Making the Complicated Simple: A Minimizing Carrier Strategy on Innovative Nanopesticides
Corresponding Author: Lidong Cao
Nano-Micro Letters,
Vol. 16 (2024), Article Number: 193
Abstract
The flourishing progress in nanotechnology offers boundless opportunities for agriculture, particularly in the realm of nanopesticides research and development. However, concerns have been raised regarding the human and environmental safety issues stemming from the unrestrained use of non-therapeutic nanomaterials in nanopesticides. It is also important to consider whether the current development strategy of nanopesticides based on nanocarriers can strike a balance between investment and return, and if the complex material composition genuinely improves the efficiency, safety, and circularity of nanopesticides. Herein, we introduced the concept of nanopesticides with minimizing carriers (NMC) prepared through prodrug design and molecular self-assembly emerging as practical tools to address the current limitations, and compared it with nanopesticides employing non-therapeutic nanomaterials as carriers (NNC). We further summarized the current development strategy of NMC and examined potential challenges in its preparation, performance, and production. Overall, we asserted that the development of NMC systems can serve as the innovative driving force catalyzing a green and efficient revolution in nanopesticides, offering a way out of the current predicament.
Highlights:
1 Nanopesticides with minimizing carrier were prepared through prodrug molecular design and molecular self-assembly.
2 Nanopesticides with minimizing carrier are expected to solve the environmental risks caused by the unrestricted introduction of nanomaterials.
3 Future development and challenges of nanopesticides with minimizing carrier.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M. Zurek, A. Hebinck, O. Selomane, Climate change and the urgency to transform food systems. Science 376, 1416–1421 (2022). https://doi.org/10.1126/science.abo2364
- F. Gould, Z.S. Brown, J. Kuzma, Wicked evolution: can we address the sociobiological dilemma of pesticide resistance? Science 360, 728–732 (2018). https://doi.org/10.1126/science.aar3780
- R. Schulz, S. Bub, L.L. Petschick, S. Stehle, J. Wolfram, Applied pesticide toxicity shifts toward plants and invertebrates, even in GM crops. Science 372, 81–84 (2021). https://doi.org/10.1126/science.abe1148
- J. von Braun, K. Afsana, L.O. Fresco, M. Hassan, Food systems: seven priorities to end hunger and protect the planet. Nature 597, 28–30 (2021). https://doi.org/10.1038/d41586-021-02331-x
- T. Hofmann, G.V. Lowry, S. Ghoshal, N. Tufenkji, D. Brambilla et al., Technology readiness and overcoming barriers to sustainably implement nanotechnology-enabled plant agriculture. Nat. Food 1, 416–425 (2020). https://doi.org/10.1038/s43016-020-0110-1
- F. Gomollón-Bel, Ten chemical innovations that will change our world: IUPAC identifies emerging technologies in chemistry with potential to make our planet more sustainable. Chem. Int. 41, 12–17 (2019). https://doi.org/10.1515/ci-2019-0203
- D. Xiao, H. Wu, Y. Zhang, J. Kang, A. Dong et al., Advances in stimuli-responsive systems for pesticides delivery: recent efforts and future outlook. J. Control. Release 352, 288–312 (2022). https://doi.org/10.1016/j.jconrel.2022.10.028
- Q. Zhang, Y. Ying, J. Ping, Recent advances in plant nanoscience. Adv. Sci. 9, 2103414 (2022). https://doi.org/10.1002/advs.202103414
- M. Kah, N. Tufenkji, J.C. White, Nano-enabled strategies to enhance crop nutrition and protection. Nat. Nanotechnol. 14, 532–540 (2019). https://doi.org/10.1038/s41565-019-0439-5
- A. Shelar, S.H. Nile, A.V. Singh, D. Rothenstein, J. Bill et al., Recent advances in nano-enabled seed treatment strategies for sustainable agriculture: challenges, risk assessment, and future perspectives. Nano-Micro Lett. 15, 54 (2023). https://doi.org/10.1007/s40820-023-01025-5
- R. Saberi Riseh, M. Hassanisaadi, M. Vatankhah, R.S. Varma, V.K. Thakur, Nano/micro-structural supramolecular biopolymers: innovative networks with the boundless potential in sustainable agriculture. Nano-Micro Lett. 16, 147 (2024). https://doi.org/10.1007/s40820-024-01348-x
- D. Wang, N.B. Saleh, A. Byro, R. Zepp, E. Sahle-Demessie et al., Nano-enabled pesticides for sustainable agriculture and global food security. Nat. Nanotechnol. 17, 347–360 (2022). https://doi.org/10.1038/s41565-022-01082-8
- M. Kah, R.S. Kookana, A. Gogos, T.D. Bucheli, A critical evaluation of nanopesticides and nanofertilizers against their conventional analogues. Nat. Nanotechnol. 13, 677–684 (2018). https://doi.org/10.1038/s41565-018-0131-1
- H. Flerlage, J.C. Slootweg, Modern chemistry is rubbish. Nat. Rev. Chem. 7, 593–594 (2023). https://doi.org/10.1038/s41570-023-00523-9
- M. Kah, L.J. Johnston, R.S. Kookana, W. Bruce, A. Haase et al., Comprehensive framework for human health risk assessment of nanopesticides. Nat. Nanotechnol. 16, 955–964 (2021). https://doi.org/10.1038/s41565-021-00964-7
