Enhancing the Interaction of Carbon Nanotubes by Metal–Organic Decomposition with Improved Mechanical Strength and Ultra-Broadband EMI Shielding Performance
Corresponding Author: Yan‑Jun Wan
Nano-Micro Letters,
Vol. 16 (2024), Article Number: 134
Abstract
The remarkable properties of carbon nanotubes (CNTs) have led to promising applications in the field of electromagnetic interference (EMI) shielding. However, for macroscopic CNT assemblies, such as CNT film, achieving high electrical and mechanical properties remains challenging, which heavily depends on the tube–tube interactions of CNTs. Herein, we develop a novel strategy based on metal–organic decomposition (MOD) to fabricate a flexible silver–carbon nanotube (Ag–CNT) film. The Ag particles are introduced in situ into the CNT film through annealing of MOD, leading to enhanced tube–tube interactions. As a result, the electrical conductivity of Ag–CNT film is up to 6.82 × 105 S m−1, and the EMI shielding effectiveness of Ag–CNT film with a thickness of ~ 7.8 μm exceeds 66 dB in the ultra-broad frequency range (3–40 GHz). The tensile strength and Young’s modulus of Ag–CNT film increase from 30.09 ± 3.14 to 76.06 ± 6.20 MPa (~ 253%) and from 1.12 ± 0.33 to 8.90 ± 0.97 GPa (~ 795%), respectively. Moreover, the Ag–CNT film exhibits excellent near-field shielding performance, which can effectively block wireless transmission. This innovative approach provides an effective route to further apply macroscopic CNT assemblies to future portable and wearable electronic devices.
Highlights:
1 A strategy based on metal-organic decomposition is proposed to enhance the tube-tube interactions of carbon nanotubes (CNTs).
2 The robust tube-tube interactions of CNTs enhance both EMI shielding performance and mechanical properties of CNT film.
3 This innovative approach provides an effective way to obtain high-performance CNT film.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Z. Zhang, Z. Xiong, Y. Yao, D. Wang, Z. Yang et al., Constructing conductive network in hybrid perovskite for a highly efficient microwave absorption system. Adv. Funct. Mater. 32, 2206053 (2022). https://doi.org/10.1002/adfm.202206053
- F. Deng, J. Wei, Y. Xu, Z. Lin, X. Lu et al., Regulating the electrical and mechanical properties of TaS2 films via van der waals and electrostatic interaction for high performance electromagnetic interference shielding. Nano-Micro Lett. 15, 106 (2023). https://doi.org/10.1007/s40820-023-01061-1
- Y. Yang, N. Wu, B. Li, W. Liu, F. Pan et al., Biomimetic porous MXene sediment-based hydrogel for high-performance and multifunctional electromagnetic interference shielding. ACS Nano 16, 15042–15052 (2022). https://doi.org/10.1021/acsnano.2c06164
- B. Li, N. Wu, Q. Wu, Y. Yang, F. Pan et al., From “100%” utilization of MAX/MXene to direct engineering of wearable, multifunctional E-textiles in extreme environments. Adv. Funct. Mater. 33, 2307301 (2023). https://doi.org/10.1002/adfm.202307301
- S.-Y. Liao, X.-Y. Wang, X.-M. Li, Y.-J. Wan, T. Zhao et al., Flexible liquid metal/cellulose nanofiber composites film with excellent thermal reliability for highly efficient and broadband EMI shielding. Chem. Eng. J. 422, 129962 (2021). https://doi.org/10.1016/j.cej.2021.129962
- G.-M. Weng, J. Li, M. Alhabeb, C. Karpovich, H. Wang et al., Layer-by-layer assembly of cross-functional semi-transparent MXene-carbon nanotubes composite films for next-generation electromagnetic interference shielding. Adv. Funct. Mater. 28, 1803360 (2018). https://doi.org/10.1002/adfm.201803360
- B. Li, N. Wu, Y. Yang, F. Pan, C. Wang et al., Graphene oxide-assisted multiple cross-linking of MXene for large-area, high-strength, oxidation-resistant, and multifunctional films. Adv. Funct. Mater. 33, 2213357 (2023). https://doi.org/10.1002/adfm.202213357
