Recent Advance in Synaptic Plasticity Modulation Techniques for Neuromorphic Applications
Corresponding Author: Dan Xie
Nano-Micro Letters,
Vol. 16 (2024), Article Number: 211
Abstract
Manipulating the expression of synaptic plasticity of neuromorphic devices provides fascinating opportunities to develop hardware platforms for artificial intelligence. However, great efforts have been devoted to exploring biomimetic mechanisms of plasticity simulation in the last few years. Recent progress in various plasticity modulation techniques has pushed the research of synaptic electronics from static plasticity simulation to dynamic plasticity modulation, improving the accuracy of neuromorphic computing and providing strategies for implementing neuromorphic sensing functions. Herein, several fascinating strategies for synaptic plasticity modulation through chemical techniques, device structure design, and physical signal sensing are reviewed. For chemical techniques, the underlying mechanisms for the modification of functional materials were clarified and its effect on the expression of synaptic plasticity was also highlighted. Based on device structure design, the reconfigurable operation of neuromorphic devices was well demonstrated to achieve programmable neuromorphic functions. Besides, integrating the sensory units with neuromorphic processing circuits paved a new way to achieve human-like intelligent perception under the modulation of physical signals such as light, strain, and temperature. Finally, considering that the relevant technology is still in the basic exploration stage, some prospects or development suggestions are put forward to promote the development of neuromorphic devices.
Highlights:
1 This review delves into the recent progress in high-performance and multifunctional neuromorphic devices for artificial intelligence applications from a novel perspective of plasticity modulation.
2 It provides an in-depth discussion on the plasticity modulation strategies by chemical techniques, device structure design and physical signal modulation for advanced neuromorphic applications.
3 It offers the prospects of exploring novel plasticity modulation mechanisms and techniques for scaled neural networks and examining their potentials in multimodal collaborative neuromorphic systems.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S. Wang, D.W. Zhang, P. Zhou, Two-dimensional materials for synaptic electronics and neuromorphic systems. Sci. Bull. 64, 1056–1066 (2019). https://doi.org/10.1016/j.scib.2019.01.016
- Q. Wan, M.T. Sharbati, J.R. Erickson, Y. Du, F. Xiong, Emerging artificial synaptic devices for neuromorphic computing. Adv. Mater. Technol. 4, 1900037 (2019). https://doi.org/10.1002/admt.201900037
- K. Lu, X. Li, Q. Sun, X. Pang, J. Chen et al., Solution-processed electronics for artificial synapses. Mater. Horiz. 8, 447–470 (2021). https://doi.org/10.1039/d0mh01520b
- L. Sun, W. Wang, H. Yang, Recent progress in synaptic devices based on 2D materials. Adv. Intell. Syst. 2, 1900167 (2020). https://doi.org/10.1002/aisy.201900167
- G. Cao, P. Meng, J. Chen, H. Liu, R. Bian et al., 2D material based synaptic devices for neuromorphic computing. Adv. Funct. Mater. 31, 2005443 (2021). https://doi.org/10.1002/adfm.202005443
- X. Zou, S. Xu, X. Chen, L. Yan, Y. Han, Breaking the von Neumann bottleneck: architecture-level processing-in-memory technology. Sci. China Inf. Sci. 64, 160404 (2021). https://doi.org/10.1007/s11432-020-3227-1
- R. Pendurthi, D. Jayachandran, A. Kozhakhmetov, N. Trainor, J.A. Robinson et al., Heterogeneous integration of atomically thin semiconductors for non-von Neumann CMOS. Small 18, e2202590 (2022). https://doi.org/10.1002/smll.202202590
- L.F. Abbott, S.B. Nelson, Synaptic plasticity: taming the beast. Nat. Neurosci. 3(Suppl), 1178–1183 (2000). https://doi.org/10.1038/81453
- P. Yao, H. Wu, B. Gao, J. Tang, Q. Zhang et al., Fully hardware-implemented memristor convolutional neural network. Nature 577, 641–646 (2020). https://doi.org/10.1038/s41586-020-1942-4
- K.-N. Kim, M.-J. Sung, H.-L. Park, T.-W. Lee, Organic synaptic transistors for bio-hybrid neuromorphic electronics. Adv. Electron. Mater. 8, 2100935 (2022). https://doi.org/10.1002/aelm.202100935
- R. Yu, E. Li, X. Wu, Y. Yan, W. He et al., Electret-based organic synaptic transistor for neuromorphic computing. ACS Appl. Mater. Interfaces 12, 15446–15455 (2020). https://doi.org/10.1021/acsami.9b22925
- S.J. Kim, S. Kim, H.W. Jang, Competing memristors for brain-inspired computing. iScience 24, 101889 (2021). https://doi.org/10.1016/j.isci.2020.101889
- K.C. Kwon, J.H. Baek, K. Hong, S.Y. Kim, H.W. Jang, Memristive devices based on two-dimensional transition metal chalcogenides for neuromorphic computing. Nano Micro Lett. 14, 58 (2022). https://doi.org/10.1007/s40820-021-00784-3
- H. Zhou, S. Li, K.-W. Ang, Y.-W. Zhang, Recent advances in In-memory computing: exploring memristor and memtransistor arrays with 2D materials. Nano Micro Lett. 16, 121 (2024). https://doi.org/10.1007/s40820-024-01335-2
- Z. Wang, S. Joshi, S.E. Savel’ev, H. Jiang, R. Midya et al., Memristors with diffusive dynamics as synaptic emulators for neuromorphic computing. Nat. Mater. 16, 101–108 (2017). https://doi.org/10.1038/nmat4756
- R.S. Zucker, W.G. Regehr, Short-term synaptic plasticity. Ann. Rev. Physiol. 64(1), 355–405 (2002). https://doi.org/10.1146/annurev.physiol.64.092501.114547
- T.V.P. Bliss, G.L. Collingridge, A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361, 31–39 (1993). https://doi.org/10.1038/361031a0
- M.-K. Kim, J.-S. Lee, Short-term plasticity and long-term potentiation in artificial biosynapses with diffusive dynamics. ACS Nano 12, 1680–1687 (2018). https://doi.org/10.1021/acsnano.7b08331
- D. Kim, J.-S. Lee, Neurotransmitter-induced excitatory and inhibitory functions in artificial synapses. Adv. Funct. Mater. 32, 2200497 (2022). https://doi.org/10.1002/adfm.202200497
- Y.-B. Leng, Y.-Q. Zhang, Z. Lv, J. Wang, T. Xie et al., Recent progress in multiterminal memristors for neuromorphic applications. Adv. Electron. Mater. 9, 2300108 (2023). https://doi.org/10.1002/aelm.202300108
- H. Cho, D. Lee, K. Ko, D.-Y. Lin, H. Lee et al., Double-floating-gate van der Waals transistor for high-precision synaptic operations. ACS Nano 17, 7384–7393 (2023). https://doi.org/10.1021/acsnano.2c11538
- W. Li, J. Li, Y. Chen, Z. Chen, W. Li et al., Demonstration of nonvolatile storage and synaptic functions in all-two-dimensional floating-gate transistors based on MoS2 channels. ACS Appl. Electron. Mater. 5, 4354–4362 (2023). https://doi.org/10.1021/acsaelm.3c00595
- H.-Y. Huang, C. Ge, Q.-H. Zhang, C.-X. Liu, J.-Y. Du et al., Electrolyte-gated synaptic transistor with oxygen ions. Adv. Funct. Mater. 29, 1902702 (2019). https://doi.org/10.1002/adfm.201902702
- M.-K. Kim, J.-S. Lee, Ferroelectric analog synaptic transistors. Nano Lett. 19, 2044–2050 (2019). https://doi.org/10.1021/acs.nanolett.9b00180
- E. Li, X. Wu, Q. Chen, S. Wu, L. He et al., Nanoscale channel organic ferroelectric synaptic transistor array for high recognition accuracy neuromorphic computing. Nano Energy 85, 106010 (2021). https://doi.org/10.1016/j.nanoen.2021.106010
- H. Li, X. Jiang, W. Ye, H. Zhang, L. Zhou et al., Fully photon modulated heterostructure for neuromorphic computing. Nano Energy 65, 104000 (2019). https://doi.org/10.1016/j.nanoen.2019.104000
- W.C. Abraham, Metaplasticity: tuning synapses and networks for plasticity. Nat. Rev. Neurosci. 9, 387 (2008). https://doi.org/10.1038/nrn2356
- K. Lee, J. Lee, R.D. Nikam, S. Heo, H. Hwang, Sodium-based nano-ionic synaptic transistor with improved retention characteristics. Nanotechnology 31, 455204 (2020). https://doi.org/10.1088/1361-6528/abaa0e
- Y. Sun, L. Qian, D. Xie, Y. Lin, M. Sun et al., Photoelectric synaptic plasticity realized by 2D perovskite. Adv. Funct. Mater. 29, 1902538 (2019). https://doi.org/10.1002/adfm.201902538
- H.-G. Hwang, Y. Pyo, J.-U. Woo, I.-S. Kim, S.-W. Kim et al., Engineering synaptic plasticity through the control of oxygen vacancy concentration for the improvement of learning accuracy in a Ta2O5 memristor. J. Alloys Compd. 902, 163764 (2022). https://doi.org/10.1016/j.jallcom.2022.163764
- H. Lee, M. Jin, H.-J. Na, C. Im, J.H. Lee et al., Implementation of synaptic device using ultraviolet ozone treated water-in-bisalt/polymer electrolyte-gated transistor. Adv. Funct. Mater. 32, 2110591 (2022). https://doi.org/10.1002/adfm.202110591
- S. Oh, S. Jung, M.H. Ali, J.-H. Kim, H. Kim et al., Highly stable artificial synapse consisting of low-surface defect van der Waals and self-assembled materials. ACS Appl. Mater. Interfaces 12, 38299–38305 (2020). https://doi.org/10.1021/acsami.0c07394
