Insights into Nano- and Micro-Structured Scaffolds for Advanced Electrochemical Energy Storage
Corresponding Author: Yong Lei
Nano-Micro Letters,
Vol. 16 (2024), Article Number: 130
Abstract
Adopting a nano- and micro-structuring approach to fully unleashing the genuine potential of electrode active material benefits in-depth understandings and research progress toward higher energy density electrochemical energy storage devices at all technology readiness levels. Due to various challenging issues, especially limited stability, nano- and micro-structured (NMS) electrodes undergo fast electrochemical performance degradation. The emerging NMS scaffold design is a pivotal aspect of many electrodes as it endows them with both robustness and electrochemical performance enhancement, even though it only occupies complementary and facilitating components for the main mechanism. However, extensive efforts are urgently needed toward optimizing the stereoscopic geometrical design of NMS scaffolds to minimize the volume ratio and maximize their functionality to fulfill the ever-increasing dependency and desire for energy power source supplies. This review will aim at highlighting these NMS scaffold design strategies, summarizing their corresponding strengths and challenges, and thereby outlining the potential solutions to resolve these challenges, design principles, and key perspectives for future research in this field. Therefore, this review will be one of the earliest reviews from this viewpoint.
Highlights:
1 Recent advances in electrochemical energy storage based on nano- and micro-structured (NMS) scaffolds are summarized and discussed.
2 The fundamentals, superiorities, and design principle of NMS scaffolds are outlined.
3 Given the present progress, the ongoing challenges and promising perspectives are highlighted.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S. Chu, A. Majumdar, Opportunities and challenges for a sustainable energy future. Nature 488, 294–303 (2012). https://doi.org/10.1038/nature11475
- P. Meng, J. Huang, Z. Yang, M. Jiang, Y. Wang et al., Air-stable binary hydrated eutectic electrolytes with unique solvation structure for rechargeable aluminum-ion batteries. Nano-Micro Lett. 15, 188 (2023). https://doi.org/10.1007/s40820-023-01160-z
- B. Shi, L. Li, A. Chen, T.-C. Jen, X. Liu et al., Continuous fabrication of Ti3C2Tx MXene-based braided coaxial zinc-ion hybrid supercapacitors with improved performance. Nano-Micro Lett. 14, 34 (2021). https://doi.org/10.1007/s40820-021-00757-6
- R. Xu, L. Du, D. Adekoya, G. Zhang, S. Zhang et al., Well-defined nanostructures for electrochemical energy conversion and storage. Adv. Energy Mater. 11, 2001537 (2021). https://doi.org/10.1002/aenm.202001537
- M.R. Begley, D.S. Gianola, T.R. Ray, Bridging functional nanocomposites to robust macroscale devices. Science 364, eaav4299 (2019). https://doi.org/10.1126/science.aav4299
- C. Huang, X. Chen, Z. Xue, T. Wang, Effect of structure: a new insight into nanop assemblies from inanimate to animate. Sci. Adv. 6, eaba1321 (2020). https://doi.org/10.1126/sciadv.aba1321
- E. Pomerantseva, F. Bonaccorso, X. Feng, Y. Cui, Y. Gogotsi, Energy storage: the future enabled by nanomaterials. Science 366, eaan8285 (2019). https://doi.org/10.1126/science.aan8285
- Y. Lu, G. Zhang, H. Zhou, S. Cao, Y. Zhang et al., Enhanced active sites and stability in nano-MOFs for electrochemical energy storage through dual regulation by tannic acid. Angew. Chem. Int. Ed. 62, e202311075 (2023). https://doi.org/10.1002/anie.202311075
- Y. Kuang, C. Chen, D. Kirsch, L. Hu, Thick electrode batteries: principles, opportunities, and challenges. Adv. Energy Mater. 9, 1901457 (2019). https://doi.org/10.1002/aenm.201901457
