Structural Engineering of Hierarchical Magnetic/Carbon Nanocomposites via In Situ Growth for High-Efficient Electromagnetic Wave Absorption
Corresponding Author: Xianyong Lu
Nano-Micro Letters,
Vol. 16 (2024), Article Number: 174
Abstract
Materials exhibiting high-performance electromagnetic wave absorption have garnered considerable scientific and technological attention, yet encounter significant challenges. Developing new materials and innovative structural design concepts is crucial for expanding the application field of electromagnetic wave absorption. Particularly, hierarchical structure engineering has emerged as a promising approach to enhance the physical and chemical properties of materials, providing immense potential for creating versatile electromagnetic wave absorption materials. Herein, an exceptional multi-dimensional hierarchical structure was meticulously devised, unleashing the full microwave attenuation capabilities through in situ growth, self-reduction, and multi-heterogeneous interface integration. The hierarchical structure features a three-dimensional carbon framework, where magnetic nanoparticles grow in situ on the carbon skeleton, creating a necklace-like structure. Furthermore, magnetic nanosheets assemble within this framework. Enhanced impedance matching was achieved by precisely adjusting component proportions, and intelligent integration of diverse interfaces bolstered dielectric polarization. The obtain Fe3O4-Fe nanoparticles/carbon nanofibers/Al-Fe3O4-Fe nanosheets composites demonstrated outstanding performance with a minimum reflection loss (RLmin) value of − 59.3 dB and an effective absorption bandwidth (RL ≤ − 10 dB) extending up to 5.6 GHz at 2.2 mm. These notable accomplishments offer fresh insights into the precision design of high-efficient electromagnetic wave absorption materials.
Highlights:
1 Hierarchical Fe3O4-Fe@CNFs/Al-Fe3O4-Fe nanocomposites were constructed by in situ growth, vacuum-assisted filtration, and self-reduction methods.
2 The carbon framework, with in situ grown magnetic nanoparticles, supports two-dimensional magnetic nanosheets, achieving excellent electromagnetic performance and good impedance matching.
3 Excellent reflection loss value (− 59.3 dB), broadband wave absorption (5.6 GHz at 2.2 mm thickness), and low radar cross-section value were achieved.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Y. Zhao, X. Zuo, Y. Guo, H. Huang, H. Zhang et al., Structural engineering of hierarchical aerogels comprised of multi-dimensional gradient carbon nanoarchitectures for highly efficient microwave absorption. Nano-Micro Lett. 13, 144 (2021). https://doi.org/10.1007/s40820-021-00667-7
- J. Xiao, B. Zhan, M. He, X. Qi, X. Gong et al., Interfacial polarization loss improvement induced by the hollow engineering of necklace-like PAN/carbon nanofibers for boosted microwave absorption. Adv. Funct. Mater. (2024). https://doi.org/10.1002/adfm.202316722
- M. Yuan, B. Zhao, C. Yang, K. Pei, L. Wang et al., Remarkable magnetic exchange coupling via constructing Bi-magnetic interface for broadband lower-frequency microwave absorption. Adv. Funct. Mater. 32, 2203161 (2022). https://doi.org/10.1002/adfm.202203161
- X. Yang, Y. Duan, S. Li, H. Pang, L. Huang et al., Bio-inspired microwave modulator for high-temperature electromagnetic protection, infrared stealth and operating temperature monitoring. Nano-Micro Lett. 14, 28 (2021). https://doi.org/10.1007/s40820-021-00776-3
- C. Xu, K. Luo, Y. Du, H. Zhang, X. Lv et al., Anisotropic interfaces support the confined growth of magnetic nanometer-sized heterostructures for electromagnetic wave absorption. Adv. Funct. Mater. 33, 2307529 (2023). https://doi.org/10.1002/adfm.202307529