- K.G. Cassman, P. Grassini, A global perspective on sustainable intensification research. Nat. Sustain. 3, 262–268 (2020). https://doi.org/10.1038/s41893-020-0507-8
- E. Agathokleous, Z. Feng, I. Iavicoli, E.J. Calabrese, Nano-pesticides: a great challenge for biodiversity? The need for a broader perspective. Nano Today 30, 100808 (2020). https://doi.org/10.1016/j.nantod.2019.100808
- P. Zhang, Z. Guo, Z. Zhang, H. Fu, J.C. White et al., Nanomaterial transformation in the soil-plant system: implications for food safety and application in agriculture. Small 16, e2000705 (2020). https://doi.org/10.1002/smll.202000705
- K. Yang, Y. Li, X. Tan, R. Peng, Z. Liu, Behavior and toxicity of graphene and its functionalized derivatives in biological systems. Small 9, 1492–1503 (2013). https://doi.org/10.1002/smll.201201417
- S.H. Lacerda, J.J. Park, C. Meuse, D. Pristinski, M.L. Becker et al., Interaction of gold nanops with common human blood proteins. ACS Nano 4, 365–379 (2010). https://doi.org/10.1021/nn9011187
- S.I.L. Gomes, J.J. Scott-Fordsmand, M.J.B. Amorim, Alternative test methods for (nano)materials hazards assessment: challenges and recommendations for regulatory preparedness. Nano Today 40, 101242 (2021). https://doi.org/10.1016/j.nantod.2021.101242
- X.-D. Sun, X.-Z. Yuan, Y. Jia, L.-J. Feng, F.-P. Zhu et al., Differentially charged nanoplastics demonstrate distinct accumulation in Arabidopsis thaliana. Nat. Nanotechnol. 15, 755–760 (2020). https://doi.org/10.1038/s41565-020-0707-4
- M.F. Hochella Jr., D.W. Mogk, J. Ranville, I.C. Allen, G.W. Luther et al., Natural, incidental, and engineered nanomaterials and their impacts on the Earth system. Science 363, eaau8299 (2019). https://doi.org/10.1126/science.aau8299
- L.M. Gilbertson, L. Pourzahedi, S. Laughton, X. Gao, J.B. Zimmerman et al., Guiding the design space for nanotechnology to advance sustainable crop production. Nat. Nanotechnol. 15, 801–810 (2020). https://doi.org/10.1038/s41565-020-0706-5
- L. Huang, S. Zhao, F. Fang, T. Xu, M. Lan et al., Advances and perspectives in carrier-free nanodrugs for cancer chemo-monotherapy and combination therapy. Biomaterials 268, 120557 (2021). https://doi.org/10.1016/j.biomaterials.2020.120557
- H. Mei, S. Cai, D. Huang, H. Gao, J. Cao et al., Carrier-free nanodrugs with efficient drug delivery and release for cancer therapy: from intrinsic physicochemical properties to external modification. Bioact. Mater. 8, 220–240 (2021). https://doi.org/10.1016/j.bioactmat.2021.06.035
- S. Karaosmanoglu, M. Zhou, B. Shi, X. Zhang, G.R. Williams et al., Carrier-free nanodrugs for safe and effective cancer treatment. J. Control. Release 329, 805–832 (2021). https://doi.org/10.1016/j.jconrel.2020.10.014
- L.-H. Liu, X.-Z. Zhang, Carrier-free nanomedicines for cancer treatment. Prog. Mater. Sci. 125, 100919 (2022). https://doi.org/10.1016/j.pmatsci.2021.100919
- D. Liu, R. Aleisa, Z. Cai, Y. Li, Y. Yin, Self-assembly of superstructures at all scales. Matter 4, 927–941 (2021). https://doi.org/10.1016/j.matt.2020.12.020
- E.L. Etter, K.-C. Mei, J. Nguyen, Delivering more for less: nanosized, minimal-carrier and pharmacoactive drug delivery systems. Adv. Drug Deliv. Rev. 179, 113994 (2021). https://doi.org/10.1016/j.addr.2021.113994
- Y. Su, X. Zhou, H. Meng, T. Xia, H. Liu et al., Cost-benefit analysis of nanofertilizers and nanopesticides emphasizes the need to improve the efficiency of nanoformulations for widescale adoption. Nat. Food 3, 1020–1030 (2022). https://doi.org/10.1038/s43016-022-00647-z
- I. Mubeen, M. Fawzi Bani Mfarrej, Z. Razaq, S. Iqbal, S.A.H. Naqvi et al., Nanopesticides in comparison with agrochemicals: outlook and future prospects for sustainable agriculture. Plant Physiol. Biochem. 198, 107670 (2023). https://doi.org/10.1016/j.plaphy.2023.107670
- N. Kandhol, V.P. Singh, L. Herrera-Estrella, L.P. Tran, D.K. Tripathi, Nanocarrier spray: a nontransgenic approach for crop engineering. Trends Plant Sci. 28, 259–261 (2023). https://doi.org/10.1016/j.tplants.2022.12.015
- M. Li, Z. Ma, M. Peng, L. Li, M. Yin et al., A gene and drug co-delivery application helps to solve the short life disadvantage of RNA drug. Nano Today 43, 101452 (2022). https://doi.org/10.1016/j.nantod.2022.101452
- D.-X. Zhang, J. Du, R. Wang, J. Luo, T.-F. Jing et al., Core/shell dual-responsive nanocarriers via iron-mineralized electrostatic self-assembly for precise pesticide delivery. Adv. Funct. Mater. 31, 2102027 (2021). https://doi.org/10.1002/adfm.202102027
- J. Luo, Y. Gao, Y. Liu, X. Huang, D.-X. Zhang et al., Self-assembled degradable nanogels provide foliar affinity and pinning for pesticide delivery by flexibility and adhesiveness adjustment. ACS Nano 15, 14598–14609 (2021). https://doi.org/10.1021/acsnano.1c04317
- G.M. Whitesides, M. Boncheva, Beyond molecules: self-assembly of mesoscopic and macroscopic components. Proc. Natl. Acad. Sci. U.S.A. 99, 4769–4774 (2002). https://doi.org/10.1073/pnas.082065899
