Rational Design of Cost-Effective Metal-Doped ZrO2 for Oxygen Evolution Reaction
Corresponding Author: Hao Li
Nano-Micro Letters,
Vol. 16 (2024), Article Number: 180
Abstract
The design of cost-effective electrocatalysts is an open challenging for oxygen evolution reaction (OER) due to the “stable-or-active” dilemma. Zirconium dioxide (ZrO2), a versatile and low-cost material that can be stable under OER operating conditions, exhibits inherently poor OER activity from experimental observations. Herein, we doped a series of metal elements to regulate the ZrO2 catalytic activity in OER via spin-polarized density functional theory calculations with van der Waals interactions. Microkinetic modeling as a function of the OER activity descriptor (GO*-GHO*) displays that 16 metal dopants enable to enhance OER activities over a thermodynamically stable ZrO2 surface, among which Fe and Rh (in the form of single-atom dopant) reach the volcano peak (i.e. the optimal activity of OER under the potential of interest), indicating excellent OER performance. Free energy diagram calculations, density of states, and ab initio molecular dynamics simulations further showed that Fe and Rh are the effective dopants for ZrO2, leading to low OER overpotential, high conductivity, and good stability. Considering cost-effectiveness, single-atom Fe doped ZrO2 emerged as the most promising catalyst for OER. This finding offers a valuable perspective and reference for experimental researchers to design cost-effective catalysts for the industrial-scale OER production.
Highlights:
1 Surface energy and surface Pourbaix diagram reveal that ZrO2 (111) is the most thermodynamically stable facet and is preferentially occupied by HO* at the equilibrium potential of oxygen evolution reaction (OER).
2 Microkinetic modeling analyzed the OER activity of 40 single-metal doped ZrO2 and identified 16 metals exhibit improved catalytic activity, with Rh and Fe dopants showing the remarkable improvement.
3 Thermodynamic free energy diagrams, density of states analysis, and ab initio molecular dynamics simulations further confirm that Fe–ZrO2 and Rh–ZrO2 are highly promising catalysts for OER, showcasing low ΔG for the rate-determining step, high conductivity, and exceptional stability.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J. Li, Oxygen evolution reaction in energy conversion and storage: design strategies under and beyond the energy scaling relationship. Nano-Micro Lett. 14, 112 (2022). https://doi.org/10.1007/s40820-022-00857-x
- Z.W. Seh, J. Kibsgaard, C.F. Dickens, I. Chorkendorff, J.K. Nørskov et al., Combining theory and experiment in electrocatalysis: insights into materials design. Science 355, eaad4998 (2017). https://doi.org/10.1126/science.aad4998
- L. Mei, X. Gao, Z. Gao, Q. Zhang, X. Yu et al., Size-selective synthesis of platinum nanops on transition-metal dichalcogenides for the hydrogen evolution reaction. Chem. Commun. 57, 2879–2882 (2021). https://doi.org/10.1039/d0cc08091h
- M.G. Walter, E.L. Warren, J.R. McKone, S.W. Boettcher, Q. Mi et al., Solar water splitting cells. Chem. Rev. 110, 6446–6473 (2010). https://doi.org/10.1021/cr1002326
- B. Guo, Y. Ding, H. Huo, X. Wen, X. Ren et al., Recent advances of transition metal basic salts for electrocatalytic oxygen evolution reaction and overall water electrolysis. Nano-Micro Lett. 15, 57 (2023). https://doi.org/10.1007/s40820-023-01038-0
