Advances in All-Solid-State Lithium–Sulfur Batteries for Commercialization
Corresponding Author: Jaebeom Lee
Nano-Micro Letters,
Vol. 16 (2024), Article Number: 172
Abstract
Solid-state batteries are commonly acknowledged as the forthcoming evolution in energy storage technologies. Recent development progress for these rechargeable batteries has notably accelerated their trajectory toward achieving commercial feasibility. In particular, all-solid-state lithium–sulfur batteries (ASSLSBs) that rely on lithium–sulfur reversible redox processes exhibit immense potential as an energy storage system, surpassing conventional lithium-ion batteries. This can be attributed predominantly to their exceptional energy density, extended operational lifespan, and heightened safety attributes. Despite these advantages, the adoption of ASSLSBs in the commercial sector has been sluggish. To expedite research and development in this particular area, this article provides a thorough review of the current state of ASSLSBs. We delve into an in-depth analysis of the rationale behind transitioning to ASSLSBs, explore the fundamental scientific principles involved, and provide a comprehensive evaluation of the main challenges faced by ASSLSBs. We suggest that future research in this field should prioritize plummeting the presence of inactive substances, adopting electrodes with optimum performance, minimizing interfacial resistance, and designing a scalable fabrication approach to facilitate the commercialization of ASSLSBs.
Highlights:
1 Challenges in developing practical all-solid-state lithium–sulfur batteries (ASSLSBs) and recently devised concepts to address those critical challenges have been discussed.
2 Recent developments in comprehending solid-state electrolytes, cathodes, and highperformance anodes, including key challenges associated with ion transport, electrochemical properties, and processing methods, have been discussed.
3 Prospects of ASSLSBs for commercial use and guiding forthcoming research and development efforts in this area have been presented.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Y.J. Amuda, S. Hassan, U. Subramaniam, Comparative review of energy, crude oil, and natural gas for exchange markets in Nigeria. India Bangladesh Energ. 16, 3151 (2023). https://doi.org/10.3390/en16073151
- D. Raimi, E. Campbell, R. Newell, B. Prest, S. Villanueva et al., Resources for the future: Washington (DC, USA, 2022)
- B.B. Gicha, L.T. Tufa, Y. Choi, J. Lee, Amorphous Ni1–xFex oxyhydroxide nanosheets with integrated bulk and surface iron for a high and stable oxygen evolution reaction. ACS Appl. Energy Mater. 4, 6833–6841 (2021). https://doi.org/10.1021/acsaem.1c00955
- B.B. Gicha, L.T. Tufa, S. Kang, M. Goddati, E.T. Bekele et al., Transition metal-based 2D layered double hydroxide nanosheets: design strategies and applications in oxygen evolution reaction. Nanomaterials 11, 1388 (2021). https://doi.org/10.3390/nano11061388
- C.F. Molla, B.A. Gonfa, F.K. Sabir, B.B. Gicha, N. Nwaji et al., Ni-based ultrathin nanostructures for overall electrochemical water splitting. Mater. Chem. Front. 7, 194–215 (2023). https://doi.org/10.1039/d2qm00964a
- B.B. Gicha, L.T. Tufa, M. Goddati, S. Adhikari, J. Gwak et al., Non-thermal plasma assisted fabrication of ultrathin NiCoOx nanosheets for high-performance supercapacitor. Batter. Supercaps 5, 2200270 (2022). https://doi.org/10.1002/batt.202200270
- L.T. Tufa, B.B. Gicha, H. Wu, J. Lee, Fe-based mesoporous nanostructures for electrochemical conversion and storage of energy. Batter. Supercaps 4, 429–444 (2021). https://doi.org/10.1002/batt.202000228
- M. Li, J. Lu, Z. Chen, K. Amine, 30 years of lithium-ion batteries. Adv. Mater. 30(33), e1800561 (2018). https://doi.org/10.1002/adma.201800561
- J.W. Choi, D. Aurbach, Promise and reality of post-lithium-ion batteries with high energy densities. Nat. Rev. Mater. 1, 16013 (2016). https://doi.org/10.1038/natrevmats.2016.13
- R. Zhan, X. Wang, Z. Chen, Z.W. Seh, L. Wang et al., Promises and challenges of the practical implementation of prelithiation in lithium-ion batteries. Adv. Energy Mater. 11, 2101565 (2021). https://doi.org/10.1002/aenm.202101565
- C.-Y. Wang, T. Liu, X.-G. Yang, S. Ge, N.V. Stanley et al., Fast charging of energy-dense lithium-ion batteries. Nature 611, 485–490 (2022). https://doi.org/10.1038/s41586-022-05281-0
- G.G. Eshetu, H. Zhang, X. Judez, H. Adenusi, M. Armand et al., Production of high-energy Li-ion batteries comprising silicon-containing anodes and insertion-type cathodes. Nat. Commun. 12, 5459 (2021). https://doi.org/10.1038/s41467-021-25334-8
- A. Masias, J. Marcicki, W.A. Paxton, Opportunities and challenges of lithium ion batteries in automotive applications. ACS Energy Lett. 6, 621–630 (2021). https://doi.org/10.1021/acsenergylett.0c02584
- M. Zschornak, F. Meutzner, J. Lück, A. Latz, T. Leisegang et al., Fundamental principles of battery design. Phys. Sci. Rev. 3, 111 (2018). https://doi.org/10.1515/psr-2017-0111
- F.M.N.U. Khan, M.G. Rasul, A.S.M. Sayem, N.K. Mandal, Design and optimization of lithium-ion battery as an efficient energy storage device for electric vehicles: a comprehensive review. J. Energy Storage 71, 108033 (2023). https://doi.org/10.1016/j.est.2023.108033
- B.E. Worku, S. Zheng, B. Wang, Review of low-temperature lithium-ion battery progress: new battery system design imperative. Int. J. Energy Res. 46, 14609–14626 (2022). https://doi.org/10.1002/er.8194
- S. Choudhury, Z. Huang, C.V. Amanchukwu, P.E. Rudnicki, Y. Chen et al., Ion conducting polymer interfaces for lithium metal anodes: impact on the electrodeposition kinetics. Adv. Energy Mater. 13, 2301899 (2023). https://doi.org/10.1002/aenm.202301899
- D. Han, C. Cui, K. Zhang, Z. Wang, J. Gao et al., A non-flammable hydrous organic electrolyte for sustainable zinc batteries. Nat. Sustain. 5, 205–213 (2022). https://doi.org/10.1038/s41893-021-00800-9
- J. Wu, Z. Rao, H. Wang, Y. Huang, Order-structured solid-state electrolytes. SusMat 2, 660–678 (2022). https://doi.org/10.1002/sus2.93
- J. Wu, S. Liu, F. Han, X. Yao, C. Wang, Lithium/sulfide all-solid-state batteries using sulfide electrolytes. Adv. Mater. 33, 2000751 (2021). https://doi.org/10.1002/adma.202000751
- X. Chen, Z. Guan, F. Chu, Z. Xue, F. Wu et al., Air-stable inorganic solid-state electrolytes for high energy density lithium batteries: challenges, strategies, and prospects. InfoMat 4, e12248 (2022). https://doi.org/10.1002/inf2.12248
- J. Sun, T. Wang, Y. Gao, Z. Pan, R. Hu et al., Will lithium-sulfur batteries be the next beyond-lithium ion batteries and even much better? InfoMat 4, e12359 (2022). https://doi.org/10.1002/inf2.12359
- M. Balaish, J.C. Gonzalez-Rosillo, K.J. Kim, Y. Zhu, Z.D. Hood et al., Processing thin but robust electrolytes for solid-state batteries. Nat. Energy 6, 227–239 (2021). https://doi.org/10.1038/s41560-020-00759-5
- P. Simon, Y. Gogotsi, B. Dunn, Where do batteries end and supercapacitors begin? Science 343, 1210–1211 (2014). https://doi.org/10.1126/science.1249625
- B. Liu, Y. Jia, C. Yuan, L. Wang, X. Gao et al., Safety issues and mechanisms of lithium-ion battery cell upon mechanical abusive loading: a review. Energy Storage Mater. 24, 85–112 (2020). https://doi.org/10.1016/j.ensm.2019.06.036
- P.T. Coman, E.C. Darcy, R.E. White, Simplified thermal runaway model for assisting the design of a novel safe Li-ion battery pack. J. Electrochem. Soc. 169, 040516 (2022). https://doi.org/10.1149/1945-7111/ac62bd
- N. Williard, W. He, C. Hendricks, M. Pecht, Lessons learned from the 787 dreamliner issue on lithium-ion battery reliability. Energies 6, 4682–4695 (2013). https://doi.org/10.3390/en6094682
- M. Kaliaperumal, M.S. Dharanendrakumar, S. Prasanna, K.V. Abhishek, R.K. Chidambaram et al., Cause and mitigation of lithium-ion battery failure—A review. Materials 14(19), 5676 (2021). https://doi.org/10.3390/ma14195676
- X. Feng, M. Ouyang, X. Liu, L. Lu, Y. Xia et al., Thermal runaway mechanism of lithium ion battery for electric vehicles: a review. Energy Storage Mater. 10, 246–267 (2018). https://doi.org/10.1016/j.ensm.2017.05.013
- B. Xu, J. Lee, D. Kwon, L. Kong, M. Pecht, Mitigation strategies for Li-ion battery thermal runaway: a review. Renew. Sustain. Energy Rev. 150, 111437 (2021). https://doi.org/10.1016/j.rser.2021.111437
- Y. Li, X. Feng, D. Ren, M. Ouyang, L. Lu et al., Thermal runaway triggered by plated lithium on the anode after fast charging. ACS Appl. Mater. Interfaces 11, 46839–46850 (2019). https://doi.org/10.1021/acsami.9b16589
- J.B. Goodenough, K.-S. Park, The Li-ion rechargeable battery: a perspective. J. Am. Chem. Soc. 135, 1167–1176 (2013). https://doi.org/10.1021/ja3091438
- J.B. Goodenough, Y. Kim, Challenges for rechargeable Li batteries. Chem. Mater. 22, 587–603 (2010). https://doi.org/10.1021/cm901452z
- K. Liu, Y. Liu, D. Lin, A. Pei, Y. Cui, Materials for lithium-ion battery safety. Sci. Adv. 4, eaas9820 (2018). https://doi.org/10.1126/sciadv.aas9820
- M.J. Loveridge, G. Remy, N. Kourra, R. Genieser, A. Barai et al., Looking deeper into the galaxy (Note 7). Batteries 4(1), 3 (2018). https://doi.org/10.3390/batteries4010003
- Q. Wang, P. Ping, X. Zhao, G. Chu, J. Sun et al., Thermal runaway caused fire and explosion of lithium ion battery. J. Power. Sources 208, 210–224 (2012). https://doi.org/10.1016/j.jpowsour.2012.02.038
- Y. Kato, S. Hori, T. Saito, K. Suzuki, M. Hirayama et al., High-power all-solid-state batteries using sulfide superionic conductors. Nat. Energy 1(4), 16030 (2016). https://doi.org/10.1038/nenergy.2016.30
- W. Zhao, J. Yi, P. He, H. Zhou, Solid-state electrolytes for lithium-ion batteries: fundamentals, challenges and perspectives. Electrochem. Energy Rev. 2, 574–605 (2019). https://doi.org/10.1007/s41918-019-00048-0
- X. Yao, N. Huang, F. Han, Q. Zhang, H. Wan et al., High-performance all-solid-state lithium–sulfur batteries enabled by amorphous sulfur-coated reduced graphene oxide cathodes. Adv. Energy Mater. 7, 1602923 (2017). https://doi.org/10.1002/aenm.201602923
- D. Wang, L.-J. Jhang, R. Kou, M. Liao, S. Zheng et al., Realizing high-capacity all-solid-state lithium-sulfur batteries using a low-density inorganic solid-state electrolyte. Nat. Commun. 14, 1895 (2023). https://doi.org/10.1038/s41467-023-37564-z
- X. Tao, Y. Liu, W. Liu, G. Zhou, J. Zhao et al., Solid-state lithium–sulfur batteries operated at 37 °C with composites of nanostructured Li7La3Zr2O12/carbon foam and polymer. Nano Lett. 17, 2967–2972 (2017). https://doi.org/10.1021/acs.nanolett.7b00221
- J.G. Kim, B. Son, S. Mukherjee, N. Schuppert, A. Bates et al., A review of lithium and non-lithium based solid state batteries. J. Power. Sources 282, 299–322 (2015). https://doi.org/10.1016/j.jpowsour.2015.02.054
- B. Scrosati, J. Garche, Lithium batteries: status, prospects and future. J. Power. Sources 195, 2419–2430 (2010). https://doi.org/10.1016/j.jpowsour.2009.11.048
- H. Chen, Y. Wen, Y. Wang, S. Zhang, P. Zhao et al., Direct surface coating of high voltage LiCoO2 cathode with P(VDF-HFP) based gel polymer electrolyte. RSC Adv. 10, 24533–24541 (2020). https://doi.org/10.1039/d0ra04023a
- M. Dixit, N. Muralidharan, A. Parejiya, R. Amin, R. Essehli et al., in Current status and prospects of solid-state batteries as the future of energy storage, ed. by Kenneth E. Okedu. Management and applications of energy storage devices. (IntechOpen, 2022). https://doi.org/10.5772/intechopen.98701
- J. Lee, T. Lee, K. Char, K.J. Kim, J.W. Choi, Issues and advances in scaling up sulfide-based all-solid-state batteries. Acc. Chem. Res. 54, 3390–3402 (2021). https://doi.org/10.1021/acs.accounts.1c00333
- S. Xia, X. Wu, Z. Zhang, Y. Cui, W. Liu, Practical challenges and future perspectives of all-solid-state lithium-metal batteries. Chem 5, 753–785 (2019). https://doi.org/10.1016/j.chempr.2018.11.013
- A. Manthiram, An outlook on lithium ion battery technology. ACS Cent. Sci. 3, 1063–1069 (2017). https://doi.org/10.1021/acscentsci.7b00288
- X. Judez, H. Zhang, C. Li, G.G. Eshetu, J.A. González-Marcos et al., Review—solid electrolytes for safe and high energy density lithium-sulfur batteries: promises and challenges. J. Electrochem. Soc. 165(1), A6008 (2018). https://doi.org/10.1149/2.0041801jes
- L. Suo, Y.-S. Hu, H. Li, M. Armand, L. Chen, A new class of solvent-in-salt electrolyte for high-energy rechargeable metallic lithium batteries. Nat. Commun. 4, 1481 (2013). https://doi.org/10.1038/ncomms2513
- X. Ji, K.T. Lee, L.F. Nazar, A highly ordered nanostructured carbon–sulphur cathode for lithium–sulphur batteries. Nat. Mater. 8, 500–506 (2009). https://doi.org/10.1038/nmat2460
- J. Janek, W.G. Zeier, Challenges in speeding up solid-state battery development. Nat. Energy 8, 230–240 (2023). https://doi.org/10.1038/s41560-023-01208-9
- M.A. Weret, W.-N. Su, B.J. Hwang, Strategies towards high performance lithium-sulfur batteries. Batter. Supercaps 5, 2200059 (2022). https://doi.org/10.1002/batt.202200059
- N. Kamaya, K. Homma, Y. Yamakawa, M. Hirayama, R. Kanno et al., A lithium superionic conductor. Nat. Mater. 10, 682–686 (2011). https://doi.org/10.1038/nmat3066
- T. Kobayashi, Y. Imade, D. Shishihara, K. Homma, M. Nagao et al., All solid-state battery with sulfur electrode and thio-LISICON electrolyte. J. Power. Sources 182, 621–625 (2008). https://doi.org/10.1016/j.jpowsour.2008.03.030
- B. Ding, J. Wang, Z. Fan, S. Chen, Q. Lin et al., Solid-state lithium–sulfur batteries: advances, challenges and perspectives. Mater. Today 40, 114–131 (2020). https://doi.org/10.1016/j.mattod.2020.05.020