- Z.-H. Zeng, N. Wu, J.-J. Wei, Y.-F. Yang, T.-T. Wu et al., Porous and ultra-flexible crosslinked MXene/polyimide composites for multifunctional electromagnetic interference shielding. Nano Micro Lett. 14, 59 (2022). https://doi.org/10.1007/s40820-022-00800-0
- Z. Zeng, G. Wang, B.F. Wolan, N. Wu, C. Wang et al., Printable aligned single-walled carbon nanotube film with outstanding thermal conductivity and electromagnetic interference shielding performance. Nanomicro Lett. 14, 179 (2022). https://doi.org/10.1007/s40820-022-00883-9
- Q. Wei, S. Pei, X. Qian, H. Liu, Z. Liu et al., Superhigh electromagnetic interference shielding of ultrathin aligned pristine graphene nanosheets film. Adv. Mater. 32, e1907411 (2020). https://doi.org/10.1002/adma.201907411
- Q. Song, F. Ye, X. Yin, W. Li, H. Li et al., Carbon nanotube-multilayered graphene edge plane core-shell hybrid foams for ultrahigh-performance electromagnetic-interference shielding. Adv. Mater. 29, 1701583 (2017). https://doi.org/10.1002/adma.201701583
- H. Wang, X. Sun, Y. Wang, K. Li, J. Wang et al., Acid enhanced zipping effect to densify MWCNT packing for multifunctional MWCNT films with ultra-high electrical conductivity. Nat. Commun. 14, 380 (2023). https://doi.org/10.1038/s41467-023-36082-2
- Y.-J. Wan, X.-Y. Wang, X.-M. Li, S.-Y. Liao, Z.-Q. Lin et al., Ultrathin densified carbon nanotube film with “metal-like” conductivity, superior mechanical strength, and ultrahigh electromagnetic interference shielding effectiveness. ACS Nano 14, 14134–14145 (2020). https://doi.org/10.1021/acsnano.0c06971
- A. Lekawa-Raus, J. Patmore, L. Kurzepa, J. Bulmer, K. Koziol, Electrical properties of carbon nanotube based fibers and their future use in electrical wiring. Adv. Funct. Mater. 24, 3661–3682 (2014). https://doi.org/10.1002/adfm.201303716
- S. Badaire, V. Pichot, C. Zakri, P. Poulin, P. Launois et al., Correlation of properties with preferred orientation in coagulated and stretch-aligned single-wall carbon nanotubes. J. Appl. Phys. 96, 7509–7513 (2004). https://doi.org/10.1063/1.1810640
- S. Zhang, J.G. Park, N. Nguyen, C. Jolowsky, A. Hao et al., Ultra-high conductivity and metallic conduction mechanism of scale-up continuous carbon nanotube sheets by mechanical stretching and stable chemical doping. Carbon 125, 649–658 (2017). https://doi.org/10.1016/j.carbon.2017.09.089
- B. Li, Y. Yang, N. Wu, S. Zhao, H. Jin et al., Bicontinuous, high-strength, and multifunctional chemical-cross-linked MXene/superaligned carbon nanotube film. ACS Nano 16, 19293–19304 (2022). https://doi.org/10.1021/acsnano.2c08678
- Y. Bai, R. Zhang, X. Ye, Z. Zhu, H. Xie et al., Carbon nanotube bundles with tensile strength over 80 GPa. Nat. Nanotechnol. 13, 589–595 (2018). https://doi.org/10.1038/s41565-018-0141-z
- L. Qiu, H. Zou, X. Wang, Y. Feng, X. Zhang et al., Enhancing the interfacial interaction of carbon nanotubes fibers by Au nanops with improved performance of the electrical and thermal conductivity. Carbon 141, 497–505 (2019). https://doi.org/10.1016/j.carbon.2018.09.073
- G. Wang, C. Sun, Y. Cai, Y. Ma, J. Ali Syed et al., Improvement of interface and electrical properties in carbon nanotube/nanocrystalline copper composite films. Mater. Chem. Phys. 223, 374–379 (2019). https://doi.org/10.1016/j.matchemphys.2018.11.025
- G. Xu, J. Zhao, S. Li, X. Zhang, Z. Yong et al., Continuous electrodeposition for lightweight, highly conducting and strong carbon nanotube-copper composite fibers. Nanoscale 3, 4215–4219 (2011). https://doi.org/10.1039/C1NR10571J
- B. Wu, J. Zhang, Z. Wei, S. Cai, Z. Liu, Chemical alignment of oxidatively shortened single-walled carbon nanotubes on silver surface. J. Phys. Chem. B 105, 5075–5078 (2001). https://doi.org/10.1021/jp0101256
- Y. Choi, K.-D. Seong, Y. Piao, Metal–organic decomposition ink for printed electronics. Adv. Mater. Interfaces 6, 1901002 (2019). https://doi.org/10.1002/admi.201901002