- J. Li, J. Li, J. Ren, H. Hong, D. Liu et al., Electric-field-treated Ni/Co3O4 film as high-performance bifunctional electrocatalysts for efficient overall water splitting. Nano-Micro Lett. 14, 148 (2022). https://doi.org/10.1007/s40820-022-00889-3
- P. Wang, Y. Luo, G. Zhang, Z. Chen, H. Ranganathan et al., Interface engineering of NixSy@MnOxHy nanorods to efficiently enhance overall-water-splitting activity and stability. Nano-Micro Lett. 14, 120 (2022). https://doi.org/10.1007/s40820-022-00860-2
- T.R. Cook, D.K. Dogutan, S.Y. Reece, Y. Surendranath, T.S. Teets et al., Solar energy supply and storage for the legacy and nonlegacy worlds. Chem. Rev. 110, 6474–6502 (2010). https://doi.org/10.1021/cr100246c
- I.C. Man, H.-Y. Su, F. Calle-Vallejo, H.A. Hansen, J.I. Martínez et al., Universality in oxygen evolution electrocatalysis on oxide surfaces. ChemCatChem 3, 1159–1165 (2011). https://doi.org/10.1002/cctc.201000397
- E. Antolini, Iridium as catalyst and cocatalyst for oxygen evolution/reduction in acidic polymer electrolyte membrane electrolyzers and fuel cells. ACS Catal. 4, 1426–1440 (2014). https://doi.org/10.1021/cs4011875
- M.D. Symes, L. Cronin, Decoupling hydrogen and oxygen evolution during electrolytic water splitting using an electron-coupled-proton buffer. Nat. Chem. 5, 403–409 (2013). https://doi.org/10.1038/nchem.1621
- J. Liu, Y. He, L. Yan, C. Ma, C. Zhang et al., Nano-ZrO2 as hydrogenation phase in bi-functional catalyst for syngas aromatization. Fuel 263, 116803 (2020). https://doi.org/10.1016/j.fuel.2019.116803
- T. Yamaguchi, Application of ZrO2 as a catalyst and a catalyst support. Catal. Today 20, 199–217 (1994). https://doi.org/10.1016/0920-5861(94)80003-0
- F.F. Alharbi, M.U. Nisa, H.M.A. Hassan, S. Manzoor, Z. Ahmad et al., Novel lanthanum sulfide–decorated zirconia nanohybrid for enhanced electrochemical oxygen evolution reaction. J. Solid State Electrochem. 26, 2171–2182 (2022). https://doi.org/10.1007/s10008-022-05220-z
- S.B. Jaffri, K.S. Ahmad, I. Abrahams, C.J. Kousseff, C.B. Nielsen et al., Rare earth (Sm/Eu/Tm) doped ZrO2 driven electro-catalysis, energy storage, and scaffolding in high-performance perovskite solar cells. Int. J. Hydrog. Energy 48, 29119–29141 (2023). https://doi.org/10.1016/j.ijhydene.2023.04.085
- M. Sadaqat, S. Manzoor, S. Aman, L. Nisar, M. Najam-Ul-Haq et al., Defective nickel zirconium oxide mesoporous bifunctional electrocatalyst for oxygen evolution reaction and overall water splitting. Fuel 333, 126538 (2023). https://doi.org/10.1016/j.fuel.2022.126538
- Y. Zhang, J. Liu, Z. Wei, Q. Liu, C. Wang et al., Electrochemical CO2 reduction over nitrogen-doped SnO2 crystal surfaces. J. Energy Chem. 33, 22–30 (2019). https://doi.org/10.1016/j.jechem.2018.08.017
- R.Q. Huang, W.P. Liao, M.X. Yan, S. Liu, Y.M. Li et al., P doped Ru-Pt alloy catalyst toward high performance alkaline hydrogen evolution reaction. J. Electrochem. 29, 2203081 (2023). https://jelectrochem.xmu.edu.cn/journal/vol29/iss5/3
- J. Lin, Y. Yan, C. Li, X. Si, H. Wang et al., Bifunctional electrocatalysts based on Mo-doped NiCoP nanosheet arrays for overall water splitting. Nano-Micro Lett. 11, 55 (2019). https://doi.org/10.1007/s40820-019-0289-6
- Y. Zhang, W. Zhang, Y. Feng, J. Ma, Promoted CO2 electroreduction over indium-doped SnP3: a computational study. J. Energy Chem. 48, 1–6 (2020). https://doi.org/10.1016/j.jechem.2019.12.025
- Z. X. Wan, C. H. Wang, X. W. Kang, Self-supported Ru-Cu3P catalyst towards alkaline hydrogen evolution. J. Electrochem. 28, 2214005 (2022). https://jelectrochem.xmu.edu.cn/journal/vol28/iss10/6