- M. Yang, Y. Yao, M. Chang, F. Tian, W. Xie et al., High energy density sulfur-rich MoS6-based nanocomposite for room temperature all-solid-state lithium metal batteries. Adv. Energy Mater. 13, 2300962 (2023). https://doi.org/10.1002/aenm.202300962
- X. Gao, X. Zheng, Y. Tsao, P. Zhang, X. Xiao et al., All-solid-state lithium–sulfur batteries enhanced by redox mediators. J. Am. Chem. Soc. 143, 18188–18195 (2021). https://doi.org/10.1021/jacs.1c07754
- S. Choi, J. Kim, M. Eom, X. Meng, D. Shin, Application of a carbon nanotube (CNT) sheet as a current collector for all-solid-state lithium batteries. J. Power. Sources 299, 70–75 (2015). https://doi.org/10.1016/j.jpowsour.2015.08.081
- T. Hakari, M. Deguchi, K. Mitsuhara, T. Ohta, K. Saito et al., Structural and electronic-state changes of a sulfide solid electrolyte during the Li deinsertion–insertion processes. Chem. Mater. 29, 4768–4774 (2017). https://doi.org/10.1021/acs.chemmater.7b00551
- H. Wan, Z. Wang, W. Zhang, X. He, C. Wang, Interface design for all-solid-state lithium batteries. Nature 623, 739–744 (2023). https://doi.org/10.1038/s41586-023-06653-w
- W. Zhang, F.H. Richter, S.P. Culver, T. Leichtweiss, J.G. Lozano et al., Degradation mechanisms at the Li10GeP2S12/LiCoO2 cathode interface in an all-solid-state lithium-ion battery. ACS Appl. Mater. Interfaces 10, 22226–22236 (2018). https://doi.org/10.1021/acsami.8b05132
- R. Zhu, F. Liu, W. Li, Z. Fu, In-situ generated ultra-high dispersion sulfur 3D-graphene foam for all-solid-state lithium sulfur batteries with high cell-level energy density. ChemistrySelect 5, 9701–9708 (2020). https://doi.org/10.1002/slct.202002150
- M. Li, J.E. Frerichs, M. Kolek, W. Sun, D. Zhou et al., Solid-state lithium–sulfur battery enabled by thio-LiSICON/polymer composite electrolyte and sulfurized polyacrylonitrile cathode. Adv. Funct. Mater. 30, 1910123 (2020). https://doi.org/10.1002/adfm.201910123
- W. Zhang, T. Leichtweiß, S.P. Culver, R. Koerver, D. Das et al., The detrimental effects of carbon additives in Li10GeP2S12-based solid-state batteries. ACS Appl. Mater. Interfaces 9, 35888–35896 (2017). https://doi.org/10.1021/acsami.7b11530
- Y.E. Choi, K.H. Park, D.H. Kim, D.Y. Oh, H.R. Kwak et al., Coatable Li4SnS4 solid electrolytes prepared from aqueous solutions for all-solid-state lithium-ion batteries. ChemSusChem 10, 2605–2611 (2017). https://doi.org/10.1002/cssc.201700409
- G. Liu, J. Shi, M. Zhu, W. Weng, L. Shen et al., Ultra-thin free-standing sulfide solid electrolyte film for cell-level high energy density all-solid-state lithium batteries. Energy Storage Mater. 38, 249–254 (2021). https://doi.org/10.1016/j.ensm.2021.03.017
- N.C. Rosero-Navarro, T. Kinoshita, A. Miura, M. Higuchi, K. Tadanaga, Effect of the binder content on the electrochemical performance of composite cathode using Li6PS5Cl precursor solution in an all-solid-state lithium battery. Ionics 23, 1619–1624 (2017). https://doi.org/10.1007/s11581-017-2106-x
- S. Chida, A. Miura, N.C. Rosero-Navarro, M. Higuchi, N.H.H. Phuc et al., Liquid-phase synthesis of Li6PS5Br using ultrasonication and application to cathode composite electrodes in all-solid-state batteries. Ceram. Int. 44, 742–746 (2018). https://doi.org/10.1016/j.ceramint.2017.09.241
- R. Koerver, I. Aygün, T. Leichtweiß, C. Dietrich, W. Zhang et al., Capacity fade in solid-state batteries: interphase formation and chemomechanical processes in nickel-rich layered oxide cathodes and lithium thiophosphate solid electrolytes. Chem. Mater. 29, 5574–5582 (2017). https://doi.org/10.1021/acs.chemmater.7b00931
- S. Ito, S. Fujiki, T. Yamada, Y. Aihara, Y. Park et al., A rocking chair type all-solid-state lithium ion battery adopting Li2O–ZrO2 coated LiNi0.8Co0.15Al0.05O2 and a sulfide based electrolyte. J. Power. Sources 248, 943–950 (2014). https://doi.org/10.1016/j.jpowsour.2013.10.005
- F. Mizuno, A. Hayashi, K. Tadanaga, T. Minami, M. Tatsumisago, All-solid-state lithium secondary batteries using a layer-structured LiNi0.5Mn0.5O2 cathode material. J. Power. Sources 124, 170–173 (2003). https://doi.org/10.1016/s0378-7753(03)00610-4
- F. Tian, M. Chang, M. Yang, W. Xie, S. Chen et al., Multi-electron reaction based molybdenum pentasulfide towards high-energy density all-solid-state lithium batteries. Chem. Eng. J. 472, 144914 (2023). https://doi.org/10.1016/j.cej.2023.144914
- T.W. Kim, K.H. Park, Y.E. Choi, J.Y. Lee, Y.S. Jung, Aqueous-solution synthesis of Na3SbS4 solid electrolytes for all-solid-state Na-ion batteries. J. Mater. Chem. A 6, 840–844 (2018). https://doi.org/10.1039/C7TA09242C
- J. Yue, F. Han, X. Fan, X. Zhu, Z. Ma et al., High-performance all-inorganic solid-state sodium-sulfur battery. ACS Nano 11, 4885–4891 (2017). https://doi.org/10.1021/acsnano.7b01445
- X. Fan, J. Yue, F. Han, J. Chen, T. Deng et al., High-performance all-solid-state Na–S battery enabled by casting–annealing technology. ACS Nano 12, 3360–3368 (2018). https://doi.org/10.1021/acsnano.7b08856
- K. Suzuki, D. Kato, K. Hara, T.-A. Yano, M. Hirayama et al., Composite sulfur electrode prepared by high-temperature mechanical milling for use in an all-solid-state lithium–sulfur battery with a Li3.25Ge0.25P0.75S4 electrolyte. Electrochim. Acta. Acta 258, 110–115 (2017). https://doi.org/10.1016/j.electacta.2017.09.156
- H. Li, F. Lian, N. Meng, C. Xiong, N. Wu et al., Constructing electronic and ionic dual conductive polymeric interface in the cathode for high-energy-density solid-state batteries. Adv. Funct. Mater. 31, 2008487 (2021). https://doi.org/10.1002/adfm.202008487
- A. Ponrouch, M.R. Palacín, Post-Li batteries: promises and challenges. Philos. Trans. A Math. Phys. Eng. Sci. 377, 20180297 (2019). https://doi.org/10.1098/rsta.2018.0297
- J. Deng, C. Bae, A. Denlinger, T. Miller, Electric vehicles batteries: requirements and challenges. Joule 4, 511–515 (2020). https://doi.org/10.1016/j.joule.2020.01.013
- Z.P. Energy, S. Power, Time for lithium-ion alternatives. Nat. Energy 7, 461 (2022). https://doi.org/10.1038/s41560-022-01073-y
- IEA. Price of Selected Battery Materials and Lithium-ion Batteries, (2015–2023)
- G. Bieker, V. Küpers, M. Kolek, M. Winter, Intrinsic differences and realistic perspectives of lithium-sulfur and magnesium-sulfur batteries. Commun. Mater. 2, 37 (2021). https://doi.org/10.1038/s43246-021-00143-0
- N. Boaretto, I. Garbayo, S. Valiyaveettil-SobhanRaj, A. Quintela, C. Li et al., Lithium solid-state batteries: state-of-the-art and challenges for materials, interfaces and processing. J. Power. Sources 502, 229919 (2021). https://doi.org/10.1016/j.jpowsour.2021.229919
- S. Dühnen, J. Betz, M. Kolek, R. Schmuch, M. Winter et al., Toward green battery cells: perspective on materials and technologies. Small Meth. 4, 2070023 (2020). https://doi.org/10.1002/smtd.202070023
- M. Klimpel, M.V. Kovalenko, K.V. Kravchyk, Advances and challenges of aluminum-sulfur batteries. Commun. Chem. 5, 77 (2022). https://doi.org/10.1038/s42004-022-00693-5
- C. Yang, P. Li, J. Yu, L.-D. Zhao, L. Kong, Approaching energy-dense and cost-effective lithium–sulfur batteries: from materials chemistry and price considerations. Energy 201, 117718 (2020). https://doi.org/10.1016/j.energy.2020.117718
- Q. Sun, X. Li, H. Zhang, D. Song, X. Shi et al., Resynthesizing LiFePO4/C materials from the recycled cathode via a green full-solid route. J. Alloys Compd. 818, 153292 (2020). https://doi.org/10.1016/j.jallcom.2019.153292
- D. Meggiolaro, M. Agostini, S. Brutti, Aprotic sulfur–metal batteries: lithium and beyond. ACS Energy Lett. 8, 1300–1312 (2023). https://doi.org/10.1021/acsenergylett.2c02493
- Z. Li, M.S. Pan, L. Su, P.-C. Tsai, A.F. Badel et al., Air-breathing aqueous sulfur flow battery for ultralow-cost long-duration electrical storage. Joule 1, 306–327 (2017). https://doi.org/10.1016/j.joule.2017.08.007
- Y. Huang, B. Shao, F. Han, in Solid-State Batteries: An Introduction. Solid State Batteries Volume 1: Emerging Materials and Applications. vol. 1413, ACS Symposium Series, no. 1413. (American Chemical Society, 2022), ch. 1, pp. 1–20. https://doi.org/10.1021/bk-2022-1413.ch001
- Z. Zhang, Y. Shao, B. Lotsch, Y.-S. Hu, H. Li et al., New horizons for inorganic solid state ion conductors. Energy Environ. Sci. 11, 1945–1976 (2018). https://doi.org/10.1039/C8EE01053F
- J. Janek, W.G. Zeier, A solid future for battery development. Nat. Energy 1, 16141 (2016). https://doi.org/10.1038/nenergy.2016.141
- N.M. Vargas-Barbosa, B. Roling, Dynamic ion correlations in solid and liquid electrolytes: how do they affect charge and mass transport? ChemElectroChem 7, 367–385 (2020). https://doi.org/10.1002/celc.201901627
- S. Randau, D.A. Weber, O. Kötz, R. Koerver, P. Braun et al., Benchmarking the performance of all-solid-state lithium batteries. Nat. Energy 5, 259–270 (2020). https://doi.org/10.1038/s41560-020-0565-1
- E. Umeshbabu, B. Zheng, Y. Yang, Recent progress in all-solid-state Lithium−Sulfur batteries using high Li-ion conductive solid electrolytes. Electrochem. Energy Rev. 2, 199–230 (2019). https://doi.org/10.1007/s41918-019-00029-3
- A. Varzi, R. Raccichini, S. Passerini, B. Scrosati, Challenges and prospects of the role of solid electrolytes in the revitalization of lithium metal batteries. J. Mater. Chem. A 4, 17251–17259 (2016). https://doi.org/10.1039/C6TA07384K
- J. Li, C. Ma, M. Chi, C. Liang, N.J. Dudney, Solid electrolyte: the key for high-voltage lithium batteries. Adv. Energy Mater. 5, 1401408 (2015). https://doi.org/10.1002/aenm.201401408
- L. Zhou, N. Minafra, W.G. Zeier, L.F. Nazar, Innovative approaches to Li-argyrodite solid electrolytes for all-solid-state lithium batteries. Acc. Chem. Res. 54, 2717–2728 (2021). https://doi.org/10.1021/acs.accounts.0c00874
- X. Shen, C.-C. Yang, Y. Liu, G. Wang, H. Tan et al., High-temperature structural and thermoelectric study of argyrodite Ag8GeSe6. ACS Appl. Mater. Interfaces 11, 2168–2176 (2019). https://doi.org/10.1021/acsami.8b19819
- F. Mizuno, A. Hayashi, K. Tadanaga, M. Tatsumisago, High lithium ion conducting glass-ceramics in the system Li2S–P2S5. Solid State Ion. 177, 2721–2725 (2006). https://doi.org/10.1016/j.ssi.2006.04.017
- H.-J. Deiseroth, S.-T. Kong, H. Eckert, J. Vannahme, C. Reiner et al., Li6PS5X: a class of crystalline Li-rich solids with an unusually high Li+ mobility. Angew. Chem. Int. Ed. 47, 755–758 (2008). https://doi.org/10.1002/anie.200703900
- J.W. Fergus, Ceramic and polymeric solid electrolytes for lithium-ion batteries. J. Power. Sources 195, 4554–4569 (2010). https://doi.org/10.1016/j.jpowsour.2010.01.076
- Z. Gao, H. Sun, L. Fu, F. Ye, Y. Zhang et al., Promises, challenges, and recent progress of inorganic solid-state electrolytes for all-solid-state lithium batteries. Adv. Mater. 30, e1705702 (2018). https://doi.org/10.1002/adma.201705702
- Y. Wang, W.D. Richards, S.P. Ong, L.J. Miara, J.C. Kim et al., Design principles for solid-state lithium superionic conductors. Nat. Mater. 14, 1026–1031 (2015). https://doi.org/10.1038/nmat4369
- T. Famprikis, P. Canepa, J.A. Dawson, M.S. Islam, C. Masquelier, Fundamentals of inorganic solid-state electrolytes for batteries. Nat. Mater. 18, 1278–1291 (2019). https://doi.org/10.1038/s41563-019-0431-3
- A. Manthiram, X. Yu, S. Wang, Lithium battery chemistries enabled by solid-state electrolytes. Nat. Rev. Mater. 2, 16103 (2017). https://doi.org/10.1038/natrevmats.2016.103
- Y. Seino, T. Ota, K. Takada, A. Hayashi, M. Tatsumisago, A sulphide lithium super ion conductor is superior to liquid ion conductors for use in rechargeable batteries. Energy Environ. Sci. 7, 627–631 (2014). https://doi.org/10.1039/C3EE41655K
- C. Sun, J. Liu, Y. Gong, D.P. Wilkinson, J. Zhang, Recent advances in all-solid-state rechargeable lithium batteries. Nano Energy 33, 363–386 (2017). https://doi.org/10.1016/j.nanoen.2017.01.028
- Y.-K. Sun, Promising all-solid-state batteries for future electric vehicles. ACS Energy Lett. 5, 3221–3223 (2020). https://doi.org/10.1021/acsenergylett.0c01977
- A. Hayashi, S. Hama, H. Morimoto, M. Tatsumisago, T. Minami, Preparation of Li2S–P2S5 amorphous solid electrolytes by mechanical milling. J. Am. Ceram. Soc. 84, 477–479 (2001). https://doi.org/10.1111/j.1151-2916.2001.tb00685.x
- C. Dietrich, D.A. Weber, S.J. Sedlmaier, S. Indris, S.P. Culver et al., Lithium ion conductivity in Li2S–P2S5 glasses–building units and local structure evolution during the crystallization of superionic conductors Li3PS4, Li7P3S11 and Li4P2S7. J. Mater. Chem. A 5, 18111–18119 (2017). https://doi.org/10.1039/C7TA06067J
- T. Ohtomo, A. Hayashi, M. Tatsumisago, Y. Tsuchida, S. Hama et al., All-solid-state lithium secondary batteries using the 75Li2S·25P2S5 glass and the 70Li2S·30P2S5 glass–ceramic as solid electrolytes. J. Power. Sources 233, 231–235 (2013). https://doi.org/10.1016/j.jpowsour.2013.01.090
- J.H. Kennedy, Ionically conductive glasses based on SiS2. Mater. Chem. Phys. 23, 29–50 (1989). https://doi.org/10.1016/0254-0584(89)90015-1
- J. Souquet, E. Robinel, B. Barrau, M. Ribes, Glass formation and ionic conduction in the M2S–GeS2 (M = Li, Na, Ag) systems. Solid State Ion. 3–4, 317–321 (1981). https://doi.org/10.1016/0167-2738(81)90105-3
- M. Tatsumisago, A. Hayashi, Superionic glasses and glass–ceramics in the Li2S–P2S5 system for all-solid-state lithium secondary batteries. Solid State Ion. 225, 342–345 (2012). https://doi.org/10.1016/j.ssi.2012.03.013
- M. Tatsumisago, K. Hirai, T. Hirata, M. Takahashi, T. Minami, Structure and properties of lithium ion conducting oxysulfide glasses prepared by rapid quenching. Solid State Ion. 86–88, 487–490 (1996). https://doi.org/10.1016/0167-2738(96)00179-8