- C. Wu, J. Wang, X. Zhang, L. Kang, X. Cao et al., Hollow gradient-structured iron-anchored carbon nanospheres for enhanced electromagnetic wave absorption. Nano-Micro Lett. 15, 7 (2022). https://doi.org/10.1007/s40820-022-00963-w
- Y. Han, M. He, J. Hu, P. Liu, Z. Liu et al., Hierarchical design of FeCo-based microchains for enhanced microwave absorption in C band. Nano Res. 16, 1773–1778 (2023). https://doi.org/10.1007/s12274-022-5111-y
- H. Liu, X. Li, X. Zhao, M. Zhang, X. Liu et al., Large annular dipoles bounded between single-atom Co and Co cluster for clarifying electromagnetic wave absorbing mechanism. Adv. Funct. Mater. 33, 2304442 (2023). https://doi.org/10.1002/adfm.202304442
- L. Cai, H. Jiang, F. Pan, H. Liang, Y. Shi et al., Linkage effect induced by hierarchical architecture in magnetic MXene-based microwave absorber. Small 20, 2306698 (2024). https://doi.org/10.1002/smll.202306698
- M. He, J. Hu, H. Yan, X. Zhong, Y. Zhang et al., Shape anisotropic chain-like CoNi/polydimethylsiloxane composite films with excellent low-frequency microwave absorption and high thermal conductivity. Adv. Funct. Mater. (2024). https://doi.org/10.1002/adfm.202316691
- J. Liang, F. Ye, Y. Cao, R. Mo, L. Cheng et al., Defect-engineered graphene/Si3N4 multilayer alternating core-shell nanowire membrane: a plainified hybrid for broadband electromagnetic wave absorption. Adv. Funct. Mater. 32, 2200141 (2022). https://doi.org/10.1002/adfm.202200141
- Y. Wu, Y. Zhao, M. Zhou, S. Tan, R. Peymanfar et al., Ultrabroad microwave absorption ability and infrared stealth property of nano-micro CuS@rGO lightweight aerogels. Nano-Micro Lett. 14, 171 (2022). https://doi.org/10.1007/s40820-022-00906-5
- C. Zhang, Z. Wu, C. Xu, B. Yang, L. Wang et al., Hierarchical Ti3C2Tx MXene/carbon nanotubes hollow microsphere with confined magnetic nanospheres for broadband microwave absorption. Small 18, 2104380 (2022). https://doi.org/10.1002/smll.202104380
- Z. Gao, D. Lan, L. Zhang, H. Wu, Simultaneous manipulation of interfacial and defects polarization toward Zn/Co phase and ion hybrids for electromagnetic wave absorption. Adv. Funct. Mater. 31, 2106677 (2021). https://doi.org/10.1002/adfm.202106677
- F. Pan, Y. Rao, D. Batalu, L. Cai, Y. Dong et al., Macroscopic electromagnetic cooperative network-enhanced MXene/Ni chains aerogel-based microwave absorber with ultra-low matching thickness. Nano-Micro Lett. 14, 140 (2022). https://doi.org/10.1007/s40820-022-00869-7
- Z. Wu, H.-W. Cheng, C. Jin, B. Yang, C. Xu et al., Dimensional design and core-shell engineering of nanomaterials for electromagnetic wave absorption. Adv. Mater. 34, 2107538 (2022). https://doi.org/10.1002/adma.202107538
- L. Rao, Z. Liu, L. Wang, W. You, C. Yang et al., Dimensional engineering of hierarchical nanopagodas for customizing cross-scale magnetic coupling networks to enhance electromagnetic wave absorption. Adv. Funct. Mater. 33, 2306984 (2023). https://doi.org/10.1002/adfm.202306984
- W. Li, M. Xu, H.-X. Xu, X. Wang, W. Huang, Metamaterial absorbers: from tunable surface to structural transformation. Adv. Mater. 34, 2202509 (2022). https://doi.org/10.1002/adma.202202509
- Y. Guo, H. Qiu, K. Ruan, Y. Zhang, J. Gu, Hierarchically multifunctional polyimide composite films with strongly enhanced thermal conductivity. Nano-Micro Lett. 14, 26 (2021). https://doi.org/10.1007/s40820-021-00767-4
- X. Wang, F. Pan, L. Cai, J. Cheng, H. Jiang et al., Multifunctional ultralight magnetic CNFs/MXene/Fe3O4 nanodiscs aerogel with superior electromagnetic wave absorption performance. Chem. Eng. J. 475, 146319 (2023). https://doi.org/10.1016/j.cej.2023.146319