- J. Kim, S. Lee, Y. Kim, M. Choi, I. Lee et al., In situ self-assembly for cancer therapy and imaging. Nat. Rev. Mater. 8, 710–725 (2023). https://doi.org/10.1038/s41578-023-00589-3
- K. Wang, Y. Wang, Y. Wu, J. Jiang, Y. Zhang et al., A novel dual stimuli-responsive and double-loaded insecticidal nanoformulation for efficient control of insect pest. Chem. Eng. J. 474, 146012 (2023). https://doi.org/10.1016/j.cej.2023.146012
- X. Li, Z. Zhou, Y. Huang, G. Tang, Y. Liu et al., A high adhesion co-assembly based on myclobutanil and tannic acid for sustainable plant disease management. Pest Manag. Sci. 79, 3796–3807 (2023). https://doi.org/10.1002/ps.7564
- G. Gohari, M. Jiang, G.A. Manganaris, J. Zhou, V. Fotopoulos, Next generation chemical priming: with a little help from our nanocarrier friends. Trends Plant Sci. 29, 150–166 (2024). https://doi.org/10.1016/j.tplants.2023.11.024
- Y. Zhang, G.G. Goss, Nanotechnology in agriculture: comparison of the toxicity between conventional and nano-based agrochemicals on non-target aquatic species. J. Hazard. Mater. 439, 129559 (2022). https://doi.org/10.1016/j.jhazmat.2022.129559
- R. Pires-Oliveira, M.S. Kfouri, B. Mendonça, P. Cardoso-Gustavson, Nanopesticides: From the Bench to the Market, in Nanopesticides. ed. by L.F. Fraceto, V.L.S.S. de Castro, R. Grillo, D. Ávila, H.C. Oliveira et al. (Springer, Cham, 2020), pp.317–348
- C. An, B. Huang, J. Jiang, X. Wang, N. Li et al., Design and synthesis of a water-based nanodelivery pesticide system for improved efficacy and safety. ACS Nano 18, 662–679 (2024). https://doi.org/10.1021/acsnano.3c08854
- Q.-T. Ji, D.-K. Hu, X.-F. Mu, X.-X. Tian, L. Zhou et al., Cucurbit[7]uril-mediated supramolecular bactericidal nanops: their assembly process, controlled release, and safe treatment of intractable plant bacterial diseases. Nano Lett. 22, 4839–4847 (2022). https://doi.org/10.1021/acs.nanolett.2c01203
- X. Chi, G. Yu, L. Shao, J. Chen, F. Huang, A dual-thermoresponsive gemini-type supra-amphiphilic macromolecular[3]pseudorotaxane based on pillar[10]arene/paraquat cooperative complexation. J. Am. Chem. Soc. 138, 3168–3174 (2016). https://doi.org/10.1021/jacs.5b13173
- X. Zhang, G. Tang, Z. Zhou, H. Wang, X. Li et al., Fabrication of enzyme-responsive prodrug self-assembly based on fluazinam for reducing toxicity to aquatic organisms. J. Agric. Food Chem. 71, 12678–12687 (2023). https://doi.org/10.1021/acs.jafc.3c03762
- Y. Tian, G. Tang, Y. Gao, X. Chen, Z. Zhou et al., Carrier-free small molecular self-assembly based on berberine and curcumin incorporated in submicron ps for improving antimicrobial activity. ACS Appl. Mater. Interfaces 14, 10055–10067 (2022). https://doi.org/10.1021/acsami.1c22900
- B. Testa, Prodrug research: futile or fertile? Biochem. Pharmacol. 68, 2097–2106 (2004). https://doi.org/10.1016/j.bcp.2004.07.005
- K. Wei, Z. Li, Z. Zheng, Y. Gao, Q. Huang et al., Natural glycyrrhizic acid-tailored nanops toward the enhancement of pesticide bioavailability. Adv. Funct. Mater. (2024). https://doi.org/10.1002/adfm.202315493
- Y. Tian, Y. Huang, X. Zhang, G. Tang, Y. Gao et al., Self-assembled nanops of a prodrug conjugate based on pyrimethanil for efficient plant disease management. J. Agric. Food Chem. 70, 11901–11910 (2022). https://doi.org/10.1021/acs.jafc.2c04489
- Y. Tian, X. Zhang, Y. Huang, G. Tang, Y. Gao et al., Amphiphilic prodrug nano-micelles of fipronil coupled with natural carboxylic acids for improving physicochemical properties and reducing the toxicities to aquatic organisms. Chem. Eng. J. 439, 135717 (2022). https://doi.org/10.1016/j.cej.2022.135717
- K. Zhao, G. Xu, L. Wang, T. Wu, X. Zhang et al., Using a dynamic hydrophilization strategy to achieve nanodispersion, full wetting, and precise delivery of hydrophobic pesticide. ACS Appl. Mater. Interfaces 15, 37093–37106 (2023). https://doi.org/10.1021/acsami.3c07530
- Q. Liu, B. Graham, A. Hawley, Y.-D. Dong, B.J. Boyd, Novel agrochemical conjugates with self-assembling behaviour. J. Colloid Interface Sci. 512, 369–378 (2018). https://doi.org/10.1016/j.jcis.2017.10.070
- P.P. Nadiminti, Y.D. Dong, C. Sayer, P. Hay, J.E. Rookes et al., Nanostructured liquid crystalline ps as an alternative delivery vehicle for plant agrochemicals. ACS Appl. Mater. Interfaces 5, 1818–1826 (2013). https://doi.org/10.1021/am303208t
- J.-G. Cui, D.-M. Mo, Y. Jiang, C.-F. Gan, W.-G. Li et al., Fabrication, characterization, and insecticidal activity evaluation of emamectin benzoate–sodium lignosulfonate nanoformulation with pH-responsivity. Ind. Eng. Chem. Res. 58, 19741–19751 (2019). https://doi.org/10.1021/acs.iecr.9b03171
- Y. Xiao, C. Wu, P. Cui, X. Luo, L. Zhou et al., Enhancing adsorption capacity and herbicidal efficacy of 2, 4-D through supramolecular self-assembly: insights from cocrystal engineering to solution chemistry. Chem. Eng. J. 469, 143757 (2023). https://doi.org/10.1016/j.cej.2023.143757