- S. Ujiie, T. Inagaki, A. Hayashi, M. Tatsumisago, Conductivity of 70Li2S·30P2S5 glasses and glass–ceramics added with lithium halides. Solid State Ion. 263, 57–61 (2014). https://doi.org/10.1016/j.ssi.2014.05.002
- A. Pradel, M. Ribes, Electrical properties of lithium conductive silicon sulfide glasses prepared by twin roller quenching. Solid State Ion. 18–19, 351–355 (1986). https://doi.org/10.1016/0167-2738(86)90139-6
- J.H. Kennedy, Z. Zhang, H. Eckert, Ionically conductive sulfide-based lithium glasses. J. Non Cryst. Solids 123, 328–338 (1990). https://doi.org/10.1016/0022-3093(90)90804-u
- C. Dietrich, D.A. Weber, S. Culver, A. Senyshyn, S.J. Sedlmaier et al., Synthesis, structural characterization, and lithium ion conductivity of the lithium thiophosphate Li2P2S6. Inorg. Chem. 56, 6681–6687 (2017). https://doi.org/10.1021/acs.inorgchem.7b00751
- H. Yamane, M. Shibata, Y. Shimane, T. Junke, Y. Seino et al., Crystal structure of a superionic conductor, Li7P3S11. Solid State Ion. 178, 1163–1167 (2007). https://doi.org/10.1016/j.ssi.2007.05.020
- R. Mercier, J.-P. Malugani, B. Fahys, G. Robert, J. Douglade, Structure du tetrathiophosphate de lithium. Acta Crystallogr. Sect. B Struct. Crystallogr. Cryst. Chem 38, 1887–1890 (1982). https://doi.org/10.1107/s0567740882007535
- S.T. Kong, O. Gün, B. Koch, H.J. Deiseroth, H. Eckert et al., Structural characterisation of the Li argyrodites Li7PS6 and Li7PSe6 and their solid solutions: quantification of site preferences by MAS-NMR spectroscopy. Chemistry 16, 5138–5147 (2010). https://doi.org/10.1002/chem.200903023
- R. Mercier, J.P. Malugani, B. Fahys, J. Douglande, G. Robert, Synthese, structure cristalline et analyse vibrationnelle de l’hexathiohypodiphosphate de lithium Li4P2S6. J. Solid State Chem. 43, 151–162 (1982). https://doi.org/10.1016/0022-4596(82)90224-9
- F. Mizuno, A. Hayashi, K. Tadanaga, M. Tatsumisago, New, highly ion-conductive crystals precipitated from Li2S–P2S5 glasses. Adv. Mater. 17, 918–921 (2005). https://doi.org/10.1002/adma.200401286
- M. Tachez, J. Malugani, R. Mercier, G. Robert, Ionic conductivity of and phase transition in lithium thiophosphate Li3PS4. Solid State Ion. 14, 181–185 (1984). https://doi.org/10.1016/0167-2738(84)90097-3
- K. Homma, M. Yonemura, T. Kobayashi, M. Nagao, M. Hirayama et al., Crystal structure and phase transitions of the lithium ionic conductor Li3PS4. Solid State Ion. 182, 53–58 (2011). https://doi.org/10.1016/j.ssi.2010.10.001
- M. Eom, J. Kim, S. Noh, D. Shin, Crystallization kinetics of Li2S–P2S5 solid electrolyte and its effect on electrochemical performance. J. Power. Sources 284, 44–48 (2015). https://doi.org/10.1016/j.jpowsour.2015.02.141
- N. Minafra, S.P. Culver, T. Krauskopf, A. Senyshyn, W.G. Zeier, Effect of Si substitution on the structural and transport properties of superionic Li-argyrodites. J. Mater. Chem. A 6, 645–651 (2018). https://doi.org/10.1039/C7TA08581H
- E. Gaudin, F. Boucher, F. Taulelle, M. Evain, Structures and phase transitions of the A7PSe6 (a = Ag, Cu) argyrodite-type ionic conductors. III. alpha-Cu7PSe6. Acta Crystallogr. B Crystallogr. B 56(Pt 6), 972–979 (2000). https://doi.org/10.1107/s0108768100010260
- R.P. Rao, S. Adams, Studies of lithium argyrodite solid electrolytes for all-solid-state batteries. Phys. Status Solidi A 208, 1804–1807 (2011). https://doi.org/10.1002/pssa.201001117
- N.J.J. de Klerk, I. Rosłoń, M. Wagemaker, Diffusion mechanism of Li argyrodite solid electrolytes for Li-ion batteries and prediction of optimized halogen doping: the effect of Li vacancies, halogens, and halogen disorder. Chem. Mater. 28, 7955–7963 (2016). https://doi.org/10.1021/acs.chemmater.6b03630
- H.M. Chen, C. Maohua, S. Adams, Stability and ionic mobility in argyrodite-related lithium-ion solid electrolytes. Phys. Chem. Chem. Phys. 17, 16494–16506 (2015). https://doi.org/10.1039/c5cp01841b
- M.A. Kraft, S.P. Culver, M. Calderon, F. Böcher, T. Krauskopf et al., Influence of lattice polarizability on the ionic conductivity in the lithium superionic argyrodites Li6PS5X (X = Cl, Br, I). J. Am. Chem. Soc. 139, 10909–10918 (2017). https://doi.org/10.1021/jacs.7b06327
- Y. Inoue, K. Suzuki, N. Matsui, M. Hirayama, R. Kanno, Synthesis and structure of novel lithium-ion conductor Li7Ge3PS12. J. Solid State Chem. 246, 334–340 (2017). https://doi.org/10.1016/j.jssc.2016.12.001
- R. Kanno, T. Hata, Y. Kawamoto, M. Irie, Synthesis of a new lithium ionic conductor, thio-LISICON–lithium germanium sulfide system. Solid State Ion. 130, 97–104 (2000). https://doi.org/10.1016/s0167-2738(00)00277-0
- T. Kaib, S. Haddadpour, M. Kapitein, P. Bron, C. Schröder et al., New lithium chalcogenidotetrelates, LiChT: synthesis and characterization of the Li+-conducting tetralithium ortho-Sulfidostannate Li4SnS4. Chem. Mater. 24, 2211–2219 (2012). https://doi.org/10.1021/cm3011315
- G. Sahu, Z. Lin, J. Li, Z. Liu, N. Dudney et al., Air-stable, high-conduction solid electrolytes of arsenic-substituted Li4SnS4. Energy Environ. Sci. 7, 1053–1058 (2014). https://doi.org/10.1039/C3EE43357A
- S. Hori, M. Kato, K. Suzuki, M. Hirayama, Y. Kato et al., Phase diagramof the Li4GeS4–Li3PS4 quasi-binary system containing the superionic conductor Li10GeP2S12. J. Am. Ceram. Soc. 98, 3352–3360 (2015). https://doi.org/10.1111/jace.13694
- P. Zhou, J. Wang, F. Cheng, F. Li, J. Chen, A solid lithium superionic conductor Li11AlP2S12 with a thio-LISICON analogous structure. Chem. Commun. 52, 6091–6094 (2016). https://doi.org/10.1039/c6cc02131j
- A. Kuhn, J. Köhler, B.V. Lotsch, Single-crystal X-ray structure analysis of the superionic conductor Li10GeP2S12. Phys. Chem. Chem. Phys. 15, 11620–11622 (2013). https://doi.org/10.1039/c3cp51985f
- Y. Mo, S.P. Ong, G. Ceder, First principles study of the Li10GeP2S12 lithium super ionic conductor material. Chem. Mater. 24, 15–17 (2012). https://doi.org/10.1021/cm203303y
- A. Kuhn, V. Duppel, B.V. Lotsch, Tetragonal Li10GeP2S12 and Li7GePS8–exploring the Li ion dynamics in LGPS Li electrolytes. Energy Environ. Sci. 6, 3548–3552 (2013). https://doi.org/10.1039/C3EE41728J
- S.P. Ong, Y. Mo, W.D. Richards, L. Miara, H.S. Lee et al., Phase stability, electrochemical stability and ionic conductivity of the Li10±1MP2X12 (M = Ge, Si, Sn, Al or P, and X = O, S or Se) family of superionic conductors. Energy Environ. Sci. 6, 148–156 (2013). https://doi.org/10.1039/C2EE23355J
- P. Bron, S. Johansson, K. Zick, J.S.A. der Günne, S. Dehnen et al., Li10SnP2S12: an affordable lithium superionic conductor. J. Am. Chem. Soc. 135, 15694–15697 (2013). https://doi.org/10.1021/ja407393y
- P. Bron, S. Dehnen, B. Roling, Li10Si0.3Sn0.7P2S12–A low-cost and low-grain-boundary-resistance lithium superionic conductor. J. Power. Sources 329, 530–535 (2016). https://doi.org/10.1016/j.jpowsour.2016.08.115
- J.M. Whiteley, J.H. Woo, E. Hu, K.-W. Nam, S.-H. Lee, Empowering the lithium metal battery through a silicon-based superionic conductor. J. Electrochem. Soc. 161, A1812–A1817 (2014). https://doi.org/10.1149/2.0501412jes
- A. Kuhn, O. Gerbig, C. Zhu, F. Falkenberg, J. Maier et al., A new ultrafast superionic Li-conductor: ion dynamics in Li11Si2PS12 and comparison with other tetragonal LGPS-type electrolytes. Phys. Chem. Chem. Phys. 16, 14669–14674 (2014). https://doi.org/10.1039/c4cp02046d
- Y. Hu, W. Chen, T. Lei, Y. Jiao, J. Huang et al., Strategies toward high-loading lithium–sulfur battery. Adv. Energy Mater. 10, 2000082 (2020). https://doi.org/10.1002/aenm.202000082
- H. Kim, H.-N. Choi, J.-Y. Hwang, C.S. Yoon, Y.-K. Sun, Tailoring the interface between sulfur and sulfide solid electrolyte for high-areal-capacity all-solid-state lithium–sulfur batteries. ACS Energy Lett. 8, 3971–3979 (2023). https://doi.org/10.1021/acsenergylett.3c01473
- A. Hayashi, T. Ohtomo, F. Mizuno, K. Tadanaga, M. Tatsumisago, Rechargeable lithium batteries, using sulfur-based cathode materials and Li2S–P2S5 glass-ceramic electrolytes. Electrochim. Acta 50, 893–897 (2004). https://doi.org/10.1016/j.electacta.2004.02.061
- A.S. Alzahrani, M. Otaki, D. Wang, Y. Gao, T.S. Arthur et al., Confining sulfur in porous carbon by vapor deposition to achieve high-performance cathode for all-solid-state lithium–sulfur batteries. ACS Energy Lett. 6, 413–418 (2021). https://doi.org/10.1021/acsenergylett.0c01956
- X. Zheng, Y. Wu, C. Li, J. Peng, W. Yang et al., Promoting the conversion of S and Li2S using a Co3O4@NC additive in all-solid-state Li–S batteries. J. Mater. Chem. A 10, 18907–18915 (2022). https://doi.org/10.1039/D2TA04834E
- S. Xu, C.Y. Kwok, L. Zhou, Z. Zhang, I. Kochetkov et al., A high capacity all solid-state Li-sulfur battery enabled by conversion-intercalation hybrid cathode architecture. Adv. Funct. Mater. 31, 2004239 (2021). https://doi.org/10.1002/adfm.202004239
- S. Kim, J. Choi, S.-M. Bak, L. Sang, Q. Li et al., Reversible conversion reactions and small first cycle irreversible capacity loss in metal sulfide-based electrodes enabled by solid electrolytes. Adv. Funct. Mater. 29, 1901719 (2019). https://doi.org/10.1002/adfm.201901719
- Z. Yang, F. Wang, Z. Hu, J. Chu, H. Zhan et al., Room-temperature all-solid-state lithium–organic batteries based on sulfide electrolytes and organodisulfide cathodes. Adv. Energy Mater. 11, 2102962 (2021). https://doi.org/10.1002/aenm.202102962
- F. Han, J. Yue, X. Fan, T. Gao, C. Luo et al., High-performance all-solid-state lithium–sulfur battery enabled by a mixed-conductive Li2S nanocomposite. Nano Lett. 16, 4521–4527 (2016). https://doi.org/10.1021/acs.nanolett.6b01754
- H. Wan, B. Zhang, S. Liu, J. Zhang, X. Yao et al., Understanding LiI-LiBr catalyst activity for solid state Li2S/S reactions in an all-solid-state lithium battery. Nano Lett. 21, 8488–8494 (2021). https://doi.org/10.1021/acs.nanolett.1c03415
- M. Yu, Z. Wang, Y. Wang, Y. Dong, J. Qiu, Freestanding flexible Li2S paper electrode with high mass and capacity loading for high-energy Li–S batteries. Adv. Energy Mater. 7, 1700018 (2017). https://doi.org/10.1002/aenm.201700018
- J. Shi, G. Liu, W. Weng, L. Cai, Q. Zhang et al., Co3S4@Li7P3S11 hexagonal platelets as cathodes with superior interfacial contact for all-solid-state lithium batteries. ACS Appl. Mater. Interfaces 12, 14079–14086 (2020). https://doi.org/10.1021/acsami.0c02085
- S.M. Hosseini, A. Varzi, S. Ito, Y. Aihara, S. Passerini, High loading CuS-based cathodes for all-solid-state lithium sulfur batteries with enhanced volumetric capacity. Energy Storage Mater. 27, 61–68 (2020). https://doi.org/10.1016/j.ensm.2020.01.022
- X. Zhang, K. Chen, Z. Sun, G. Hu, R. Xiao et al., Structure-related electrochemical performance of organosulfur compounds for lithium–sulfur batteries. Energy Environ. Sci. 13, 1076–1095 (2020). https://doi.org/10.1039/C9EE03848E
- H. Yang, J. Chen, J. Yang, J. Wang, Prospect of sulfurized pyrolyzed poly(acrylonitrile) (S@pPAN) cathode materials for rechargeable lithium batteries. Angew. Chem. Int. Ed. 132, 7374–7386 (2020). https://doi.org/10.1002/ange.201913540
- Z. Sun, Y. Hu, F. Qin, N. Lv, B. Li et al., Sulfurized polyacrylonitrile cathodes with electrochemical and structural tuning for high capacity all-solid-state lithium–sulfur batteries. Sustainable Energy Fuels 5, 5603–5614 (2021). https://doi.org/10.1039/D1SE01187A
- T. Takeuchi, T. Kojima, H. Kageyama, H. Kobayashi, K. Mitsuhara et al., All-solid-state lithium-sulfur batteries using sulfurized alcohol composite material with improved coulomb efficiency. Energy Technol. 7, 1900509 (2019). https://doi.org/10.1002/ente.201900509
- S. Li, D. Leng, W. Li, L. Qie, Z. Dong et al., Recent progress in developing Li2S cathodes for Li–S batteries. Energy Storage Mater. 27, 279–296 (2020). https://doi.org/10.1016/j.ensm.2020.02.010
- F. Wu, T.P. Pollard, E. Zhao, Y. Xiao, M. Olguin et al., Layered LiTiO2 for the protection of Li2S cathodes against dissolution: mechanisms of the remarkable performance boost. Energy Environ. Sci. 11, 807–817 (2018). https://doi.org/10.1039/C8EE00419F
- J. Jiang, Q. Fan, Z. Zheng, M.R. Kaiser, S. Chou et al., The dual functions of defect-rich carbon nanotubes as both conductive matrix and efficient mediator for Li—S batteries. Small 17, e2103535 (2021). https://doi.org/10.1002/smll.202103535
- S. Luo, F. Wu, G. Yushin, Strategies for fabrication, confinement and performance boost of Li2S in lithium-sulfur, silicon-sulfur & related batteries. Mater. Today 49, 253–270 (2021). https://doi.org/10.1016/j.mattod.2021.03.017
- H. Yan, H. Wang, D. Wang, X. Li, Z. Gong et al., In situ generated Li2S-C nanocomposite for high-capacity and long-life all-solid-state lithium sulfur batteries with ultrahigh areal mass loading. Nano Lett. 19, 3280–3287 (2019). https://doi.org/10.1021/acs.nanolett.9b00882
- D. Wang, Y. Wu, X. Zheng, S. Tang, Z. Gong et al., Li2S@NC composite enable high active material loading and high Li2S utilization for all-solid-state lithium sulfur batteries. J. Power. Sources 479, 228792 (2020). https://doi.org/10.1016/j.jpowsour.2020.228792
- W. Xu, J. Wang, F. Ding, X. Chen, E. Nasybulin et al., Lithium metal anodes for rechargeable batteries. Energy Environ. Sci. 7, 513–537 (2014). https://doi.org/10.1039/C3EE40795K
- K.J. Kim, M. Balaish, M. Wadaguchi, L. Kong, J.L.M. Rupp, Solid-state Li–metal batteries: challenges and horizons of oxide and sulfide solid electrolytes and their interfaces. Adv. Energy Mater. 11, 2002689 (2021). https://doi.org/10.1002/aenm.202002689