- A.K. Mishra, D. Pradhan, Hierarchical urchin-like cobalt-doped CuO for enhanced electrocatalytic oxygen evolution reaction. ACS Appl. Energy Mater. 4, 9412–9419 (2021). https://doi.org/10.1021/acsaem.1c01632
- M. Li, X. Wang, K. Liu, H. Sun, D. Sun et al., Reinforcing Co-O covalency via Ce(4f)─O(2p)─Co(3d) gradient orbital coupling for high-efficiency oxygen evolution. Adv. Mater. 35, 2302462 (2023). https://doi.org/10.1002/adma.202302462
- G. Kresse, J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996). https://doi.org/10.1016/0927-0256(96)00008-0
- G. Kresse, J. Furthmüller, Efficient iterative schemes forab initiototal-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996). https://doi.org/10.1103/physrevb.54.11169
- B. Hammer, L.B. Hansen, J.K. Nørskov, Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals. Phys. Rev. B 59, 7413–7421 (1999). https://doi.org/10.1103/physrevb.59.7413
- L. Wang, T. Maxisch, G. Ceder, Oxidation energies of transition metal oxides within the GGA+U framework. Phys. Rev. B 73, 195107 (2006). https://doi.org/10.1103/physrevb.73.195107
- D. Mutter, D.F. Urban, C. Elsässer, Determination of formation energies and phase diagrams of transition metal oxides with DFT+U. Materials 13, 4303 (2020). https://doi.org/10.3390/ma13194303
- K. Jiang, S. Zhou, Z. Wang, Textured electronic states of the triangular-lattice Hubbard model and NaxCoO2. Phys. Rev. B 90, 165135 (2014). https://doi.org/10.1103/physrevb.90.165135
- A. Cadi-Essadek, A. Roldan, D. Santos-Carballal, P.E. Ngoepe, M. Claeys et al., DFT+U study of the electronic, magnetic and mechanical properties of Co, CoO, and Co3O4. S. Afr. J. Chem. 74, 8–16 (2021). https://doi.org/10.17159/0379-4350/2021/v74a3
- X. Shi, S.L. Bernasek, A. Selloni, Formation, electronic structure, and defects of Ni substituted spinel cobalt oxide: a DFT+U study. J. Phys. Chem. C 120, 14892–14898 (2016). https://doi.org/10.1021/acs.jpcc.6b03096
- A. Jain, G. Hautier, S.P. Ong, C.J. Moore, C.C. Fischer et al., Formation enthalpies by mixing GGA and GGA+U calculations. Phys. Rev. B 84, 045115 (2011). https://doi.org/10.1103/physrevb.84.045115
- G. Kresse, D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999). https://doi.org/10.1103/physrevb.59.1758
- E.H. Kisi, C.J. Howard, Crystal structures of zirconia phases and their inter-relation. Key Eng. Mater. 153–154, 1–36 (1998). https://doi.org/10.4028/www.scientific.net/kem.153-154.1
- V.G. Keramidas, W.B. White, Raman scattering study of the crystallization and phase transformations of ZrO2. J. Am. Ceram. Soc. 57, 22–24 (1974). https://doi.org/10.1111/j.1151-2916.1974.tb11355.x
- D.K. Smith, W. Newkirk, The crystal structure of baddeleyite (monoclinic ZrO2) and its relation to the polymorphism of ZrO2. Acta Crystallogr. 18, 983–991 (1965). https://doi.org/10.1107/s0365110x65002402
- S. Grimme, J. Antony, S. Ehrlich, H. Krieg, A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132, 154104 (2010). https://doi.org/10.1063/1.3382344
- H.J. Monkhorst, J.D. Pack, Special points for brillouin-zone integrations. Phys. Rev. B 13, 5188 (1976). https://doi.org/10.1103/PhysRevB.13.5188
- S. Maintz, V.L. Deringer, A.L. Tchougréeff, R. Dronskowski, LOBSTER: a tool to extract chemical bonding from plane-wave based DFT. J. Comput. Chem. 37, 1030–1035 (2016). https://doi.org/10.1002/jcc.24300
- J.K. Nørskov, J. Rossmeisl, A. Logadottir, L. Lindqvist, J.R. Kitchin et al., Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 108, 17886–17892 (2004). https://doi.org/10.1021/jp047349j