- Y. Tian, G. Tang, Y. Li, Z. Zhou, X. Chen et al., A simple preparation process for an efficient nano-formulation: small molecule self-assembly based on spinosad and sulfamic acid. Green Chem. 23, 4882–4891 (2021). https://doi.org/10.1039/D1GC00971K
- J. Murray, K. Kim, T. Ogoshi, W. Yao, B.C. Gibb, The aqueous supramolecular chemistry of cucurbit[n]urils, pillar[n]arenes and deep-cavity cavitands. Chem. Soc. Rev. 46, 2479–2496 (2017). https://doi.org/10.1039/c7cs00095b
- T.L. Price Jr., H.W. Gibson, Supramolecular pseudorotaxane polymers from biscryptands and bisparaquats. J. Am. Chem. Soc. 140, 4455–4465 (2018). https://doi.org/10.1021/jacs.8b01480
- Q. Song, L. Mei, X. Zhang, P. Xu, M.K. Dhinakaran et al., Spreading of benquitrione droplets on superhydrophobic leaves through pillar[5]arene-based host-guest chemistry. Chem. Commun. 56, 7593–7596 (2020). https://doi.org/10.1039/d0cc02187c
- Y. Zheng, Z. Yu, R.M. Parker, Y. Wu, C. Abell et al., Interfacial assembly of dendritic microcapsules with host-guest chemistry. Nat. Commun. 5, 5772 (2014). https://doi.org/10.1038/ncomms6772
- C. Gao, Q. Huang, Q. Lan, Y. Feng, F. Tang et al., A user-friendly herbicide derived from photo-responsive supramolecular vesicles. Nat. Commun. 9, 2967 (2018). https://doi.org/10.1038/s41467-018-05437-5
- J. Yang, H.-J. Ye, H.-M. Xiang, X. Zhou, P.-Y. Wang et al., Photo-stimuli smart supramolecular self-assembly of azobenzene/β-cyclodextrin inclusion complex for controlling plant bacterial diseases. Adv. Funct. Mater. 33, 2303206 (2023). https://doi.org/10.1002/adfm.202303206
- Q.-T. Ji, X.-F. Mu, D.-K. Hu, L.-J. Fan, S.-Z. Xiang et al., Fabrication of host-guest complexes between adamantane-functionalized 1, 3, 4-oxadiazoles and β-cyclodextrin with improved control efficiency against intractable plant bacterial diseases. ACS Appl. Mater. Interfaces 14, 2564–2577 (2022). https://doi.org/10.1021/acsami.1c19758
- G. Tang, Z. Zhou, X. Zhang, Y. Liu, G. Yan et al., Fabrication of supramolecular self-assembly of the schiff base complex for improving bioavailability of aldehyde-containing plant essential oil. Chem. Eng. J. 471(1), 144471 (2023). https://doi.org/10.1016/j.cej.2023.144471
- G. Tang, Y. Tian, J. Niu, J. Tang, J. Yang et al., Development of carrier-free self-assembled nanops based on fenhexamid and polyhexamethylene biguanide for sustainable plant disease management. Green Chem. 23, 2531–2540 (2021). https://doi.org/10.1039/D1GC00006C
- H. Wang, G. Tang, Z. Zhou, X. Chen, Y. Liu et al., Stable fluorescent nanops based on Co-assembly of acifluorfen and Poly (salicylic acid) for enhancing herbicidal activity and reducing environmental risks. ACS Appl. Mater. Interfaces 15, 4303–4314 (2023). https://doi.org/10.1021/acsami.2c18642
- G. Tang, Y. Tian, Y. Gao, Z. Zhou, X. Chen et al., Supramolecular self-assembly of herbicides with reduced risks to the environment. ACS Nano 16, 4892–4904 (2022). https://doi.org/10.1021/acsnano.2c00539
- Y. Shamay, J. Shah, M. Işık, A. Mizrachi, J. Leibold et al., Quantitative self-assembly prediction yields targeted nanomedicines. Nat. Mater. 17, 361–368 (2018). https://doi.org/10.1038/s41563-017-0007-z
- B. Sun, C. Luo, X. Zhang, M. Guo, M. Sun et al., Probing the impact of sulfur/selenium/carbon linkages on prodrug nanoassemblies for cancer therapy. Nat. Commun. 10, 3211 (2019). https://doi.org/10.1038/s41467-019-11193-x
- R.L. Greenaway, K.E. Jelfs, A.C. Spivey, S.N. Yaliraki, From alchemist to AI chemist. Nat. Rev. Chem. 7, 527–528 (2023). https://doi.org/10.1038/s41570-023-00522-w
- Y. Wang, M. Li, J. Ying, J. Shen, D. Dou et al., High-efficiency green management of potato late blight by a self-assembled multicomponent nano-bioprotectant. Nat. Commun. 14, 5622 (2023). https://doi.org/10.1038/s41467-023-41447-8
- R. Itzhakov, H. Hak, S. Sadhasivam, E. Belausov, E. Fallik et al., Nanogel ps based on modified nucleosides and oligosaccharides as advanced delivery system. ACS Nano 17, 23020–23031 (2023). https://doi.org/10.1021/acsnano.3c08627
- W. Han, X.-Q. Xu, X. Lian, Y. Chu, Y. Wang, A degradable quaternary ammonium-based pesticide safe for humans. CCS Chem. (2023). https://doi.org/10.31635/ccschem.023.202303338
- L. Zhu, W. Xu, X. Yao, L. Chen, G. Li et al., Cell wall pectin content refers to favored delivery of negatively charged carbon dots in leaf cells. ACS Nano 17, 23442–23454 (2023). https://doi.org/10.1021/acsnano.3c05182
- P. Hu, J. An, M.M. Faulkner, H. Wu, Z. Li et al., Nanop charge and size control foliar delivery efficiency to plant cells and organelles. ACS Nano 14, 7970–7986 (2020). https://doi.org/10.1021/acsnano.9b09178
- J. Lv, X. Gao, B. Han, Y. Zhu, K. Hou et al., Self-assembled inorganic chiral superstructures. Nat. Rev. Chem. 6, 125–145 (2022). https://doi.org/10.1038/s41570-021-00350-w
- S.Y. Kwak, T.T.S. Lew, C.J. Sweeney, V.B. Koman, M.H. Wong et al., Chloroplast-selective gene delivery and expression in planta using chitosan-complexed single-walled carbon nanotube carriers. Nat. Nanotechnol. 14, 447–455 (2019). https://doi.org/10.1038/s41565-019-0375-4