- W.D. Richards, L.J. Miara, Y. Wang, J.C. Kim, G. Ceder, Interface stability in solid-state batteries. Chem. Mater. 28, 266–273 (2016). https://doi.org/10.1021/acs.chemmater.5b04082
- S. Wenzel, S. Randau, T. Leichtweiß, D.A. Weber, J. Sann et al., Direct observation of the interfacial instability of the fast ionic conductor Li10GeP2S12 at the lithium metal anode. Chem. Mater. 28, 2400–2407 (2016). https://doi.org/10.1021/acs.chemmater.6b00610
- S. Wenzel, S.J. Sedlmaier, C. Dietrich, W.G. Zeier, J. Janek, Interfacial reactivity and interphase growth of argyrodite solid electrolytes at lithium metal electrodes. Solid State Ion. 318, 102–112 (2018). https://doi.org/10.1016/j.ssi.2017.07.005
- D. Lin, Y. Liu, Y. Cui, Reviving the lithium metal anode for high-energy batteries. Nat. Nanotechnol. 12, 194–206 (2017). https://doi.org/10.1038/nnano.2017.16
- Y. Yang, Z. Wang, G. Li, T. Jiang, Y. Tong et al., Inspired by the “tip effect”: a novel structural design strategy for the cathode in advanced lithium–sulfur batteries. J. Mater. Chem. A 5, 3140–3144 (2017). https://doi.org/10.1039/C6TA09322A
- F. Mo, J. Ruan, S. Sun, Z. Lian, S. Yang et al., Inside or outside: origin of lithium dendrite formation of all solid-state electrolytes. Adv. Energy Mater. 9, 1902123 (2019). https://doi.org/10.1002/aenm.201902123
- Y. Tang, L. Zhang, J. Chen, H. Sun, T. Yang et al., Electro-chemo-mechanics of lithium in solid state lithium metal batteries. Energy Environ. Sci. 14, 602–642 (2021). https://doi.org/10.1039/D0EE02525A
- H. Park, J. Kim, D. Lee, J. Park, S. Jo et al., Epitaxial growth of nanostructured Li2 Se on lithium metal for all solid-state batteries. Adv. Sci. 8, e2004204 (2021). https://doi.org/10.1002/advs.202004204
- A.L. Santhosha, L. Medenbach, J.R. Buchheim, P. Adelhelm, The indium–lithium electrode in solid-state lithium-ion batteries: phase formation, redox potentials, and interface stability. Batter. Supercaps 2, 524–529 (2019). https://doi.org/10.1002/batt.201800149
- S.W. Park, H.J. Choi, Y. Yoo, H.-D. Lim, J.-W. Park et al., Stable cycling of all-solid-state batteries with sacrificial cathode and lithium-free indium layer. Adv. Funct. Mater. 32, 2270030 (2022). https://doi.org/10.1002/adfm.202270030
- S. Luo, Z. Wang, X. Li, X. Liu, H. Wang et al., Growth of lithium-indium dendrites in all-solid-state lithium-based batteries with sulfide electrolytes. Nat. Commun. 12, 6968 (2021). https://doi.org/10.1038/s41467-021-27311-7
- J.P. Pender, G. Jha, D.H. Youn, J.M. Ziegler, I. Andoni et al., Electrode degradation in lithium-ion batteries. ACS Nano 14, 1243–1295 (2020). https://doi.org/10.1021/acsnano.9b04365
- W.-J. Zhang, A review of the electrochemical performance of alloy anodes for lithium-ion batteries. J. Power. Sources 196(1), 13–24 (2011). https://doi.org/10.1016/j.jpowsour.2010.07.020
- D.H.S. Tan, Y.-T. Chen, H. Yang, W. Bao, B. Sreenarayanan et al., Carbon-free high-loading silicon anodes enabled by sulfide solid electrolytes. Science 373, 1494–1499 (2021). https://doi.org/10.1126/science.abg7217
- X. Han, W. Zhou, M. Chen, J. Chen, G. Wang et al., Interfacial nitrogen engineering of robust silicon/MXene anode toward high energy solid-state lithium-ion batteries. J. Energy Chem. 67, 727–735 (2022). https://doi.org/10.1016/j.jechem.2021.11.021
- S. Lou, F. Zhang, C. Fu, M. Chen, Y. Ma et al., Interface issues and challenges in all-solid-state batteries: lithium, sodium, and beyond. Adv. Mater. 33, e2000721 (2021). https://doi.org/10.1002/adma.202000721
- F. Han, T. Gao, Y. Zhu, K.J. Gaskell, C. Wang, A battery made from a single material. Adv. Mater. 27, 3473–3483 (2015). https://doi.org/10.1002/adma.201500180
- Y. Kato, S. Shiotani, K. Morita, K. Suzuki, M. Hirayama et al., All-solid-state batteries with thick electrode configurations. J. Phys. Chem. Lett. 9, 607–613 (2018). https://doi.org/10.1021/acs.jpclett.7b02880
- H.-K. Tian, Z. Liu, Y. Ji, L.-Q. Chen, Y. Qi, Interfacial electronic properties dictate Li dendrite growth in solid electrolytes. Chem. Mater. 31, 7351–7359 (2019). https://doi.org/10.1021/acs.chemmater.9b01967
- S.Y. Han, C. Lee, J.A. Lewis, D. Yeh, Y. Liu et al., Stress evolution during cycling of alloy-anode solid-state batteries. Joule 5, 2450–2465 (2021). https://doi.org/10.1016/j.joule.2021.07.002
- L. Zhao, Z. Liu, D. Chen, F. Liu, Z. Yang et al., Laser synthesis and microfabrication of micro/nanostructured materials toward energy conversion and storage. Nano-Micro Lett. 13, 49 (2021). https://doi.org/10.1007/s40820-020-00577-0
- G.L. Gregory, H. Gao, B. Liu, X. Gao, G.J. Rees et al., Buffering volume change in solid-state battery composite cathodes with CO2-derived block polycarbonate ethers. J. Am. Chem. Soc. 144, 17477–17486 (2022). https://doi.org/10.1021/jacs.2c06138
- K. Zhang, Q. Zhao, Z. Tao, J. Chen, Composite of sulfur impregnated in porous hollow carbon spheres as the cathode of Li-S batteries with high performance. Nano Res. 6, 38–46 (2013). https://doi.org/10.1007/s12274-012-0279-1
- Y. Cao, M. Li, J. Lu, J. Liu, K. Amine, Bridging the academic and industrial metrics for next-generation practical batteries. Nat. Nanotechnol. 14, 200–207 (2019). https://doi.org/10.1038/s41565-019-0371-8
- Z. Lin, T. Liu, X. Ai, C. Liang, Aligning academia and industry for unified battery performance metrics. Nat. Commun. 9, 5262 (2018). https://doi.org/10.1038/s41467-018-07599-8
- Y. Liang, H. Liu, G. Wang, C. Wang, Y.-H. Ni et al., Challenges, interface engineering, and processing strategies toward practicaln sulfide-based all-solid-staten lithium batteries. InfoMat. 4(5), e12292 (2022). https://doi.org/10.1002/inf2.12292
- Y. Guo, S. Wu, Y.-B. He, F. Kang, L. Chen et al., Solid-state lithium batteries: safety and prospects. eScience 2, 138–163 (2022). https://doi.org/10.1016/j.esci.2022.02.008
- Y. Lu, X. Rong, Y.-S. Hu, L. Chen, H. Li, Research and development of advanced battery materials in China. Energy Storage Mater. 23, 144–153 (2019). https://doi.org/10.1016/j.ensm.2019.05.019
- M. Snyder, A. Theis, Understanding and managing hazards of lithium-ion battery systems. Process. Saf. Prog. 41, 440–448 (2022). https://doi.org/10.1002/prs.12408
- C. Heubner, K. Voigt, P. Marcinkowski, S. Reuber, K. Nikolowski et al., From active materials to battery cells: a straightforward tool to determine performance metrics and support developments at an application-relevant level. Adv. Energy Mater. 11(46), 2102647 (2021). https://doi.org/10.1002/aenm.202102647
- J. Wu, L. Yuan, W. Zhang, Z. Li, X. Xie et al., Reducing the thickness of solid-state electrolyte membranes for high-energy lithium batteries. Energy Environ. Sci. 14, 12–36 (2021). https://doi.org/10.1039/D0EE02241A
- A. Banerjee, X. Wang, C. Fang, E. Wu, Y.S. Meng, Interfaces and interphases in all-solid-state batteries with inorganic solid electrolytes. Chem. Rev. 120, 6878–6933 (2020). https://doi.org/10.1021/acs.chemrev.0c00101
- L. Gao, B. Tang, H. Jiang, Z. Xie, J. Wei et al., Fiber-reinforced composite polymer electrolytes for solid-state lithium batteries. Adv. Sustain. Syst. 6, 2100389 (2022). https://doi.org/10.1002/adsu.202100389
- P. Albertus, V. Anandan, C. Ban, N. Balsara, I. Belharouak et al., Challenges for and pathways toward Li-metal-based all-solid-state batteries. ACS Energy Lett. (2021). https://doi.org/10.1021/acsenergylett.1c00445
- X. Hao, Q. Zhao, S. Su, S. Zhang, J. Ma et al., Constructing multifunctional interphase between Li1.4Al0.4Ti1.6(PO4)3 and Li metal by magnetron sputtering for highly stable solid-state lithium metal batteries. Adv. Energy Mater. 9, 1901604 (2019). https://doi.org/10.1002/aenm.201901604
- H. Ling, L. Shen, Y. Huang, J. Ma, L. Chen et al., Integrated structure of cathode and double-layer electrolyte for highly stable and dendrite-free all-solid-state Li-metal batteries. ACS Appl. Mater. Interfaces 12, 56995–57002 (2020). https://doi.org/10.1021/acsami.0c16390
- R. Pacios, A. Villaverde, M. Martínez-Ibañez, M. Casas-Cabanas, F. Aguesse et al., Roadmap for competitive production of solid-state batteries: how to convert a promise into reality. Adv. Energy Mater. 13, 2301018 (2023). https://doi.org/10.1002/aenm.202301018
- F. Hippauf, B. Schumm, S. Doerfler, H. Althues, S. Fujiki et al., Overcoming binder limitations of sheet-type solid-state cathodes using a solvent-free dry-film approach. Energy Storage Mater. 21, 390–398 (2019). https://doi.org/10.1016/j.ensm.2019.05.033
- D.H. Kim, D.Y. Oh, K.H. Park, Y.E. Choi, Y.J. Nam et al., Infiltration of solution-processable solid electrolytes into conventional Li-ion-battery electrodes for all-solid-state Li-ion batteries. Nano Lett. 17, 3013–3020 (2017). https://doi.org/10.1021/acs.nanolett.7b00330
- K. Pan, L. Zhang, W. Qian, X. Wu, K. Dong et al., A flexible ceramic/polymer hybrid solid electrolyte for solid-state lithium metal batteries. Adv. Mater. 32, e2000399 (2020). https://doi.org/10.1002/adma.202000399
- J. Wu, L. Shen, Z. Zhang, G. Liu, Z. Wang et al., All-solid-state lithium batteries with sulfide electrolytes and oxide cathodes. Electrochem. Energ. Rev. 4, 101–135 (2021). https://doi.org/10.1007/s41918-020-00081-4
- Y. Pang, J. Pan, J. Yang, S. Zheng, C. Wang, Electrolyte/electrode interfaces in all-solid-state lithium batteries: a review. Electrochem. Energ. Rev. 4, 169–193 (2021). https://doi.org/10.1007/s41918-020-00092-1
- Z. Wang, Y. Wang, Z. Zhang, X. Chen, W. Lie et al., Building artificial solid-electrolyte interphase with uniform intermolecular ionic bonds toward dendrite-free lithium metal anodes. Adv. Funct. Mater. 30, 2002414 (2020). https://doi.org/10.1002/adfm.202002414
- B. Tang, L. Gao, J. Liu, S.-H. Bo, Z. Xie et al., Surface modification of garnet with amorphous SnO2 via atomic layer deposition. J. Mater. Chem. A 8, 18087–18093 (2020). https://doi.org/10.1039/C9TA13347J
- L. Chen, T. Gu, J. Ma, K. Yang, P. Shi et al., In situ construction of Li3N-enriched interface enabling ultra-stable solid-state LiNi0.8Co0.1Mn0.1O2/lithium metal batteries. Nano Energy 100, 107470 (2022). https://doi.org/10.1016/j.nanoen.2022.107470
- Z.-J. Zheng, H. Ye, Z.-P. Guo, Recent progress in designing stable composite lithium anodes with improved wettability. Adv. Sci. 7, 2002212 (2020). https://doi.org/10.1002/advs.202002212
- Y. Xiao, Y. Wang, S.-H. Bo, J.C. Kim, L.J. Miara et al., Understanding interface stability in solid-state batteries. Nat. Rev. Mater. 5, 105–126 (2019). https://doi.org/10.1038/s41578-019-0157-5
- J. Ma, G. Zhong, P. Shi, Y. Wei, K. Li et al., Constructing a highly efficient “solid–polymer–solid” elastic ion transport network in cathodes activates the room temperature performance of all-solid-state lithium batteries. Energy Environ. Sci. 15, 1503–1511 (2022). https://doi.org/10.1039/D1EE03345J
- J. Mi, J. Ma, L. Chen, C. Lai, K. Yang et al., Topology crafting of polyvinylidene difluoride electrolyte creates ultra-long cycling high-voltage lithium metal solid-state batteries. Energy Storage Mater. 48, 375–383 (2022). https://doi.org/10.1016/j.ensm.2022.02.048
- Y. Liu, Z. Ju, B. Zhang, Y. Wang, J. Nai et al., Visualizing the sensitive lithium with atomic precision: cryogenic electron microscopy for batteries. Acc. Chem. Res. 54, 2088–2099 (2021). https://doi.org/10.1021/acs.accounts.1c00120
- Z. Ju, C. Jin, X. Cai, O. Sheng, J. Wang et al., Cationic interfacial layer toward a LiF-enriched interphase for stable Li metal batteries. ACS Energy Lett. 8, 486–493 (2023). https://doi.org/10.1021/acsenergylett.2c02379
- K.B. Hatzell, Y. Zheng, Prospects on large-scale manufacturing of solid state batteries. MRS Energy Sustain. 8, 33–39 (2021). https://doi.org/10.1557/s43581-021-00004-w
- K. Lee, S. Kim, J. Park, S.H. Park, A. Coskun et al., Selection of binder and solvent for solution-processed all-solid-state battery. J. Electrochem. Soc. 164, A2075–A2081 (2017). https://doi.org/10.1149/2.1341709jes
- M. Yamamoto, Y. Terauchi, A. Sakuda, M. Takahashi, Binder-free sheet-type all-solid-state batteries with enhanced rate capabilities and high energy densities. Sci. Rep. 8, 1212 (2018). https://doi.org/10.1038/s41598-018-19398-8
- K. Lee, J. Lee, S. Choi, K. Char, J.W. Choi, Thiol–ene click reaction for fine polarity tuning of polymeric binders in solution-processed all-solid-state batteries. ACS Energy Lett. 4, 94–101 (2019). https://doi.org/10.1021/acsenergylett.8b01726
- J. Lee, K. Lee, T. Lee, H. Kim, K. Kim et al., In situ deprotection of polymeric binders for solution-processible sulfide-based all-solid-state batteries. Adv. Mater. 32, e2001702 (2020). https://doi.org/10.1002/adma.202001702
- D.Y. Oh, Y.J. Nam, K.H. Park, S.H. Jung, K.T. Kim et al., Slurry-fabricable Li+-conductive polymeric binders for practical all-solid-state lithium-ion batteries enabled by solvate ionic liquids. Adv. Energy Mater. 9, 1802927 (2019). https://doi.org/10.1002/aenm.201802927
- T. Ates, M. Keller, J. Kulisch, T. Adermann, S. Passerini, Development of an all-solid-state lithium battery by slurry-coating procedures using a sulfidic electrolyte. Energy Storage Mater. 17, 204–210 (2019). https://doi.org/10.1016/j.ensm.2018.11.011
- H. Nakamura, T. Kawaguchi, T. Masuyama, A. Sakuda, T. Saito et al., Dry coating of active material ps with sulfide solid electrolytes for an all-solid-state lithium battery. J. Power. Sources 448, 227579 (2020). https://doi.org/10.1016/j.jpowsour.2019.227579
- Y. Lu, C.-Z. Zhao, H. Yuan, J.-K. Hu, J.-Q. Huang et al., Dry electrode technology, the rising star in solid-state battery industrialization. Matter 5, 876–898 (2022). https://doi.org/10.1016/j.matt.2022.01.011