- J. Bak, S. Kim, K. Park, J. Yoon, M. Yang et al., Reinforcing synaptic plasticity of defect-tolerant states in alloyed 2D artificial transistors. ACS Appl. Mater. Interfaces 15(33), 39539–39549 (2023). https://doi.org/10.1021/acsami.3c07578
- C. Pan, C.-Y. Wang, S.-J. Liang, Y. Wang, T. Cao et al., Reconfigurable logic and neuromorphic circuits based on electrically tunable two-dimensional homojunctions. Nat. Electron. 3, 383–390 (2020). https://doi.org/10.1038/s41928-020-0433-9
- M. Li, Z. Liu, Y. Sun, Y. Ding, H. Chen et al., Tailoring neuroplasticity in a ferroelectric-gated multi-terminal synaptic transistor by Bi-directional modulation for improved pattern edge recognition. Adv. Funct. Mater. 33, 2307986 (2023). https://doi.org/10.1002/adfm.202307986
- Z. Zhang, S. Wang, C. Liu, R. Xie, W. Hu et al., All-in-one two-dimensional retinomorphic hardware device for motion detection and recognition. Nat. Nanotechnol. 17, 27–32 (2022). https://doi.org/10.1038/s41565-021-01003-1
- X. Huang, Q. Li, W. Shi, K. Liu, Y. Zhang et al., Dual-mode learning of ambipolar synaptic phototransistor based on 2D perovskite/organic heterojunction for flexible color recognizable visual system. Small 17, e2102820 (2021). https://doi.org/10.1002/smll.202102820
- Y. Sun, M. Li, Y. Ding, H. Wang, H. Wang et al., Programmable van-der-Waals heterostructure-enabled optoelectronic synaptic floating-gate transistors with ultra-low energy consumption. InfoMat 4, e12317 (2022). https://doi.org/10.1002/inf2.12317
- Y. Sun, Y. Ding, D. Xie, J. Xu, M. Sun et al., Optogenetics-inspired neuromorphic optoelectronic synaptic transistors with optically modulated plasticity. Adv. Opt. Mater. 9, 2002232 (2021). https://doi.org/10.1002/adom.202002232
- Y. Kim, A. Chortos, W. Xu, Y. Liu, J.Y. Oh et al., A bioinspired flexible organic artificial afferent nerve. Science 360, 998–1003 (2018). https://doi.org/10.1126/science.aao0098
- Y. Zhu, Y. He, C. Chen, L. Zhu, C. Wan et al., IGZO-based neuromorphic transistors with temperature-dependent synaptic plasticity and spiking logics. Sci. China Inf. Sci. 65, 162401 (2022). https://doi.org/10.1007/s11432-021-3326-6
- Y. Choi, S. Oh, C. Qian, J.-H. Park, J.H. Cho, Vertical organic synapse expandable to 3D crossbar array. Nat. Commun. 11, 4595 (2020). https://doi.org/10.1038/s41467-020-17850-w
- T. Mikolajick, M.H. Park, L. Begon-Lours, S. Slesazeck, From ferroelectric material optimization to neuromorphic devices. Adv. Mater. 35, 2206042 (2023). https://doi.org/10.1002/adma.202206042
- M. Xu, X. Mai, J. Lin, W. Zhang, Y. Li et al., Recent advances on neuromorphic devices based on chalcogenide phase-change materials. Adv. Funct. Mater. 30(50), 2003419 (2020). https://doi.org/10.1002/adfm.202003419
- Q. Zhang, Z. Zhang, C. Li, R. Xu, D. Yang et al., Van der Waals materials-based floating gate memory for neuromorphic computing. Chip 2, 100059 (2023). https://doi.org/10.1016/j.chip.2023.100059
- X. Lin, Y. Li, Y. Lei, Q. Sun, Electric-double-layer-gated 2D transistors for bioinspired sensors and neuromorphic devices. Int. J. Smart Nano Mater. 15, 238–259 (2024). https://doi.org/10.1080/19475411.2024.2306837
- M. Song, Y. Sun, Z. Liu, B. Wei, H. Wang et al., Threshold voltage control of carbon nanotube-based synaptic transistors via chemical doping for plasticity modulation and symmetry improvement. Carbon 184, 295–302 (2021). https://doi.org/10.1016/j.carbon.2021.08.020
- N. He, Q. Yuan, Y. Wang, Y. Sun, D. Wen, Inverter and ternary content-addressable memory based on carbon nanotube transistors using chemical doping strategy. Adv. Electron. Mater. 8, 2200424 (2022). https://doi.org/10.1002/aelm.202200424
- W. Li, J. Huang, B. Han, C. Xie, X. Huang et al., Molten-salt-assisted chemical vapor deposition process for substitutional doping of monolayer MoS2 and effectively altering the electronic structure and phononic properties. Adv. Sci. 7, 2001080 (2020). https://doi.org/10.1002/advs.202001080
- H. Geng, M. Cheng, B. Wang, Y. Yang, Y. Zhang et al., Electronic structure regulation of layered vanadium oxide via interlayer doping strategy toward superior high-rate and low-temperature zinc-ion batteries. Adv. Funct. Mater. 30, 1907684 (2020). https://doi.org/10.1002/adfm.201907684
- Q. Liu, S. Zeiske, X. Jiang, D. Desta, S. Mertens et al., Electron-donating amine-interlayer induced n-type doping of polymer: nonfullerene blends for efficient narrowband near-infrared photo-detection. Nat. Commun. 13, 5194 (2022). https://doi.org/10.1038/s41467-022-32845-5
- H. Huang, L. Wang, Y. Lv, X. Liu, X. Zhao et al., High-performance WSe2 n-type field-effect transistors enabled by InOx damage-free doping. IEEE Electron Device Lett. 42, 1081–1084 (2021). https://doi.org/10.1109/LED.2021.3082140
- L. Loh, Z. Zhang, M. Bosman, G. Eda, Substitutional doping in 2D transition metal dichalcogenides. Nano Res. 14, 1668–1681 (2021). https://doi.org/10.1007/s12274-020-3013-4
- M. Cargnello, A.C. Johnston-Peck, B.T. Diroll, E. Wong, B. Datta et al., Substitutional doping in nanocrystal superlattices. Nature 524, 450–453 (2015). https://doi.org/10.1038/nature14872
- J. Suh, T.L. Tan, W. Zhao, J. Park, D.-Y. Lin et al., Reconfiguring crystal and electronic structures of MoS2 by substitutional doping. Nat. Commun. 9, 199 (2018). https://doi.org/10.1038/s41467-017-02631-9
- X. Zhang, Z. Shao, X. Zhang, Y. He, J. Jie, Surface charge transfer doping of low-dimensional nanostructures toward high-performance nanodevices. Adv. Mater. 28, 10409–10442 (2016). https://doi.org/10.1002/adma.201601966
- S. Xiong, Y. Dai, J. Yang, W. Xiao, D. Li et al., Surface charge-transfer doping for highly efficient perovskite solar cells. Nano Energy 79, 105505 (2021). https://doi.org/10.1016/j.nanoen.2020.105505
- Y. Gong, H. Yuan, C.-L. Wu, P. Tang, S.-Z. Yang et al., Spatially controlled doping of two-dimensional SnS2 through intercalation for electronics. Nat. Nanotechnol. 13, 294–299 (2018). https://doi.org/10.1038/s41565-018-0069-3
- J. Zhou, Z. Lin, H. Ren, X. Duan, I. Shakir et al., Layered intercalation materials. Adv. Mater. 33, 2004557 (2021). https://doi.org/10.1002/adma.202004557
- C. Zhou, Y. Yu, X. Zhang, Y. Cheng, J. Xu et al., Cu intercalation and Br doping to thermoelectric SnSe2 lead to ultrahigh electron mobility and temperature-independent power factor. Adv. Funct. Mater. 30, 1908405 (2020). https://doi.org/10.1002/adfm.201908405
- A. Azcatl, X. Qin, A. Prakash, C. Zhang, L. Cheng et al., Covalent nitrogen doping and compressive strain in MoS2 by remote N2 plasma exposure. Nano Lett. 16, 5437–5443 (2016). https://doi.org/10.1021/acs.nanolett.6b01853
- J. Zou, Z. Cai, Y. Lai, J. Tan, R. Zhang et al., Doping concentration modulation in vanadium-doped monolayer molybdenum disulfide for synaptic transistors. ACS Nano 15, 7340–7347 (2021). https://doi.org/10.1021/acsnano.1c00596
- Y. Wang, Y. Zheng, C. Han, W. Chen, Surface charge transfer doping for two-dimensional semiconductor-based electronic and optoelectronic devices. Nano Res. 14, 1682–1697 (2021). https://doi.org/10.1007/s12274-020-2919-1
- A. Nipane, D. Karmakar, N. Kaushik, S. Karande, S. Lodha, Few-layer MoS2 p-type devices enabled by selective doping using low energy phosphorus implantation. ACS Nano 10, 2128–2137 (2016). https://doi.org/10.1021/acsnano.5b06529
- X. Liu, D. Qu, J. Ryu, F. Ahmed, Z. Yang et al., P-type polar transition of chemically doped multilayer MoS2 transistor. Adv. Mater. 28, 2345–2351 (2016). https://doi.org/10.1002/adma.201505154
- X. Liu, Y. Yuan, D. Qu, J. Sun, Ambipolar MoS2 field-effect transistor by spatially controlled chemical doping. Phys. Status Solidi RRL 13, 1900208 (2019). https://doi.org/10.1002/pssr.201900208
- Y. Li, H. Yan, B. Xu, L. Zhen, C.-Y. Xu, Electrochemical intercalation in atomically thin van der Waals materials for structural phase transition and device applications. Adv. Mater. 33, e2000581 (2021). https://doi.org/10.1002/adma.202000581
- J. Zhu, Y. Yang, R. Jia, Z. Liang, W. Zhu et al., Ion gated synaptic transistors based on 2D van der Waals crystals with tunable diffusive dynamics. Adv. Mater. 30, e1800195 (2018). https://doi.org/10.1002/adma.201800195
- Y. Park, M.-K. Kim, J.-S. Lee, Ion-gating synaptic transistors with long-term synaptic weight modulation. J. Mater. Chem. C 9, 5396–5402 (2021). https://doi.org/10.1039/D1TC00048A
- J.H. Baek, K.J. Kwak, S.J. Kim, J. Kim, J.Y. Kim et al., Two-terminal lithium-mediated artificial synapses with enhanced weight modulation for feasible hardware neural networks. Nano-Micro Lett. 15, 69 (2023). https://doi.org/10.1007/s40820-023-01035-3
- Y. Du, X. Wang, J. Sun, Tunable oxygen vacancy concentration in vanadium oxide as mass-produced cathode for aqueous zinc-ion batteries. Nano Res. 14, 754–761 (2021). https://doi.org/10.1007/s12274-020-3109-x