- C. Wang, Y. Liu, Z. Jia, W. Zhao, G. Wu, Multicomponent nanops synergistic one-dimensional nanofibers as heterostructure absorbers for tunable and efficient microwave absorption. Nano-Micro Lett. 15, 13 (2022). https://doi.org/10.1007/s40820-022-00986-3
- B. Yang, J. Fang, C. Xu, H. Cao, R. Zhang et al., One-dimensional magnetic FeCoNi alloy toward low-frequency electromagnetic wave absorption. Nano-Micro Lett. 14, 170 (2022). https://doi.org/10.1007/s40820-022-00920-7
- C. Wei, L. Shi, M. Li, M. He, M. Li et al., Hollow engineering of sandwich NC@Co/NC@MnO2 composites toward strong wideband electromagnetic wave attenuation. J. Mater. Sci. Technol. 175, 194–203 (2024). https://doi.org/10.1016/j.jmst.2023.08.020
- H. Jiang, L. Cai, F. Pan, Y. Shi, J. Cheng et al., Ordered heterostructured aerogel with broadband electromagnetic wave absorption based on mesoscopic magnetic superposition enhancement. Adv. Sci. 10, 2301599 (2023). https://doi.org/10.1002/advs.202301599
- L. Xing, X. Li, Z. Wu, X. Yu, J. Liu et al., 3D hierarchical local heterojunction of MoS2/FeS2 for enhanced microwave absorption. Chem. Eng. J. 379, 122241 (2020). https://doi.org/10.1016/j.cej.2019.122241
- J. Zhu, M. Yang, A. Emre, J.H. Bahng, L. Xu et al., Branched aramid nanofibers. Angew. Chem. Int. Ed. 56, 11744–11748 (2017). https://doi.org/10.1002/anie.201703766
- Y. Jin, L. Dang, H. Zhang, C. Song, Q. Lu et al., Synthesis of unit-cell-thick α-Fe2O3 nanosheets and their transformation to γ-Fe2O3 nanosheets with enhanced LIB performances. Chem. Eng. J. 326, 292–297 (2017). https://doi.org/10.1016/j.cej.2017.05.155
- L. Jin, P. Yi, L. Wan, J. Hou, P. Chen et al., Thickness-controllable synthesis of MOF-derived Ni@N-doped carbon hexagonal nanoflakes with dielectric-magnetic synergy toward wideband electromagnetic wave absorption. Chem. Eng. J. 427, 130940 (2022). https://doi.org/10.1016/j.cej.2021.130940
- X. Zhang, M. Liu, J. Xu, Q. Ouyang, C. Zhu et al., Flexible and waterproof nitrogen-doped carbon nanotube arrays on cotton-derived carbon fiber for electromagnetic wave absorption and electric-thermal conversion. Chem. Eng. J. 433, 133794 (2022). https://doi.org/10.1016/j.cej.2021.133794
- A.A. Pawar, H.A. Bandal, H. Kim, Spinel type Fe3O4 polyhedron supported on nickel foam as an electrocatalyst for water oxidation reaction. J. Alloys Compd. 863, 158742 (2021). https://doi.org/10.1016/j.jallcom.2021.158742
- X. Liu, H. Zhou, Z. Wang, X. Han, Z. Zhao et al., Construction of 3D interconnected and aligned boron nitride nanosheets structures in phthalonitrile composites with high thermal conductivity. Compos. Sci. Technol. 220, 109289 (2022). https://doi.org/10.1016/j.compscitech.2022.109289
- X. Liu, Z. Wang, J. Sun, Z. Zhao, S. Zhan et al., Thermally conductive and electrically insulating alumina-coated graphite/phthalonitrile composites with thermal stabilities. Compos. Sci. Technol. 202, 108558 (2021). https://doi.org/10.1016/j.compscitech.2020.108558
- X. Zhong, M. He, C. Zhang, Y. Guo, J. Hu et al., Heterostructured BN@Co-C@C endowing polyester composites excellent thermal conductivity and microwave absorption at C band. Adv. Funct. Mater. (2024). https://doi.org/10.1002/adfm.202313544
- S. Ren, H. Yu, L. Wang, Z. Huang, T. Lin et al., State of the art and prospects in metal-organic framework-derived microwave absorption materials. Nano-Micro Lett. 14, 68 (2022). https://doi.org/10.1007/s40820-022-00808-6
- J.-C. Shu, Y.-L. Zhang, Y. Qin, M.-S. Cao, Oxidative molecular layer deposition tailoring eco-mimetic nanoarchitecture to manipulate electromagnetic attenuation and self-powered energy conversion. Nano-Micro Lett. 15, 142 (2023). https://doi.org/10.1007/s40820-023-01112-7
- X. Liu, Y. Duan, Y. Guo, H. Pang, Z. Li et al., Microstructure design of high-entropy alloys through a multistage mechanical alloying strategy for temperature-stable megahertz electromagnetic absorption. Nano-Micro Lett. 14, 142 (2022). https://doi.org/10.1007/s40820-022-00886-6
