Fast and high-yield anhydrous synthesis of Ti3C2Tx MXene with high electrical conductivity and exceptional mechanical strength. Small 18, 2270246 (2022). https://doi.org/10.1002/smll.202270246
W.-T. Cao, F.-F. Chen, Y.-J. Zhu, Y.-G. Zhang, Y.-Y. Jiang et al., Binary strengthening and toughening of MXene/cellulose nanofiber composite paper with nacre-inspired structure and superior electromagnetic interference shielding properties. ACS Nano 12, 4583–4593 (2018). https://doi.org/10.1021/acsnano.8b00997
Y. Shi, C. Liu, Z. Duan, B. Yu, M. Liu et al., Interface engineering of MXene towards super-tough and strong polymer nanocomposites with high ductility and excellent fire safety. Chem. Eng. J. 399, 125829 (2020). https://doi.org/10.1016/j.cej.2020.125829
F. Xie, F. Jia, L. Zhuo, Z. Lu, L. Si et al., Ultrathin MXene/aramid nanofiber composite paper with excellent mechanical properties for efficient electromagnetic interference shielding. Nanoscale 11, 23382–23391 (2019). https://doi.org/10.1039/c9nr07331k
Y. Liu, Y. Wang, N. Wu, M. Han, W. Liu et al., Diverse structural design strategies of MXene-based macrostructure for high-performance electromagnetic interference shielding. Nano-Micro Lett. 15, 240 (2023). https://doi.org/10.1007/s40820-023-01203-5
T. Tang, S. Wang, Y. Jiang, Z. Xu, Y. Chen et al., Flexible and flame-retarding phosphorylated MXene/polypropylene composites for efficient electromagnetic interference shielding. J. Mater. Sci. Technol. 111, 66–75 (2022). https://doi.org/10.1016/j.jmst.2021.08.091
H. Wang, K. Chen, Y. Shi, Y. Zhu, S. Jiang et al., Flame retardant and multifunctional BC/MXene/MSiCnw/FRTPU aerogel composites with superior electromagnetic interference shielding via “Consolidating” method. Chem. Eng. J. 474, 145904 (2023). https://doi.org/10.1016/j.cej.2023.145904
T. Okada, R. Ishige, S. Ando, Analysis of thermal radiation properties of polyimide and polymeric materials based on ATR-IR spectroscopy. J. Photopolym. Sci. Technol. 29, 251–254 (2016). https://doi.org/10.2494/photopolymer.29.251
A. Iqbal, T. Hassan, Z. Gao, F. Shahzad, C.M. Koo, MXene-incorporated 1D/2D nano-carbons for electromagnetic shielding: a review. Carbon 203, 542–560 (2023). https://doi.org/10.1016/j.carbon.2022.11.104
X. Huang, J. Huang, G. Zhou, Y. Wei, P. Wu et al., Gelation-assisted assembly of large-area, highly aligned, and environmentally stable MXene films with an excellent trade-off between mechanical and electrical properties. Small 18, e2200829 (2022). https://doi.org/10.1002/smll.202200829
R. Cheng, B. Wang, J. Zeng, J. Li, J. Xu et al., Janus-inspired flexible cellulose nanofiber-assisted MXene/Silver nanowire papers with fascinating mechanical properties for efficient electromagnetic interference shielding. Carbon 202, 314–324 (2023). https://doi.org/10.1016/j.carbon.2022.10.079
C. Ma, W.-T. Cao, W. Zhang, M.-G. Ma, W.-M. Sun et al., Wearable, ultrathin and transparent bacterial celluloses/MXene film with Janus structure and excellent mechanical property for electromagnetic interference shielding. Chem. Eng. J. 403, 126438 (2021). https://doi.org/10.1016/j.cej.2020.126438
M. Alhabeb, K. Maleski, B. Anasori, P. Lelyukh, L. Clark et al., Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene). Chem. Mater. 29, 7633–7644 (2017). https://doi.org/10.1021/acs.chemmater.7b02847
H. Song, S.-Y. Jeon, Y. Jeong, Fabrication of a coaxial high performance fiber lithium-ion battery supported by a cotton yarn electrolyte reservoir. Carbon 147, 441–450 (2019). https://doi.org/10.1016/j.carbon.2019.02.081
J. Song, S. Kim, S. Yoon, D. Cho, Y. Jeong, Enhanced spinnability of carbon nanotube fibers by surfactant addition. Fibres Polym. 15, 762–766 (2014). https://doi.org/10.1007/s12221-014-0762-2
S. Ji, W.H. Tanveer, W. Yu, S. Kang, G.Y. Cho et al., Surface engineering of nanoporous substrate for solid oxide fuel cells with atomic layer-deposited electrolyte. Beilstein J. Nanotechnol. 6, 1805–1810 (2015). https://doi.org/10.3762/bjnano.6.184
S.-H. Lee, J. Park, H.-R. Kim, J. Lee, K.-H. Lee, Synthesis of high-quality carbon nanotube fibers by controlling the effects of sulfur on the catalyst agglomeration during the direct spinning process. RSC Adv. 5, 41894–41900 (2015). https://doi.org/10.1039/C5RA04691B