- Y. Tian, X. Liu, L. Xu, D. Yuan, Y. Dou et al., Engineering crystallinity and oxygen vacancies of co(II) oxide nanosheets for high performance and robust rechargeable Zn–air batteries. Adv. Funct. Mater. 31, 2101239 (2021). https://doi.org/10.1002/adfm.202101239
- B. Wang, J. Liu, S. Yao, F. Liu, Y. Li et al., Vacancy engineering in nanostructured semiconductors for enhancing photocatalysis. J. Mater. Chem. A 9, 17143–17172 (2021). https://doi.org/10.1039/d1ta03895h
- Y. Liu, C. Xiao, Z. Li, Y. Xie, Vacancy engineering for tuning electron and phonon structures of two-dimensional materials. Adv. Energy Mater. 6, 1600436 (2016). https://doi.org/10.1002/aenm.201600436
- Z. Wu, Y. Zhao, W. Jin, B. Jia, J. Wang et al., Recent progress of vacancy engineering for electrochemical energy conversion related applications. Adv. Funct. Mater. 31, 2009070 (2021). https://doi.org/10.1002/adfm.202009070
- Q. Gao, W. Luo, X. Ma, Z. Ma, S. Li et al., Electronic modulation and vacancy engineering of Ni9S8 to synergistically boost efficient water splitting: active vacancy-metal pairs. Appl. Catal. B-Environ. 310, 121356 (2022). https://doi.org/10.1016/j.apcatb.2022.121356
- Y. Zhang, Z. Wang, J. Zhu, Y. Yang, M. Rao et al., Brain-inspired computing with memristors: challenges in devices, circuits, and systems. Appl. Phys. Rev. 7, 011308 (2020). https://doi.org/10.1063/1.5124027
- G. Di Martino, A. Demetriadou, W. Li, D. Kos, B. Zhu et al., Real-time in situ optical tracking of oxygen vacancy migration in memristors. Nat. Electron. 3, 687–693 (2020). https://doi.org/10.1038/s41928-020-00478-5
- H. Tan, S. Majumdar, Q. Qin, J. Lahtinen, S. Dijken, Mimicking neurotransmitter release and long-term plasticity by oxygen vacancy migration in a tunnel junction memristor. Adv. Intelligent Syst. 1, 1900036 (2019). https://doi.org/10.1002/aisy.201900036
- Y. Zhang, G.-Q. Mao, X. Zhao, Y. Li, M. Zhang et al., Evolution of the conductive filament system in HfO2-based memristors observed by direct atomic-scale imaging. Nat. Commun. 12, 7232 (2021). https://doi.org/10.1038/s41467-021-27575-z
- V. Humbert, R. El Hage, G. Krieger, G. Sanchez-Santolino, A. Sander et al., An oxygen vacancy memristor ruled by electron correlations. Adv. Sci. 9, e2201753 (2022). https://doi.org/10.1002/advs.202201753
- J. Jiang, T. Xu, J. Lu, L. Sun, Z. Ni, Defect engineering in 2D materials: precise manipulation and improved functionalities. Research 2019, 4641739 (2019). https://doi.org/10.34133/2019/4641739
- F. Bai, L. Xu, X. Zhai, X. Chen, W. Yang, Vacancy in ultrathin 2D nanomaterials toward sustainable energy application. Adv. Energy Mater. 10, 1902107 (2020). https://doi.org/10.1002/aenm.201902107
- Z. Qin, K. Xu, H. Yue, H. Wang, J. Zhang et al., Enhanced room-temperature NH3 gas sensing by 2D SnS2 with sulfur vacancies synthesized by chemical exfoliation. Sens. Actuat. B Chem. 262, 771–779 (2018). https://doi.org/10.1016/j.snb.2018.02.060
- J. Kim, C. Im, C. Lee, J. Hwang, H. Jang et al., Solvent-assisted sulfur vacancy engineering method in MoS2 for a neuromorphic synaptic memristor. Nanoscale Horiz. 8, 1417–1427 (2023). https://doi.org/10.1039/d3nh00201b
- S.J. Kim, T.H. Lee, J.-M. Yang, J.W. Yang, Y.J. Lee et al., Vertically aligned two-dimensional halide perovskites for reliably operable artificial synapses. Mater. Today 52, 19–30 (2022). https://doi.org/10.1016/j.mattod.2021.10.035
- X. Hou, T. Jin, Y. Zheng, W. Chen, Atomic-scale interface engineering for two-dimensional materials based field-effect transistors. SmartMat (2023). https://doi.org/10.1002/smm2.1236
- S. Banerjee, J. Luginsland, P. Zhang, Interface engineering of electrical contacts. Phys. Rev. Applied 15, 064048 (2021). https://doi.org/10.1103/physrevapplied.15.064048
- Z. Yu, Y. Pan, Y. Shen, Z. Wang, Z.-Y. Ong et al., Towards intrinsic charge transport in monolayer molybdenum disulfide by defect and interface engineering. Nat. Commun. 5, 5290 (2014). https://doi.org/10.1038/ncomms6290
- B. Zheng, C. Ma, D. Li, J. Lan, Z. Zhang et al., Band alignment engineering in two-dimensional lateral heterostructures. J. Am. Chem. Soc. 140, 11193–11197 (2018). https://doi.org/10.1021/jacs.8b07401
- Q. Li, Q. Zhou, L. Shi, Q. Chen, J. Wang, Recent advances in oxidation and degradation mechanisms of ultrathin 2D materials under ambient conditions and their passivation strategies. J. Mater. Chem. A 7, 4291–4312 (2019). https://doi.org/10.1039/c8ta10306b
- A. Favron, E. Gaufrès, F. Fossard, A.-L. Phaneuf-L’Heureux, N.Y.-W. Tang et al., Photooxidation and quantum confinement effects in exfoliated black phosphorus. Nat. Mater. 14, 826–832 (2015). https://doi.org/10.1038/nmat4299
- Q. Zhou, Q. Chen, Y. Tong, J. Wang, Light-induced ambient degradation of few-layer black phosphorus: mechanism and protection. Angew. Chem. Int. Ed. 55, 11437–11441 (2016). https://doi.org/10.1002/anie.201605168
- J. Pei, X. Gai, J. Yang, X. Wang, Z. Yu et al., Producing air-stable monolayers of phosphorene and their defect engineering. Nat. Commun. 7, 10450 (2016). https://doi.org/10.1038/ncomms10450
- T. Ahmed, M. Tahir, M.X. Low, Y. Ren, S.A. Tawfik et al., Fully light-controlled memory and neuromorphic computation in layered black phosphorus. Adv. Mater. 33, e2004207 (2021). https://doi.org/10.1002/adma.202004207
- S. Seo, S.H. Jo, S. Kim, J. Shim, S. Oh et al., Artificial optic-neural synapse for colored and color-mixed pattern recognition. Nat. Commun. 9, 5106 (2018). https://doi.org/10.1038/s41467-018-07572-5
- Y. Chen, Y. Wang, Z. Wang, Y. Gu, Y. Ye et al., Unipolar barrier photodetectors based on van der Waals heterostructures. Nat. Electron. 4, 357–363 (2021). https://doi.org/10.1038/s41928-021-00586-w
- Y. Sun, Y. Ding, D. Xie, M. Sun, J. Xu et al., Reconfigurable optical memory based on MoS2/QDs mixed-dimensional van der Waals heterostructure. 2D Mater. 8, 025021 (2021). https://doi.org/10.1088/2053-1583/abd90a
- M. Farronato, P. Mannocci, M. Melegari, S. Ricci, C.M. Compagnoni et al., Reservoir computing with charge-trap memory based on a MoS2 channel for neuromorphic engineering. Adv. Mater. 35, e2205381 (2023). https://doi.org/10.1002/adma.202205381
- T. Zhao, C. Zhao, W. Xu, Y. Liu, H. Gao et al., Bio-inspired photoelectric artificial synapse based on two-dimensional Ti3C2Tx mxenes floating gate. Adv. Funct. Mater. 31(45), 2106000 (2021). https://doi.org/10.1002/adfm.202106000
- Y. Cao, A. Rushforth, Y. Sheng, H. Zheng, K. Wang, Tuning a binary ferromagnet into a multistate synapse with spin–orbit-torque-induced plasticity. Adv. Funct. Mater. 29, 1808104 (2019). https://doi.org/10.1002/adfm.201808104
- L. Liu, W. Xiong, Y. Liu, K. Chen, Z. Xu et al., Designing high-performance storage in HfO2/BiFeO3 memristor for artificial synapse applications. Adv. Electron. Mater. 6, 1901012 (2020). https://doi.org/10.1002/aelm.201901012
- I. Kupfermann, Modulatory actions of neurotransmitters. Annu. Rev. Neurosci. 2, 447–465 (1979). https://doi.org/10.1146/annurev.ne.02.030179.002311
- K.R. Weiss, E. Shapiro, I. Kupfermann, Modulatory synaptic actions of an identified histaminergic neuron on the serotonergic metacerebral cell of Aplysia. J. Neurosci. 6, 2393–2402 (1986). https://doi.org/10.1523/JNEUROSCI.06-08-02393.1986
- K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang et al., Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004). https://doi.org/10.1126/science.1102896
- Q.H. Wang, K. Kalantar-Zadeh, A. Kis, J.N. Coleman, M.S. Strano, Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 7, 699–712 (2012). https://doi.org/10.1038/nnano.2012.193
- T. Knobloch, Y.Y. Illarionov, F. Ducry, C. Schleich, S. Wachter et al., The performance limits of hexagonal boron nitride as an insulator for scaled CMOS devices based on two-dimensional materials. Nat. Electron. 4, 98–108 (2021). https://doi.org/10.1038/s41928-020-00529-x
- R. Wu, Q. Tao, W. Dang, Y. Liu, B. Li et al., Van der Waals epitaxial growth of atomically thin 2D metals on dangling-bond-free WSe2 and WS2. Adv. Funct. Mater. 29, 1806611 (2019). https://doi.org/10.1002/adfm.201806611
- A.K. Geim, I.V. Grigorieva, Van der Waals heterostructures. Nature 499, 419–425 (2013). https://doi.org/10.1038/nature12385
- L. Liu, C. Liu, L. Jiang, J. Li, Y. Ding et al., Ultrafast non-volatile flash memory based on van der Waals heterostructures. Nat. Nanotechnol. 16, 874–881 (2021). https://doi.org/10.1038/s41565-021-00921-4
- Z. Sheng, J. Dong, W. Hu, Y. Wang, H. Sun et al., Reconfigurable logic-in-memory computing based on a polarity-controllable two-dimensional transistor. Nano Lett. 23, 5242–5249 (2023). https://doi.org/10.1021/acs.nanolett.3c01248
- S.-Y. Min, W.-J. Cho, CMOS-compatible synaptic transistor gated by chitosan electrolyte-Ta2O5 hybrid electric double layer. Sci. Rep. 10, 15561 (2020). https://doi.org/10.1038/s41598-020-72684-2
- Z. Lv, M. Chen, F. Qian, V.A.L. Roy, W. Ye et al., Mimicking neuroplasticity in a hybrid biopolymer transistor by dual modes modulation. Adv. Funct. Mater. 29, 1902374 (2019). https://doi.org/10.1002/adfm.201902374