- A. Iqbal, F. Shahzad, K. Hantanasirisakul, M.K. Kim, J. Kwon et al., Anomalous absorption of electromagnetic waves by 2D transition metal carbonitride Ti3CNTx (MXene). Science 369, 446–450 (2020). https://doi.org/10.1126/science.aba7977
- Y. Liu, Y. Wang, N. Wu, M. Han, W. Liu et al., Diverse structural design strategies of MXene-based macrostructure for high-performance electromagnetic interference shielding. Nano-Micro Lett. 15, 240 (2023). https://doi.org/10.1007/s40820-023-01203-5
- A. Felten, C. Bittencourt, J.-F. Colomer, G. Van Tendeloo, J.-J. Pireaux, Nucleation of metal clusters on plasma treated multi wall carbon nanotubes. Carbon 45, 110–116 (2007). https://doi.org/10.1016/j.carbon.2006.07.023
- N. Wang, S. Pandit, L. Ye, M. Edwards, V.R.S.S. Mokkapati et al., Efficient surface modification of carbon nanotubes for fabricating high performance CNT based hybrid nanostructures. Carbon 111, 402–410 (2017). https://doi.org/10.1016/j.carbon.2016.10.027
- V. Gopee, O. Thomas, C. Hunt, V. Stolojan, J. Allam et al., Carbon nanotube interconnects realized through functionalization and sintered silver attachment. ACS Appl. Mater. Interfaces 8, 5563–5570 (2016). https://doi.org/10.1021/acsami.5b12057
- C. Bittencourt, C. Navio, A. Nicolay, B. Ruelle, T. Godfroid et al., Atomic oxygen functionalization of vertically aligned carbon nanotubes. J. Phys. Chem. C 115, 20412–20418 (2011). https://doi.org/10.1021/jp2057699
- Y. Dong, X. Li, S. Liu, Q. Zhu, M. Zhang et al., Optimizing formulations of silver organic decomposition ink for producing highly-conductive features on flexible substrates: the e study of amines. Thin Solid Films 616, 635–642 (2016). https://doi.org/10.1016/j.tsf.2016.09.024
- J. Gao, X. Wu, Q. Li, S. Du, F. Huang et al., Template-free growth of well-ordered silver nano forest/ceramic metamaterial films with tunable optical responses. Adv. Mater. 29, 1605324 (2017). https://doi.org/10.1002/adma.201605324
- X. Bai, S. Liao, Y. Huang, J. Song, Z. Liu et al., Continuous draw spinning of extra-long silver submicron fibers with micrometer patterning capability. Nano Lett. 17, 1883–1891 (2017). https://doi.org/10.1021/acs.nanolett.6b05205
- J. Lee, D.M. Lee, Y. Jung, J. Park, H.S. Lee et al., Direct spinning and densification method for high-performance carbon nanotube fibers. Nat. Commun. 10, 2962 (2019). https://doi.org/10.1038/s41467-019-10998-0
- N. Behabtu, M.J. Green, C.L. Pint, C.C. Young et al., Spontaneous dissolution of ultralong single- and multiwalled carbon nanotubes. ACS Nano 4, 3969–3978 (2010). https://doi.org/10.1021/nn100864v
- J.W. Dear, C.G. Poll, K.T. Lai, M. Shkunov, Solution-processable transparent conducting films by defunctionalization of amine functionalized carbon nanotubes. J. Photonics Energy 8, 032221 (2018). https://doi.org/10.1117/1.JPE.8.032221
- T. Zhou, Y. Niu, Z. Li, H. Li, Z. Yong et al., The synergetic relationship between the length and orientation of carbon nanotubes in direct spinning of high-strength carbon nanotube fibers. Mater. Des. 203, 109557 (2021). https://doi.org/10.1016/j.matdes.2021.109557
- Y.L. Chen, B. Liu, X.Q. He, Y. Huang, K.C. Hwang, Failure analysis and the optimal toughness design of carbon nanotube-reinforced composites. Compos. Sci. Technol. 70, 1360–1367 (2010). https://doi.org/10.1016/j.compscitech.2010.04.015
- S.B. Cronin, A.K. Swan, M.S. Ünlü, B.B. Goldberg, M.S. Dresselhaus et al., Resonant Raman spectroscopy of individual metallic and semiconducting single-wall carbon nanotubes under uniaxial strain. Phys. Rev. B 72, 035425 (2005). https://doi.org/10.1103/physrevb.72.035425
- N. Kalashnyk, E. Faulques, J. Schjødt-Thomsen, L.R. Jensen, J.C.M. Rauhe et al., Strain sensing in single carbon fiber epoxy composites by simultaneous in situ Raman and piezoresistance measurements. Carbon 109, 124–130 (2016). https://doi.org/10.1016/j.carbon.2016.07.064