- M. Huang, C. Sun, X. Zhang, P. Wang, S. Xu et al., The surface structure, stability, and catalytic performances toward O2 reduction of CoP and FeCoP2. Dalton Trans. 51, 10420–10431 (2022). https://doi.org/10.1039/d2dt01408d
- Q. Li, M. Rellán-Piñeiro, N. Almora-Barrios, M. Garcia-Ratés, I.N. Remediakis et al., Shape control in concave metal nanops by etching. Nanoscale 9, 13089–13094 (2017). https://doi.org/10.1039/c7nr03889e
- C.F. Dickens, C. Kirk, J.K. Nørskov, Insights into the electrochemical oxygen evolution reaction with ab initio calculations and microkinetic modeling: beyond the limiting potential volcano. J. Phys. Chem. C 123, 18960–18977 (2019). https://doi.org/10.1021/acs.jpcc.9b03830
- H. Liu, X. Jia, A. Cao, L. Wei, C. D’agostino et al., The surface states of transition metal X-ides under electrocatalytic conditions. J. Chem. Phys. 158, 6 (2023). https://doi.org/10.1063/5.0147123
- W. Yang, Z. Jia, B. Zhou, L. Wei, Z. Gao et al., Surface states of dual-atom catalysts should be considered for analysis of electrocatalytic activity. Commun. Chem. 6, 6 (2023). https://doi.org/10.1038/s42004-022-00810-4
- W. Yang, Z. Jia, L. Chen, B. Zhou, D. Zhang et al., Effects of intermetal distance on the electrochemistry-induced surface coverage of M-N-C dual-atom catalysts. Chem. Commun. 59, 10761–10764 (2023). https://doi.org/10.1039/d3cc03208f
- H. Liu, H. Zheng, Z. Jia, B. Zhou, Y. Liu et al., The CatMath: an online predictive platform for thermal + electrocatalysis. Front. Chem. Sci. Engin. 17, 2156–2160 (2023). https://doi.org/10.1007/s11705-023-2371-3
- G.-M. Rignanese, Dielectric properties of crystalline and amorphous transition metal oxides and silicates as potential high-κ candidates: the contribution of density-functional theory. J. Phys. Condens. Matter 17, R357–R379 (2005). https://doi.org/10.1088/0953-8984/17/7/r03
- A. Christensen, E.A. Carter, First-principles study of the surfaces of zirconia. Phys. Rev. B 58, 8050–8064 (1998). https://doi.org/10.1103/physrevb.58.8050
- C. Morterra, G. Cerrato, L. Ferroni, L. Montanaro, Surface characterization of yttria-stabilized tetragonal ZrO2 Part 1. Structural, morphological, and surface hydration features. Mater. Chem. Phys. 37, 243–257 (1994). https://doi.org/10.1016/0254-0584(94)90160-0
- L.G.V. Briquet, M. Sarwar, J. Mugo, G. Jones, F. Calle-Vallejo, A new type of scaling relations to assess the accuracy of computational predictions of catalytic activities applied to the oxygen evolution reaction. ChemCatChem 9, 1261–1268 (2017). https://doi.org/10.1002/cctc.201601662
- H. Li, S. Kelly, D. Guevarra, Z. Wang, Y. Wang et al., Analysis of the limitations in the oxygen reduction activity of transition metal oxide surfaces. Nat. Catal. 4, 463–468 (2021). https://doi.org/10.1038/s41929-021-00618-w
- J. Rossmeisl, Z.-W. Qu, H. Zhu, G.-J. Kroes, J.K. Nørskov, Electrolysis of water on oxide surfaces. J. Electroanal. Chem. 607, 83–89 (2007). https://doi.org/10.1016/j.jelechem.2006.11.008
- K.S. Exner, J. Anton, T. Jacob, H. Over, Ligand effects and their impact on electrocatalytic processes exemplified with the oxygen evolution reaction (OER) on RuO2(110). ChemElectroChem 2, 707–713 (2015). https://doi.org/10.1002/celc.201402430
- B. Zhang, X. Zheng, O. Voznyy, R. Comin, M. Bajdich et al., Homogeneously dispersed multimetal oxygen-evolving catalysts. Science 352, 333–337 (2016). https://doi.org/10.1126/science.aaf1525