- J. Zhao, Z. Gu, Q. Zhang, Stacking MoS2 flower-like microspheres on pomelo peels-derived porous carbon nanosheets for high-efficient X-band electromagnetic wave absorption. Nano Res. 17, 1607–1615 (2024). https://doi.org/10.1007/s12274-023-6090-3
- Y. Dong, X. Zhu, F. Pan, Z. Xiang, X. Zhang et al., Fire-retardant and thermal insulating honeycomb-like NiS2/SnS2 nanosheets @ 3D porous carbon hybrids for high-efficiency electromagnetic wave absorption. Chem. Eng. J. 426, 131272 (2021). https://doi.org/10.1016/j.cej.2021.131272
- Z. Jiao, W. Huyan, F. Yang, J. Yao, R. Tan et al., Achieving ultra-wideband and elevated temperature electromagnetic wave absorption via constructing lightweight porous rigid structure. Nano-Micro Lett. 14, 173 (2022). https://doi.org/10.1007/s40820-022-00904-7
- C. Li, L. Zhang, S. Zhang, Q. Yu, D. Li et al., Flexible regulation engineering of titanium nitride nanofibrous membranes for efficient electromagnetic microwave absorption in wide temperature spectrum. Nano Res. 17, 1666–1675 (2024). https://doi.org/10.1007/s12274-023-6350-2
- W. Huang, Q. Qiu, X. Yang, S. Zuo, J. Bai et al., Ultrahigh density of atomic CoFe-electron synergy in noncontinuous carbon matrix for highly efficient magnetic wave adsorption. Nano-Micro Lett. 14, 96 (2022). https://doi.org/10.1007/s40820-022-00830-8
- X. Zheng, J. Feng, Y. Zong, H. Miao, X. Hu et al., Hydrophobic graphene nanosheets decorated by monodispersed superparamagnetic Fe3O4 nanocrystals as synergistic electromagnetic wave absorbers. J. Mater. Chem. C 3, 4452–4463 (2015). https://doi.org/10.1039/C5TC00313J
- Y. Qian, Y. Tao, W. Li, Y. Li, T. Xu et al., High electromagnetic wave absorption and thermal management performance in 3D CNF@C-Ni/epoxy resin composites. Chem. Eng. J. 425, 131608 (2021). https://doi.org/10.1016/j.cej.2021.131608
- M. Huang, L. Wang, K. Pei, W. You, X. Yu et al., Multidimension-controllable synthesis of MOF-derived Co@N-doped carbon composite with magnetic-dielectric synergy toward strong microwave absorption. Small 16, 2000158 (2020). https://doi.org/10.1002/smll.202000158
- L. Zhu, X. Zeng, M. Chen, R. Yu, Controllable permittivity in 3D Fe3O4/CNTs network for remarkable microwave absorption performances. RSC Adv. 7, 26801–26808 (2017). https://doi.org/10.1039/C7RA04456A
- M. Huang, L. Wang, K. Pei, B. Li, W. You et al., Heterogeneous interface engineering of Bi-metal MOFs-derived ZnFe2O4–ZnO-Fe@C microspheres via confined growth strategy toward superior electromagnetic wave absorption. Adv. Funct. Mater. 34, 2308898 (2024). https://doi.org/10.1002/adfm.202308898
- X. Li, R. Hu, Z. Xiong, D. Wang, Z. Zhang et al., Metal-organic gel leading to customized magnetic-coupling engineering in carbon aerogels for excellent radar stealth and thermal insulation performances. Nano-Micro Lett. 16, 42 (2023). https://doi.org/10.1007/s40820-023-01255-7
- L. Rao, L. Wang, C. Yang, R. Zhang, J. Zhang et al., Confined diffusion strategy for customizing magnetic coupling spaces to enhance low-frequency electromagnetic wave absorption. Adv. Funct. Mater. 33, 2213258 (2023). https://doi.org/10.1002/adfm.202213258
- Q. An, D. Li, W. Liao, T. Liu, D. Joralmon et al., A novel ultra-wideband electromagnetic-wave-absorbing metastructure inspired by bionic gyroid structures. Adv. Mater. 35, 2300659 (2023). https://doi.org/10.1002/adma.202300659
- J. Cheng, Y. Jin, J. Zhao, Q. Jing, B. Gu et al., From VIB- to VB-group transition metal disulfides: structure engineering modulation for superior electromagnetic wave absorption. Nano-Micro Lett. 16, 29 (2023). https://doi.org/10.1007/s40820-023-01247-7