J. Halim, K.M. Cook, M. Naguib, P. Eklund, Y. Gogotsi et al., X-ray photoelectron spectroscopy of select multi-layered transition metal carbides (MXenes). Appl. Surf. Sci. 362, 406–417 (2016). https://doi.org/10.1016/j.apsusc.2015.11.089
A. Abnavi, M. Faramarzi, Z. Sanaee, S. Ghasemi, SnO2 nanowires on carbon nanotube film as a high performance anode material for flexible Li-ion batteries. J. Nanostruct. 8, 288–293 (2018). https://doi.org/10.22052/JNS.2018.03.008
M.M. Ngoma, M. Mathaba, K. Moothi, Effect of carbon nanotubes loading and pressure on the performance of a polyethersulfone (PES)/carbon nanotubes (CNT) membrane. Sci. Rep. 11, 23805 (2021). https://doi.org/10.1038/s41598-021-03042-z
S. Iijima, Helical microtubules of graphitic carbon. Nature 354, 56–58 (1991). https://doi.org/10.1038/354056a0
S.-J. Park, S.-J. Park, Effect of ozone-treated single-walled carbon nanotubes on interfacial properties and fracture toughness of carbon fiber-reinforced epoxy composites. Compos. Part A Appl. Sci. Manuf. 137, 105937 (2020). https://doi.org/10.1016/j.compositesa.2020.105937
J. Luo, Y. Liu, H. Wei, B. Wang, K.-H. Wu et al., A green and economical vapor-assisted ozone treatment process for surface functionalization of carbon nanotubes. Green Chem. 19, 1052–1062 (2017). https://doi.org/10.1039/C6GC02806C
J. Chen, X. Yuan, F. Lyu, Q. Zhong, H. Hu et al., Integrating MXene nanosheets with cobalt-tipped carbon nanotubes for an efficient oxygen reduction reaction. J. Mater. Chem. A 7, 1281–1286 (2019). https://doi.org/10.1039/c8ta10574j
Q. Xue, H. Zhang, M. Zhu, Z. Pei, H. Li et al., Photoluminescent Ti3 C2 MXene quantum dots for multicolor cellular imaging. Adv. Mater. 29, 1604847 (2017). https://doi.org/10.1002/adma.201604847
X. Li, C. Zeng, G. Fan, Magnetic RuCo nanops supported on two-dimensional titanium carbide as highly active catalysts for the hydrolysis of ammonia borane. Int. J. Hydrog. Energy 40, 9217–9224 (2015). https://doi.org/10.1016/j.ijhydene.2015.05.168
Y. Li, X. Zhou, J. Wang, Q. Deng, M. Li et al., Facile preparation of in situ coated Ti3C2Tx/Ni0.5Zn0.5Fe2O4 composites and their electromagnetic performance. RSC Adv. 7, 24698–24708 (2017). https://doi.org/10.1039/C7RA03402D
X. He, S. Li, R. Shen, Y. Ma, L. Zhang et al., A high-performance waterborne polymeric composite coating with long-term anti-corrosive property based on phosphorylation of chitosan-functionalized Ti3C2Tx MXene. Adv. Compos. Hybrid Mater. 5, 1699–1711 (2022). https://doi.org/10.1007/s42114-021-00392-0
S. Wan, X. Li, Y. Chen, N. Liu, Y. Du et al., High-strength scalable MXene films through bridging-induced densification. Science 374, 96–99 (2021). https://doi.org/10.1126/science.abg2026
J. Hong, J. Kwon, D. Im, J. Ko, C.Y. Nam et al., Best practices for correlating electrical conductivity with broadband EMI shielding in binary filler-based conducting polymer composites. Chem. Eng. J. 455, 140528 (2023). https://doi.org/10.1016/j.cej.2022.140528
X. Xu, The nature of heat and the absolute zero temperature. Int. J. Fundam. Phys. Sci. 10, 35–39 (2020). https://doi.org/10.14331/ijfps.2020.330140
C. Wen, B. Zhao, Y. Liu, C. Xu, Y. Wu et al., Flexible MXene-based composite films for multi-spectra defense in radar, infrared and visible light bands. Adv. Funct. Mater. 33, 2214223 (2023). https://doi.org/10.1002/adfm.202214223
M. Han, D. Zhang, A. Singh, T. Hryhorchuk, C. Eugene Shuck et al., Versatility of infrared properties of MXenes. Mater. Today 64, 31–39 (2023). https://doi.org/10.1016/j.mattod.2023.02.024
Y. Li, C. Xiong, H. Huang, X. Peng, D. Mei et al., 2D Ti3C2Tx MXenes: visible black but infrared white materials. Adv. Mater. 33, e2103054 (2021). https://doi.org/10.1002/adma.202103054
R. Afrin, N.A. Shah, M. Abbas, M. Amin, A.S. Bhatti, Design and analysis of functional multiwalled carbon nanotubes for infrared sensors. Sens. Actuators A Phys. 203, 142–148 (2013). https://doi.org/10.1016/j.sna.2013.08.018
B. Pradhan, R.R. Kohlmeyer, K. Setyowati, H.A. Owen, J. Chen, Advanced carbon nanotube/polymer composite infrared sensors. Carbon 47, 1686–1692 (2009). https://doi.org/10.1016/j.carbon.2009.02.021