- M. Ba, M. Erouel, S. Mansouri, L. Chouiref, M. Jdir et al., Channel length effect of P3HT: ZnO hybrid blend layer on electrical characteristics of thin-film transistors. Sens. Actuat. A Phys. 359, 114470 (2023). https://doi.org/10.1016/j.sna.2023.114470
- F. Zhang, H. Zhang, L. Zhu, L. Qin, Y. Wang et al., Two-dimensional organic–inorganic hybrid perovskite field-effect transistors with polymers as bottom-gate dielectrics. J. Mater. Chem. C 7, 4004–4012 (2019). https://doi.org/10.1039/c8tc06249h
- I.Y. Jo, J.-G. Park, J.-H. Moon, J.Y. Jung, D.E. Kim et al., Low-voltage-operating complementary-like circuits using ambipolar organic-inorganic hybrid thin-film transistors with solid-state-electrolyte gate insulator. Org. Electron. 75, 105358 (2019). https://doi.org/10.1016/j.orgel.2019.07.016
- K.S. Jung, K. Heo, M.J. Kim, M. Andreev, S. Seo et al., Double negative differential resistance device based on hafnium disulfide/pentacene hybrid structure. Adv. Sci. 7, 2000991 (2020). https://doi.org/10.1002/advs.202000991
- C. Jiang, J. Liu, L. Yang, J. Gong, H. Wei et al., A flexible artificial sensory nerve enabled by nanop-assembled synaptic devices for neuromorphic tactile recognition. Adv. Sci. 9, e2106124 (2022). https://doi.org/10.1002/advs.202106124
- K.S. Severson, D. Xu, M. Van de Loo, L. Bai, D.D. Ginty et al., Active touch and self-motion encoding by merkel cell-associated afferents. Neuron 94, 666-676.e9 (2017). https://doi.org/10.1016/j.neuron.2017.03.045
- Y.R. Lee, T.Q. Trung, B.U. Hwang, N.E. Lee, A flexible artificial intrinsic-synaptic tactile sensory organ. Nat. Commun. 11, 2753 (2020). https://doi.org/10.1038/s41467-020-16606-w
- L. Mao, Neuromorphic sensing: a new breed of intelligent sensors. ACS Sens. 8, 2896–2897 (2023). https://doi.org/10.1021/acssensors.3c01608
- M. Zeng, Y. He, C. Zhang, Q. Wan, Neuromorphic devices for bionic sensing and perception. Front. Neurosci. 15, 690950 (2021). https://doi.org/10.3389/fnins.2021.690950
- T. Sarkar, K. Lieberth, A. Pavlou, T. Frank, V. Mailaender et al., An organic artificial spiking neuron for in situ neuromorphic sensing and biointerfacing. Nat. Electron. 5, 774–783 (2022). https://doi.org/10.1038/s41928-022-00859-y
- M. Lee, W. Lee, S. Choi, J.W. Jo, J. Kim et al., Brain-inspired photonic neuromorphic devices using photodynamic amorphous oxide semiconductors and their persistent photoconductivity. Adv. Mater. 29, 1700951 (2017). https://doi.org/10.1002/adma.201700951
- L. Yin, W. Huang, R. Xiao, W. Peng, Y. Zhu et al., Optically stimulated synaptic devices based on the hybrid structure of silicon nanomembrane and perovskite. Nano Lett. 20, 3378–3387 (2020). https://doi.org/10.1021/acs.nanolett.0c00298
- K. Wang, S. Dai, Y. Zhao, Y. Wang, C. Liu et al., Light-stimulated synaptic transistors fabricated by a facile solution process based on inorganic perovskite quantum dots and organic semiconductors. Small 15, e1900010 (2019). https://doi.org/10.1002/smll.201900010
- F. Huang, F. Fang, Y. Zheng, Q. You, H. Li et al., Visible-light stimulated synaptic plasticity in amorphous indium-gallium-zinc oxide enabled by monocrystalline double perovskite for high-performance neuromorphic applications. Nano Res. 16, 1304–1312 (2023). https://doi.org/10.1007/s12274-022-4806-4
- C. Han, X. Han, J. Han, M. He, S. Peng et al., Light-stimulated synaptic transistor with high PPF feature for artificial visual perception system application. Adv. Funct. Mater. 32, 2113053 (2022). https://doi.org/10.1002/adfm.202113053
- Y. Ran, W. Lu, X. Wang, Z. Qin, X. Qin et al., High-performance asymmetric electrode structured light-stimulated synaptic transistor for artificial neural networks. Mater. Horiz. 10, 4438–4451 (2023). https://doi.org/10.1039/D3MH00775H
- Y. Sun, Y. Ding, D. Xie, Mixed-dimensional van der Waals heterostructures enabled optoelectronic synaptic devices for neuromorphic applications. Adv. Funct. Mater. 31(47), 2105625 (2021). https://doi.org/10.1002/adfm.202105625
- S.W. Cho, C. Jo, Y.-H. Kim, S.K. Park, Progress of materials and devices for neuromorphic vision sensors. Nano-Micro Lett. 14, 203 (2022). https://doi.org/10.1007/s40820-022-00945-y
- X. Zhu, W.D. Lu, Optogenetics-inspired tunable synaptic functions in memristors. ACS Nano 12, 1242–1249 (2018). https://doi.org/10.1021/acsnano.7b07317
- H. Fang, W. Hu, Photogating in low dimensional photodetectors. Adv. Sci. 4, 1700323 (2017). https://doi.org/10.1002/advs.201700323
- J. Shin, H. Yoo, Photogating effect-driven photodetectors and their emerging applications. Nanomaterials 13, 882 (2023). https://doi.org/10.3390/nano13050882
- M. Kumar, R. Singh, H. Kang, S. Kim, H. Seo, An artificial piezotronic synapse for tactile perception. Nano Energy 73, 104756 (2020). https://doi.org/10.1016/j.nanoen.2020.104756
- Y. Wu, Y. Liu, Y. Zhou, Q. Man, C. Hu et al., A skin-inspired tactile sensor for smart prosthetics. Sci. Robot. 3, 0429 (2018). https://doi.org/10.1126/scirobotics.aat0429
- B.C. Tee, A. Chortos, A. Berndt, A.K. Nguyen, A. Tom et al., A skin-inspired organic digital mechanoreceptor. Science 350, 313–316 (2015). https://doi.org/10.1126/science.aaa9306
- A. Chortos, J. Liu, Z. Bao, Pursuing prosthetic electronic skin. Nat. Mater. 15, 937–950 (2016). https://doi.org/10.1038/nmat4671
- M.A. McEvoy, N. Correll, Materials science. Materials that couple sensing, actuation, computation, and communication. Science 347, 1261689 (2015). https://doi.org/10.1126/science.1261689
- Y. Zang, F. Zhang, C.-A. Di, D. Zhu, Advances of flexible pressure sensors toward artificial intelligence and health care applications. Mater. Horiz. 2, 140–156 (2015). https://doi.org/10.1039/C4MH00147H
- Q. Shi, B. Dong, T. He, Z. Sun, J. Zhu et al., Progress in wearable electronics/photonics—moving toward the era of artificial intelligence and Internet of Things. InfoMat 2, 1131–1162 (2020). https://doi.org/10.1002/inf2.12122
- Y. Lee, J. Park, A. Choe, S. Cho, J. Kim et al., Mimicking human and biological skins for multifunctional skin electronics. Adv. Funct. Mater. 30, 1904523 (2020). https://doi.org/10.1002/adfm.201904523
- C. Wan, P. Cai, M. Wang, Y. Qian, W. Huang et al., Artificial sensory memory. Adv. Mater. 32, 1902434 (2020). https://doi.org/10.1002/adma.201902434
- X. Han, Y. Zhang, Z. Huo, X. Wang, G. Hu et al., A two-terminal optoelectronic synapses array based on the ZnO/Al2O3/CdS heterojunction with strain-modulated synaptic weight. Adv. Electron. Mater. 9, 2201068 (2023). https://doi.org/10.1002/aelm.202201068
- Y. Chen, G. Gao, J. Zhao, H. Zhang, J. Yu et al., Piezotronic graphene artificial sensory synapse. Adv. Funct. Mater. 29, 1900959 (2019). https://doi.org/10.1002/adfm.201900959
- H. Shim, F. Ershad, S. Patel, Y. Zhang, B. Wang et al., An elastic and reconfigurable synaptic transistor based on a stretchable bilayer semiconductor. Nat. Electron. 5, 660–671 (2022). https://doi.org/10.1038/s41928-022-00836-5
- J. Du, H. Yu, B. Liu, M. Hong, Q. Liao et al., Strain engineering in 2D material-based flexible optoelectronics. Small Methods 5, e2000919 (2021). https://doi.org/10.1002/smtd.202000919
- T. Monteiro, F.S. Rodrigues, M. Pexirra, B.F. Cruz, A.I. Gonçalves et al., Using temperature to analyze the neural basis of a time-based decision. Nat. Neurosci. 26, 1407–1416 (2023). https://doi.org/10.1038/s41593-023-01378-5
- K. Shibasaki, M. Suzuki, A. Mizuno, M. Tominaga, Effects of body temperature on neural activity in the hippocampus: regulation of resting membrane potentials by transient receptor potential vanilloid 4. J. Neurosci. 27(7), 1566–1575 (2007). https://doi.org/10.1523/jneurosci.4284-06.2007
- J.C. Montgomery, J.A. MacDonald, Effects of temperature on nervous system: implications for behavioral performance. Am. J. Physiol. Regul. Integr. Comp. Physiol. 259, R191–R196 (1990). https://doi.org/10.1152/ajpregu.1990.259.2.r191
- M.J. Van Hook, Temperature effects on synaptic transmission and neuronal function in the visual thalamus. PLoS ONE 15, e0232451 (2020). https://doi.org/10.1371/journal.pone.0232451
- F.F. Weight, S.D. Erulkar, Synaptic transmission and effects of temperature at the squid giant synapse. Nature 261, 720–722 (1976). https://doi.org/10.1038/261720a0
- A. Mahanty, G.K. Purohit, S. Banerjee, D. Karunakaran, S. Mohanty et al., Proteomic changes in the liver of Channa striatus in response to high temperature stress. Electrophoresis 37, 1704–1717 (2016). https://doi.org/10.1002/elps.201500393
- E. Li, W. Lin, Y. Yan, H. Yang, X. Wang et al., Synaptic transistor capable of accelerated learning induced by temperature-facilitated modulation of synaptic plasticity. ACS Appl. Mater. Interfaces 11, 46008–46016 (2019). https://doi.org/10.1021/acsami.9b17227