- K. Periyapperuma, T.T. Tran, S. Trussler, D. Ioboni, M.N. Obrovac, Conflat two and three electrode electrochemical cells. J. Electrochem. Soc. 161, A2182–A2187 (2014). https://doi.org/10.1149/2.0721414jes
- Y. Shang, T. Chu, B. Shi, K.K. Fu, Scalable synthesis of LiF-rich 3D architected Li metal anode via direct lithium-fluoropolymer pyrolysis to enable fast Li cycling. Energy Environ. Mater. 4, 213–221 (2021). https://doi.org/10.1002/eem2.12099
- S. Yubuchi, W. Nakamura, T. Bibienne, S. Rousselot, L.W. Taylor et al., All-solid-state cells with Li4Ti5O12/carbon nanotube composite electrodes prepared by infiltration with argyrodite sulfide-based solid electrolytes via liquid-phase processing. J. Power. Sources 417, 125–131 (2019). https://doi.org/10.1016/j.jpowsour.2019.01.070
- D.H. Kim, Y.-H. Lee, Y.B. Song, H. Kwak, S.-Y. Lee et al., Thin and flexible solid electrolyte membranes with ultrahigh thermal stability derived from solution-processable Li argyrodites for all-solid-state Li-ion batteries. ACS Energy Lett. 5(3), 718–727 (2020). https://doi.org/10.1021/acsenergylett.0c00251
- A. Miura, N.C. Rosero-Navarro, A. Sakuda, K. Tadanaga, N.H.H. Phuc et al., Liquid-phase syntheses of sulfide electrolytes for all-solid-state lithium battery. Nat. Rev. Chem. 3, 189–198 (2019). https://doi.org/10.1038/s41570-019-0078-2
References
Y.J. Amuda, S. Hassan, U. Subramaniam, Comparative review of energy, crude oil, and natural gas for exchange markets in Nigeria. India Bangladesh Energ. 16, 3151 (2023). https://doi.org/10.3390/en16073151
D. Raimi, E. Campbell, R. Newell, B. Prest, S. Villanueva et al., Resources for the future: Washington (DC, USA, 2022)
B.B. Gicha, L.T. Tufa, Y. Choi, J. Lee, Amorphous Ni1–xFex oxyhydroxide nanosheets with integrated bulk and surface iron for a high and stable oxygen evolution reaction. ACS Appl. Energy Mater. 4, 6833–6841 (2021). https://doi.org/10.1021/acsaem.1c00955
B.B. Gicha, L.T. Tufa, S. Kang, M. Goddati, E.T. Bekele et al., Transition metal-based 2D layered double hydroxide nanosheets: design strategies and applications in oxygen evolution reaction. Nanomaterials 11, 1388 (2021). https://doi.org/10.3390/nano11061388
C.F. Molla, B.A. Gonfa, F.K. Sabir, B.B. Gicha, N. Nwaji et al., Ni-based ultrathin nanostructures for overall electrochemical water splitting. Mater. Chem. Front. 7, 194–215 (2023). https://doi.org/10.1039/d2qm00964a
B.B. Gicha, L.T. Tufa, M. Goddati, S. Adhikari, J. Gwak et al., Non-thermal plasma assisted fabrication of ultrathin NiCoOx nanosheets for high-performance supercapacitor. Batter. Supercaps 5, 2200270 (2022). https://doi.org/10.1002/batt.202200270
L.T. Tufa, B.B. Gicha, H. Wu, J. Lee, Fe-based mesoporous nanostructures for electrochemical conversion and storage of energy. Batter. Supercaps 4, 429–444 (2021). https://doi.org/10.1002/batt.202000228
M. Li, J. Lu, Z. Chen, K. Amine, 30 years of lithium-ion batteries. Adv. Mater. 30(33), e1800561 (2018). https://doi.org/10.1002/adma.201800561
J.W. Choi, D. Aurbach, Promise and reality of post-lithium-ion batteries with high energy densities. Nat. Rev. Mater. 1, 16013 (2016). https://doi.org/10.1038/natrevmats.2016.13
R. Zhan, X. Wang, Z. Chen, Z.W. Seh, L. Wang et al., Promises and challenges of the practical implementation of prelithiation in lithium-ion batteries. Adv. Energy Mater. 11, 2101565 (2021). https://doi.org/10.1002/aenm.202101565
C.-Y. Wang, T. Liu, X.-G. Yang, S. Ge, N.V. Stanley et al., Fast charging of energy-dense lithium-ion batteries. Nature 611, 485–490 (2022). https://doi.org/10.1038/s41586-022-05281-0
G.G. Eshetu, H. Zhang, X. Judez, H. Adenusi, M. Armand et al., Production of high-energy Li-ion batteries comprising silicon-containing anodes and insertion-type cathodes. Nat. Commun. 12, 5459 (2021). https://doi.org/10.1038/s41467-021-25334-8
A. Masias, J. Marcicki, W.A. Paxton, Opportunities and challenges of lithium ion batteries in automotive applications. ACS Energy Lett. 6, 621–630 (2021). https://doi.org/10.1021/acsenergylett.0c02584
M. Zschornak, F. Meutzner, J. Lück, A. Latz, T. Leisegang et al., Fundamental principles of battery design. Phys. Sci. Rev. 3, 111 (2018). https://doi.org/10.1515/psr-2017-0111
F.M.N.U. Khan, M.G. Rasul, A.S.M. Sayem, N.K. Mandal, Design and optimization of lithium-ion battery as an efficient energy storage device for electric vehicles: a comprehensive review. J. Energy Storage 71, 108033 (2023). https://doi.org/10.1016/j.est.2023.108033
B.E. Worku, S. Zheng, B. Wang, Review of low-temperature lithium-ion battery progress: new battery system design imperative. Int. J. Energy Res. 46, 14609–14626 (2022). https://doi.org/10.1002/er.8194
S. Choudhury, Z. Huang, C.V. Amanchukwu, P.E. Rudnicki, Y. Chen et al., Ion conducting polymer interfaces for lithium metal anodes: impact on the electrodeposition kinetics. Adv. Energy Mater. 13, 2301899 (2023). https://doi.org/10.1002/aenm.202301899
D. Han, C. Cui, K. Zhang, Z. Wang, J. Gao et al., A non-flammable hydrous organic electrolyte for sustainable zinc batteries. Nat. Sustain. 5, 205–213 (2022). https://doi.org/10.1038/s41893-021-00800-9
J. Wu, Z. Rao, H. Wang, Y. Huang, Order-structured solid-state electrolytes. SusMat 2, 660–678 (2022). https://doi.org/10.1002/sus2.93
J. Wu, S. Liu, F. Han, X. Yao, C. Wang, Lithium/sulfide all-solid-state batteries using sulfide electrolytes. Adv. Mater. 33, 2000751 (2021). https://doi.org/10.1002/adma.202000751
X. Chen, Z. Guan, F. Chu, Z. Xue, F. Wu et al., Air-stable inorganic solid-state electrolytes for high energy density lithium batteries: challenges, strategies, and prospects. InfoMat 4, e12248 (2022). https://doi.org/10.1002/inf2.12248
J. Sun, T. Wang, Y. Gao, Z. Pan, R. Hu et al., Will lithium-sulfur batteries be the next beyond-lithium ion batteries and even much better? InfoMat 4, e12359 (2022). https://doi.org/10.1002/inf2.12359
M. Balaish, J.C. Gonzalez-Rosillo, K.J. Kim, Y. Zhu, Z.D. Hood et al., Processing thin but robust electrolytes for solid-state batteries. Nat. Energy 6, 227–239 (2021). https://doi.org/10.1038/s41560-020-00759-5
P. Simon, Y. Gogotsi, B. Dunn, Where do batteries end and supercapacitors begin? Science 343, 1210–1211 (2014). https://doi.org/10.1126/science.1249625
B. Liu, Y. Jia, C. Yuan, L. Wang, X. Gao et al., Safety issues and mechanisms of lithium-ion battery cell upon mechanical abusive loading: a review. Energy Storage Mater. 24, 85–112 (2020). https://doi.org/10.1016/j.ensm.2019.06.036
P.T. Coman, E.C. Darcy, R.E. White, Simplified thermal runaway model for assisting the design of a novel safe Li-ion battery pack. J. Electrochem. Soc. 169, 040516 (2022). https://doi.org/10.1149/1945-7111/ac62bd
N. Williard, W. He, C. Hendricks, M. Pecht, Lessons learned from the 787 dreamliner issue on lithium-ion battery reliability. Energies 6, 4682–4695 (2013). https://doi.org/10.3390/en6094682
M. Kaliaperumal, M.S. Dharanendrakumar, S. Prasanna, K.V. Abhishek, R.K. Chidambaram et al., Cause and mitigation of lithium-ion battery failure—A review. Materials 14(19), 5676 (2021). https://doi.org/10.3390/ma14195676
X. Feng, M. Ouyang, X. Liu, L. Lu, Y. Xia et al., Thermal runaway mechanism of lithium ion battery for electric vehicles: a review. Energy Storage Mater. 10, 246–267 (2018). https://doi.org/10.1016/j.ensm.2017.05.013
B. Xu, J. Lee, D. Kwon, L. Kong, M. Pecht, Mitigation strategies for Li-ion battery thermal runaway: a review. Renew. Sustain. Energy Rev. 150, 111437 (2021). https://doi.org/10.1016/j.rser.2021.111437
Y. Li, X. Feng, D. Ren, M. Ouyang, L. Lu et al., Thermal runaway triggered by plated lithium on the anode after fast charging. ACS Appl. Mater. Interfaces 11, 46839–46850 (2019). https://doi.org/10.1021/acsami.9b16589
J.B. Goodenough, K.-S. Park, The Li-ion rechargeable battery: a perspective. J. Am. Chem. Soc. 135, 1167–1176 (2013). https://doi.org/10.1021/ja3091438
J.B. Goodenough, Y. Kim, Challenges for rechargeable Li batteries. Chem. Mater. 22, 587–603 (2010). https://doi.org/10.1021/cm901452z
K. Liu, Y. Liu, D. Lin, A. Pei, Y. Cui, Materials for lithium-ion battery safety. Sci. Adv. 4, eaas9820 (2018). https://doi.org/10.1126/sciadv.aas9820
M.J. Loveridge, G. Remy, N. Kourra, R. Genieser, A. Barai et al., Looking deeper into the galaxy (Note 7). Batteries 4(1), 3 (2018). https://doi.org/10.3390/batteries4010003
Q. Wang, P. Ping, X. Zhao, G. Chu, J. Sun et al., Thermal runaway caused fire and explosion of lithium ion battery. J. Power. Sources 208, 210–224 (2012). https://doi.org/10.1016/j.jpowsour.2012.02.038
Y. Kato, S. Hori, T. Saito, K. Suzuki, M. Hirayama et al., High-power all-solid-state batteries using sulfide superionic conductors. Nat. Energy 1(4), 16030 (2016). https://doi.org/10.1038/nenergy.2016.30
W. Zhao, J. Yi, P. He, H. Zhou, Solid-state electrolytes for lithium-ion batteries: fundamentals, challenges and perspectives. Electrochem. Energy Rev. 2, 574–605 (2019). https://doi.org/10.1007/s41918-019-00048-0
X. Yao, N. Huang, F. Han, Q. Zhang, H. Wan et al., High-performance all-solid-state lithium–sulfur batteries enabled by amorphous sulfur-coated reduced graphene oxide cathodes. Adv. Energy Mater. 7, 1602923 (2017). https://doi.org/10.1002/aenm.201602923
D. Wang, L.-J. Jhang, R. Kou, M. Liao, S. Zheng et al., Realizing high-capacity all-solid-state lithium-sulfur batteries using a low-density inorganic solid-state electrolyte. Nat. Commun. 14, 1895 (2023). https://doi.org/10.1038/s41467-023-37564-z
X. Tao, Y. Liu, W. Liu, G. Zhou, J. Zhao et al., Solid-state lithium–sulfur batteries operated at 37 °C with composites of nanostructured Li7La3Zr2O12/carbon foam and polymer. Nano Lett. 17, 2967–2972 (2017). https://doi.org/10.1021/acs.nanolett.7b00221
J.G. Kim, B. Son, S. Mukherjee, N. Schuppert, A. Bates et al., A review of lithium and non-lithium based solid state batteries. J. Power. Sources 282, 299–322 (2015). https://doi.org/10.1016/j.jpowsour.2015.02.054
B. Scrosati, J. Garche, Lithium batteries: status, prospects and future. J. Power. Sources 195, 2419–2430 (2010). https://doi.org/10.1016/j.jpowsour.2009.11.048
H. Chen, Y. Wen, Y. Wang, S. Zhang, P. Zhao et al., Direct surface coating of high voltage LiCoO2 cathode with P(VDF-HFP) based gel polymer electrolyte. RSC Adv. 10, 24533–24541 (2020). https://doi.org/10.1039/d0ra04023a
M. Dixit, N. Muralidharan, A. Parejiya, R. Amin, R. Essehli et al., in Current status and prospects of solid-state batteries as the future of energy storage, ed. by Kenneth E. Okedu. Management and applications of energy storage devices. (IntechOpen, 2022). https://doi.org/10.5772/intechopen.98701
J. Lee, T. Lee, K. Char, K.J. Kim, J.W. Choi, Issues and advances in scaling up sulfide-based all-solid-state batteries. Acc. Chem. Res. 54, 3390–3402 (2021). https://doi.org/10.1021/acs.accounts.1c00333
S. Xia, X. Wu, Z. Zhang, Y. Cui, W. Liu, Practical challenges and future perspectives of all-solid-state lithium-metal batteries. Chem 5, 753–785 (2019). https://doi.org/10.1016/j.chempr.2018.11.013
A. Manthiram, An outlook on lithium ion battery technology. ACS Cent. Sci. 3, 1063–1069 (2017). https://doi.org/10.1021/acscentsci.7b00288
X. Judez, H. Zhang, C. Li, G.G. Eshetu, J.A. González-Marcos et al., Review—solid electrolytes for safe and high energy density lithium-sulfur batteries: promises and challenges. J. Electrochem. Soc. 165(1), A6008 (2018). https://doi.org/10.1149/2.0041801jes
L. Suo, Y.-S. Hu, H. Li, M. Armand, L. Chen, A new class of solvent-in-salt electrolyte for high-energy rechargeable metallic lithium batteries. Nat. Commun. 4, 1481 (2013). https://doi.org/10.1038/ncomms2513
X. Ji, K.T. Lee, L.F. Nazar, A highly ordered nanostructured carbon–sulphur cathode for lithium–sulphur batteries. Nat. Mater. 8, 500–506 (2009). https://doi.org/10.1038/nmat2460
J. Janek, W.G. Zeier, Challenges in speeding up solid-state battery development. Nat. Energy 8, 230–240 (2023). https://doi.org/10.1038/s41560-023-01208-9
M.A. Weret, W.-N. Su, B.J. Hwang, Strategies towards high performance lithium-sulfur batteries. Batter. Supercaps 5, 2200059 (2022). https://doi.org/10.1002/batt.202200059
N. Kamaya, K. Homma, Y. Yamakawa, M. Hirayama, R. Kanno et al., A lithium superionic conductor. Nat. Mater. 10, 682–686 (2011). https://doi.org/10.1038/nmat3066
T. Kobayashi, Y. Imade, D. Shishihara, K. Homma, M. Nagao et al., All solid-state battery with sulfur electrode and thio-LISICON electrolyte. J. Power. Sources 182, 621–625 (2008). https://doi.org/10.1016/j.jpowsour.2008.03.030
B. Ding, J. Wang, Z. Fan, S. Chen, Q. Lin et al., Solid-state lithium–sulfur batteries: advances, challenges and perspectives. Mater. Today 40, 114–131 (2020). https://doi.org/10.1016/j.mattod.2020.05.020
M. Yang, Y. Yao, M. Chang, F. Tian, W. Xie et al., High energy density sulfur-rich MoS6-based nanocomposite for room temperature all-solid-state lithium metal batteries. Adv. Energy Mater. 13, 2300962 (2023). https://doi.org/10.1002/aenm.202300962
X. Gao, X. Zheng, Y. Tsao, P. Zhang, X. Xiao et al., All-solid-state lithium–sulfur batteries enhanced by redox mediators. J. Am. Chem. Soc. 143, 18188–18195 (2021). https://doi.org/10.1021/jacs.1c07754
S. Choi, J. Kim, M. Eom, X. Meng, D. Shin, Application of a carbon nanotube (CNT) sheet as a current collector for all-solid-state lithium batteries. J. Power. Sources 299, 70–75 (2015). https://doi.org/10.1016/j.jpowsour.2015.08.081
T. Hakari, M. Deguchi, K. Mitsuhara, T. Ohta, K. Saito et al., Structural and electronic-state changes of a sulfide solid electrolyte during the Li deinsertion–insertion processes. Chem. Mater. 29, 4768–4774 (2017). https://doi.org/10.1021/acs.chemmater.7b00551