- J. Yang, H. Wang, Y. Zhang, H. Zhang, J. Gu, Layered structural PBAT composite foams for efficient electromagnetic interference shielding. Nano-Micro Lett. 16, 31 (2023). https://doi.org/10.1007/s40820-023-01246-8
- X. Fang, K. Pang, G. Zhao, Y. Wang, W. Zhang et al., Improving the liquid phase exfoliation efficiency of graphene based on the enhanced intermolecular and interfacial interactions. Chem. Eng. J. 480, 148263 (2024). https://doi.org/10.1016/j.cej.2023.148263
- Z. Xiang, Y. Shi, X. Zhu, L. Cai, W. Lu, Flexible and waterproof 2D/1D/0D construction of MXene-based nanocomposites for electromagnetic wave absorption, EMI shielding, and photothermal conversion. Nano-Micro Lett. 13, 150 (2021). https://doi.org/10.1007/s40820-021-00673-9
- Y. Zhang, K. Ruan, K. Zhou, J. Gu, Controlled distributed Ti3C2Tx hollow microspheres on thermally conductive polyimide composite films for excellent electromagnetic interference shielding. Adv. Mater. 35, 2211642 (2023). https://doi.org/10.1002/adma.202211642
- P. Liu, S. Gao, G. Zhang, Y. Huang, W. You et al., Hollow engineering to Co@N-doped carbon nanocages via synergistic protecting-etching strategy for ultrahigh microwave absorption. Adv. Funct. Mater. 31, 2102812 (2021). https://doi.org/10.1002/adfm.202102812
References
Y. Zhao, X. Zuo, Y. Guo, H. Huang, H. Zhang et al., Structural engineering of hierarchical aerogels comprised of multi-dimensional gradient carbon nanoarchitectures for highly efficient microwave absorption. Nano-Micro Lett. 13, 144 (2021). https://doi.org/10.1007/s40820-021-00667-7
J. Xiao, B. Zhan, M. He, X. Qi, X. Gong et al., Interfacial polarization loss improvement induced by the hollow engineering of necklace-like PAN/carbon nanofibers for boosted microwave absorption. Adv. Funct. Mater. (2024). https://doi.org/10.1002/adfm.202316722
M. Yuan, B. Zhao, C. Yang, K. Pei, L. Wang et al., Remarkable magnetic exchange coupling via constructing Bi-magnetic interface for broadband lower-frequency microwave absorption. Adv. Funct. Mater. 32, 2203161 (2022). https://doi.org/10.1002/adfm.202203161
X. Yang, Y. Duan, S. Li, H. Pang, L. Huang et al., Bio-inspired microwave modulator for high-temperature electromagnetic protection, infrared stealth and operating temperature monitoring. Nano-Micro Lett. 14, 28 (2021). https://doi.org/10.1007/s40820-021-00776-3
C. Xu, K. Luo, Y. Du, H. Zhang, X. Lv et al., Anisotropic interfaces support the confined growth of magnetic nanometer-sized heterostructures for electromagnetic wave absorption. Adv. Funct. Mater. 33, 2307529 (2023). https://doi.org/10.1002/adfm.202307529
C. Wu, J. Wang, X. Zhang, L. Kang, X. Cao et al., Hollow gradient-structured iron-anchored carbon nanospheres for enhanced electromagnetic wave absorption. Nano-Micro Lett. 15, 7 (2022). https://doi.org/10.1007/s40820-022-00963-w
Y. Han, M. He, J. Hu, P. Liu, Z. Liu et al., Hierarchical design of FeCo-based microchains for enhanced microwave absorption in C band. Nano Res. 16, 1773–1778 (2023). https://doi.org/10.1007/s12274-022-5111-y
H. Liu, X. Li, X. Zhao, M. Zhang, X. Liu et al., Large annular dipoles bounded between single-atom Co and Co cluster for clarifying electromagnetic wave absorbing mechanism. Adv. Funct. Mater. 33, 2304442 (2023). https://doi.org/10.1002/adfm.202304442
L. Cai, H. Jiang, F. Pan, H. Liang, Y. Shi et al., Linkage effect induced by hierarchical architecture in magnetic MXene-based microwave absorber. Small 20, 2306698 (2024). https://doi.org/10.1002/smll.202306698
M. He, J. Hu, H. Yan, X. Zhong, Y. Zhang et al., Shape anisotropic chain-like CoNi/polydimethylsiloxane composite films with excellent low-frequency microwave absorption and high thermal conductivity. Adv. Funct. Mater. (2024). https://doi.org/10.1002/adfm.202316691