- Q. Li, Y.-L. Kang, W. Qiu, Y.-L. Li, G.-Y. Huang et al., Deformation mechanisms of carbon nanotube fibres under tensile loading by in situ Raman spectroscopy analysis. Nanotechnology 22, 225704 (2011). https://doi.org/10.1088/0957-4484/22/22/225704
- J.C. Fernández-Toribio, A. Mikhalchan, C. Santos, Á. Ridruejo, J.J. Vilatela, Understanding cooperative loading in carbon nanotube fibres through in situ structural studies during stretching. Carbon 156, 430–437 (2020). https://doi.org/10.1016/j.carbon.2019.09.070
- Z.P. Wu, M.M. Li, Y.Y. Hu, Y.S. Li, Z.X. Wang et al., Electromagnetic interference shielding of carbon nanotube macrofilms. Scr. Mater. 64, 809–812 (2011). https://doi.org/10.1016/j.scriptamat.2011.01.002
- M. Panahi-Sarmad, S. Samsami, A. Ghaffarkhah, S.A. Hashemi, S. Ghasemi et al., MOF-based electromagnetic shields multiscale design: nanoscale chemistry, microscale assembly, and macroscale manufacturing. Adv. Funct. Mater. (2023). https://doi.org/10.1002/adfm.202304473
- H. Chen, Y. Wen, Y. Qi, Q. Zhao, L. Qu et al., Pristine titanium carbide MXene films with environmentally stable conductivity and superior mechanical strength. Adv. Funct. Mater. 30, 1906996 (2020). https://doi.org/10.1002/adfm.201906996
- Y.-J. Wan, X.-M. Li, P.-L. Zhu, R. Sun, C.-P. Wong et al., Lightweight, flexible MXene/polymer film with simultaneously excellent mechanical property and high-performance electromagnetic interference shielding. Compos. Part A Appl. Sci. Manuf. 130, 105764 (2020). https://doi.org/10.1016/j.compositesa.2020.105764
- X.-Y. Wang, S.-Y. Liao, H.-P. Huang, Q.-F. Wang, Y.-Y. Shi et al., Enhancing the chemical stability of MXene through synergy of hydrogen bond and coordination bond in aqueous solution. Small Methods 7, e2201694 (2023). https://doi.org/10.1002/smtd.202201694
- H. Jia, X. Yang, Q.-Q. Kong, L.-J. Xie, Q.-G. Guo et al., Free-standing, anti-corrosion, super flexible graphene oxide/silver nanowire thin films for ultra-wideband electromagnetic interference shielding. J. Mater. Chem. A 9, 1180–1191 (2021). https://doi.org/10.1039/D0TA09246K
- Z. Ma, H. Feng, Y. Feng, X. Ding, X. Wang et al., An ultralight and thermally conductive Ti3C2TxMXene–silver nanowire cellular composite film for high-performance electromagnetic interference shielding. J. Mater. Chem. C 10, 14169–14179 (2022). https://doi.org/10.1039/d2tc02856e
- X. Zhang, X.-L. Tian, Y. Qin, J. Qiao, F. Pan et al., Conductive metal–organic frameworks with tunable dielectric properties for boosting electromagnetic wave absorption. ACS Nano 17, 12510–12518 (2023). https://doi.org/10.1021/acsnano.3c02170
- R. Yang, X. Gui, L. Yao, Q. Hu, L. Yang et al., Ultrathin, lightweight, and flexible CNT buckypaper enhanced using MXenes for electromagnetic interference shielding. Nano-Micro Lett. 13, 66 (2021). https://doi.org/10.1007/s40820-021-00597-4
- R. Kumar, S. Sahoo, E. Joanni, R.K. Singh, W.K. Tan et al., Recent progress on carbon-based composite materials for microwave electromagnetic interference shielding. Carbon 177, 304–331 (2021). https://doi.org/10.1016/j.carbon.2021.02.091
- Y. Sun, X. Han, P. Guo, Z. Chai, J. Yue et al., Slippery graphene-bridging liquid metal layered heterostructure nanocomposite for stable high-performance electromagnetic interference shielding. ACS Nano 17, 12616–12628 (2023). https://doi.org/10.1021/acsnano.3c02975
- N. Wu, Y. Yang, C. Wang, Q. Wu, F. Pan et al., Ultrathin cellulose nanofiber assisted ambient-pressure-dried, ultralight, mechanically robust, multifunctional MXene aerogels. Adv. Mater. 35, e2207969 (2023). https://doi.org/10.1002/adma.202207969