- T. Sakanoue, H. Sirringhaus, Band-like temperature dependence of mobility in asolution-processed organic semiconductor. Nat. Mater. 9, 736–740 (2010). https://doi.org/10.1038/nmat2825
- Y. Sun, D. Xie, X. Zhang, J. Xu, X. Li et al., Temperature-dependent transport and hysteretic behaviors induced by interfacial states in MoS2 field-effect transistors with lead-zirconate-titanate ferroelectric gating. Nanotechnology 28, 045204 (2017). https://doi.org/10.1088/1361-6528/28/4/045204
- Y. Deng, M. Zhao, Y. Ma, S. Liu, M. Liu et al., A flexible and biomimetic olfactory synapse with gasotransmitter-mediated plasticity. Adv. Funct. Mater. 33, 2214139 (2023). https://doi.org/10.1002/adfm.202214139
- M. Li, J. Deng, X. Wang, S. Shao, X. Li et al., Flexible printed single-walled carbon nanotubes olfactory synaptic transistors with crosslinked poly(4-vinylphenol) as dielectrics. Flexible Printed Electronics 6, 034001 (2021). https://doi.org/10.1088/2058-8585/abee2d
- X. Chen, T. Wang, J. Shi, W. Lv, Y. Han et al., A novel artificial neuron-like gas sensor constructed from CuS quantum dots/Bi2S3 nanosheets. Nano-Micro Lett. 14, 8 (2021). https://doi.org/10.1007/s40820-021-00740-1
- M.U.K. Sadaf, N.U. Sakib, A. Pannone, H. Ravichandran, S. Das, A bio-inspired visuotactile neuron for multisensory integration. Nat. Commun. 14, 5729 (2023). https://doi.org/10.1038/s41467-023-40686-z
References
S. Wang, D.W. Zhang, P. Zhou, Two-dimensional materials for synaptic electronics and neuromorphic systems. Sci. Bull. 64, 1056–1066 (2019). https://doi.org/10.1016/j.scib.2019.01.016
Q. Wan, M.T. Sharbati, J.R. Erickson, Y. Du, F. Xiong, Emerging artificial synaptic devices for neuromorphic computing. Adv. Mater. Technol. 4, 1900037 (2019). https://doi.org/10.1002/admt.201900037
K. Lu, X. Li, Q. Sun, X. Pang, J. Chen et al., Solution-processed electronics for artificial synapses. Mater. Horiz. 8, 447–470 (2021). https://doi.org/10.1039/d0mh01520b
L. Sun, W. Wang, H. Yang, Recent progress in synaptic devices based on 2D materials. Adv. Intell. Syst. 2, 1900167 (2020). https://doi.org/10.1002/aisy.201900167
G. Cao, P. Meng, J. Chen, H. Liu, R. Bian et al., 2D material based synaptic devices for neuromorphic computing. Adv. Funct. Mater. 31, 2005443 (2021). https://doi.org/10.1002/adfm.202005443
X. Zou, S. Xu, X. Chen, L. Yan, Y. Han, Breaking the von Neumann bottleneck: architecture-level processing-in-memory technology. Sci. China Inf. Sci. 64, 160404 (2021). https://doi.org/10.1007/s11432-020-3227-1
R. Pendurthi, D. Jayachandran, A. Kozhakhmetov, N. Trainor, J.A. Robinson et al., Heterogeneous integration of atomically thin semiconductors for non-von Neumann CMOS. Small 18, e2202590 (2022). https://doi.org/10.1002/smll.202202590
L.F. Abbott, S.B. Nelson, Synaptic plasticity: taming the beast. Nat. Neurosci. 3(Suppl), 1178–1183 (2000). https://doi.org/10.1038/81453
P. Yao, H. Wu, B. Gao, J. Tang, Q. Zhang et al., Fully hardware-implemented memristor convolutional neural network. Nature 577, 641–646 (2020). https://doi.org/10.1038/s41586-020-1942-4
K.-N. Kim, M.-J. Sung, H.-L. Park, T.-W. Lee, Organic synaptic transistors for bio-hybrid neuromorphic electronics. Adv. Electron. Mater. 8, 2100935 (2022). https://doi.org/10.1002/aelm.202100935
R. Yu, E. Li, X. Wu, Y. Yan, W. He et al., Electret-based organic synaptic transistor for neuromorphic computing. ACS Appl. Mater. Interfaces 12, 15446–15455 (2020). https://doi.org/10.1021/acsami.9b22925
S.J. Kim, S. Kim, H.W. Jang, Competing memristors for brain-inspired computing. iScience 24, 101889 (2021). https://doi.org/10.1016/j.isci.2020.101889
K.C. Kwon, J.H. Baek, K. Hong, S.Y. Kim, H.W. Jang, Memristive devices based on two-dimensional transition metal chalcogenides for neuromorphic computing. Nano Micro Lett. 14, 58 (2022). https://doi.org/10.1007/s40820-021-00784-3
H. Zhou, S. Li, K.-W. Ang, Y.-W. Zhang, Recent advances in In-memory computing: exploring memristor and memtransistor arrays with 2D materials. Nano Micro Lett. 16, 121 (2024). https://doi.org/10.1007/s40820-024-01335-2
Z. Wang, S. Joshi, S.E. Savel’ev, H. Jiang, R. Midya et al., Memristors with diffusive dynamics as synaptic emulators for neuromorphic computing. Nat. Mater. 16, 101–108 (2017). https://doi.org/10.1038/nmat4756
R.S. Zucker, W.G. Regehr, Short-term synaptic plasticity. Ann. Rev. Physiol. 64(1), 355–405 (2002). https://doi.org/10.1146/annurev.physiol.64.092501.114547
T.V.P. Bliss, G.L. Collingridge, A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361, 31–39 (1993). https://doi.org/10.1038/361031a0
M.-K. Kim, J.-S. Lee, Short-term plasticity and long-term potentiation in artificial biosynapses with diffusive dynamics. ACS Nano 12, 1680–1687 (2018). https://doi.org/10.1021/acsnano.7b08331
D. Kim, J.-S. Lee, Neurotransmitter-induced excitatory and inhibitory functions in artificial synapses. Adv. Funct. Mater. 32, 2200497 (2022). https://doi.org/10.1002/adfm.202200497
Y.-B. Leng, Y.-Q. Zhang, Z. Lv, J. Wang, T. Xie et al., Recent progress in multiterminal memristors for neuromorphic applications. Adv. Electron. Mater. 9, 2300108 (2023). https://doi.org/10.1002/aelm.202300108
H. Cho, D. Lee, K. Ko, D.-Y. Lin, H. Lee et al., Double-floating-gate van der Waals transistor for high-precision synaptic operations. ACS Nano 17, 7384–7393 (2023). https://doi.org/10.1021/acsnano.2c11538
W. Li, J. Li, Y. Chen, Z. Chen, W. Li et al., Demonstration of nonvolatile storage and synaptic functions in all-two-dimensional floating-gate transistors based on MoS2 channels. ACS Appl. Electron. Mater. 5, 4354–4362 (2023). https://doi.org/10.1021/acsaelm.3c00595
H.-Y. Huang, C. Ge, Q.-H. Zhang, C.-X. Liu, J.-Y. Du et al., Electrolyte-gated synaptic transistor with oxygen ions. Adv. Funct. Mater. 29, 1902702 (2019). https://doi.org/10.1002/adfm.201902702
M.-K. Kim, J.-S. Lee, Ferroelectric analog synaptic transistors. Nano Lett. 19, 2044–2050 (2019). https://doi.org/10.1021/acs.nanolett.9b00180
E. Li, X. Wu, Q. Chen, S. Wu, L. He et al., Nanoscale channel organic ferroelectric synaptic transistor array for high recognition accuracy neuromorphic computing. Nano Energy 85, 106010 (2021). https://doi.org/10.1016/j.nanoen.2021.106010
H. Li, X. Jiang, W. Ye, H. Zhang, L. Zhou et al., Fully photon modulated heterostructure for neuromorphic computing. Nano Energy 65, 104000 (2019). https://doi.org/10.1016/j.nanoen.2019.104000
W.C. Abraham, Metaplasticity: tuning synapses and networks for plasticity. Nat. Rev. Neurosci. 9, 387 (2008). https://doi.org/10.1038/nrn2356
K. Lee, J. Lee, R.D. Nikam, S. Heo, H. Hwang, Sodium-based nano-ionic synaptic transistor with improved retention characteristics. Nanotechnology 31, 455204 (2020). https://doi.org/10.1088/1361-6528/abaa0e
Y. Sun, L. Qian, D. Xie, Y. Lin, M. Sun et al., Photoelectric synaptic plasticity realized by 2D perovskite. Adv. Funct. Mater. 29, 1902538 (2019). https://doi.org/10.1002/adfm.201902538
H.-G. Hwang, Y. Pyo, J.-U. Woo, I.-S. Kim, S.-W. Kim et al., Engineering synaptic plasticity through the control of oxygen vacancy concentration for the improvement of learning accuracy in a Ta2O5 memristor. J. Alloys Compd. 902, 163764 (2022). https://doi.org/10.1016/j.jallcom.2022.163764
H. Lee, M. Jin, H.-J. Na, C. Im, J.H. Lee et al., Implementation of synaptic device using ultraviolet ozone treated water-in-bisalt/polymer electrolyte-gated transistor. Adv. Funct. Mater. 32, 2110591 (2022). https://doi.org/10.1002/adfm.202110591
S. Oh, S. Jung, M.H. Ali, J.-H. Kim, H. Kim et al., Highly stable artificial synapse consisting of low-surface defect van der Waals and self-assembled materials. ACS Appl. Mater. Interfaces 12, 38299–38305 (2020). https://doi.org/10.1021/acsami.0c07394
J. Bak, S. Kim, K. Park, J. Yoon, M. Yang et al., Reinforcing synaptic plasticity of defect-tolerant states in alloyed 2D artificial transistors. ACS Appl. Mater. Interfaces 15(33), 39539–39549 (2023). https://doi.org/10.1021/acsami.3c07578
C. Pan, C.-Y. Wang, S.-J. Liang, Y. Wang, T. Cao et al., Reconfigurable logic and neuromorphic circuits based on electrically tunable two-dimensional homojunctions. Nat. Electron. 3, 383–390 (2020). https://doi.org/10.1038/s41928-020-0433-9
M. Li, Z. Liu, Y. Sun, Y. Ding, H. Chen et al., Tailoring neuroplasticity in a ferroelectric-gated multi-terminal synaptic transistor by Bi-directional modulation for improved pattern edge recognition. Adv. Funct. Mater. 33, 2307986 (2023). https://doi.org/10.1002/adfm.202307986
Z. Zhang, S. Wang, C. Liu, R. Xie, W. Hu et al., All-in-one two-dimensional retinomorphic hardware device for motion detection and recognition. Nat. Nanotechnol. 17, 27–32 (2022). https://doi.org/10.1038/s41565-021-01003-1
X. Huang, Q. Li, W. Shi, K. Liu, Y. Zhang et al., Dual-mode learning of ambipolar synaptic phototransistor based on 2D perovskite/organic heterojunction for flexible color recognizable visual system. Small 17, e2102820 (2021). https://doi.org/10.1002/smll.202102820