J. Liang, F. Ye, Y. Cao, R. Mo, L. Cheng et al., Defect-engineered graphene/Si3N4 multilayer alternating core-shell nanowire membrane: a plainified hybrid for broadband electromagnetic wave absorption. Adv. Funct. Mater. 32, 2200141 (2022). https://doi.org/10.1002/adfm.202200141
Y. Wu, Y. Zhao, M. Zhou, S. Tan, R. Peymanfar et al., Ultrabroad microwave absorption ability and infrared stealth property of nano-micro CuS@rGO lightweight aerogels. Nano-Micro Lett. 14, 171 (2022). https://doi.org/10.1007/s40820-022-00906-5
C. Zhang, Z. Wu, C. Xu, B. Yang, L. Wang et al., Hierarchical Ti3C2Tx MXene/carbon nanotubes hollow microsphere with confined magnetic nanospheres for broadband microwave absorption. Small 18, 2104380 (2022). https://doi.org/10.1002/smll.202104380
Z. Gao, D. Lan, L. Zhang, H. Wu, Simultaneous manipulation of interfacial and defects polarization toward Zn/Co phase and ion hybrids for electromagnetic wave absorption. Adv. Funct. Mater. 31, 2106677 (2021). https://doi.org/10.1002/adfm.202106677
F. Pan, Y. Rao, D. Batalu, L. Cai, Y. Dong et al., Macroscopic electromagnetic cooperative network-enhanced MXene/Ni chains aerogel-based microwave absorber with ultra-low matching thickness. Nano-Micro Lett. 14, 140 (2022). https://doi.org/10.1007/s40820-022-00869-7
Z. Wu, H.-W. Cheng, C. Jin, B. Yang, C. Xu et al., Dimensional design and core-shell engineering of nanomaterials for electromagnetic wave absorption. Adv. Mater. 34, 2107538 (2022). https://doi.org/10.1002/adma.202107538
L. Rao, Z. Liu, L. Wang, W. You, C. Yang et al., Dimensional engineering of hierarchical nanopagodas for customizing cross-scale magnetic coupling networks to enhance electromagnetic wave absorption. Adv. Funct. Mater. 33, 2306984 (2023). https://doi.org/10.1002/adfm.202306984
W. Li, M. Xu, H.-X. Xu, X. Wang, W. Huang, Metamaterial absorbers: from tunable surface to structural transformation. Adv. Mater. 34, 2202509 (2022). https://doi.org/10.1002/adma.202202509
Y. Guo, H. Qiu, K. Ruan, Y. Zhang, J. Gu, Hierarchically multifunctional polyimide composite films with strongly enhanced thermal conductivity. Nano-Micro Lett. 14, 26 (2021). https://doi.org/10.1007/s40820-021-00767-4
X. Wang, F. Pan, L. Cai, J. Cheng, H. Jiang et al., Multifunctional ultralight magnetic CNFs/MXene/Fe3O4 nanodiscs aerogel with superior electromagnetic wave absorption performance. Chem. Eng. J. 475, 146319 (2023). https://doi.org/10.1016/j.cej.2023.146319
C. Wang, Y. Liu, Z. Jia, W. Zhao, G. Wu, Multicomponent nanops synergistic one-dimensional nanofibers as heterostructure absorbers for tunable and efficient microwave absorption. Nano-Micro Lett. 15, 13 (2022). https://doi.org/10.1007/s40820-022-00986-3
B. Yang, J. Fang, C. Xu, H. Cao, R. Zhang et al., One-dimensional magnetic FeCoNi alloy toward low-frequency electromagnetic wave absorption. Nano-Micro Lett. 14, 170 (2022). https://doi.org/10.1007/s40820-022-00920-7
C. Wei, L. Shi, M. Li, M. He, M. Li et al., Hollow engineering of sandwich NC@Co/NC@MnO2 composites toward strong wideband electromagnetic wave attenuation. J. Mater. Sci. Technol. 175, 194–203 (2024). https://doi.org/10.1016/j.jmst.2023.08.020
H. Jiang, L. Cai, F. Pan, Y. Shi, J. Cheng et al., Ordered heterostructured aerogel with broadband electromagnetic wave absorption based on mesoscopic magnetic superposition enhancement. Adv. Sci. 10, 2301599 (2023). https://doi.org/10.1002/advs.202301599
L. Xing, X. Li, Z. Wu, X. Yu, J. Liu et al., 3D hierarchical local heterojunction of MoS2/FeS2 for enhanced microwave absorption. Chem. Eng. J. 379, 122241 (2020). https://doi.org/10.1016/j.cej.2019.122241
J. Zhu, M. Yang, A. Emre, J.H. Bahng, L. Xu et al., Branched aramid nanofibers. Angew. Chem. Int. Ed. 56, 11744–11748 (2017). https://doi.org/10.1002/anie.201703766