- D. Lin, Y. Li, Large-scale 2D-confined self-assembly of colloidal nanops via dynamic ice crystal templates. ACS Cent. Sci. 8, 510–512 (2022). https://doi.org/10.1021/acscentsci.2c00531
- H. Huang, J. Li, M. Yuan, H. Yang, Y. Zhao et al., Large-scale self-assembly of MOFs colloidosomes for bubble-propelled micromotors and stirring-free environmental remediation. Angew. Chem. Int. Ed. Engl. 61, e202211163 (2022). https://doi.org/10.1002/anie.202211163
- J. Tang, X. Tong, Y. Chen, Y. Wu, Z. Zheng et al., Deposition and water repelling of temperature-responsive nanopesticides on leaves. Nat. Commun. 14, 6401 (2023). https://doi.org/10.1038/s41467-023-41878-3
- C.K. Wong, R.Y. Lai, M.H. Stenzel, Dynamic metastable polymersomes enable continuous flow manufacturing. Nat. Commun. 14, 6237 (2023). https://doi.org/10.1038/s41467-023-41883-6
- G. Moreno-Alcántar, A. Aliprandi, R. Rouquette, L. Pesce, K. Wurst et al., Solvent-driven supramolecular wrapping of self-assembled structures. Angew. Chem. Int. Ed. 60, 5407–5413 (2021). https://doi.org/10.1002/anie.202013474
References
M. Zurek, A. Hebinck, O. Selomane, Climate change and the urgency to transform food systems. Science 376, 1416–1421 (2022). https://doi.org/10.1126/science.abo2364
F. Gould, Z.S. Brown, J. Kuzma, Wicked evolution: can we address the sociobiological dilemma of pesticide resistance? Science 360, 728–732 (2018). https://doi.org/10.1126/science.aar3780
R. Schulz, S. Bub, L.L. Petschick, S. Stehle, J. Wolfram, Applied pesticide toxicity shifts toward plants and invertebrates, even in GM crops. Science 372, 81–84 (2021). https://doi.org/10.1126/science.abe1148
J. von Braun, K. Afsana, L.O. Fresco, M. Hassan, Food systems: seven priorities to end hunger and protect the planet. Nature 597, 28–30 (2021). https://doi.org/10.1038/d41586-021-02331-x
T. Hofmann, G.V. Lowry, S. Ghoshal, N. Tufenkji, D. Brambilla et al., Technology readiness and overcoming barriers to sustainably implement nanotechnology-enabled plant agriculture. Nat. Food 1, 416–425 (2020). https://doi.org/10.1038/s43016-020-0110-1
F. Gomollón-Bel, Ten chemical innovations that will change our world: IUPAC identifies emerging technologies in chemistry with potential to make our planet more sustainable. Chem. Int. 41, 12–17 (2019). https://doi.org/10.1515/ci-2019-0203
D. Xiao, H. Wu, Y. Zhang, J. Kang, A. Dong et al., Advances in stimuli-responsive systems for pesticides delivery: recent efforts and future outlook. J. Control. Release 352, 288–312 (2022). https://doi.org/10.1016/j.jconrel.2022.10.028
Q. Zhang, Y. Ying, J. Ping, Recent advances in plant nanoscience. Adv. Sci. 9, 2103414 (2022). https://doi.org/10.1002/advs.202103414
M. Kah, N. Tufenkji, J.C. White, Nano-enabled strategies to enhance crop nutrition and protection. Nat. Nanotechnol. 14, 532–540 (2019). https://doi.org/10.1038/s41565-019-0439-5
A. Shelar, S.H. Nile, A.V. Singh, D. Rothenstein, J. Bill et al., Recent advances in nano-enabled seed treatment strategies for sustainable agriculture: challenges, risk assessment, and future perspectives. Nano-Micro Lett. 15, 54 (2023). https://doi.org/10.1007/s40820-023-01025-5
R. Saberi Riseh, M. Hassanisaadi, M. Vatankhah, R.S. Varma, V.K. Thakur, Nano/micro-structural supramolecular biopolymers: innovative networks with the boundless potential in sustainable agriculture. Nano-Micro Lett. 16, 147 (2024). https://doi.org/10.1007/s40820-024-01348-x
D. Wang, N.B. Saleh, A. Byro, R. Zepp, E. Sahle-Demessie et al., Nano-enabled pesticides for sustainable agriculture and global food security. Nat. Nanotechnol. 17, 347–360 (2022). https://doi.org/10.1038/s41565-022-01082-8
M. Kah, R.S. Kookana, A. Gogos, T.D. Bucheli, A critical evaluation of nanopesticides and nanofertilizers against their conventional analogues. Nat. Nanotechnol. 13, 677–684 (2018). https://doi.org/10.1038/s41565-018-0131-1
H. Flerlage, J.C. Slootweg, Modern chemistry is rubbish. Nat. Rev. Chem. 7, 593–594 (2023). https://doi.org/10.1038/s41570-023-00523-9
M. Kah, L.J. Johnston, R.S. Kookana, W. Bruce, A. Haase et al., Comprehensive framework for human health risk assessment of nanopesticides. Nat. Nanotechnol. 16, 955–964 (2021). https://doi.org/10.1038/s41565-021-00964-7
K.G. Cassman, P. Grassini, A global perspective on sustainable intensification research. Nat. Sustain. 3, 262–268 (2020). https://doi.org/10.1038/s41893-020-0507-8
E. Agathokleous, Z. Feng, I. Iavicoli, E.J. Calabrese, Nano-pesticides: a great challenge for biodiversity? The need for a broader perspective. Nano Today 30, 100808 (2020). https://doi.org/10.1016/j.nantod.2019.100808
P. Zhang, Z. Guo, Z. Zhang, H. Fu, J.C. White et al., Nanomaterial transformation in the soil-plant system: implications for food safety and application in agriculture. Small 16, e2000705 (2020). https://doi.org/10.1002/smll.202000705
K. Yang, Y. Li, X. Tan, R. Peng, Z. Liu, Behavior and toxicity of graphene and its functionalized derivatives in biological systems. Small 9, 1492–1503 (2013). https://doi.org/10.1002/smll.201201417