Y. Sun, M. Li, Y. Ding, H. Wang, H. Wang et al., Programmable van-der-Waals heterostructure-enabled optoelectronic synaptic floating-gate transistors with ultra-low energy consumption. InfoMat 4, e12317 (2022). https://doi.org/10.1002/inf2.12317
Y. Sun, Y. Ding, D. Xie, J. Xu, M. Sun et al., Optogenetics-inspired neuromorphic optoelectronic synaptic transistors with optically modulated plasticity. Adv. Opt. Mater. 9, 2002232 (2021). https://doi.org/10.1002/adom.202002232
Y. Kim, A. Chortos, W. Xu, Y. Liu, J.Y. Oh et al., A bioinspired flexible organic artificial afferent nerve. Science 360, 998–1003 (2018). https://doi.org/10.1126/science.aao0098
Y. Zhu, Y. He, C. Chen, L. Zhu, C. Wan et al., IGZO-based neuromorphic transistors with temperature-dependent synaptic plasticity and spiking logics. Sci. China Inf. Sci. 65, 162401 (2022). https://doi.org/10.1007/s11432-021-3326-6
Y. Choi, S. Oh, C. Qian, J.-H. Park, J.H. Cho, Vertical organic synapse expandable to 3D crossbar array. Nat. Commun. 11, 4595 (2020). https://doi.org/10.1038/s41467-020-17850-w
T. Mikolajick, M.H. Park, L. Begon-Lours, S. Slesazeck, From ferroelectric material optimization to neuromorphic devices. Adv. Mater. 35, 2206042 (2023). https://doi.org/10.1002/adma.202206042
M. Xu, X. Mai, J. Lin, W. Zhang, Y. Li et al., Recent advances on neuromorphic devices based on chalcogenide phase-change materials. Adv. Funct. Mater. 30(50), 2003419 (2020). https://doi.org/10.1002/adfm.202003419
Q. Zhang, Z. Zhang, C. Li, R. Xu, D. Yang et al., Van der Waals materials-based floating gate memory for neuromorphic computing. Chip 2, 100059 (2023). https://doi.org/10.1016/j.chip.2023.100059
X. Lin, Y. Li, Y. Lei, Q. Sun, Electric-double-layer-gated 2D transistors for bioinspired sensors and neuromorphic devices. Int. J. Smart Nano Mater. 15, 238–259 (2024). https://doi.org/10.1080/19475411.2024.2306837
M. Song, Y. Sun, Z. Liu, B. Wei, H. Wang et al., Threshold voltage control of carbon nanotube-based synaptic transistors via chemical doping for plasticity modulation and symmetry improvement. Carbon 184, 295–302 (2021). https://doi.org/10.1016/j.carbon.2021.08.020
N. He, Q. Yuan, Y. Wang, Y. Sun, D. Wen, Inverter and ternary content-addressable memory based on carbon nanotube transistors using chemical doping strategy. Adv. Electron. Mater. 8, 2200424 (2022). https://doi.org/10.1002/aelm.202200424
W. Li, J. Huang, B. Han, C. Xie, X. Huang et al., Molten-salt-assisted chemical vapor deposition process for substitutional doping of monolayer MoS2 and effectively altering the electronic structure and phononic properties. Adv. Sci. 7, 2001080 (2020). https://doi.org/10.1002/advs.202001080
H. Geng, M. Cheng, B. Wang, Y. Yang, Y. Zhang et al., Electronic structure regulation of layered vanadium oxide via interlayer doping strategy toward superior high-rate and low-temperature zinc-ion batteries. Adv. Funct. Mater. 30, 1907684 (2020). https://doi.org/10.1002/adfm.201907684
Q. Liu, S. Zeiske, X. Jiang, D. Desta, S. Mertens et al., Electron-donating amine-interlayer induced n-type doping of polymer: nonfullerene blends for efficient narrowband near-infrared photo-detection. Nat. Commun. 13, 5194 (2022). https://doi.org/10.1038/s41467-022-32845-5
H. Huang, L. Wang, Y. Lv, X. Liu, X. Zhao et al., High-performance WSe2 n-type field-effect transistors enabled by InOx damage-free doping. IEEE Electron Device Lett. 42, 1081–1084 (2021). https://doi.org/10.1109/LED.2021.3082140
L. Loh, Z. Zhang, M. Bosman, G. Eda, Substitutional doping in 2D transition metal dichalcogenides. Nano Res. 14, 1668–1681 (2021). https://doi.org/10.1007/s12274-020-3013-4
M. Cargnello, A.C. Johnston-Peck, B.T. Diroll, E. Wong, B. Datta et al., Substitutional doping in nanocrystal superlattices. Nature 524, 450–453 (2015). https://doi.org/10.1038/nature14872
J. Suh, T.L. Tan, W. Zhao, J. Park, D.-Y. Lin et al., Reconfiguring crystal and electronic structures of MoS2 by substitutional doping. Nat. Commun. 9, 199 (2018). https://doi.org/10.1038/s41467-017-02631-9
X. Zhang, Z. Shao, X. Zhang, Y. He, J. Jie, Surface charge transfer doping of low-dimensional nanostructures toward high-performance nanodevices. Adv. Mater. 28, 10409–10442 (2016). https://doi.org/10.1002/adma.201601966
S. Xiong, Y. Dai, J. Yang, W. Xiao, D. Li et al., Surface charge-transfer doping for highly efficient perovskite solar cells. Nano Energy 79, 105505 (2021). https://doi.org/10.1016/j.nanoen.2020.105505
Y. Gong, H. Yuan, C.-L. Wu, P. Tang, S.-Z. Yang et al., Spatially controlled doping of two-dimensional SnS2 through intercalation for electronics. Nat. Nanotechnol. 13, 294–299 (2018). https://doi.org/10.1038/s41565-018-0069-3
J. Zhou, Z. Lin, H. Ren, X. Duan, I. Shakir et al., Layered intercalation materials. Adv. Mater. 33, 2004557 (2021). https://doi.org/10.1002/adma.202004557
C. Zhou, Y. Yu, X. Zhang, Y. Cheng, J. Xu et al., Cu intercalation and Br doping to thermoelectric SnSe2 lead to ultrahigh electron mobility and temperature-independent power factor. Adv. Funct. Mater. 30, 1908405 (2020). https://doi.org/10.1002/adfm.201908405
A. Azcatl, X. Qin, A. Prakash, C. Zhang, L. Cheng et al., Covalent nitrogen doping and compressive strain in MoS2 by remote N2 plasma exposure. Nano Lett. 16, 5437–5443 (2016). https://doi.org/10.1021/acs.nanolett.6b01853
J. Zou, Z. Cai, Y. Lai, J. Tan, R. Zhang et al., Doping concentration modulation in vanadium-doped monolayer molybdenum disulfide for synaptic transistors. ACS Nano 15, 7340–7347 (2021). https://doi.org/10.1021/acsnano.1c00596
Y. Wang, Y. Zheng, C. Han, W. Chen, Surface charge transfer doping for two-dimensional semiconductor-based electronic and optoelectronic devices. Nano Res. 14, 1682–1697 (2021). https://doi.org/10.1007/s12274-020-2919-1
A. Nipane, D. Karmakar, N. Kaushik, S. Karande, S. Lodha, Few-layer MoS2 p-type devices enabled by selective doping using low energy phosphorus implantation. ACS Nano 10, 2128–2137 (2016). https://doi.org/10.1021/acsnano.5b06529
X. Liu, D. Qu, J. Ryu, F. Ahmed, Z. Yang et al., P-type polar transition of chemically doped multilayer MoS2 transistor. Adv. Mater. 28, 2345–2351 (2016). https://doi.org/10.1002/adma.201505154
X. Liu, Y. Yuan, D. Qu, J. Sun, Ambipolar MoS2 field-effect transistor by spatially controlled chemical doping. Phys. Status Solidi RRL 13, 1900208 (2019). https://doi.org/10.1002/pssr.201900208
Y. Li, H. Yan, B. Xu, L. Zhen, C.-Y. Xu, Electrochemical intercalation in atomically thin van der Waals materials for structural phase transition and device applications. Adv. Mater. 33, e2000581 (2021). https://doi.org/10.1002/adma.202000581
J. Zhu, Y. Yang, R. Jia, Z. Liang, W. Zhu et al., Ion gated synaptic transistors based on 2D van der Waals crystals with tunable diffusive dynamics. Adv. Mater. 30, e1800195 (2018). https://doi.org/10.1002/adma.201800195
Y. Park, M.-K. Kim, J.-S. Lee, Ion-gating synaptic transistors with long-term synaptic weight modulation. J. Mater. Chem. C 9, 5396–5402 (2021). https://doi.org/10.1039/D1TC00048A
J.H. Baek, K.J. Kwak, S.J. Kim, J. Kim, J.Y. Kim et al., Two-terminal lithium-mediated artificial synapses with enhanced weight modulation for feasible hardware neural networks. Nano-Micro Lett. 15, 69 (2023). https://doi.org/10.1007/s40820-023-01035-3
Y. Du, X. Wang, J. Sun, Tunable oxygen vacancy concentration in vanadium oxide as mass-produced cathode for aqueous zinc-ion batteries. Nano Res. 14, 754–761 (2021). https://doi.org/10.1007/s12274-020-3109-x
Y. Tian, X. Liu, L. Xu, D. Yuan, Y. Dou et al., Engineering crystallinity and oxygen vacancies of co(II) oxide nanosheets for high performance and robust rechargeable Zn–air batteries. Adv. Funct. Mater. 31, 2101239 (2021). https://doi.org/10.1002/adfm.202101239
B. Wang, J. Liu, S. Yao, F. Liu, Y. Li et al., Vacancy engineering in nanostructured semiconductors for enhancing photocatalysis. J. Mater. Chem. A 9, 17143–17172 (2021). https://doi.org/10.1039/d1ta03895h
Y. Liu, C. Xiao, Z. Li, Y. Xie, Vacancy engineering for tuning electron and phonon structures of two-dimensional materials. Adv. Energy Mater. 6, 1600436 (2016). https://doi.org/10.1002/aenm.201600436
Z. Wu, Y. Zhao, W. Jin, B. Jia, J. Wang et al., Recent progress of vacancy engineering for electrochemical energy conversion related applications. Adv. Funct. Mater. 31, 2009070 (2021). https://doi.org/10.1002/adfm.202009070
Q. Gao, W. Luo, X. Ma, Z. Ma, S. Li et al., Electronic modulation and vacancy engineering of Ni9S8 to synergistically boost efficient water splitting: active vacancy-metal pairs. Appl. Catal. B-Environ. 310, 121356 (2022). https://doi.org/10.1016/j.apcatb.2022.121356
Y. Zhang, Z. Wang, J. Zhu, Y. Yang, M. Rao et al., Brain-inspired computing with memristors: challenges in devices, circuits, and systems. Appl. Phys. Rev. 7, 011308 (2020). https://doi.org/10.1063/1.5124027