- Editorials, Nanotechnology for electrochemical energy storage. Nat. Nanotechnol. 18, 1117 (2023). https://doi.org/10.1038/s41565-023-01529-6
- E. Pameté, L. Köps, F.A. Kreth, S. Pohlmann, A. Varzi et al., The many deaths of supercapacitors: degradation, aging, and performance fading. Adv. Energy Mater. 13, 2370125 (2023). https://doi.org/10.1002/aenm.202370125
- W. Zhang, Y. Liu, Z. Guo, Approaching high-performance potassium-ion batteries via advanced design strategies and engineering. Sci. Adv. 5, eaav7412 (2019). https://doi.org/10.1126/sciadv.aav7412
- W. Chen, K. Yang, M. Luo, D. Zhang, Z. Li et al., Carbonization-free wood electrode with MXene-reconstructed porous structure for all-wood eco-supercapacitors. EcoMat 5, e12271 (2023). https://doi.org/10.1002/eom2.12271
- X.R. Li, H.P. Li, X.Q. Fan, X.L. Shi, J.J. Liang, 3D-printed stretchable micro-supercapacitor with remarkable areal performance. Adv. Energy Mater. 10(14), 1903794 (2020). https://doi.org/10.1002/aenm.201903794
- D. Li, X. Ren, Q. Ai, Q. Sun, L. Zhu et al., Facile fabrication of nitrogen-doped porous carbon as superior anode material for potassium-ion batteries. Adv. Energy Mater. 8, 1802386 (2018). https://doi.org/10.1002/aenm.201802386
- J. Xue, L. Gao, X. Hu, K. Cao, W. Zhou et al., Stereolithographic 3D printing-based hierarchically cellular lattices for high-performance quasi-solid supercapacitor. Nano-Micro Lett. 11, 46 (2019). https://doi.org/10.1007/s40820-019-0280-2
- J. Yang, Q. Cao, X. Tang, J. Du, T. Yu et al., 3D-printed highly stretchable conducting polymer electrodes for flexible supercapacitors. J. Mater. Chem. A 9, 19649–19658 (2021). https://doi.org/10.1039/D1TA02617H
- Z. Lei, L. Liu, H. Zhao, F. Liang, S. Chang et al., Nanoelectrode design from microminiaturized honeycomb monolith with ultrathin and stiff nanoscaffold for high-energy micro-supercapacitors. Nat. Commun. 11, 299 (2020). https://doi.org/10.1038/s41467-019-14170-6
- B. Asbani, G. Buvat, J. Freixas, M. Huvé, D. Troadec et al., Ultra-high areal capacitance and high rate capability RuO2 thin film electrodes for 3D micro-supercapacitors. Energy Storage Mater. 42, 259–267 (2021). https://doi.org/10.1016/j.ensm.2021.07.038
- S. Ni, M. Zhang, C. Li, R. Gao, J. Sheng et al., A 3D framework with Li3N–Li2S solid electrolyte interphase and fast ion transfer channels for a stabilized lithium-metal anode. Adv. Mater. 35, 2209028 (2023). https://doi.org/10.1002/adma.202209028
- S.D. Lacey, D.J. Kirsch, Y. Li, J.T. Morgenstern, B.C. Zarket et al., Extrusion-based 3D printing of hierarchically porous advanced battery electrodes. Adv. Mater. 30, e1705651 (2018). https://doi.org/10.1002/adma.201705651
- X. Fu, Y. Zhou, J. Huang, L. Feng, P. Yu et al., Rethinking the electrode multiscale microstructures: a review on structuring strategies toward battery manufacturing genome. Adv. Energy Mater. 13, 2301385 (2023). https://doi.org/10.1002/aenm.202301385
- G. Shao, D.A.H. Hanaor, X. Shen, A. Gurlo, Freeze ting: from low-dimensional building blocks to aligned porous structures-a review of novel materials, methods, and applications. Adv. Mater. 32, e1907176 (2020). https://doi.org/10.1002/adma.201907176
- X. Fan, C. Deng, H. Gao, B. Jiao, Y. Liu et al., 3D printing of nanowrinkled architectures via laser direct assembly. Sci. Adv. 8, eabn9942 (2022). https://doi.org/10.1126/sciadv.abn9942
- W. Ouyang, X. Xu, W. Lu, N. Zhao, F. Han et al., Ultrafast 3D nanofabrication via digital holography. Nat. Commun. 14, 1716 (2023). https://doi.org/10.1038/s41467-023-37163-y
- M.A. Brown, K.M. Zappitelli, L. Singh, R.C. Yuan, M. Bemrose et al., Direct laser writing of 3D electrodes on flexible substrates. Nat. Commun. 14, 3610 (2023). https://doi.org/10.1038/s41467-023-39152-7