- H.M. Kim, K. Kim, C.Y. Lee, J. Joo, S.J. Cho et al., Electrical conductivity and electromagnetic interference shielding of multiwalled carbon nanotube composites containing Fe catalyst. Appl. Phys. Lett. 84, 589–591 (2004). https://doi.org/10.1063/1.1641167
- N. Masuda, N. Tamaki, T. Kuriyama, J.C. Bu, M. Yamaguchi et al., High frequency magnetic near field measurement on LSI chip using planar multi-layer shielded loop coil, in 2003 IEEE Symposium on Electromagnetic Compatibility. Symposium Record (Cat. No.03CH37446) (IEEE, Boston, 2003), pp. 80–85
- H.-N. Lin, C.-H. Wu, J.-F. Huang, W.-D. Tseng, J.Y.-T. Lin et al., Near-and far-field shielding effectiveness analysis of magnetic materials and their effect on wireless power charger, in 2018 IEEE International Symposium on Electromagnetic Compatibility and 2018 IEEE Asia-Pacific Symposium on Electromagnetic Compatibility (EMC/APEMC) (IEEE, Suntec City, 2018), pp. 1071–1076
- D. Baudry, C. Arcambal, A. Louis, B. Mazari, P. Eudeline, Applications of the near-field techniques in EMC investigations. IEEE Trans. Electromagn. Compat. 49, 485–493 (2007). https://doi.org/10.1109/TEMC.2007.902194
References
Z. Zhang, Z. Xiong, Y. Yao, D. Wang, Z. Yang et al., Constructing conductive network in hybrid perovskite for a highly efficient microwave absorption system. Adv. Funct. Mater. 32, 2206053 (2022). https://doi.org/10.1002/adfm.202206053
F. Deng, J. Wei, Y. Xu, Z. Lin, X. Lu et al., Regulating the electrical and mechanical properties of TaS2 films via van der waals and electrostatic interaction for high performance electromagnetic interference shielding. Nano-Micro Lett. 15, 106 (2023). https://doi.org/10.1007/s40820-023-01061-1
Y. Yang, N. Wu, B. Li, W. Liu, F. Pan et al., Biomimetic porous MXene sediment-based hydrogel for high-performance and multifunctional electromagnetic interference shielding. ACS Nano 16, 15042–15052 (2022). https://doi.org/10.1021/acsnano.2c06164
B. Li, N. Wu, Q. Wu, Y. Yang, F. Pan et al., From “100%” utilization of MAX/MXene to direct engineering of wearable, multifunctional E-textiles in extreme environments. Adv. Funct. Mater. 33, 2307301 (2023). https://doi.org/10.1002/adfm.202307301
S.-Y. Liao, X.-Y. Wang, X.-M. Li, Y.-J. Wan, T. Zhao et al., Flexible liquid metal/cellulose nanofiber composites film with excellent thermal reliability for highly efficient and broadband EMI shielding. Chem. Eng. J. 422, 129962 (2021). https://doi.org/10.1016/j.cej.2021.129962
G.-M. Weng, J. Li, M. Alhabeb, C. Karpovich, H. Wang et al., Layer-by-layer assembly of cross-functional semi-transparent MXene-carbon nanotubes composite films for next-generation electromagnetic interference shielding. Adv. Funct. Mater. 28, 1803360 (2018). https://doi.org/10.1002/adfm.201803360
B. Li, N. Wu, Y. Yang, F. Pan, C. Wang et al., Graphene oxide-assisted multiple cross-linking of MXene for large-area, high-strength, oxidation-resistant, and multifunctional films. Adv. Funct. Mater. 33, 2213357 (2023). https://doi.org/10.1002/adfm.202213357
Z.-H. Zeng, N. Wu, J.-J. Wei, Y.-F. Yang, T.-T. Wu et al., Porous and ultra-flexible crosslinked MXene/polyimide composites for multifunctional electromagnetic interference shielding. Nano Micro Lett. 14, 59 (2022). https://doi.org/10.1007/s40820-022-00800-0
Z. Zeng, G. Wang, B.F. Wolan, N. Wu, C. Wang et al., Printable aligned single-walled carbon nanotube film with outstanding thermal conductivity and electromagnetic interference shielding performance. Nanomicro Lett. 14, 179 (2022). https://doi.org/10.1007/s40820-022-00883-9
Q. Wei, S. Pei, X. Qian, H. Liu, Z. Liu et al., Superhigh electromagnetic interference shielding of ultrathin aligned pristine graphene nanosheets film. Adv. Mater. 32, e1907411 (2020). https://doi.org/10.1002/adma.201907411
Q. Song, F. Ye, X. Yin, W. Li, H. Li et al., Carbon nanotube-multilayered graphene edge plane core-shell hybrid foams for ultrahigh-performance electromagnetic-interference shielding. Adv. Mater. 29, 1701583 (2017). https://doi.org/10.1002/adma.201701583