H. Wan, Z. Wang, W. Zhang, X. He, C. Wang, Interface design for all-solid-state lithium batteries. Nature 623, 739–744 (2023). https://doi.org/10.1038/s41586-023-06653-w
W. Zhang, F.H. Richter, S.P. Culver, T. Leichtweiss, J.G. Lozano et al., Degradation mechanisms at the Li10GeP2S12/LiCoO2 cathode interface in an all-solid-state lithium-ion battery. ACS Appl. Mater. Interfaces 10, 22226–22236 (2018). https://doi.org/10.1021/acsami.8b05132
R. Zhu, F. Liu, W. Li, Z. Fu, In-situ generated ultra-high dispersion sulfur 3D-graphene foam for all-solid-state lithium sulfur batteries with high cell-level energy density. ChemistrySelect 5, 9701–9708 (2020). https://doi.org/10.1002/slct.202002150
M. Li, J.E. Frerichs, M. Kolek, W. Sun, D. Zhou et al., Solid-state lithium–sulfur battery enabled by thio-LiSICON/polymer composite electrolyte and sulfurized polyacrylonitrile cathode. Adv. Funct. Mater. 30, 1910123 (2020). https://doi.org/10.1002/adfm.201910123
W. Zhang, T. Leichtweiß, S.P. Culver, R. Koerver, D. Das et al., The detrimental effects of carbon additives in Li10GeP2S12-based solid-state batteries. ACS Appl. Mater. Interfaces 9, 35888–35896 (2017). https://doi.org/10.1021/acsami.7b11530
Y.E. Choi, K.H. Park, D.H. Kim, D.Y. Oh, H.R. Kwak et al., Coatable Li4SnS4 solid electrolytes prepared from aqueous solutions for all-solid-state lithium-ion batteries. ChemSusChem 10, 2605–2611 (2017). https://doi.org/10.1002/cssc.201700409
G. Liu, J. Shi, M. Zhu, W. Weng, L. Shen et al., Ultra-thin free-standing sulfide solid electrolyte film for cell-level high energy density all-solid-state lithium batteries. Energy Storage Mater. 38, 249–254 (2021). https://doi.org/10.1016/j.ensm.2021.03.017
N.C. Rosero-Navarro, T. Kinoshita, A. Miura, M. Higuchi, K. Tadanaga, Effect of the binder content on the electrochemical performance of composite cathode using Li6PS5Cl precursor solution in an all-solid-state lithium battery. Ionics 23, 1619–1624 (2017). https://doi.org/10.1007/s11581-017-2106-x
S. Chida, A. Miura, N.C. Rosero-Navarro, M. Higuchi, N.H.H. Phuc et al., Liquid-phase synthesis of Li6PS5Br using ultrasonication and application to cathode composite electrodes in all-solid-state batteries. Ceram. Int. 44, 742–746 (2018). https://doi.org/10.1016/j.ceramint.2017.09.241
R. Koerver, I. Aygün, T. Leichtweiß, C. Dietrich, W. Zhang et al., Capacity fade in solid-state batteries: interphase formation and chemomechanical processes in nickel-rich layered oxide cathodes and lithium thiophosphate solid electrolytes. Chem. Mater. 29, 5574–5582 (2017). https://doi.org/10.1021/acs.chemmater.7b00931
S. Ito, S. Fujiki, T. Yamada, Y. Aihara, Y. Park et al., A rocking chair type all-solid-state lithium ion battery adopting Li2O–ZrO2 coated LiNi0.8Co0.15Al0.05O2 and a sulfide based electrolyte. J. Power. Sources 248, 943–950 (2014). https://doi.org/10.1016/j.jpowsour.2013.10.005
F. Mizuno, A. Hayashi, K. Tadanaga, T. Minami, M. Tatsumisago, All-solid-state lithium secondary batteries using a layer-structured LiNi0.5Mn0.5O2 cathode material. J. Power. Sources 124, 170–173 (2003). https://doi.org/10.1016/s0378-7753(03)00610-4
F. Tian, M. Chang, M. Yang, W. Xie, S. Chen et al., Multi-electron reaction based molybdenum pentasulfide towards high-energy density all-solid-state lithium batteries. Chem. Eng. J. 472, 144914 (2023). https://doi.org/10.1016/j.cej.2023.144914
T.W. Kim, K.H. Park, Y.E. Choi, J.Y. Lee, Y.S. Jung, Aqueous-solution synthesis of Na3SbS4 solid electrolytes for all-solid-state Na-ion batteries. J. Mater. Chem. A 6, 840–844 (2018). https://doi.org/10.1039/C7TA09242C
J. Yue, F. Han, X. Fan, X. Zhu, Z. Ma et al., High-performance all-inorganic solid-state sodium-sulfur battery. ACS Nano 11, 4885–4891 (2017). https://doi.org/10.1021/acsnano.7b01445
X. Fan, J. Yue, F. Han, J. Chen, T. Deng et al., High-performance all-solid-state Na–S battery enabled by casting–annealing technology. ACS Nano 12, 3360–3368 (2018). https://doi.org/10.1021/acsnano.7b08856
K. Suzuki, D. Kato, K. Hara, T.-A. Yano, M. Hirayama et al., Composite sulfur electrode prepared by high-temperature mechanical milling for use in an all-solid-state lithium–sulfur battery with a Li3.25Ge0.25P0.75S4 electrolyte. Electrochim. Acta. Acta 258, 110–115 (2017). https://doi.org/10.1016/j.electacta.2017.09.156
H. Li, F. Lian, N. Meng, C. Xiong, N. Wu et al., Constructing electronic and ionic dual conductive polymeric interface in the cathode for high-energy-density solid-state batteries. Adv. Funct. Mater. 31, 2008487 (2021). https://doi.org/10.1002/adfm.202008487
A. Ponrouch, M.R. Palacín, Post-Li batteries: promises and challenges. Philos. Trans. A Math. Phys. Eng. Sci. 377, 20180297 (2019). https://doi.org/10.1098/rsta.2018.0297
J. Deng, C. Bae, A. Denlinger, T. Miller, Electric vehicles batteries: requirements and challenges. Joule 4, 511–515 (2020). https://doi.org/10.1016/j.joule.2020.01.013
Z.P. Energy, S. Power, Time for lithium-ion alternatives. Nat. Energy 7, 461 (2022). https://doi.org/10.1038/s41560-022-01073-y
IEA. Price of Selected Battery Materials and Lithium-ion Batteries, (2015–2023)
G. Bieker, V. Küpers, M. Kolek, M. Winter, Intrinsic differences and realistic perspectives of lithium-sulfur and magnesium-sulfur batteries. Commun. Mater. 2, 37 (2021). https://doi.org/10.1038/s43246-021-00143-0
N. Boaretto, I. Garbayo, S. Valiyaveettil-SobhanRaj, A. Quintela, C. Li et al., Lithium solid-state batteries: state-of-the-art and challenges for materials, interfaces and processing. J. Power. Sources 502, 229919 (2021). https://doi.org/10.1016/j.jpowsour.2021.229919
S. Dühnen, J. Betz, M. Kolek, R. Schmuch, M. Winter et al., Toward green battery cells: perspective on materials and technologies. Small Meth. 4, 2070023 (2020). https://doi.org/10.1002/smtd.202070023
M. Klimpel, M.V. Kovalenko, K.V. Kravchyk, Advances and challenges of aluminum-sulfur batteries. Commun. Chem. 5, 77 (2022). https://doi.org/10.1038/s42004-022-00693-5
C. Yang, P. Li, J. Yu, L.-D. Zhao, L. Kong, Approaching energy-dense and cost-effective lithium–sulfur batteries: from materials chemistry and price considerations. Energy 201, 117718 (2020). https://doi.org/10.1016/j.energy.2020.117718
Q. Sun, X. Li, H. Zhang, D. Song, X. Shi et al., Resynthesizing LiFePO4/C materials from the recycled cathode via a green full-solid route. J. Alloys Compd. 818, 153292 (2020). https://doi.org/10.1016/j.jallcom.2019.153292
D. Meggiolaro, M. Agostini, S. Brutti, Aprotic sulfur–metal batteries: lithium and beyond. ACS Energy Lett. 8, 1300–1312 (2023). https://doi.org/10.1021/acsenergylett.2c02493
Z. Li, M.S. Pan, L. Su, P.-C. Tsai, A.F. Badel et al., Air-breathing aqueous sulfur flow battery for ultralow-cost long-duration electrical storage. Joule 1, 306–327 (2017). https://doi.org/10.1016/j.joule.2017.08.007
Y. Huang, B. Shao, F. Han, in Solid-State Batteries: An Introduction. Solid State Batteries Volume 1: Emerging Materials and Applications. vol. 1413, ACS Symposium Series, no. 1413. (American Chemical Society, 2022), ch. 1, pp. 1–20. https://doi.org/10.1021/bk-2022-1413.ch001
Z. Zhang, Y. Shao, B. Lotsch, Y.-S. Hu, H. Li et al., New horizons for inorganic solid state ion conductors. Energy Environ. Sci. 11, 1945–1976 (2018). https://doi.org/10.1039/C8EE01053F
J. Janek, W.G. Zeier, A solid future for battery development. Nat. Energy 1, 16141 (2016). https://doi.org/10.1038/nenergy.2016.141
N.M. Vargas-Barbosa, B. Roling, Dynamic ion correlations in solid and liquid electrolytes: how do they affect charge and mass transport? ChemElectroChem 7, 367–385 (2020). https://doi.org/10.1002/celc.201901627
S. Randau, D.A. Weber, O. Kötz, R. Koerver, P. Braun et al., Benchmarking the performance of all-solid-state lithium batteries. Nat. Energy 5, 259–270 (2020). https://doi.org/10.1038/s41560-020-0565-1
E. Umeshbabu, B. Zheng, Y. Yang, Recent progress in all-solid-state Lithium−Sulfur batteries using high Li-ion conductive solid electrolytes. Electrochem. Energy Rev. 2, 199–230 (2019). https://doi.org/10.1007/s41918-019-00029-3
A. Varzi, R. Raccichini, S. Passerini, B. Scrosati, Challenges and prospects of the role of solid electrolytes in the revitalization of lithium metal batteries. J. Mater. Chem. A 4, 17251–17259 (2016). https://doi.org/10.1039/C6TA07384K
J. Li, C. Ma, M. Chi, C. Liang, N.J. Dudney, Solid electrolyte: the key for high-voltage lithium batteries. Adv. Energy Mater. 5, 1401408 (2015). https://doi.org/10.1002/aenm.201401408
L. Zhou, N. Minafra, W.G. Zeier, L.F. Nazar, Innovative approaches to Li-argyrodite solid electrolytes for all-solid-state lithium batteries. Acc. Chem. Res. 54, 2717–2728 (2021). https://doi.org/10.1021/acs.accounts.0c00874
X. Shen, C.-C. Yang, Y. Liu, G. Wang, H. Tan et al., High-temperature structural and thermoelectric study of argyrodite Ag8GeSe6. ACS Appl. Mater. Interfaces 11, 2168–2176 (2019). https://doi.org/10.1021/acsami.8b19819
F. Mizuno, A. Hayashi, K. Tadanaga, M. Tatsumisago, High lithium ion conducting glass-ceramics in the system Li2S–P2S5. Solid State Ion. 177, 2721–2725 (2006). https://doi.org/10.1016/j.ssi.2006.04.017
H.-J. Deiseroth, S.-T. Kong, H. Eckert, J. Vannahme, C. Reiner et al., Li6PS5X: a class of crystalline Li-rich solids with an unusually high Li+ mobility. Angew. Chem. Int. Ed. 47, 755–758 (2008). https://doi.org/10.1002/anie.200703900
J.W. Fergus, Ceramic and polymeric solid electrolytes for lithium-ion batteries. J. Power. Sources 195, 4554–4569 (2010). https://doi.org/10.1016/j.jpowsour.2010.01.076
Z. Gao, H. Sun, L. Fu, F. Ye, Y. Zhang et al., Promises, challenges, and recent progress of inorganic solid-state electrolytes for all-solid-state lithium batteries. Adv. Mater. 30, e1705702 (2018). https://doi.org/10.1002/adma.201705702
Y. Wang, W.D. Richards, S.P. Ong, L.J. Miara, J.C. Kim et al., Design principles for solid-state lithium superionic conductors. Nat. Mater. 14, 1026–1031 (2015). https://doi.org/10.1038/nmat4369
T. Famprikis, P. Canepa, J.A. Dawson, M.S. Islam, C. Masquelier, Fundamentals of inorganic solid-state electrolytes for batteries. Nat. Mater. 18, 1278–1291 (2019). https://doi.org/10.1038/s41563-019-0431-3
A. Manthiram, X. Yu, S. Wang, Lithium battery chemistries enabled by solid-state electrolytes. Nat. Rev. Mater. 2, 16103 (2017). https://doi.org/10.1038/natrevmats.2016.103
Y. Seino, T. Ota, K. Takada, A. Hayashi, M. Tatsumisago, A sulphide lithium super ion conductor is superior to liquid ion conductors for use in rechargeable batteries. Energy Environ. Sci. 7, 627–631 (2014). https://doi.org/10.1039/C3EE41655K
C. Sun, J. Liu, Y. Gong, D.P. Wilkinson, J. Zhang, Recent advances in all-solid-state rechargeable lithium batteries. Nano Energy 33, 363–386 (2017). https://doi.org/10.1016/j.nanoen.2017.01.028
Y.-K. Sun, Promising all-solid-state batteries for future electric vehicles. ACS Energy Lett. 5, 3221–3223 (2020). https://doi.org/10.1021/acsenergylett.0c01977
A. Hayashi, S. Hama, H. Morimoto, M. Tatsumisago, T. Minami, Preparation of Li2S–P2S5 amorphous solid electrolytes by mechanical milling. J. Am. Ceram. Soc. 84, 477–479 (2001). https://doi.org/10.1111/j.1151-2916.2001.tb00685.x
C. Dietrich, D.A. Weber, S.J. Sedlmaier, S. Indris, S.P. Culver et al., Lithium ion conductivity in Li2S–P2S5 glasses–building units and local structure evolution during the crystallization of superionic conductors Li3PS4, Li7P3S11 and Li4P2S7. J. Mater. Chem. A 5, 18111–18119 (2017). https://doi.org/10.1039/C7TA06067J
T. Ohtomo, A. Hayashi, M. Tatsumisago, Y. Tsuchida, S. Hama et al., All-solid-state lithium secondary batteries using the 75Li2S·25P2S5 glass and the 70Li2S·30P2S5 glass–ceramic as solid electrolytes. J. Power. Sources 233, 231–235 (2013). https://doi.org/10.1016/j.jpowsour.2013.01.090
J.H. Kennedy, Ionically conductive glasses based on SiS2. Mater. Chem. Phys. 23, 29–50 (1989). https://doi.org/10.1016/0254-0584(89)90015-1
J. Souquet, E. Robinel, B. Barrau, M. Ribes, Glass formation and ionic conduction in the M2S–GeS2 (M = Li, Na, Ag) systems. Solid State Ion. 3–4, 317–321 (1981). https://doi.org/10.1016/0167-2738(81)90105-3
M. Tatsumisago, A. Hayashi, Superionic glasses and glass–ceramics in the Li2S–P2S5 system for all-solid-state lithium secondary batteries. Solid State Ion. 225, 342–345 (2012). https://doi.org/10.1016/j.ssi.2012.03.013
M. Tatsumisago, K. Hirai, T. Hirata, M. Takahashi, T. Minami, Structure and properties of lithium ion conducting oxysulfide glasses prepared by rapid quenching. Solid State Ion. 86–88, 487–490 (1996). https://doi.org/10.1016/0167-2738(96)00179-8
S. Ujiie, T. Inagaki, A. Hayashi, M. Tatsumisago, Conductivity of 70Li2S·30P2S5 glasses and glass–ceramics added with lithium halides. Solid State Ion. 263, 57–61 (2014). https://doi.org/10.1016/j.ssi.2014.05.002
A. Pradel, M. Ribes, Electrical properties of lithium conductive silicon sulfide glasses prepared by twin roller quenching. Solid State Ion. 18–19, 351–355 (1986). https://doi.org/10.1016/0167-2738(86)90139-6
J.H. Kennedy, Z. Zhang, H. Eckert, Ionically conductive sulfide-based lithium glasses. J. Non Cryst. Solids 123, 328–338 (1990). https://doi.org/10.1016/0022-3093(90)90804-u
C. Dietrich, D.A. Weber, S. Culver, A. Senyshyn, S.J. Sedlmaier et al., Synthesis, structural characterization, and lithium ion conductivity of the lithium thiophosphate Li2P2S6. Inorg. Chem. 56, 6681–6687 (2017). https://doi.org/10.1021/acs.inorgchem.7b00751
H. Yamane, M. Shibata, Y. Shimane, T. Junke, Y. Seino et al., Crystal structure of a superionic conductor, Li7P3S11. Solid State Ion. 178, 1163–1167 (2007). https://doi.org/10.1016/j.ssi.2007.05.020