Y. Jin, L. Dang, H. Zhang, C. Song, Q. Lu et al., Synthesis of unit-cell-thick α-Fe2O3 nanosheets and their transformation to γ-Fe2O3 nanosheets with enhanced LIB performances. Chem. Eng. J. 326, 292–297 (2017). https://doi.org/10.1016/j.cej.2017.05.155
L. Jin, P. Yi, L. Wan, J. Hou, P. Chen et al., Thickness-controllable synthesis of MOF-derived Ni@N-doped carbon hexagonal nanoflakes with dielectric-magnetic synergy toward wideband electromagnetic wave absorption. Chem. Eng. J. 427, 130940 (2022). https://doi.org/10.1016/j.cej.2021.130940
X. Zhang, M. Liu, J. Xu, Q. Ouyang, C. Zhu et al., Flexible and waterproof nitrogen-doped carbon nanotube arrays on cotton-derived carbon fiber for electromagnetic wave absorption and electric-thermal conversion. Chem. Eng. J. 433, 133794 (2022). https://doi.org/10.1016/j.cej.2021.133794
A.A. Pawar, H.A. Bandal, H. Kim, Spinel type Fe3O4 polyhedron supported on nickel foam as an electrocatalyst for water oxidation reaction. J. Alloys Compd. 863, 158742 (2021). https://doi.org/10.1016/j.jallcom.2021.158742
X. Liu, H. Zhou, Z. Wang, X. Han, Z. Zhao et al., Construction of 3D interconnected and aligned boron nitride nanosheets structures in phthalonitrile composites with high thermal conductivity. Compos. Sci. Technol. 220, 109289 (2022). https://doi.org/10.1016/j.compscitech.2022.109289
X. Liu, Z. Wang, J. Sun, Z. Zhao, S. Zhan et al., Thermally conductive and electrically insulating alumina-coated graphite/phthalonitrile composites with thermal stabilities. Compos. Sci. Technol. 202, 108558 (2021). https://doi.org/10.1016/j.compscitech.2020.108558
X. Zhong, M. He, C. Zhang, Y. Guo, J. Hu et al., Heterostructured BN@Co-C@C endowing polyester composites excellent thermal conductivity and microwave absorption at C band. Adv. Funct. Mater. (2024). https://doi.org/10.1002/adfm.202313544
S. Ren, H. Yu, L. Wang, Z. Huang, T. Lin et al., State of the art and prospects in metal-organic framework-derived microwave absorption materials. Nano-Micro Lett. 14, 68 (2022). https://doi.org/10.1007/s40820-022-00808-6
J.-C. Shu, Y.-L. Zhang, Y. Qin, M.-S. Cao, Oxidative molecular layer deposition tailoring eco-mimetic nanoarchitecture to manipulate electromagnetic attenuation and self-powered energy conversion. Nano-Micro Lett. 15, 142 (2023). https://doi.org/10.1007/s40820-023-01112-7
X. Liu, Y. Duan, Y. Guo, H. Pang, Z. Li et al., Microstructure design of high-entropy alloys through a multistage mechanical alloying strategy for temperature-stable megahertz electromagnetic absorption. Nano-Micro Lett. 14, 142 (2022). https://doi.org/10.1007/s40820-022-00886-6
J. Zhao, Z. Gu, Q. Zhang, Stacking MoS2 flower-like microspheres on pomelo peels-derived porous carbon nanosheets for high-efficient X-band electromagnetic wave absorption. Nano Res. 17, 1607–1615 (2024). https://doi.org/10.1007/s12274-023-6090-3
Y. Dong, X. Zhu, F. Pan, Z. Xiang, X. Zhang et al., Fire-retardant and thermal insulating honeycomb-like NiS2/SnS2 nanosheets @ 3D porous carbon hybrids for high-efficiency electromagnetic wave absorption. Chem. Eng. J. 426, 131272 (2021). https://doi.org/10.1016/j.cej.2021.131272
Z. Jiao, W. Huyan, F. Yang, J. Yao, R. Tan et al., Achieving ultra-wideband and elevated temperature electromagnetic wave absorption via constructing lightweight porous rigid structure. Nano-Micro Lett. 14, 173 (2022). https://doi.org/10.1007/s40820-022-00904-7
C. Li, L. Zhang, S. Zhang, Q. Yu, D. Li et al., Flexible regulation engineering of titanium nitride nanofibrous membranes for efficient electromagnetic microwave absorption in wide temperature spectrum. Nano Res. 17, 1666–1675 (2024). https://doi.org/10.1007/s12274-023-6350-2