H. Wang, X. Sun, Y. Wang, K. Li, J. Wang et al., Acid enhanced zipping effect to densify MWCNT packing for multifunctional MWCNT films with ultra-high electrical conductivity. Nat. Commun. 14, 380 (2023). https://doi.org/10.1038/s41467-023-36082-2
Y.-J. Wan, X.-Y. Wang, X.-M. Li, S.-Y. Liao, Z.-Q. Lin et al., Ultrathin densified carbon nanotube film with “metal-like” conductivity, superior mechanical strength, and ultrahigh electromagnetic interference shielding effectiveness. ACS Nano 14, 14134–14145 (2020). https://doi.org/10.1021/acsnano.0c06971
A. Lekawa-Raus, J. Patmore, L. Kurzepa, J. Bulmer, K. Koziol, Electrical properties of carbon nanotube based fibers and their future use in electrical wiring. Adv. Funct. Mater. 24, 3661–3682 (2014). https://doi.org/10.1002/adfm.201303716
S. Badaire, V. Pichot, C. Zakri, P. Poulin, P. Launois et al., Correlation of properties with preferred orientation in coagulated and stretch-aligned single-wall carbon nanotubes. J. Appl. Phys. 96, 7509–7513 (2004). https://doi.org/10.1063/1.1810640
S. Zhang, J.G. Park, N. Nguyen, C. Jolowsky, A. Hao et al., Ultra-high conductivity and metallic conduction mechanism of scale-up continuous carbon nanotube sheets by mechanical stretching and stable chemical doping. Carbon 125, 649–658 (2017). https://doi.org/10.1016/j.carbon.2017.09.089
B. Li, Y. Yang, N. Wu, S. Zhao, H. Jin et al., Bicontinuous, high-strength, and multifunctional chemical-cross-linked MXene/superaligned carbon nanotube film. ACS Nano 16, 19293–19304 (2022). https://doi.org/10.1021/acsnano.2c08678
Y. Bai, R. Zhang, X. Ye, Z. Zhu, H. Xie et al., Carbon nanotube bundles with tensile strength over 80 GPa. Nat. Nanotechnol. 13, 589–595 (2018). https://doi.org/10.1038/s41565-018-0141-z
L. Qiu, H. Zou, X. Wang, Y. Feng, X. Zhang et al., Enhancing the interfacial interaction of carbon nanotubes fibers by Au nanops with improved performance of the electrical and thermal conductivity. Carbon 141, 497–505 (2019). https://doi.org/10.1016/j.carbon.2018.09.073
G. Wang, C. Sun, Y. Cai, Y. Ma, J. Ali Syed et al., Improvement of interface and electrical properties in carbon nanotube/nanocrystalline copper composite films. Mater. Chem. Phys. 223, 374–379 (2019). https://doi.org/10.1016/j.matchemphys.2018.11.025
G. Xu, J. Zhao, S. Li, X. Zhang, Z. Yong et al., Continuous electrodeposition for lightweight, highly conducting and strong carbon nanotube-copper composite fibers. Nanoscale 3, 4215–4219 (2011). https://doi.org/10.1039/C1NR10571J
B. Wu, J. Zhang, Z. Wei, S. Cai, Z. Liu, Chemical alignment of oxidatively shortened single-walled carbon nanotubes on silver surface. J. Phys. Chem. B 105, 5075–5078 (2001). https://doi.org/10.1021/jp0101256
Y. Choi, K.-D. Seong, Y. Piao, Metal–organic decomposition ink for printed electronics. Adv. Mater. Interfaces 6, 1901002 (2019). https://doi.org/10.1002/admi.201901002
A. Iqbal, F. Shahzad, K. Hantanasirisakul, M.K. Kim, J. Kwon et al., Anomalous absorption of electromagnetic waves by 2D transition metal carbonitride Ti3CNTx (MXene). Science 369, 446–450 (2020). https://doi.org/10.1126/science.aba7977
Y. Liu, Y. Wang, N. Wu, M. Han, W. Liu et al., Diverse structural design strategies of MXene-based macrostructure for high-performance electromagnetic interference shielding. Nano-Micro Lett. 15, 240 (2023). https://doi.org/10.1007/s40820-023-01203-5
A. Felten, C. Bittencourt, J.-F. Colomer, G. Van Tendeloo, J.-J. Pireaux, Nucleation of metal clusters on plasma treated multi wall carbon nanotubes. Carbon 45, 110–116 (2007). https://doi.org/10.1016/j.carbon.2006.07.023
N. Wang, S. Pandit, L. Ye, M. Edwards, V.R.S.S. Mokkapati et al., Efficient surface modification of carbon nanotubes for fabricating high performance CNT based hybrid nanostructures. Carbon 111, 402–410 (2017). https://doi.org/10.1016/j.carbon.2016.10.027