R. Mercier, J.-P. Malugani, B. Fahys, G. Robert, J. Douglade, Structure du tetrathiophosphate de lithium. Acta Crystallogr. Sect. B Struct. Crystallogr. Cryst. Chem 38, 1887–1890 (1982). https://doi.org/10.1107/s0567740882007535
S.T. Kong, O. Gün, B. Koch, H.J. Deiseroth, H. Eckert et al., Structural characterisation of the Li argyrodites Li7PS6 and Li7PSe6 and their solid solutions: quantification of site preferences by MAS-NMR spectroscopy. Chemistry 16, 5138–5147 (2010). https://doi.org/10.1002/chem.200903023
R. Mercier, J.P. Malugani, B. Fahys, J. Douglande, G. Robert, Synthese, structure cristalline et analyse vibrationnelle de l’hexathiohypodiphosphate de lithium Li4P2S6. J. Solid State Chem. 43, 151–162 (1982). https://doi.org/10.1016/0022-4596(82)90224-9
F. Mizuno, A. Hayashi, K. Tadanaga, M. Tatsumisago, New, highly ion-conductive crystals precipitated from Li2S–P2S5 glasses. Adv. Mater. 17, 918–921 (2005). https://doi.org/10.1002/adma.200401286
M. Tachez, J. Malugani, R. Mercier, G. Robert, Ionic conductivity of and phase transition in lithium thiophosphate Li3PS4. Solid State Ion. 14, 181–185 (1984). https://doi.org/10.1016/0167-2738(84)90097-3
K. Homma, M. Yonemura, T. Kobayashi, M. Nagao, M. Hirayama et al., Crystal structure and phase transitions of the lithium ionic conductor Li3PS4. Solid State Ion. 182, 53–58 (2011). https://doi.org/10.1016/j.ssi.2010.10.001
M. Eom, J. Kim, S. Noh, D. Shin, Crystallization kinetics of Li2S–P2S5 solid electrolyte and its effect on electrochemical performance. J. Power. Sources 284, 44–48 (2015). https://doi.org/10.1016/j.jpowsour.2015.02.141
N. Minafra, S.P. Culver, T. Krauskopf, A. Senyshyn, W.G. Zeier, Effect of Si substitution on the structural and transport properties of superionic Li-argyrodites. J. Mater. Chem. A 6, 645–651 (2018). https://doi.org/10.1039/C7TA08581H
E. Gaudin, F. Boucher, F. Taulelle, M. Evain, Structures and phase transitions of the A7PSe6 (a = Ag, Cu) argyrodite-type ionic conductors. III. alpha-Cu7PSe6. Acta Crystallogr. B Crystallogr. B 56(Pt 6), 972–979 (2000). https://doi.org/10.1107/s0108768100010260
R.P. Rao, S. Adams, Studies of lithium argyrodite solid electrolytes for all-solid-state batteries. Phys. Status Solidi A 208, 1804–1807 (2011). https://doi.org/10.1002/pssa.201001117
N.J.J. de Klerk, I. Rosłoń, M. Wagemaker, Diffusion mechanism of Li argyrodite solid electrolytes for Li-ion batteries and prediction of optimized halogen doping: the effect of Li vacancies, halogens, and halogen disorder. Chem. Mater. 28, 7955–7963 (2016). https://doi.org/10.1021/acs.chemmater.6b03630
H.M. Chen, C. Maohua, S. Adams, Stability and ionic mobility in argyrodite-related lithium-ion solid electrolytes. Phys. Chem. Chem. Phys. 17, 16494–16506 (2015). https://doi.org/10.1039/c5cp01841b
M.A. Kraft, S.P. Culver, M. Calderon, F. Böcher, T. Krauskopf et al., Influence of lattice polarizability on the ionic conductivity in the lithium superionic argyrodites Li6PS5X (X = Cl, Br, I). J. Am. Chem. Soc. 139, 10909–10918 (2017). https://doi.org/10.1021/jacs.7b06327
Y. Inoue, K. Suzuki, N. Matsui, M. Hirayama, R. Kanno, Synthesis and structure of novel lithium-ion conductor Li7Ge3PS12. J. Solid State Chem. 246, 334–340 (2017). https://doi.org/10.1016/j.jssc.2016.12.001
R. Kanno, T. Hata, Y. Kawamoto, M. Irie, Synthesis of a new lithium ionic conductor, thio-LISICON–lithium germanium sulfide system. Solid State Ion. 130, 97–104 (2000). https://doi.org/10.1016/s0167-2738(00)00277-0
T. Kaib, S. Haddadpour, M. Kapitein, P. Bron, C. Schröder et al., New lithium chalcogenidotetrelates, LiChT: synthesis and characterization of the Li+-conducting tetralithium ortho-Sulfidostannate Li4SnS4. Chem. Mater. 24, 2211–2219 (2012). https://doi.org/10.1021/cm3011315
G. Sahu, Z. Lin, J. Li, Z. Liu, N. Dudney et al., Air-stable, high-conduction solid electrolytes of arsenic-substituted Li4SnS4. Energy Environ. Sci. 7, 1053–1058 (2014). https://doi.org/10.1039/C3EE43357A
S. Hori, M. Kato, K. Suzuki, M. Hirayama, Y. Kato et al., Phase diagramof the Li4GeS4–Li3PS4 quasi-binary system containing the superionic conductor Li10GeP2S12. J. Am. Ceram. Soc. 98, 3352–3360 (2015). https://doi.org/10.1111/jace.13694
P. Zhou, J. Wang, F. Cheng, F. Li, J. Chen, A solid lithium superionic conductor Li11AlP2S12 with a thio-LISICON analogous structure. Chem. Commun. 52, 6091–6094 (2016). https://doi.org/10.1039/c6cc02131j
A. Kuhn, J. Köhler, B.V. Lotsch, Single-crystal X-ray structure analysis of the superionic conductor Li10GeP2S12. Phys. Chem. Chem. Phys. 15, 11620–11622 (2013). https://doi.org/10.1039/c3cp51985f
Y. Mo, S.P. Ong, G. Ceder, First principles study of the Li10GeP2S12 lithium super ionic conductor material. Chem. Mater. 24, 15–17 (2012). https://doi.org/10.1021/cm203303y
A. Kuhn, V. Duppel, B.V. Lotsch, Tetragonal Li10GeP2S12 and Li7GePS8–exploring the Li ion dynamics in LGPS Li electrolytes. Energy Environ. Sci. 6, 3548–3552 (2013). https://doi.org/10.1039/C3EE41728J
S.P. Ong, Y. Mo, W.D. Richards, L. Miara, H.S. Lee et al., Phase stability, electrochemical stability and ionic conductivity of the Li10±1MP2X12 (M = Ge, Si, Sn, Al or P, and X = O, S or Se) family of superionic conductors. Energy Environ. Sci. 6, 148–156 (2013). https://doi.org/10.1039/C2EE23355J
P. Bron, S. Johansson, K. Zick, J.S.A. der Günne, S. Dehnen et al., Li10SnP2S12: an affordable lithium superionic conductor. J. Am. Chem. Soc. 135, 15694–15697 (2013). https://doi.org/10.1021/ja407393y
P. Bron, S. Dehnen, B. Roling, Li10Si0.3Sn0.7P2S12–A low-cost and low-grain-boundary-resistance lithium superionic conductor. J. Power. Sources 329, 530–535 (2016). https://doi.org/10.1016/j.jpowsour.2016.08.115
J.M. Whiteley, J.H. Woo, E. Hu, K.-W. Nam, S.-H. Lee, Empowering the lithium metal battery through a silicon-based superionic conductor. J. Electrochem. Soc. 161, A1812–A1817 (2014). https://doi.org/10.1149/2.0501412jes
A. Kuhn, O. Gerbig, C. Zhu, F. Falkenberg, J. Maier et al., A new ultrafast superionic Li-conductor: ion dynamics in Li11Si2PS12 and comparison with other tetragonal LGPS-type electrolytes. Phys. Chem. Chem. Phys. 16, 14669–14674 (2014). https://doi.org/10.1039/c4cp02046d
Y. Hu, W. Chen, T. Lei, Y. Jiao, J. Huang et al., Strategies toward high-loading lithium–sulfur battery. Adv. Energy Mater. 10, 2000082 (2020). https://doi.org/10.1002/aenm.202000082
H. Kim, H.-N. Choi, J.-Y. Hwang, C.S. Yoon, Y.-K. Sun, Tailoring the interface between sulfur and sulfide solid electrolyte for high-areal-capacity all-solid-state lithium–sulfur batteries. ACS Energy Lett. 8, 3971–3979 (2023). https://doi.org/10.1021/acsenergylett.3c01473
A. Hayashi, T. Ohtomo, F. Mizuno, K. Tadanaga, M. Tatsumisago, Rechargeable lithium batteries, using sulfur-based cathode materials and Li2S–P2S5 glass-ceramic electrolytes. Electrochim. Acta 50, 893–897 (2004). https://doi.org/10.1016/j.electacta.2004.02.061
A.S. Alzahrani, M. Otaki, D. Wang, Y. Gao, T.S. Arthur et al., Confining sulfur in porous carbon by vapor deposition to achieve high-performance cathode for all-solid-state lithium–sulfur batteries. ACS Energy Lett. 6, 413–418 (2021). https://doi.org/10.1021/acsenergylett.0c01956
X. Zheng, Y. Wu, C. Li, J. Peng, W. Yang et al., Promoting the conversion of S and Li2S using a Co3O4@NC additive in all-solid-state Li–S batteries. J. Mater. Chem. A 10, 18907–18915 (2022). https://doi.org/10.1039/D2TA04834E
S. Xu, C.Y. Kwok, L. Zhou, Z. Zhang, I. Kochetkov et al., A high capacity all solid-state Li-sulfur battery enabled by conversion-intercalation hybrid cathode architecture. Adv. Funct. Mater. 31, 2004239 (2021). https://doi.org/10.1002/adfm.202004239
S. Kim, J. Choi, S.-M. Bak, L. Sang, Q. Li et al., Reversible conversion reactions and small first cycle irreversible capacity loss in metal sulfide-based electrodes enabled by solid electrolytes. Adv. Funct. Mater. 29, 1901719 (2019). https://doi.org/10.1002/adfm.201901719
Z. Yang, F. Wang, Z. Hu, J. Chu, H. Zhan et al., Room-temperature all-solid-state lithium–organic batteries based on sulfide electrolytes and organodisulfide cathodes. Adv. Energy Mater. 11, 2102962 (2021). https://doi.org/10.1002/aenm.202102962
F. Han, J. Yue, X. Fan, T. Gao, C. Luo et al., High-performance all-solid-state lithium–sulfur battery enabled by a mixed-conductive Li2S nanocomposite. Nano Lett. 16, 4521–4527 (2016). https://doi.org/10.1021/acs.nanolett.6b01754
H. Wan, B. Zhang, S. Liu, J. Zhang, X. Yao et al., Understanding LiI-LiBr catalyst activity for solid state Li2S/S reactions in an all-solid-state lithium battery. Nano Lett. 21, 8488–8494 (2021). https://doi.org/10.1021/acs.nanolett.1c03415
M. Yu, Z. Wang, Y. Wang, Y. Dong, J. Qiu, Freestanding flexible Li2S paper electrode with high mass and capacity loading for high-energy Li–S batteries. Adv. Energy Mater. 7, 1700018 (2017). https://doi.org/10.1002/aenm.201700018
J. Shi, G. Liu, W. Weng, L. Cai, Q. Zhang et al., Co3S4@Li7P3S11 hexagonal platelets as cathodes with superior interfacial contact for all-solid-state lithium batteries. ACS Appl. Mater. Interfaces 12, 14079–14086 (2020). https://doi.org/10.1021/acsami.0c02085
S.M. Hosseini, A. Varzi, S. Ito, Y. Aihara, S. Passerini, High loading CuS-based cathodes for all-solid-state lithium sulfur batteries with enhanced volumetric capacity. Energy Storage Mater. 27, 61–68 (2020). https://doi.org/10.1016/j.ensm.2020.01.022
X. Zhang, K. Chen, Z. Sun, G. Hu, R. Xiao et al., Structure-related electrochemical performance of organosulfur compounds for lithium–sulfur batteries. Energy Environ. Sci. 13, 1076–1095 (2020). https://doi.org/10.1039/C9EE03848E
H. Yang, J. Chen, J. Yang, J. Wang, Prospect of sulfurized pyrolyzed poly(acrylonitrile) (S@pPAN) cathode materials for rechargeable lithium batteries. Angew. Chem. Int. Ed. 132, 7374–7386 (2020). https://doi.org/10.1002/ange.201913540
Z. Sun, Y. Hu, F. Qin, N. Lv, B. Li et al., Sulfurized polyacrylonitrile cathodes with electrochemical and structural tuning for high capacity all-solid-state lithium–sulfur batteries. Sustainable Energy Fuels 5, 5603–5614 (2021). https://doi.org/10.1039/D1SE01187A
T. Takeuchi, T. Kojima, H. Kageyama, H. Kobayashi, K. Mitsuhara et al., All-solid-state lithium-sulfur batteries using sulfurized alcohol composite material with improved coulomb efficiency. Energy Technol. 7, 1900509 (2019). https://doi.org/10.1002/ente.201900509
S. Li, D. Leng, W. Li, L. Qie, Z. Dong et al., Recent progress in developing Li2S cathodes for Li–S batteries. Energy Storage Mater. 27, 279–296 (2020). https://doi.org/10.1016/j.ensm.2020.02.010
F. Wu, T.P. Pollard, E. Zhao, Y. Xiao, M. Olguin et al., Layered LiTiO2 for the protection of Li2S cathodes against dissolution: mechanisms of the remarkable performance boost. Energy Environ. Sci. 11, 807–817 (2018). https://doi.org/10.1039/C8EE00419F
J. Jiang, Q. Fan, Z. Zheng, M.R. Kaiser, S. Chou et al., The dual functions of defect-rich carbon nanotubes as both conductive matrix and efficient mediator for Li—S batteries. Small 17, e2103535 (2021). https://doi.org/10.1002/smll.202103535
S. Luo, F. Wu, G. Yushin, Strategies for fabrication, confinement and performance boost of Li2S in lithium-sulfur, silicon-sulfur & related batteries. Mater. Today 49, 253–270 (2021). https://doi.org/10.1016/j.mattod.2021.03.017
H. Yan, H. Wang, D. Wang, X. Li, Z. Gong et al., In situ generated Li2S-C nanocomposite for high-capacity and long-life all-solid-state lithium sulfur batteries with ultrahigh areal mass loading. Nano Lett. 19, 3280–3287 (2019). https://doi.org/10.1021/acs.nanolett.9b00882
D. Wang, Y. Wu, X. Zheng, S. Tang, Z. Gong et al., Li2S@NC composite enable high active material loading and high Li2S utilization for all-solid-state lithium sulfur batteries. J. Power. Sources 479, 228792 (2020). https://doi.org/10.1016/j.jpowsour.2020.228792
W. Xu, J. Wang, F. Ding, X. Chen, E. Nasybulin et al., Lithium metal anodes for rechargeable batteries. Energy Environ. Sci. 7, 513–537 (2014). https://doi.org/10.1039/C3EE40795K
K.J. Kim, M. Balaish, M. Wadaguchi, L. Kong, J.L.M. Rupp, Solid-state Li–metal batteries: challenges and horizons of oxide and sulfide solid electrolytes and their interfaces. Adv. Energy Mater. 11, 2002689 (2021). https://doi.org/10.1002/aenm.202002689
W.D. Richards, L.J. Miara, Y. Wang, J.C. Kim, G. Ceder, Interface stability in solid-state batteries. Chem. Mater. 28, 266–273 (2016). https://doi.org/10.1021/acs.chemmater.5b04082
S. Wenzel, S. Randau, T. Leichtweiß, D.A. Weber, J. Sann et al., Direct observation of the interfacial instability of the fast ionic conductor Li10GeP2S12 at the lithium metal anode. Chem. Mater. 28, 2400–2407 (2016). https://doi.org/10.1021/acs.chemmater.6b00610
S. Wenzel, S.J. Sedlmaier, C. Dietrich, W.G. Zeier, J. Janek, Interfacial reactivity and interphase growth of argyrodite solid electrolytes at lithium metal electrodes. Solid State Ion. 318, 102–112 (2018). https://doi.org/10.1016/j.ssi.2017.07.005
D. Lin, Y. Liu, Y. Cui, Reviving the lithium metal anode for high-energy batteries. Nat. Nanotechnol. 12, 194–206 (2017). https://doi.org/10.1038/nnano.2017.16
Y. Yang, Z. Wang, G. Li, T. Jiang, Y. Tong et al., Inspired by the “tip effect”: a novel structural design strategy for the cathode in advanced lithium–sulfur batteries. J. Mater. Chem. A 5, 3140–3144 (2017). https://doi.org/10.1039/C6TA09322A
F. Mo, J. Ruan, S. Sun, Z. Lian, S. Yang et al., Inside or outside: origin of lithium dendrite formation of all solid-state electrolytes. Adv. Energy Mater. 9, 1902123 (2019). https://doi.org/10.1002/aenm.201902123