S.H. Lacerda, J.J. Park, C. Meuse, D. Pristinski, M.L. Becker et al., Interaction of gold nanops with common human blood proteins. ACS Nano 4, 365–379 (2010). https://doi.org/10.1021/nn9011187
S.I.L. Gomes, J.J. Scott-Fordsmand, M.J.B. Amorim, Alternative test methods for (nano)materials hazards assessment: challenges and recommendations for regulatory preparedness. Nano Today 40, 101242 (2021). https://doi.org/10.1016/j.nantod.2021.101242
X.-D. Sun, X.-Z. Yuan, Y. Jia, L.-J. Feng, F.-P. Zhu et al., Differentially charged nanoplastics demonstrate distinct accumulation in Arabidopsis thaliana. Nat. Nanotechnol. 15, 755–760 (2020). https://doi.org/10.1038/s41565-020-0707-4
M.F. Hochella Jr., D.W. Mogk, J. Ranville, I.C. Allen, G.W. Luther et al., Natural, incidental, and engineered nanomaterials and their impacts on the Earth system. Science 363, eaau8299 (2019). https://doi.org/10.1126/science.aau8299
L.M. Gilbertson, L. Pourzahedi, S. Laughton, X. Gao, J.B. Zimmerman et al., Guiding the design space for nanotechnology to advance sustainable crop production. Nat. Nanotechnol. 15, 801–810 (2020). https://doi.org/10.1038/s41565-020-0706-5
L. Huang, S. Zhao, F. Fang, T. Xu, M. Lan et al., Advances and perspectives in carrier-free nanodrugs for cancer chemo-monotherapy and combination therapy. Biomaterials 268, 120557 (2021). https://doi.org/10.1016/j.biomaterials.2020.120557
H. Mei, S. Cai, D. Huang, H. Gao, J. Cao et al., Carrier-free nanodrugs with efficient drug delivery and release for cancer therapy: from intrinsic physicochemical properties to external modification. Bioact. Mater. 8, 220–240 (2021). https://doi.org/10.1016/j.bioactmat.2021.06.035
S. Karaosmanoglu, M. Zhou, B. Shi, X. Zhang, G.R. Williams et al., Carrier-free nanodrugs for safe and effective cancer treatment. J. Control. Release 329, 805–832 (2021). https://doi.org/10.1016/j.jconrel.2020.10.014
L.-H. Liu, X.-Z. Zhang, Carrier-free nanomedicines for cancer treatment. Prog. Mater. Sci. 125, 100919 (2022). https://doi.org/10.1016/j.pmatsci.2021.100919
D. Liu, R. Aleisa, Z. Cai, Y. Li, Y. Yin, Self-assembly of superstructures at all scales. Matter 4, 927–941 (2021). https://doi.org/10.1016/j.matt.2020.12.020
E.L. Etter, K.-C. Mei, J. Nguyen, Delivering more for less: nanosized, minimal-carrier and pharmacoactive drug delivery systems. Adv. Drug Deliv. Rev. 179, 113994 (2021). https://doi.org/10.1016/j.addr.2021.113994
Y. Su, X. Zhou, H. Meng, T. Xia, H. Liu et al., Cost-benefit analysis of nanofertilizers and nanopesticides emphasizes the need to improve the efficiency of nanoformulations for widescale adoption. Nat. Food 3, 1020–1030 (2022). https://doi.org/10.1038/s43016-022-00647-z
I. Mubeen, M. Fawzi Bani Mfarrej, Z. Razaq, S. Iqbal, S.A.H. Naqvi et al., Nanopesticides in comparison with agrochemicals: outlook and future prospects for sustainable agriculture. Plant Physiol. Biochem. 198, 107670 (2023). https://doi.org/10.1016/j.plaphy.2023.107670
N. Kandhol, V.P. Singh, L. Herrera-Estrella, L.P. Tran, D.K. Tripathi, Nanocarrier spray: a nontransgenic approach for crop engineering. Trends Plant Sci. 28, 259–261 (2023). https://doi.org/10.1016/j.tplants.2022.12.015
M. Li, Z. Ma, M. Peng, L. Li, M. Yin et al., A gene and drug co-delivery application helps to solve the short life disadvantage of RNA drug. Nano Today 43, 101452 (2022). https://doi.org/10.1016/j.nantod.2022.101452
D.-X. Zhang, J. Du, R. Wang, J. Luo, T.-F. Jing et al., Core/shell dual-responsive nanocarriers via iron-mineralized electrostatic self-assembly for precise pesticide delivery. Adv. Funct. Mater. 31, 2102027 (2021). https://doi.org/10.1002/adfm.202102027
J. Luo, Y. Gao, Y. Liu, X. Huang, D.-X. Zhang et al., Self-assembled degradable nanogels provide foliar affinity and pinning for pesticide delivery by flexibility and adhesiveness adjustment. ACS Nano 15, 14598–14609 (2021). https://doi.org/10.1021/acsnano.1c04317
G.M. Whitesides, M. Boncheva, Beyond molecules: self-assembly of mesoscopic and macroscopic components. Proc. Natl. Acad. Sci. U.S.A. 99, 4769–4774 (2002). https://doi.org/10.1073/pnas.082065899
J. Kim, S. Lee, Y. Kim, M. Choi, I. Lee et al., In situ self-assembly for cancer therapy and imaging. Nat. Rev. Mater. 8, 710–725 (2023). https://doi.org/10.1038/s41578-023-00589-3
K. Wang, Y. Wang, Y. Wu, J. Jiang, Y. Zhang et al., A novel dual stimuli-responsive and double-loaded insecticidal nanoformulation for efficient control of insect pest. Chem. Eng. J. 474, 146012 (2023). https://doi.org/10.1016/j.cej.2023.146012
X. Li, Z. Zhou, Y. Huang, G. Tang, Y. Liu et al., A high adhesion co-assembly based on myclobutanil and tannic acid for sustainable plant disease management. Pest Manag. Sci. 79, 3796–3807 (2023). https://doi.org/10.1002/ps.7564
G. Gohari, M. Jiang, G.A. Manganaris, J. Zhou, V. Fotopoulos, Next generation chemical priming: with a little help from our nanocarrier friends. Trends Plant Sci. 29, 150–166 (2024). https://doi.org/10.1016/j.tplants.2023.11.024