- W. Ahmed, J. Iqbal, S.O. Aisida, A. Badshah, I. Ahmad et al., Structural, magnetic and dielectric characteristics of optically tuned Fe doped ZrO2 nanops with visible light driven photocatalytic activity. Mater. Chem. Phys. 251, 122999 (2020). https://doi.org/10.1016/j.matchemphys.2020.122999
- A.O. de Souza, F.F. Ivashita, V. Biondo, A. Paesano Jr., D.H. Mosca, Structural and magnetic properties of iron doped ZrO2. J. Alloys Compd. 680, 701–710 (2016). https://doi.org/10.1016/j.jallcom.2016.04.170
- P. Sakthisharmila, N. Sivakumar, J. Mathupriya, Synthesis, characterization of Mn, Fe doped ZrO2 composites and its applications on photocatalytic and solar catalytic studies. Mater. Today Proc. 47, 2159–2167 (2021). https://doi.org/10.1016/j.matpr.2021.05.461
- X. Zhang, C. Sun, S. Xu, M. Huang, Y. Wen et al., DFT-assisted rational design of CoMxP/CC (M = Fe, Mn, and Ni) as efficient electrocatalyst for wide pH range hydrogen evolution and oxygen evolution. Nano Res. 15, 8897–8907 (2022). https://doi.org/10.1007/s12274-022-4771-y
- Y. Li, H. Zhang, M. Jiang, Q. Zhang, P. He, X. Sun, 3d self-supported Fe-doped Ni2P nanosheet arrays as bifunctional catalysts for overall water splitting. Adv. Funct. Mater. 27, 17025132017 (2017). https://doi.org/10.1002/adfm.201702513
References
J. Li, Oxygen evolution reaction in energy conversion and storage: design strategies under and beyond the energy scaling relationship. Nano-Micro Lett. 14, 112 (2022). https://doi.org/10.1007/s40820-022-00857-x
Z.W. Seh, J. Kibsgaard, C.F. Dickens, I. Chorkendorff, J.K. Nørskov et al., Combining theory and experiment in electrocatalysis: insights into materials design. Science 355, eaad4998 (2017). https://doi.org/10.1126/science.aad4998
L. Mei, X. Gao, Z. Gao, Q. Zhang, X. Yu et al., Size-selective synthesis of platinum nanops on transition-metal dichalcogenides for the hydrogen evolution reaction. Chem. Commun. 57, 2879–2882 (2021). https://doi.org/10.1039/d0cc08091h
M.G. Walter, E.L. Warren, J.R. McKone, S.W. Boettcher, Q. Mi et al., Solar water splitting cells. Chem. Rev. 110, 6446–6473 (2010). https://doi.org/10.1021/cr1002326
B. Guo, Y. Ding, H. Huo, X. Wen, X. Ren et al., Recent advances of transition metal basic salts for electrocatalytic oxygen evolution reaction and overall water electrolysis. Nano-Micro Lett. 15, 57 (2023). https://doi.org/10.1007/s40820-023-01038-0
J. Li, J. Li, J. Ren, H. Hong, D. Liu et al., Electric-field-treated Ni/Co3O4 film as high-performance bifunctional electrocatalysts for efficient overall water splitting. Nano-Micro Lett. 14, 148 (2022). https://doi.org/10.1007/s40820-022-00889-3
P. Wang, Y. Luo, G. Zhang, Z. Chen, H. Ranganathan et al., Interface engineering of NixSy@MnOxHy nanorods to efficiently enhance overall-water-splitting activity and stability. Nano-Micro Lett. 14, 120 (2022). https://doi.org/10.1007/s40820-022-00860-2
T.R. Cook, D.K. Dogutan, S.Y. Reece, Y. Surendranath, T.S. Teets et al., Solar energy supply and storage for the legacy and nonlegacy worlds. Chem. Rev. 110, 6474–6502 (2010). https://doi.org/10.1021/cr100246c
I.C. Man, H.-Y. Su, F. Calle-Vallejo, H.A. Hansen, J.I. Martínez et al., Universality in oxygen evolution electrocatalysis on oxide surfaces. ChemCatChem 3, 1159–1165 (2011). https://doi.org/10.1002/cctc.201000397
E. Antolini, Iridium as catalyst and cocatalyst for oxygen evolution/reduction in acidic polymer electrolyte membrane electrolyzers and fuel cells. ACS Catal. 4, 1426–1440 (2014). https://doi.org/10.1021/cs4011875