G. Di Martino, A. Demetriadou, W. Li, D. Kos, B. Zhu et al., Real-time in situ optical tracking of oxygen vacancy migration in memristors. Nat. Electron. 3, 687–693 (2020). https://doi.org/10.1038/s41928-020-00478-5
H. Tan, S. Majumdar, Q. Qin, J. Lahtinen, S. Dijken, Mimicking neurotransmitter release and long-term plasticity by oxygen vacancy migration in a tunnel junction memristor. Adv. Intelligent Syst. 1, 1900036 (2019). https://doi.org/10.1002/aisy.201900036
Y. Zhang, G.-Q. Mao, X. Zhao, Y. Li, M. Zhang et al., Evolution of the conductive filament system in HfO2-based memristors observed by direct atomic-scale imaging. Nat. Commun. 12, 7232 (2021). https://doi.org/10.1038/s41467-021-27575-z
V. Humbert, R. El Hage, G. Krieger, G. Sanchez-Santolino, A. Sander et al., An oxygen vacancy memristor ruled by electron correlations. Adv. Sci. 9, e2201753 (2022). https://doi.org/10.1002/advs.202201753
J. Jiang, T. Xu, J. Lu, L. Sun, Z. Ni, Defect engineering in 2D materials: precise manipulation and improved functionalities. Research 2019, 4641739 (2019). https://doi.org/10.34133/2019/4641739
F. Bai, L. Xu, X. Zhai, X. Chen, W. Yang, Vacancy in ultrathin 2D nanomaterials toward sustainable energy application. Adv. Energy Mater. 10, 1902107 (2020). https://doi.org/10.1002/aenm.201902107
Z. Qin, K. Xu, H. Yue, H. Wang, J. Zhang et al., Enhanced room-temperature NH3 gas sensing by 2D SnS2 with sulfur vacancies synthesized by chemical exfoliation. Sens. Actuat. B Chem. 262, 771–779 (2018). https://doi.org/10.1016/j.snb.2018.02.060
J. Kim, C. Im, C. Lee, J. Hwang, H. Jang et al., Solvent-assisted sulfur vacancy engineering method in MoS2 for a neuromorphic synaptic memristor. Nanoscale Horiz. 8, 1417–1427 (2023). https://doi.org/10.1039/d3nh00201b
S.J. Kim, T.H. Lee, J.-M. Yang, J.W. Yang, Y.J. Lee et al., Vertically aligned two-dimensional halide perovskites for reliably operable artificial synapses. Mater. Today 52, 19–30 (2022). https://doi.org/10.1016/j.mattod.2021.10.035
X. Hou, T. Jin, Y. Zheng, W. Chen, Atomic-scale interface engineering for two-dimensional materials based field-effect transistors. SmartMat (2023). https://doi.org/10.1002/smm2.1236
S. Banerjee, J. Luginsland, P. Zhang, Interface engineering of electrical contacts. Phys. Rev. Applied 15, 064048 (2021). https://doi.org/10.1103/physrevapplied.15.064048
Z. Yu, Y. Pan, Y. Shen, Z. Wang, Z.-Y. Ong et al., Towards intrinsic charge transport in monolayer molybdenum disulfide by defect and interface engineering. Nat. Commun. 5, 5290 (2014). https://doi.org/10.1038/ncomms6290
B. Zheng, C. Ma, D. Li, J. Lan, Z. Zhang et al., Band alignment engineering in two-dimensional lateral heterostructures. J. Am. Chem. Soc. 140, 11193–11197 (2018). https://doi.org/10.1021/jacs.8b07401
Q. Li, Q. Zhou, L. Shi, Q. Chen, J. Wang, Recent advances in oxidation and degradation mechanisms of ultrathin 2D materials under ambient conditions and their passivation strategies. J. Mater. Chem. A 7, 4291–4312 (2019). https://doi.org/10.1039/c8ta10306b
A. Favron, E. Gaufrès, F. Fossard, A.-L. Phaneuf-L’Heureux, N.Y.-W. Tang et al., Photooxidation and quantum confinement effects in exfoliated black phosphorus. Nat. Mater. 14, 826–832 (2015). https://doi.org/10.1038/nmat4299
Q. Zhou, Q. Chen, Y. Tong, J. Wang, Light-induced ambient degradation of few-layer black phosphorus: mechanism and protection. Angew. Chem. Int. Ed. 55, 11437–11441 (2016). https://doi.org/10.1002/anie.201605168
J. Pei, X. Gai, J. Yang, X. Wang, Z. Yu et al., Producing air-stable monolayers of phosphorene and their defect engineering. Nat. Commun. 7, 10450 (2016). https://doi.org/10.1038/ncomms10450
T. Ahmed, M. Tahir, M.X. Low, Y. Ren, S.A. Tawfik et al., Fully light-controlled memory and neuromorphic computation in layered black phosphorus. Adv. Mater. 33, e2004207 (2021). https://doi.org/10.1002/adma.202004207
S. Seo, S.H. Jo, S. Kim, J. Shim, S. Oh et al., Artificial optic-neural synapse for colored and color-mixed pattern recognition. Nat. Commun. 9, 5106 (2018). https://doi.org/10.1038/s41467-018-07572-5
Y. Chen, Y. Wang, Z. Wang, Y. Gu, Y. Ye et al., Unipolar barrier photodetectors based on van der Waals heterostructures. Nat. Electron. 4, 357–363 (2021). https://doi.org/10.1038/s41928-021-00586-w
Y. Sun, Y. Ding, D. Xie, M. Sun, J. Xu et al., Reconfigurable optical memory based on MoS2/QDs mixed-dimensional van der Waals heterostructure. 2D Mater. 8, 025021 (2021). https://doi.org/10.1088/2053-1583/abd90a
M. Farronato, P. Mannocci, M. Melegari, S. Ricci, C.M. Compagnoni et al., Reservoir computing with charge-trap memory based on a MoS2 channel for neuromorphic engineering. Adv. Mater. 35, e2205381 (2023). https://doi.org/10.1002/adma.202205381
T. Zhao, C. Zhao, W. Xu, Y. Liu, H. Gao et al., Bio-inspired photoelectric artificial synapse based on two-dimensional Ti3C2Tx mxenes floating gate. Adv. Funct. Mater. 31(45), 2106000 (2021). https://doi.org/10.1002/adfm.202106000
Y. Cao, A. Rushforth, Y. Sheng, H. Zheng, K. Wang, Tuning a binary ferromagnet into a multistate synapse with spin–orbit-torque-induced plasticity. Adv. Funct. Mater. 29, 1808104 (2019). https://doi.org/10.1002/adfm.201808104
L. Liu, W. Xiong, Y. Liu, K. Chen, Z. Xu et al., Designing high-performance storage in HfO2/BiFeO3 memristor for artificial synapse applications. Adv. Electron. Mater. 6, 1901012 (2020). https://doi.org/10.1002/aelm.201901012
I. Kupfermann, Modulatory actions of neurotransmitters. Annu. Rev. Neurosci. 2, 447–465 (1979). https://doi.org/10.1146/annurev.ne.02.030179.002311
K.R. Weiss, E. Shapiro, I. Kupfermann, Modulatory synaptic actions of an identified histaminergic neuron on the serotonergic metacerebral cell of Aplysia. J. Neurosci. 6, 2393–2402 (1986). https://doi.org/10.1523/JNEUROSCI.06-08-02393.1986
K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang et al., Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004). https://doi.org/10.1126/science.1102896
Q.H. Wang, K. Kalantar-Zadeh, A. Kis, J.N. Coleman, M.S. Strano, Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 7, 699–712 (2012). https://doi.org/10.1038/nnano.2012.193
T. Knobloch, Y.Y. Illarionov, F. Ducry, C. Schleich, S. Wachter et al., The performance limits of hexagonal boron nitride as an insulator for scaled CMOS devices based on two-dimensional materials. Nat. Electron. 4, 98–108 (2021). https://doi.org/10.1038/s41928-020-00529-x
R. Wu, Q. Tao, W. Dang, Y. Liu, B. Li et al., Van der Waals epitaxial growth of atomically thin 2D metals on dangling-bond-free WSe2 and WS2. Adv. Funct. Mater. 29, 1806611 (2019). https://doi.org/10.1002/adfm.201806611
A.K. Geim, I.V. Grigorieva, Van der Waals heterostructures. Nature 499, 419–425 (2013). https://doi.org/10.1038/nature12385
L. Liu, C. Liu, L. Jiang, J. Li, Y. Ding et al., Ultrafast non-volatile flash memory based on van der Waals heterostructures. Nat. Nanotechnol. 16, 874–881 (2021). https://doi.org/10.1038/s41565-021-00921-4
Z. Sheng, J. Dong, W. Hu, Y. Wang, H. Sun et al., Reconfigurable logic-in-memory computing based on a polarity-controllable two-dimensional transistor. Nano Lett. 23, 5242–5249 (2023). https://doi.org/10.1021/acs.nanolett.3c01248
S.-Y. Min, W.-J. Cho, CMOS-compatible synaptic transistor gated by chitosan electrolyte-Ta2O5 hybrid electric double layer. Sci. Rep. 10, 15561 (2020). https://doi.org/10.1038/s41598-020-72684-2
Z. Lv, M. Chen, F. Qian, V.A.L. Roy, W. Ye et al., Mimicking neuroplasticity in a hybrid biopolymer transistor by dual modes modulation. Adv. Funct. Mater. 29, 1902374 (2019). https://doi.org/10.1002/adfm.201902374
M. Ba, M. Erouel, S. Mansouri, L. Chouiref, M. Jdir et al., Channel length effect of P3HT: ZnO hybrid blend layer on electrical characteristics of thin-film transistors. Sens. Actuat. A Phys. 359, 114470 (2023). https://doi.org/10.1016/j.sna.2023.114470
F. Zhang, H. Zhang, L. Zhu, L. Qin, Y. Wang et al., Two-dimensional organic–inorganic hybrid perovskite field-effect transistors with polymers as bottom-gate dielectrics. J. Mater. Chem. C 7, 4004–4012 (2019). https://doi.org/10.1039/c8tc06249h
I.Y. Jo, J.-G. Park, J.-H. Moon, J.Y. Jung, D.E. Kim et al., Low-voltage-operating complementary-like circuits using ambipolar organic-inorganic hybrid thin-film transistors with solid-state-electrolyte gate insulator. Org. Electron. 75, 105358 (2019). https://doi.org/10.1016/j.orgel.2019.07.016
K.S. Jung, K. Heo, M.J. Kim, M. Andreev, S. Seo et al., Double negative differential resistance device based on hafnium disulfide/pentacene hybrid structure. Adv. Sci. 7, 2000991 (2020). https://doi.org/10.1002/advs.202000991
C. Jiang, J. Liu, L. Yang, J. Gong, H. Wei et al., A flexible artificial sensory nerve enabled by nanop-assembled synaptic devices for neuromorphic tactile recognition. Adv. Sci. 9, e2106124 (2022). https://doi.org/10.1002/advs.202106124