V. Gopee, O. Thomas, C. Hunt, V. Stolojan, J. Allam et al., Carbon nanotube interconnects realized through functionalization and sintered silver attachment. ACS Appl. Mater. Interfaces 8, 5563–5570 (2016). https://doi.org/10.1021/acsami.5b12057
C. Bittencourt, C. Navio, A. Nicolay, B. Ruelle, T. Godfroid et al., Atomic oxygen functionalization of vertically aligned carbon nanotubes. J. Phys. Chem. C 115, 20412–20418 (2011). https://doi.org/10.1021/jp2057699
Y. Dong, X. Li, S. Liu, Q. Zhu, M. Zhang et al., Optimizing formulations of silver organic decomposition ink for producing highly-conductive features on flexible substrates: the e study of amines. Thin Solid Films 616, 635–642 (2016). https://doi.org/10.1016/j.tsf.2016.09.024
J. Gao, X. Wu, Q. Li, S. Du, F. Huang et al., Template-free growth of well-ordered silver nano forest/ceramic metamaterial films with tunable optical responses. Adv. Mater. 29, 1605324 (2017). https://doi.org/10.1002/adma.201605324
X. Bai, S. Liao, Y. Huang, J. Song, Z. Liu et al., Continuous draw spinning of extra-long silver submicron fibers with micrometer patterning capability. Nano Lett. 17, 1883–1891 (2017). https://doi.org/10.1021/acs.nanolett.6b05205
J. Lee, D.M. Lee, Y. Jung, J. Park, H.S. Lee et al., Direct spinning and densification method for high-performance carbon nanotube fibers. Nat. Commun. 10, 2962 (2019). https://doi.org/10.1038/s41467-019-10998-0
N. Behabtu, M.J. Green, C.L. Pint, C.C. Young et al., Spontaneous dissolution of ultralong single- and multiwalled carbon nanotubes. ACS Nano 4, 3969–3978 (2010). https://doi.org/10.1021/nn100864v
J.W. Dear, C.G. Poll, K.T. Lai, M. Shkunov, Solution-processable transparent conducting films by defunctionalization of amine functionalized carbon nanotubes. J. Photonics Energy 8, 032221 (2018). https://doi.org/10.1117/1.JPE.8.032221
T. Zhou, Y. Niu, Z. Li, H. Li, Z. Yong et al., The synergetic relationship between the length and orientation of carbon nanotubes in direct spinning of high-strength carbon nanotube fibers. Mater. Des. 203, 109557 (2021). https://doi.org/10.1016/j.matdes.2021.109557
Y.L. Chen, B. Liu, X.Q. He, Y. Huang, K.C. Hwang, Failure analysis and the optimal toughness design of carbon nanotube-reinforced composites. Compos. Sci. Technol. 70, 1360–1367 (2010). https://doi.org/10.1016/j.compscitech.2010.04.015
S.B. Cronin, A.K. Swan, M.S. Ünlü, B.B. Goldberg, M.S. Dresselhaus et al., Resonant Raman spectroscopy of individual metallic and semiconducting single-wall carbon nanotubes under uniaxial strain. Phys. Rev. B 72, 035425 (2005). https://doi.org/10.1103/physrevb.72.035425
N. Kalashnyk, E. Faulques, J. Schjødt-Thomsen, L.R. Jensen, J.C.M. Rauhe et al., Strain sensing in single carbon fiber epoxy composites by simultaneous in situ Raman and piezoresistance measurements. Carbon 109, 124–130 (2016). https://doi.org/10.1016/j.carbon.2016.07.064
Q. Li, Y.-L. Kang, W. Qiu, Y.-L. Li, G.-Y. Huang et al., Deformation mechanisms of carbon nanotube fibres under tensile loading by in situ Raman spectroscopy analysis. Nanotechnology 22, 225704 (2011). https://doi.org/10.1088/0957-4484/22/22/225704
J.C. Fernández-Toribio, A. Mikhalchan, C. Santos, Á. Ridruejo, J.J. Vilatela, Understanding cooperative loading in carbon nanotube fibres through in situ structural studies during stretching. Carbon 156, 430–437 (2020). https://doi.org/10.1016/j.carbon.2019.09.070
Z.P. Wu, M.M. Li, Y.Y. Hu, Y.S. Li, Z.X. Wang et al., Electromagnetic interference shielding of carbon nanotube macrofilms. Scr. Mater. 64, 809–812 (2011). https://doi.org/10.1016/j.scriptamat.2011.01.002
M. Panahi-Sarmad, S. Samsami, A. Ghaffarkhah, S.A. Hashemi, S. Ghasemi et al., MOF-based electromagnetic shields multiscale design: nanoscale chemistry, microscale assembly, and macroscale manufacturing. Adv. Funct. Mater. (2023). https://doi.org/10.1002/adfm.202304473