M.D. Symes, L. Cronin, Decoupling hydrogen and oxygen evolution during electrolytic water splitting using an electron-coupled-proton buffer. Nat. Chem. 5, 403–409 (2013). https://doi.org/10.1038/nchem.1621
J. Liu, Y. He, L. Yan, C. Ma, C. Zhang et al., Nano-ZrO2 as hydrogenation phase in bi-functional catalyst for syngas aromatization. Fuel 263, 116803 (2020). https://doi.org/10.1016/j.fuel.2019.116803
T. Yamaguchi, Application of ZrO2 as a catalyst and a catalyst support. Catal. Today 20, 199–217 (1994). https://doi.org/10.1016/0920-5861(94)80003-0
F.F. Alharbi, M.U. Nisa, H.M.A. Hassan, S. Manzoor, Z. Ahmad et al., Novel lanthanum sulfide–decorated zirconia nanohybrid for enhanced electrochemical oxygen evolution reaction. J. Solid State Electrochem. 26, 2171–2182 (2022). https://doi.org/10.1007/s10008-022-05220-z
S.B. Jaffri, K.S. Ahmad, I. Abrahams, C.J. Kousseff, C.B. Nielsen et al., Rare earth (Sm/Eu/Tm) doped ZrO2 driven electro-catalysis, energy storage, and scaffolding in high-performance perovskite solar cells. Int. J. Hydrog. Energy 48, 29119–29141 (2023). https://doi.org/10.1016/j.ijhydene.2023.04.085
M. Sadaqat, S. Manzoor, S. Aman, L. Nisar, M. Najam-Ul-Haq et al., Defective nickel zirconium oxide mesoporous bifunctional electrocatalyst for oxygen evolution reaction and overall water splitting. Fuel 333, 126538 (2023). https://doi.org/10.1016/j.fuel.2022.126538
Y. Zhang, J. Liu, Z. Wei, Q. Liu, C. Wang et al., Electrochemical CO2 reduction over nitrogen-doped SnO2 crystal surfaces. J. Energy Chem. 33, 22–30 (2019). https://doi.org/10.1016/j.jechem.2018.08.017
R.Q. Huang, W.P. Liao, M.X. Yan, S. Liu, Y.M. Li et al., P doped Ru-Pt alloy catalyst toward high performance alkaline hydrogen evolution reaction. J. Electrochem. 29, 2203081 (2023). https://jelectrochem.xmu.edu.cn/journal/vol29/iss5/3
J. Lin, Y. Yan, C. Li, X. Si, H. Wang et al., Bifunctional electrocatalysts based on Mo-doped NiCoP nanosheet arrays for overall water splitting. Nano-Micro Lett. 11, 55 (2019). https://doi.org/10.1007/s40820-019-0289-6
Y. Zhang, W. Zhang, Y. Feng, J. Ma, Promoted CO2 electroreduction over indium-doped SnP3: a computational study. J. Energy Chem. 48, 1–6 (2020). https://doi.org/10.1016/j.jechem.2019.12.025
Z. X. Wan, C. H. Wang, X. W. Kang, Self-supported Ru-Cu3P catalyst towards alkaline hydrogen evolution. J. Electrochem. 28, 2214005 (2022). https://jelectrochem.xmu.edu.cn/journal/vol28/iss10/6
A.K. Mishra, D. Pradhan, Hierarchical urchin-like cobalt-doped CuO for enhanced electrocatalytic oxygen evolution reaction. ACS Appl. Energy Mater. 4, 9412–9419 (2021). https://doi.org/10.1021/acsaem.1c01632
M. Li, X. Wang, K. Liu, H. Sun, D. Sun et al., Reinforcing Co-O covalency via Ce(4f)─O(2p)─Co(3d) gradient orbital coupling for high-efficiency oxygen evolution. Adv. Mater. 35, 2302462 (2023). https://doi.org/10.1002/adma.202302462
G. Kresse, J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996). https://doi.org/10.1016/0927-0256(96)00008-0
G. Kresse, J. Furthmüller, Efficient iterative schemes forab initiototal-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996). https://doi.org/10.1103/physrevb.54.11169
B. Hammer, L.B. Hansen, J.K. Nørskov, Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals. Phys. Rev. B 59, 7413–7421 (1999). https://doi.org/10.1103/physrevb.59.7413
L. Wang, T. Maxisch, G. Ceder, Oxidation energies of transition metal oxides within the GGA+U framework. Phys. Rev. B 73, 195107 (2006). https://doi.org/10.1103/physrevb.73.195107