Y. Zhang, G.G. Goss, Nanotechnology in agriculture: comparison of the toxicity between conventional and nano-based agrochemicals on non-target aquatic species. J. Hazard. Mater. 439, 129559 (2022). https://doi.org/10.1016/j.jhazmat.2022.129559
R. Pires-Oliveira, M.S. Kfouri, B. Mendonça, P. Cardoso-Gustavson, Nanopesticides: From the Bench to the Market, in Nanopesticides. ed. by L.F. Fraceto, V.L.S.S. de Castro, R. Grillo, D. Ávila, H.C. Oliveira et al. (Springer, Cham, 2020), pp.317–348
C. An, B. Huang, J. Jiang, X. Wang, N. Li et al., Design and synthesis of a water-based nanodelivery pesticide system for improved efficacy and safety. ACS Nano 18, 662–679 (2024). https://doi.org/10.1021/acsnano.3c08854
Q.-T. Ji, D.-K. Hu, X.-F. Mu, X.-X. Tian, L. Zhou et al., Cucurbit[7]uril-mediated supramolecular bactericidal nanops: their assembly process, controlled release, and safe treatment of intractable plant bacterial diseases. Nano Lett. 22, 4839–4847 (2022). https://doi.org/10.1021/acs.nanolett.2c01203
X. Chi, G. Yu, L. Shao, J. Chen, F. Huang, A dual-thermoresponsive gemini-type supra-amphiphilic macromolecular[3]pseudorotaxane based on pillar[10]arene/paraquat cooperative complexation. J. Am. Chem. Soc. 138, 3168–3174 (2016). https://doi.org/10.1021/jacs.5b13173
X. Zhang, G. Tang, Z. Zhou, H. Wang, X. Li et al., Fabrication of enzyme-responsive prodrug self-assembly based on fluazinam for reducing toxicity to aquatic organisms. J. Agric. Food Chem. 71, 12678–12687 (2023). https://doi.org/10.1021/acs.jafc.3c03762
Y. Tian, G. Tang, Y. Gao, X. Chen, Z. Zhou et al., Carrier-free small molecular self-assembly based on berberine and curcumin incorporated in submicron ps for improving antimicrobial activity. ACS Appl. Mater. Interfaces 14, 10055–10067 (2022). https://doi.org/10.1021/acsami.1c22900
B. Testa, Prodrug research: futile or fertile? Biochem. Pharmacol. 68, 2097–2106 (2004). https://doi.org/10.1016/j.bcp.2004.07.005
K. Wei, Z. Li, Z. Zheng, Y. Gao, Q. Huang et al., Natural glycyrrhizic acid-tailored nanops toward the enhancement of pesticide bioavailability. Adv. Funct. Mater. (2024). https://doi.org/10.1002/adfm.202315493
Y. Tian, Y. Huang, X. Zhang, G. Tang, Y. Gao et al., Self-assembled nanops of a prodrug conjugate based on pyrimethanil for efficient plant disease management. J. Agric. Food Chem. 70, 11901–11910 (2022). https://doi.org/10.1021/acs.jafc.2c04489
Y. Tian, X. Zhang, Y. Huang, G. Tang, Y. Gao et al., Amphiphilic prodrug nano-micelles of fipronil coupled with natural carboxylic acids for improving physicochemical properties and reducing the toxicities to aquatic organisms. Chem. Eng. J. 439, 135717 (2022). https://doi.org/10.1016/j.cej.2022.135717
K. Zhao, G. Xu, L. Wang, T. Wu, X. Zhang et al., Using a dynamic hydrophilization strategy to achieve nanodispersion, full wetting, and precise delivery of hydrophobic pesticide. ACS Appl. Mater. Interfaces 15, 37093–37106 (2023). https://doi.org/10.1021/acsami.3c07530
Q. Liu, B. Graham, A. Hawley, Y.-D. Dong, B.J. Boyd, Novel agrochemical conjugates with self-assembling behaviour. J. Colloid Interface Sci. 512, 369–378 (2018). https://doi.org/10.1016/j.jcis.2017.10.070
P.P. Nadiminti, Y.D. Dong, C. Sayer, P. Hay, J.E. Rookes et al., Nanostructured liquid crystalline ps as an alternative delivery vehicle for plant agrochemicals. ACS Appl. Mater. Interfaces 5, 1818–1826 (2013). https://doi.org/10.1021/am303208t
J.-G. Cui, D.-M. Mo, Y. Jiang, C.-F. Gan, W.-G. Li et al., Fabrication, characterization, and insecticidal activity evaluation of emamectin benzoate–sodium lignosulfonate nanoformulation with pH-responsivity. Ind. Eng. Chem. Res. 58, 19741–19751 (2019). https://doi.org/10.1021/acs.iecr.9b03171
Y. Xiao, C. Wu, P. Cui, X. Luo, L. Zhou et al., Enhancing adsorption capacity and herbicidal efficacy of 2, 4-D through supramolecular self-assembly: insights from cocrystal engineering to solution chemistry. Chem. Eng. J. 469, 143757 (2023). https://doi.org/10.1016/j.cej.2023.143757
Y. Tian, G. Tang, Y. Li, Z. Zhou, X. Chen et al., A simple preparation process for an efficient nano-formulation: small molecule self-assembly based on spinosad and sulfamic acid. Green Chem. 23, 4882–4891 (2021). https://doi.org/10.1039/D1GC00971K
J. Murray, K. Kim, T. Ogoshi, W. Yao, B.C. Gibb, The aqueous supramolecular chemistry of cucurbit[n]urils, pillar[n]arenes and deep-cavity cavitands. Chem. Soc. Rev. 46, 2479–2496 (2017). https://doi.org/10.1039/c7cs00095b
T.L. Price Jr., H.W. Gibson, Supramolecular pseudorotaxane polymers from biscryptands and bisparaquats. J. Am. Chem. Soc. 140, 4455–4465 (2018). https://doi.org/10.1021/jacs.8b01480
Q. Song, L. Mei, X. Zhang, P. Xu, M.K. Dhinakaran et al., Spreading of benquitrione droplets on superhydrophobic leaves through pillar[5]arene-based host-guest chemistry. Chem. Commun. 56, 7593–7596 (2020). https://doi.org/10.1039/d0cc02187c
Y. Zheng, Z. Yu, R.M. Parker, Y. Wu, C. Abell et al., Interfacial assembly of dendritic microcapsules with host-guest chemistry. Nat. Commun. 5, 5772 (2014). https://doi.org/10.1038/ncomms6772