H. Chen, Y. Wen, Y. Qi, Q. Zhao, L. Qu et al., Pristine titanium carbide MXene films with environmentally stable conductivity and superior mechanical strength. Adv. Funct. Mater. 30, 1906996 (2020). https://doi.org/10.1002/adfm.201906996
Y.-J. Wan, X.-M. Li, P.-L. Zhu, R. Sun, C.-P. Wong et al., Lightweight, flexible MXene/polymer film with simultaneously excellent mechanical property and high-performance electromagnetic interference shielding. Compos. Part A Appl. Sci. Manuf. 130, 105764 (2020). https://doi.org/10.1016/j.compositesa.2020.105764
X.-Y. Wang, S.-Y. Liao, H.-P. Huang, Q.-F. Wang, Y.-Y. Shi et al., Enhancing the chemical stability of MXene through synergy of hydrogen bond and coordination bond in aqueous solution. Small Methods 7, e2201694 (2023). https://doi.org/10.1002/smtd.202201694
H. Jia, X. Yang, Q.-Q. Kong, L.-J. Xie, Q.-G. Guo et al., Free-standing, anti-corrosion, super flexible graphene oxide/silver nanowire thin films for ultra-wideband electromagnetic interference shielding. J. Mater. Chem. A 9, 1180–1191 (2021). https://doi.org/10.1039/D0TA09246K
Z. Ma, H. Feng, Y. Feng, X. Ding, X. Wang et al., An ultralight and thermally conductive Ti3C2TxMXene–silver nanowire cellular composite film for high-performance electromagnetic interference shielding. J. Mater. Chem. C 10, 14169–14179 (2022). https://doi.org/10.1039/d2tc02856e
X. Zhang, X.-L. Tian, Y. Qin, J. Qiao, F. Pan et al., Conductive metal–organic frameworks with tunable dielectric properties for boosting electromagnetic wave absorption. ACS Nano 17, 12510–12518 (2023). https://doi.org/10.1021/acsnano.3c02170
R. Yang, X. Gui, L. Yao, Q. Hu, L. Yang et al., Ultrathin, lightweight, and flexible CNT buckypaper enhanced using MXenes for electromagnetic interference shielding. Nano-Micro Lett. 13, 66 (2021). https://doi.org/10.1007/s40820-021-00597-4
R. Kumar, S. Sahoo, E. Joanni, R.K. Singh, W.K. Tan et al., Recent progress on carbon-based composite materials for microwave electromagnetic interference shielding. Carbon 177, 304–331 (2021). https://doi.org/10.1016/j.carbon.2021.02.091
Y. Sun, X. Han, P. Guo, Z. Chai, J. Yue et al., Slippery graphene-bridging liquid metal layered heterostructure nanocomposite for stable high-performance electromagnetic interference shielding. ACS Nano 17, 12616–12628 (2023). https://doi.org/10.1021/acsnano.3c02975
N. Wu, Y. Yang, C. Wang, Q. Wu, F. Pan et al., Ultrathin cellulose nanofiber assisted ambient-pressure-dried, ultralight, mechanically robust, multifunctional MXene aerogels. Adv. Mater. 35, e2207969 (2023). https://doi.org/10.1002/adma.202207969
H.M. Kim, K. Kim, C.Y. Lee, J. Joo, S.J. Cho et al., Electrical conductivity and electromagnetic interference shielding of multiwalled carbon nanotube composites containing Fe catalyst. Appl. Phys. Lett. 84, 589–591 (2004). https://doi.org/10.1063/1.1641167
N. Masuda, N. Tamaki, T. Kuriyama, J.C. Bu, M. Yamaguchi et al., High frequency magnetic near field measurement on LSI chip using planar multi-layer shielded loop coil, in 2003 IEEE Symposium on Electromagnetic Compatibility. Symposium Record (Cat. No.03CH37446) (IEEE, Boston, 2003), pp. 80–85
H.-N. Lin, C.-H. Wu, J.-F. Huang, W.-D. Tseng, J.Y.-T. Lin et al., Near-and far-field shielding effectiveness analysis of magnetic materials and their effect on wireless power charger, in 2018 IEEE International Symposium on Electromagnetic Compatibility and 2018 IEEE Asia-Pacific Symposium on Electromagnetic Compatibility (EMC/APEMC) (IEEE, Suntec City, 2018), pp. 1071–1076
D. Baudry, C. Arcambal, A. Louis, B. Mazari, P. Eudeline, Applications of the near-field techniques in EMC investigations. IEEE Trans. Electromagn. Compat. 49, 485–493 (2007). https://doi.org/10.1109/TEMC.2007.902194