D. Mutter, D.F. Urban, C. Elsässer, Determination of formation energies and phase diagrams of transition metal oxides with DFT+U. Materials 13, 4303 (2020). https://doi.org/10.3390/ma13194303
K. Jiang, S. Zhou, Z. Wang, Textured electronic states of the triangular-lattice Hubbard model and NaxCoO2. Phys. Rev. B 90, 165135 (2014). https://doi.org/10.1103/physrevb.90.165135
A. Cadi-Essadek, A. Roldan, D. Santos-Carballal, P.E. Ngoepe, M. Claeys et al., DFT+U study of the electronic, magnetic and mechanical properties of Co, CoO, and Co3O4. S. Afr. J. Chem. 74, 8–16 (2021). https://doi.org/10.17159/0379-4350/2021/v74a3
X. Shi, S.L. Bernasek, A. Selloni, Formation, electronic structure, and defects of Ni substituted spinel cobalt oxide: a DFT+U study. J. Phys. Chem. C 120, 14892–14898 (2016). https://doi.org/10.1021/acs.jpcc.6b03096
A. Jain, G. Hautier, S.P. Ong, C.J. Moore, C.C. Fischer et al., Formation enthalpies by mixing GGA and GGA+U calculations. Phys. Rev. B 84, 045115 (2011). https://doi.org/10.1103/physrevb.84.045115
G. Kresse, D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999). https://doi.org/10.1103/physrevb.59.1758
E.H. Kisi, C.J. Howard, Crystal structures of zirconia phases and their inter-relation. Key Eng. Mater. 153–154, 1–36 (1998). https://doi.org/10.4028/www.scientific.net/kem.153-154.1
V.G. Keramidas, W.B. White, Raman scattering study of the crystallization and phase transformations of ZrO2. J. Am. Ceram. Soc. 57, 22–24 (1974). https://doi.org/10.1111/j.1151-2916.1974.tb11355.x
D.K. Smith, W. Newkirk, The crystal structure of baddeleyite (monoclinic ZrO2) and its relation to the polymorphism of ZrO2. Acta Crystallogr. 18, 983–991 (1965). https://doi.org/10.1107/s0365110x65002402
S. Grimme, J. Antony, S. Ehrlich, H. Krieg, A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132, 154104 (2010). https://doi.org/10.1063/1.3382344
H.J. Monkhorst, J.D. Pack, Special points for brillouin-zone integrations. Phys. Rev. B 13, 5188 (1976). https://doi.org/10.1103/PhysRevB.13.5188
S. Maintz, V.L. Deringer, A.L. Tchougréeff, R. Dronskowski, LOBSTER: a tool to extract chemical bonding from plane-wave based DFT. J. Comput. Chem. 37, 1030–1035 (2016). https://doi.org/10.1002/jcc.24300
J.K. Nørskov, J. Rossmeisl, A. Logadottir, L. Lindqvist, J.R. Kitchin et al., Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 108, 17886–17892 (2004). https://doi.org/10.1021/jp047349j
M. Huang, C. Sun, X. Zhang, P. Wang, S. Xu et al., The surface structure, stability, and catalytic performances toward O2 reduction of CoP and FeCoP2. Dalton Trans. 51, 10420–10431 (2022). https://doi.org/10.1039/d2dt01408d
Q. Li, M. Rellán-Piñeiro, N. Almora-Barrios, M. Garcia-Ratés, I.N. Remediakis et al., Shape control in concave metal nanops by etching. Nanoscale 9, 13089–13094 (2017). https://doi.org/10.1039/c7nr03889e
C.F. Dickens, C. Kirk, J.K. Nørskov, Insights into the electrochemical oxygen evolution reaction with ab initio calculations and microkinetic modeling: beyond the limiting potential volcano. J. Phys. Chem. C 123, 18960–18977 (2019). https://doi.org/10.1021/acs.jpcc.9b03830
H. Liu, X. Jia, A. Cao, L. Wei, C. D’agostino et al., The surface states of transition metal X-ides under electrocatalytic conditions. J. Chem. Phys. 158, 6 (2023). https://doi.org/10.1063/5.0147123
W. Yang, Z. Jia, B. Zhou, L. Wei, Z. Gao et al., Surface states of dual-atom catalysts should be considered for analysis of electrocatalytic activity. Commun. Chem. 6, 6 (2023). https://doi.org/10.1038/s42004-022-00810-4