Y. Tang, L. Zhang, J. Chen, H. Sun, T. Yang et al., Electro-chemo-mechanics of lithium in solid state lithium metal batteries. Energy Environ. Sci. 14, 602–642 (2021). https://doi.org/10.1039/D0EE02525A
H. Park, J. Kim, D. Lee, J. Park, S. Jo et al., Epitaxial growth of nanostructured Li2 Se on lithium metal for all solid-state batteries. Adv. Sci. 8, e2004204 (2021). https://doi.org/10.1002/advs.202004204
A.L. Santhosha, L. Medenbach, J.R. Buchheim, P. Adelhelm, The indium–lithium electrode in solid-state lithium-ion batteries: phase formation, redox potentials, and interface stability. Batter. Supercaps 2, 524–529 (2019). https://doi.org/10.1002/batt.201800149
S.W. Park, H.J. Choi, Y. Yoo, H.-D. Lim, J.-W. Park et al., Stable cycling of all-solid-state batteries with sacrificial cathode and lithium-free indium layer. Adv. Funct. Mater. 32, 2270030 (2022). https://doi.org/10.1002/adfm.202270030
S. Luo, Z. Wang, X. Li, X. Liu, H. Wang et al., Growth of lithium-indium dendrites in all-solid-state lithium-based batteries with sulfide electrolytes. Nat. Commun. 12, 6968 (2021). https://doi.org/10.1038/s41467-021-27311-7
J.P. Pender, G. Jha, D.H. Youn, J.M. Ziegler, I. Andoni et al., Electrode degradation in lithium-ion batteries. ACS Nano 14, 1243–1295 (2020). https://doi.org/10.1021/acsnano.9b04365
W.-J. Zhang, A review of the electrochemical performance of alloy anodes for lithium-ion batteries. J. Power. Sources 196(1), 13–24 (2011). https://doi.org/10.1016/j.jpowsour.2010.07.020
D.H.S. Tan, Y.-T. Chen, H. Yang, W. Bao, B. Sreenarayanan et al., Carbon-free high-loading silicon anodes enabled by sulfide solid electrolytes. Science 373, 1494–1499 (2021). https://doi.org/10.1126/science.abg7217
X. Han, W. Zhou, M. Chen, J. Chen, G. Wang et al., Interfacial nitrogen engineering of robust silicon/MXene anode toward high energy solid-state lithium-ion batteries. J. Energy Chem. 67, 727–735 (2022). https://doi.org/10.1016/j.jechem.2021.11.021
S. Lou, F. Zhang, C. Fu, M. Chen, Y. Ma et al., Interface issues and challenges in all-solid-state batteries: lithium, sodium, and beyond. Adv. Mater. 33, e2000721 (2021). https://doi.org/10.1002/adma.202000721
F. Han, T. Gao, Y. Zhu, K.J. Gaskell, C. Wang, A battery made from a single material. Adv. Mater. 27, 3473–3483 (2015). https://doi.org/10.1002/adma.201500180
Y. Kato, S. Shiotani, K. Morita, K. Suzuki, M. Hirayama et al., All-solid-state batteries with thick electrode configurations. J. Phys. Chem. Lett. 9, 607–613 (2018). https://doi.org/10.1021/acs.jpclett.7b02880
H.-K. Tian, Z. Liu, Y. Ji, L.-Q. Chen, Y. Qi, Interfacial electronic properties dictate Li dendrite growth in solid electrolytes. Chem. Mater. 31, 7351–7359 (2019). https://doi.org/10.1021/acs.chemmater.9b01967
S.Y. Han, C. Lee, J.A. Lewis, D. Yeh, Y. Liu et al., Stress evolution during cycling of alloy-anode solid-state batteries. Joule 5, 2450–2465 (2021). https://doi.org/10.1016/j.joule.2021.07.002
L. Zhao, Z. Liu, D. Chen, F. Liu, Z. Yang et al., Laser synthesis and microfabrication of micro/nanostructured materials toward energy conversion and storage. Nano-Micro Lett. 13, 49 (2021). https://doi.org/10.1007/s40820-020-00577-0
G.L. Gregory, H. Gao, B. Liu, X. Gao, G.J. Rees et al., Buffering volume change in solid-state battery composite cathodes with CO2-derived block polycarbonate ethers. J. Am. Chem. Soc. 144, 17477–17486 (2022). https://doi.org/10.1021/jacs.2c06138
K. Zhang, Q. Zhao, Z. Tao, J. Chen, Composite of sulfur impregnated in porous hollow carbon spheres as the cathode of Li-S batteries with high performance. Nano Res. 6, 38–46 (2013). https://doi.org/10.1007/s12274-012-0279-1
Y. Cao, M. Li, J. Lu, J. Liu, K. Amine, Bridging the academic and industrial metrics for next-generation practical batteries. Nat. Nanotechnol. 14, 200–207 (2019). https://doi.org/10.1038/s41565-019-0371-8
Z. Lin, T. Liu, X. Ai, C. Liang, Aligning academia and industry for unified battery performance metrics. Nat. Commun. 9, 5262 (2018). https://doi.org/10.1038/s41467-018-07599-8
Y. Liang, H. Liu, G. Wang, C. Wang, Y.-H. Ni et al., Challenges, interface engineering, and processing strategies toward practicaln sulfide-based all-solid-staten lithium batteries. InfoMat. 4(5), e12292 (2022). https://doi.org/10.1002/inf2.12292
Y. Guo, S. Wu, Y.-B. He, F. Kang, L. Chen et al., Solid-state lithium batteries: safety and prospects. eScience 2, 138–163 (2022). https://doi.org/10.1016/j.esci.2022.02.008
Y. Lu, X. Rong, Y.-S. Hu, L. Chen, H. Li, Research and development of advanced battery materials in China. Energy Storage Mater. 23, 144–153 (2019). https://doi.org/10.1016/j.ensm.2019.05.019
M. Snyder, A. Theis, Understanding and managing hazards of lithium-ion battery systems. Process. Saf. Prog. 41, 440–448 (2022). https://doi.org/10.1002/prs.12408
C. Heubner, K. Voigt, P. Marcinkowski, S. Reuber, K. Nikolowski et al., From active materials to battery cells: a straightforward tool to determine performance metrics and support developments at an application-relevant level. Adv. Energy Mater. 11(46), 2102647 (2021). https://doi.org/10.1002/aenm.202102647
J. Wu, L. Yuan, W. Zhang, Z. Li, X. Xie et al., Reducing the thickness of solid-state electrolyte membranes for high-energy lithium batteries. Energy Environ. Sci. 14, 12–36 (2021). https://doi.org/10.1039/D0EE02241A
A. Banerjee, X. Wang, C. Fang, E. Wu, Y.S. Meng, Interfaces and interphases in all-solid-state batteries with inorganic solid electrolytes. Chem. Rev. 120, 6878–6933 (2020). https://doi.org/10.1021/acs.chemrev.0c00101
L. Gao, B. Tang, H. Jiang, Z. Xie, J. Wei et al., Fiber-reinforced composite polymer electrolytes for solid-state lithium batteries. Adv. Sustain. Syst. 6, 2100389 (2022). https://doi.org/10.1002/adsu.202100389
P. Albertus, V. Anandan, C. Ban, N. Balsara, I. Belharouak et al., Challenges for and pathways toward Li-metal-based all-solid-state batteries. ACS Energy Lett. (2021). https://doi.org/10.1021/acsenergylett.1c00445
X. Hao, Q. Zhao, S. Su, S. Zhang, J. Ma et al., Constructing multifunctional interphase between Li1.4Al0.4Ti1.6(PO4)3 and Li metal by magnetron sputtering for highly stable solid-state lithium metal batteries. Adv. Energy Mater. 9, 1901604 (2019). https://doi.org/10.1002/aenm.201901604
H. Ling, L. Shen, Y. Huang, J. Ma, L. Chen et al., Integrated structure of cathode and double-layer electrolyte for highly stable and dendrite-free all-solid-state Li-metal batteries. ACS Appl. Mater. Interfaces 12, 56995–57002 (2020). https://doi.org/10.1021/acsami.0c16390
R. Pacios, A. Villaverde, M. Martínez-Ibañez, M. Casas-Cabanas, F. Aguesse et al., Roadmap for competitive production of solid-state batteries: how to convert a promise into reality. Adv. Energy Mater. 13, 2301018 (2023). https://doi.org/10.1002/aenm.202301018
F. Hippauf, B. Schumm, S. Doerfler, H. Althues, S. Fujiki et al., Overcoming binder limitations of sheet-type solid-state cathodes using a solvent-free dry-film approach. Energy Storage Mater. 21, 390–398 (2019). https://doi.org/10.1016/j.ensm.2019.05.033
D.H. Kim, D.Y. Oh, K.H. Park, Y.E. Choi, Y.J. Nam et al., Infiltration of solution-processable solid electrolytes into conventional Li-ion-battery electrodes for all-solid-state Li-ion batteries. Nano Lett. 17, 3013–3020 (2017). https://doi.org/10.1021/acs.nanolett.7b00330
K. Pan, L. Zhang, W. Qian, X. Wu, K. Dong et al., A flexible ceramic/polymer hybrid solid electrolyte for solid-state lithium metal batteries. Adv. Mater. 32, e2000399 (2020). https://doi.org/10.1002/adma.202000399
J. Wu, L. Shen, Z. Zhang, G. Liu, Z. Wang et al., All-solid-state lithium batteries with sulfide electrolytes and oxide cathodes. Electrochem. Energ. Rev. 4, 101–135 (2021). https://doi.org/10.1007/s41918-020-00081-4
Y. Pang, J. Pan, J. Yang, S. Zheng, C. Wang, Electrolyte/electrode interfaces in all-solid-state lithium batteries: a review. Electrochem. Energ. Rev. 4, 169–193 (2021). https://doi.org/10.1007/s41918-020-00092-1
Z. Wang, Y. Wang, Z. Zhang, X. Chen, W. Lie et al., Building artificial solid-electrolyte interphase with uniform intermolecular ionic bonds toward dendrite-free lithium metal anodes. Adv. Funct. Mater. 30, 2002414 (2020). https://doi.org/10.1002/adfm.202002414
B. Tang, L. Gao, J. Liu, S.-H. Bo, Z. Xie et al., Surface modification of garnet with amorphous SnO2 via atomic layer deposition. J. Mater. Chem. A 8, 18087–18093 (2020). https://doi.org/10.1039/C9TA13347J
L. Chen, T. Gu, J. Ma, K. Yang, P. Shi et al., In situ construction of Li3N-enriched interface enabling ultra-stable solid-state LiNi0.8Co0.1Mn0.1O2/lithium metal batteries. Nano Energy 100, 107470 (2022). https://doi.org/10.1016/j.nanoen.2022.107470
Z.-J. Zheng, H. Ye, Z.-P. Guo, Recent progress in designing stable composite lithium anodes with improved wettability. Adv. Sci. 7, 2002212 (2020). https://doi.org/10.1002/advs.202002212
Y. Xiao, Y. Wang, S.-H. Bo, J.C. Kim, L.J. Miara et al., Understanding interface stability in solid-state batteries. Nat. Rev. Mater. 5, 105–126 (2019). https://doi.org/10.1038/s41578-019-0157-5
J. Ma, G. Zhong, P. Shi, Y. Wei, K. Li et al., Constructing a highly efficient “solid–polymer–solid” elastic ion transport network in cathodes activates the room temperature performance of all-solid-state lithium batteries. Energy Environ. Sci. 15, 1503–1511 (2022). https://doi.org/10.1039/D1EE03345J
J. Mi, J. Ma, L. Chen, C. Lai, K. Yang et al., Topology crafting of polyvinylidene difluoride electrolyte creates ultra-long cycling high-voltage lithium metal solid-state batteries. Energy Storage Mater. 48, 375–383 (2022). https://doi.org/10.1016/j.ensm.2022.02.048
Y. Liu, Z. Ju, B. Zhang, Y. Wang, J. Nai et al., Visualizing the sensitive lithium with atomic precision: cryogenic electron microscopy for batteries. Acc. Chem. Res. 54, 2088–2099 (2021). https://doi.org/10.1021/acs.accounts.1c00120
Z. Ju, C. Jin, X. Cai, O. Sheng, J. Wang et al., Cationic interfacial layer toward a LiF-enriched interphase for stable Li metal batteries. ACS Energy Lett. 8, 486–493 (2023). https://doi.org/10.1021/acsenergylett.2c02379
K.B. Hatzell, Y. Zheng, Prospects on large-scale manufacturing of solid state batteries. MRS Energy Sustain. 8, 33–39 (2021). https://doi.org/10.1557/s43581-021-00004-w
K. Lee, S. Kim, J. Park, S.H. Park, A. Coskun et al., Selection of binder and solvent for solution-processed all-solid-state battery. J. Electrochem. Soc. 164, A2075–A2081 (2017). https://doi.org/10.1149/2.1341709jes
M. Yamamoto, Y. Terauchi, A. Sakuda, M. Takahashi, Binder-free sheet-type all-solid-state batteries with enhanced rate capabilities and high energy densities. Sci. Rep. 8, 1212 (2018). https://doi.org/10.1038/s41598-018-19398-8
K. Lee, J. Lee, S. Choi, K. Char, J.W. Choi, Thiol–ene click reaction for fine polarity tuning of polymeric binders in solution-processed all-solid-state batteries. ACS Energy Lett. 4, 94–101 (2019). https://doi.org/10.1021/acsenergylett.8b01726
J. Lee, K. Lee, T. Lee, H. Kim, K. Kim et al., In situ deprotection of polymeric binders for solution-processible sulfide-based all-solid-state batteries. Adv. Mater. 32, e2001702 (2020). https://doi.org/10.1002/adma.202001702
D.Y. Oh, Y.J. Nam, K.H. Park, S.H. Jung, K.T. Kim et al., Slurry-fabricable Li+-conductive polymeric binders for practical all-solid-state lithium-ion batteries enabled by solvate ionic liquids. Adv. Energy Mater. 9, 1802927 (2019). https://doi.org/10.1002/aenm.201802927
T. Ates, M. Keller, J. Kulisch, T. Adermann, S. Passerini, Development of an all-solid-state lithium battery by slurry-coating procedures using a sulfidic electrolyte. Energy Storage Mater. 17, 204–210 (2019). https://doi.org/10.1016/j.ensm.2018.11.011
H. Nakamura, T. Kawaguchi, T. Masuyama, A. Sakuda, T. Saito et al., Dry coating of active material ps with sulfide solid electrolytes for an all-solid-state lithium battery. J. Power. Sources 448, 227579 (2020). https://doi.org/10.1016/j.jpowsour.2019.227579
Y. Lu, C.-Z. Zhao, H. Yuan, J.-K. Hu, J.-Q. Huang et al., Dry electrode technology, the rising star in solid-state battery industrialization. Matter 5, 876–898 (2022). https://doi.org/10.1016/j.matt.2022.01.011
K. Periyapperuma, T.T. Tran, S. Trussler, D. Ioboni, M.N. Obrovac, Conflat two and three electrode electrochemical cells. J. Electrochem. Soc. 161, A2182–A2187 (2014). https://doi.org/10.1149/2.0721414jes
Y. Shang, T. Chu, B. Shi, K.K. Fu, Scalable synthesis of LiF-rich 3D architected Li metal anode via direct lithium-fluoropolymer pyrolysis to enable fast Li cycling. Energy Environ. Mater. 4, 213–221 (2021). https://doi.org/10.1002/eem2.12099
S. Yubuchi, W. Nakamura, T. Bibienne, S. Rousselot, L.W. Taylor et al., All-solid-state cells with Li4Ti5O12/carbon nanotube composite electrodes prepared by infiltration with argyrodite sulfide-based solid electrolytes via liquid-phase processing. J. Power. Sources 417, 125–131 (2019). https://doi.org/10.1016/j.jpowsour.2019.01.070
D.H. Kim, Y.-H. Lee, Y.B. Song, H. Kwak, S.-Y. Lee et al., Thin and flexible solid electrolyte membranes with ultrahigh thermal stability derived from solution-processable Li argyrodites for all-solid-state Li-ion batteries. ACS Energy Lett. 5(3), 718–727 (2020). https://doi.org/10.1021/acsenergylett.0c00251
A. Miura, N.C. Rosero-Navarro, A. Sakuda, K. Tadanaga, N.H.H. Phuc et al., Liquid-phase syntheses of sulfide electrolytes for all-solid-state lithium battery. Nat. Rev. Chem. 3, 189–198 (2019). https://doi.org/10.1038/s41570-019-0078-2