C. Gao, Q. Huang, Q. Lan, Y. Feng, F. Tang et al., A user-friendly herbicide derived from photo-responsive supramolecular vesicles. Nat. Commun. 9, 2967 (2018). https://doi.org/10.1038/s41467-018-05437-5
J. Yang, H.-J. Ye, H.-M. Xiang, X. Zhou, P.-Y. Wang et al., Photo-stimuli smart supramolecular self-assembly of azobenzene/β-cyclodextrin inclusion complex for controlling plant bacterial diseases. Adv. Funct. Mater. 33, 2303206 (2023). https://doi.org/10.1002/adfm.202303206
Q.-T. Ji, X.-F. Mu, D.-K. Hu, L.-J. Fan, S.-Z. Xiang et al., Fabrication of host-guest complexes between adamantane-functionalized 1, 3, 4-oxadiazoles and β-cyclodextrin with improved control efficiency against intractable plant bacterial diseases. ACS Appl. Mater. Interfaces 14, 2564–2577 (2022). https://doi.org/10.1021/acsami.1c19758
G. Tang, Z. Zhou, X. Zhang, Y. Liu, G. Yan et al., Fabrication of supramolecular self-assembly of the schiff base complex for improving bioavailability of aldehyde-containing plant essential oil. Chem. Eng. J. 471(1), 144471 (2023). https://doi.org/10.1016/j.cej.2023.144471
G. Tang, Y. Tian, J. Niu, J. Tang, J. Yang et al., Development of carrier-free self-assembled nanops based on fenhexamid and polyhexamethylene biguanide for sustainable plant disease management. Green Chem. 23, 2531–2540 (2021). https://doi.org/10.1039/D1GC00006C
H. Wang, G. Tang, Z. Zhou, X. Chen, Y. Liu et al., Stable fluorescent nanops based on Co-assembly of acifluorfen and Poly (salicylic acid) for enhancing herbicidal activity and reducing environmental risks. ACS Appl. Mater. Interfaces 15, 4303–4314 (2023). https://doi.org/10.1021/acsami.2c18642
G. Tang, Y. Tian, Y. Gao, Z. Zhou, X. Chen et al., Supramolecular self-assembly of herbicides with reduced risks to the environment. ACS Nano 16, 4892–4904 (2022). https://doi.org/10.1021/acsnano.2c00539
Y. Shamay, J. Shah, M. Işık, A. Mizrachi, J. Leibold et al., Quantitative self-assembly prediction yields targeted nanomedicines. Nat. Mater. 17, 361–368 (2018). https://doi.org/10.1038/s41563-017-0007-z
B. Sun, C. Luo, X. Zhang, M. Guo, M. Sun et al., Probing the impact of sulfur/selenium/carbon linkages on prodrug nanoassemblies for cancer therapy. Nat. Commun. 10, 3211 (2019). https://doi.org/10.1038/s41467-019-11193-x
R.L. Greenaway, K.E. Jelfs, A.C. Spivey, S.N. Yaliraki, From alchemist to AI chemist. Nat. Rev. Chem. 7, 527–528 (2023). https://doi.org/10.1038/s41570-023-00522-w
Y. Wang, M. Li, J. Ying, J. Shen, D. Dou et al., High-efficiency green management of potato late blight by a self-assembled multicomponent nano-bioprotectant. Nat. Commun. 14, 5622 (2023). https://doi.org/10.1038/s41467-023-41447-8
R. Itzhakov, H. Hak, S. Sadhasivam, E. Belausov, E. Fallik et al., Nanogel ps based on modified nucleosides and oligosaccharides as advanced delivery system. ACS Nano 17, 23020–23031 (2023). https://doi.org/10.1021/acsnano.3c08627
W. Han, X.-Q. Xu, X. Lian, Y. Chu, Y. Wang, A degradable quaternary ammonium-based pesticide safe for humans. CCS Chem. (2023). https://doi.org/10.31635/ccschem.023.202303338
L. Zhu, W. Xu, X. Yao, L. Chen, G. Li et al., Cell wall pectin content refers to favored delivery of negatively charged carbon dots in leaf cells. ACS Nano 17, 23442–23454 (2023). https://doi.org/10.1021/acsnano.3c05182
P. Hu, J. An, M.M. Faulkner, H. Wu, Z. Li et al., Nanop charge and size control foliar delivery efficiency to plant cells and organelles. ACS Nano 14, 7970–7986 (2020). https://doi.org/10.1021/acsnano.9b09178
J. Lv, X. Gao, B. Han, Y. Zhu, K. Hou et al., Self-assembled inorganic chiral superstructures. Nat. Rev. Chem. 6, 125–145 (2022). https://doi.org/10.1038/s41570-021-00350-w
S.Y. Kwak, T.T.S. Lew, C.J. Sweeney, V.B. Koman, M.H. Wong et al., Chloroplast-selective gene delivery and expression in planta using chitosan-complexed single-walled carbon nanotube carriers. Nat. Nanotechnol. 14, 447–455 (2019). https://doi.org/10.1038/s41565-019-0375-4
D. Lin, Y. Li, Large-scale 2D-confined self-assembly of colloidal nanops via dynamic ice crystal templates. ACS Cent. Sci. 8, 510–512 (2022). https://doi.org/10.1021/acscentsci.2c00531
H. Huang, J. Li, M. Yuan, H. Yang, Y. Zhao et al., Large-scale self-assembly of MOFs colloidosomes for bubble-propelled micromotors and stirring-free environmental remediation. Angew. Chem. Int. Ed. Engl. 61, e202211163 (2022). https://doi.org/10.1002/anie.202211163
J. Tang, X. Tong, Y. Chen, Y. Wu, Z. Zheng et al., Deposition and water repelling of temperature-responsive nanopesticides on leaves. Nat. Commun. 14, 6401 (2023). https://doi.org/10.1038/s41467-023-41878-3
C.K. Wong, R.Y. Lai, M.H. Stenzel, Dynamic metastable polymersomes enable continuous flow manufacturing. Nat. Commun. 14, 6237 (2023). https://doi.org/10.1038/s41467-023-41883-6
G. Moreno-Alcántar, A. Aliprandi, R. Rouquette, L. Pesce, K. Wurst et al., Solvent-driven supramolecular wrapping of self-assembled structures. Angew. Chem. Int. Ed. 60, 5407–5413 (2021). https://doi.org/10.1002/anie.202013474