W. Yang, Z. Jia, L. Chen, B. Zhou, D. Zhang et al., Effects of intermetal distance on the electrochemistry-induced surface coverage of M-N-C dual-atom catalysts. Chem. Commun. 59, 10761–10764 (2023). https://doi.org/10.1039/d3cc03208f
H. Liu, H. Zheng, Z. Jia, B. Zhou, Y. Liu et al., The CatMath: an online predictive platform for thermal + electrocatalysis. Front. Chem. Sci. Engin. 17, 2156–2160 (2023). https://doi.org/10.1007/s11705-023-2371-3
G.-M. Rignanese, Dielectric properties of crystalline and amorphous transition metal oxides and silicates as potential high-κ candidates: the contribution of density-functional theory. J. Phys. Condens. Matter 17, R357–R379 (2005). https://doi.org/10.1088/0953-8984/17/7/r03
A. Christensen, E.A. Carter, First-principles study of the surfaces of zirconia. Phys. Rev. B 58, 8050–8064 (1998). https://doi.org/10.1103/physrevb.58.8050
C. Morterra, G. Cerrato, L. Ferroni, L. Montanaro, Surface characterization of yttria-stabilized tetragonal ZrO2 Part 1. Structural, morphological, and surface hydration features. Mater. Chem. Phys. 37, 243–257 (1994). https://doi.org/10.1016/0254-0584(94)90160-0
L.G.V. Briquet, M. Sarwar, J. Mugo, G. Jones, F. Calle-Vallejo, A new type of scaling relations to assess the accuracy of computational predictions of catalytic activities applied to the oxygen evolution reaction. ChemCatChem 9, 1261–1268 (2017). https://doi.org/10.1002/cctc.201601662
H. Li, S. Kelly, D. Guevarra, Z. Wang, Y. Wang et al., Analysis of the limitations in the oxygen reduction activity of transition metal oxide surfaces. Nat. Catal. 4, 463–468 (2021). https://doi.org/10.1038/s41929-021-00618-w
J. Rossmeisl, Z.-W. Qu, H. Zhu, G.-J. Kroes, J.K. Nørskov, Electrolysis of water on oxide surfaces. J. Electroanal. Chem. 607, 83–89 (2007). https://doi.org/10.1016/j.jelechem.2006.11.008
K.S. Exner, J. Anton, T. Jacob, H. Over, Ligand effects and their impact on electrocatalytic processes exemplified with the oxygen evolution reaction (OER) on RuO2(110). ChemElectroChem 2, 707–713 (2015). https://doi.org/10.1002/celc.201402430
B. Zhang, X. Zheng, O. Voznyy, R. Comin, M. Bajdich et al., Homogeneously dispersed multimetal oxygen-evolving catalysts. Science 352, 333–337 (2016). https://doi.org/10.1126/science.aaf1525
W. Ahmed, J. Iqbal, S.O. Aisida, A. Badshah, I. Ahmad et al., Structural, magnetic and dielectric characteristics of optically tuned Fe doped ZrO2 nanops with visible light driven photocatalytic activity. Mater. Chem. Phys. 251, 122999 (2020). https://doi.org/10.1016/j.matchemphys.2020.122999
A.O. de Souza, F.F. Ivashita, V. Biondo, A. Paesano Jr., D.H. Mosca, Structural and magnetic properties of iron doped ZrO2. J. Alloys Compd. 680, 701–710 (2016). https://doi.org/10.1016/j.jallcom.2016.04.170
P. Sakthisharmila, N. Sivakumar, J. Mathupriya, Synthesis, characterization of Mn, Fe doped ZrO2 composites and its applications on photocatalytic and solar catalytic studies. Mater. Today Proc. 47, 2159–2167 (2021). https://doi.org/10.1016/j.matpr.2021.05.461
X. Zhang, C. Sun, S. Xu, M. Huang, Y. Wen et al., DFT-assisted rational design of CoMxP/CC (M = Fe, Mn, and Ni) as efficient electrocatalyst for wide pH range hydrogen evolution and oxygen evolution. Nano Res. 15, 8897–8907 (2022). https://doi.org/10.1007/s12274-022-4771-y
Y. Li, H. Zhang, M. Jiang, Q. Zhang, P. He, X. Sun, 3d self-supported Fe-doped Ni2P nanosheet arrays as bifunctional catalysts for overall water splitting. Adv. Funct. Mater. 27, 17025132017 (2017). https://doi.org/10.1002/adfm.201702513