W. Huang, Q. Qiu, X. Yang, S. Zuo, J. Bai et al., Ultrahigh density of atomic CoFe-electron synergy in noncontinuous carbon matrix for highly efficient magnetic wave adsorption. Nano-Micro Lett. 14, 96 (2022). https://doi.org/10.1007/s40820-022-00830-8
X. Zheng, J. Feng, Y. Zong, H. Miao, X. Hu et al., Hydrophobic graphene nanosheets decorated by monodispersed superparamagnetic Fe3O4 nanocrystals as synergistic electromagnetic wave absorbers. J. Mater. Chem. C 3, 4452–4463 (2015). https://doi.org/10.1039/C5TC00313J
Y. Qian, Y. Tao, W. Li, Y. Li, T. Xu et al., High electromagnetic wave absorption and thermal management performance in 3D CNF@C-Ni/epoxy resin composites. Chem. Eng. J. 425, 131608 (2021). https://doi.org/10.1016/j.cej.2021.131608
M. Huang, L. Wang, K. Pei, W. You, X. Yu et al., Multidimension-controllable synthesis of MOF-derived Co@N-doped carbon composite with magnetic-dielectric synergy toward strong microwave absorption. Small 16, 2000158 (2020). https://doi.org/10.1002/smll.202000158
L. Zhu, X. Zeng, M. Chen, R. Yu, Controllable permittivity in 3D Fe3O4/CNTs network for remarkable microwave absorption performances. RSC Adv. 7, 26801–26808 (2017). https://doi.org/10.1039/C7RA04456A
M. Huang, L. Wang, K. Pei, B. Li, W. You et al., Heterogeneous interface engineering of Bi-metal MOFs-derived ZnFe2O4–ZnO-Fe@C microspheres via confined growth strategy toward superior electromagnetic wave absorption. Adv. Funct. Mater. 34, 2308898 (2024). https://doi.org/10.1002/adfm.202308898
X. Li, R. Hu, Z. Xiong, D. Wang, Z. Zhang et al., Metal-organic gel leading to customized magnetic-coupling engineering in carbon aerogels for excellent radar stealth and thermal insulation performances. Nano-Micro Lett. 16, 42 (2023). https://doi.org/10.1007/s40820-023-01255-7
L. Rao, L. Wang, C. Yang, R. Zhang, J. Zhang et al., Confined diffusion strategy for customizing magnetic coupling spaces to enhance low-frequency electromagnetic wave absorption. Adv. Funct. Mater. 33, 2213258 (2023). https://doi.org/10.1002/adfm.202213258
Q. An, D. Li, W. Liao, T. Liu, D. Joralmon et al., A novel ultra-wideband electromagnetic-wave-absorbing metastructure inspired by bionic gyroid structures. Adv. Mater. 35, 2300659 (2023). https://doi.org/10.1002/adma.202300659
J. Cheng, Y. Jin, J. Zhao, Q. Jing, B. Gu et al., From VIB- to VB-group transition metal disulfides: structure engineering modulation for superior electromagnetic wave absorption. Nano-Micro Lett. 16, 29 (2023). https://doi.org/10.1007/s40820-023-01247-7
J. Yang, H. Wang, Y. Zhang, H. Zhang, J. Gu, Layered structural PBAT composite foams for efficient electromagnetic interference shielding. Nano-Micro Lett. 16, 31 (2023). https://doi.org/10.1007/s40820-023-01246-8
X. Fang, K. Pang, G. Zhao, Y. Wang, W. Zhang et al., Improving the liquid phase exfoliation efficiency of graphene based on the enhanced intermolecular and interfacial interactions. Chem. Eng. J. 480, 148263 (2024). https://doi.org/10.1016/j.cej.2023.148263
Z. Xiang, Y. Shi, X. Zhu, L. Cai, W. Lu, Flexible and waterproof 2D/1D/0D construction of MXene-based nanocomposites for electromagnetic wave absorption, EMI shielding, and photothermal conversion. Nano-Micro Lett. 13, 150 (2021). https://doi.org/10.1007/s40820-021-00673-9
Y. Zhang, K. Ruan, K. Zhou, J. Gu, Controlled distributed Ti3C2Tx hollow microspheres on thermally conductive polyimide composite films for excellent electromagnetic interference shielding. Adv. Mater. 35, 2211642 (2023). https://doi.org/10.1002/adma.202211642
P. Liu, S. Gao, G. Zhang, Y. Huang, W. You et al., Hollow engineering to Co@N-doped carbon nanocages via synergistic protecting-etching strategy for ultrahigh microwave absorption. Adv. Funct. Mater. 31, 2102812 (2021). https://doi.org/10.1002/adfm.202102812