K.S. Severson, D. Xu, M. Van de Loo, L. Bai, D.D. Ginty et al., Active touch and self-motion encoding by merkel cell-associated afferents. Neuron 94, 666-676.e9 (2017). https://doi.org/10.1016/j.neuron.2017.03.045
Y.R. Lee, T.Q. Trung, B.U. Hwang, N.E. Lee, A flexible artificial intrinsic-synaptic tactile sensory organ. Nat. Commun. 11, 2753 (2020). https://doi.org/10.1038/s41467-020-16606-w
L. Mao, Neuromorphic sensing: a new breed of intelligent sensors. ACS Sens. 8, 2896–2897 (2023). https://doi.org/10.1021/acssensors.3c01608
M. Zeng, Y. He, C. Zhang, Q. Wan, Neuromorphic devices for bionic sensing and perception. Front. Neurosci. 15, 690950 (2021). https://doi.org/10.3389/fnins.2021.690950
T. Sarkar, K. Lieberth, A. Pavlou, T. Frank, V. Mailaender et al., An organic artificial spiking neuron for in situ neuromorphic sensing and biointerfacing. Nat. Electron. 5, 774–783 (2022). https://doi.org/10.1038/s41928-022-00859-y
M. Lee, W. Lee, S. Choi, J.W. Jo, J. Kim et al., Brain-inspired photonic neuromorphic devices using photodynamic amorphous oxide semiconductors and their persistent photoconductivity. Adv. Mater. 29, 1700951 (2017). https://doi.org/10.1002/adma.201700951
L. Yin, W. Huang, R. Xiao, W. Peng, Y. Zhu et al., Optically stimulated synaptic devices based on the hybrid structure of silicon nanomembrane and perovskite. Nano Lett. 20, 3378–3387 (2020). https://doi.org/10.1021/acs.nanolett.0c00298
K. Wang, S. Dai, Y. Zhao, Y. Wang, C. Liu et al., Light-stimulated synaptic transistors fabricated by a facile solution process based on inorganic perovskite quantum dots and organic semiconductors. Small 15, e1900010 (2019). https://doi.org/10.1002/smll.201900010
F. Huang, F. Fang, Y. Zheng, Q. You, H. Li et al., Visible-light stimulated synaptic plasticity in amorphous indium-gallium-zinc oxide enabled by monocrystalline double perovskite for high-performance neuromorphic applications. Nano Res. 16, 1304–1312 (2023). https://doi.org/10.1007/s12274-022-4806-4
C. Han, X. Han, J. Han, M. He, S. Peng et al., Light-stimulated synaptic transistor with high PPF feature for artificial visual perception system application. Adv. Funct. Mater. 32, 2113053 (2022). https://doi.org/10.1002/adfm.202113053
Y. Ran, W. Lu, X. Wang, Z. Qin, X. Qin et al., High-performance asymmetric electrode structured light-stimulated synaptic transistor for artificial neural networks. Mater. Horiz. 10, 4438–4451 (2023). https://doi.org/10.1039/D3MH00775H
Y. Sun, Y. Ding, D. Xie, Mixed-dimensional van der Waals heterostructures enabled optoelectronic synaptic devices for neuromorphic applications. Adv. Funct. Mater. 31(47), 2105625 (2021). https://doi.org/10.1002/adfm.202105625
S.W. Cho, C. Jo, Y.-H. Kim, S.K. Park, Progress of materials and devices for neuromorphic vision sensors. Nano-Micro Lett. 14, 203 (2022). https://doi.org/10.1007/s40820-022-00945-y
X. Zhu, W.D. Lu, Optogenetics-inspired tunable synaptic functions in memristors. ACS Nano 12, 1242–1249 (2018). https://doi.org/10.1021/acsnano.7b07317
H. Fang, W. Hu, Photogating in low dimensional photodetectors. Adv. Sci. 4, 1700323 (2017). https://doi.org/10.1002/advs.201700323
J. Shin, H. Yoo, Photogating effect-driven photodetectors and their emerging applications. Nanomaterials 13, 882 (2023). https://doi.org/10.3390/nano13050882
M. Kumar, R. Singh, H. Kang, S. Kim, H. Seo, An artificial piezotronic synapse for tactile perception. Nano Energy 73, 104756 (2020). https://doi.org/10.1016/j.nanoen.2020.104756
Y. Wu, Y. Liu, Y. Zhou, Q. Man, C. Hu et al., A skin-inspired tactile sensor for smart prosthetics. Sci. Robot. 3, 0429 (2018). https://doi.org/10.1126/scirobotics.aat0429
B.C. Tee, A. Chortos, A. Berndt, A.K. Nguyen, A. Tom et al., A skin-inspired organic digital mechanoreceptor. Science 350, 313–316 (2015). https://doi.org/10.1126/science.aaa9306
A. Chortos, J. Liu, Z. Bao, Pursuing prosthetic electronic skin. Nat. Mater. 15, 937–950 (2016). https://doi.org/10.1038/nmat4671
M.A. McEvoy, N. Correll, Materials science. Materials that couple sensing, actuation, computation, and communication. Science 347, 1261689 (2015). https://doi.org/10.1126/science.1261689
Y. Zang, F. Zhang, C.-A. Di, D. Zhu, Advances of flexible pressure sensors toward artificial intelligence and health care applications. Mater. Horiz. 2, 140–156 (2015). https://doi.org/10.1039/C4MH00147H
Q. Shi, B. Dong, T. He, Z. Sun, J. Zhu et al., Progress in wearable electronics/photonics—moving toward the era of artificial intelligence and Internet of Things. InfoMat 2, 1131–1162 (2020). https://doi.org/10.1002/inf2.12122
Y. Lee, J. Park, A. Choe, S. Cho, J. Kim et al., Mimicking human and biological skins for multifunctional skin electronics. Adv. Funct. Mater. 30, 1904523 (2020). https://doi.org/10.1002/adfm.201904523
C. Wan, P. Cai, M. Wang, Y. Qian, W. Huang et al., Artificial sensory memory. Adv. Mater. 32, 1902434 (2020). https://doi.org/10.1002/adma.201902434
X. Han, Y. Zhang, Z. Huo, X. Wang, G. Hu et al., A two-terminal optoelectronic synapses array based on the ZnO/Al2O3/CdS heterojunction with strain-modulated synaptic weight. Adv. Electron. Mater. 9, 2201068 (2023). https://doi.org/10.1002/aelm.202201068
Y. Chen, G. Gao, J. Zhao, H. Zhang, J. Yu et al., Piezotronic graphene artificial sensory synapse. Adv. Funct. Mater. 29, 1900959 (2019). https://doi.org/10.1002/adfm.201900959
H. Shim, F. Ershad, S. Patel, Y. Zhang, B. Wang et al., An elastic and reconfigurable synaptic transistor based on a stretchable bilayer semiconductor. Nat. Electron. 5, 660–671 (2022). https://doi.org/10.1038/s41928-022-00836-5
J. Du, H. Yu, B. Liu, M. Hong, Q. Liao et al., Strain engineering in 2D material-based flexible optoelectronics. Small Methods 5, e2000919 (2021). https://doi.org/10.1002/smtd.202000919
T. Monteiro, F.S. Rodrigues, M. Pexirra, B.F. Cruz, A.I. Gonçalves et al., Using temperature to analyze the neural basis of a time-based decision. Nat. Neurosci. 26, 1407–1416 (2023). https://doi.org/10.1038/s41593-023-01378-5
K. Shibasaki, M. Suzuki, A. Mizuno, M. Tominaga, Effects of body temperature on neural activity in the hippocampus: regulation of resting membrane potentials by transient receptor potential vanilloid 4. J. Neurosci. 27(7), 1566–1575 (2007). https://doi.org/10.1523/jneurosci.4284-06.2007
J.C. Montgomery, J.A. MacDonald, Effects of temperature on nervous system: implications for behavioral performance. Am. J. Physiol. Regul. Integr. Comp. Physiol. 259, R191–R196 (1990). https://doi.org/10.1152/ajpregu.1990.259.2.r191
M.J. Van Hook, Temperature effects on synaptic transmission and neuronal function in the visual thalamus. PLoS ONE 15, e0232451 (2020). https://doi.org/10.1371/journal.pone.0232451
F.F. Weight, S.D. Erulkar, Synaptic transmission and effects of temperature at the squid giant synapse. Nature 261, 720–722 (1976). https://doi.org/10.1038/261720a0
A. Mahanty, G.K. Purohit, S. Banerjee, D. Karunakaran, S. Mohanty et al., Proteomic changes in the liver of Channa striatus in response to high temperature stress. Electrophoresis 37, 1704–1717 (2016). https://doi.org/10.1002/elps.201500393
E. Li, W. Lin, Y. Yan, H. Yang, X. Wang et al., Synaptic transistor capable of accelerated learning induced by temperature-facilitated modulation of synaptic plasticity. ACS Appl. Mater. Interfaces 11, 46008–46016 (2019). https://doi.org/10.1021/acsami.9b17227
T. Sakanoue, H. Sirringhaus, Band-like temperature dependence of mobility in asolution-processed organic semiconductor. Nat. Mater. 9, 736–740 (2010). https://doi.org/10.1038/nmat2825
Y. Sun, D. Xie, X. Zhang, J. Xu, X. Li et al., Temperature-dependent transport and hysteretic behaviors induced by interfacial states in MoS2 field-effect transistors with lead-zirconate-titanate ferroelectric gating. Nanotechnology 28, 045204 (2017). https://doi.org/10.1088/1361-6528/28/4/045204
Y. Deng, M. Zhao, Y. Ma, S. Liu, M. Liu et al., A flexible and biomimetic olfactory synapse with gasotransmitter-mediated plasticity. Adv. Funct. Mater. 33, 2214139 (2023). https://doi.org/10.1002/adfm.202214139
M. Li, J. Deng, X. Wang, S. Shao, X. Li et al., Flexible printed single-walled carbon nanotubes olfactory synaptic transistors with crosslinked poly(4-vinylphenol) as dielectrics. Flexible Printed Electronics 6, 034001 (2021). https://doi.org/10.1088/2058-8585/abee2d
X. Chen, T. Wang, J. Shi, W. Lv, Y. Han et al., A novel artificial neuron-like gas sensor constructed from CuS quantum dots/Bi2S3 nanosheets. Nano-Micro Lett. 14, 8 (2021). https://doi.org/10.1007/s40820-021-00740-1
M.U.K. Sadaf, N.U. Sakib, A. Pannone, H. Ravichandran, S. Das, A bio-inspired visuotactile neuron for multisensory integration. Nat. Commun. 14, 5729 (2023). https://doi.org/10.1038/s41467-023-40686-z