- H. Zhao, C. Wang, R. Vellacheri, M. Zhou, Y. Xu et al., Self-supported metallic nanopore arrays with highly oriented nanoporous structures as ideally nanostructured electrodes for supercapacitor applications. Adv. Mater. 26, 7654–7659 (2014). https://doi.org/10.1002/adma.201402766
- C. Liu, E.I. Gillette, X. Chen, A.J. Pearse, A.C. Kozen et al., An all-in-one nanopore battery array. Nat. Nanotechnol. 9, 1031–1039 (2014). https://doi.org/10.1038/nnano.2014.247
- H. Ning, J.H. Pikul, R. Zhang, X. Li, S. Xu et al., Holographic patterning of high-performance on-chip 3D lithium-ion microbatteries. Proc. Natl. Acad. Sci. U.S.A. 112, 6573–6578 (2015). https://doi.org/10.1073/pnas.1423889112
- X. Rui, W. Sun, C. Wu, Y. Yu, Q. Yan, An advanced sodium-ion battery composed of carbon coated Na3V2(PO4)3 in a porous graphene network. Adv. Mater. 27, 6670–6676 (2015). https://doi.org/10.1002/adma.201502864
- K. Qin, E. Liu, J. Li, J. Kang, C. Shi et al., Supercapacitors: free-standing 3D nanoporous duct-like and hierarchical nanoporous graphene films for micron-level flexible solid-state asymmetric supercapacitors. Adv. Energy Mater. 6, 1670107 (2016). https://doi.org/10.1002/aenm.201670107
- J. Chen, J. Xu, S. Zhou, N. Zhao, C.-P. Wong, Nitrogen-doped hierarchically porous carbon foam: a free-standing electrode and mechanical support for high-performance supercapacitors. Nano Energy 25, 193–202 (2016). https://doi.org/10.1016/j.nanoen.2016.04.037
- C. Chen, Y. Zhang, Y. Li, J. Dai, J. Song et al., All-wood, low tortuosity, aqueous, biodegradable supercapacitors with ultra-high capacitance. Energy Environ. Sci. 10, 538–545 (2017). https://doi.org/10.1039/C6EE03716J
- J. Kang, J. Kim, S. Lee, S. Wi, C. Kim et al., Breathable carbon-free electrode: black TiO2 with hierarchically ordered porous structure for stable Li–O2 battery. Adv. Energy Mater. 7, 1700814 (2017). https://doi.org/10.1002/aenm.201700814
- X. Wang, W. Zeng, L. Hong, W. Xu, H. Yang et al., Stress-driven lithium dendrite growth mechanism and dendrite mitigation by electroplating on soft substrates. Nat. Energy 3, 227–235 (2018). https://doi.org/10.1038/s41560-018-0104-5
- X. Peng, L. Zhang, Z. Chen, L. Zhong, D. Zhao et al., Hierarchically porous carbon plates derived from wood as bifunctional ORR/OER electrodes. Adv. Mater. 31, e1900341 (2019). https://doi.org/10.1002/adma.201900341
- X. Lu, Y. Yin, L. Zhang, S. Huang, L. Xi et al., 3D Ag/NiO-Fe2O3/Ag nanomembranes as carbon-free cathode materials for Li–O2 batteries. Energy Storage Mater. 16, 155–162 (2019). https://doi.org/10.1016/j.ensm.2018.05.002
- J. Shang, Q. Huang, L. Wang, Y. Yang, P. Li et al., Soft hybrid scaffold (SHS) strategy for realization of ultrahigh energy density of wearable aqueous supercapacitors. Adv. Mater. 32, e1907088 (2020). https://doi.org/10.1002/adma.201907088
- S.G. Patnaik, J. Shamsudeen Seenath, D. Bourrier, S. Prabhudev, D. Guay et al., Porous RuOxNySz electrodes for microsupercapacitors and microbatteries with enhanced areal performance. ACS Energy Lett. 6, 131–139 (2021). https://doi.org/10.1021/acsenergylett.0c02017
- P. Zhai, T. Wang, H. Jiang, J. Wan, Y. Wei et al., 3D artificial solid-electrolyte interphase for lithium metal anodes enabled by insulator-metal-insulator layered heterostructures. Adv. Mater. 33, e2006247 (2021). https://doi.org/10.1002/adma.202006247
- Y. Zhuang, D. Deng, L. Lin, B. Liu, S. Qu et al., Ion-conductive gradient sodiophilic 3D scaffold induced homogeneous sodium deposition for highly stable sodium metal batteries. Nano Energy 97, 107202 (2022). https://doi.org/10.1016/j.nanoen.2022.107202
- X. Li, S. Ling, L. Zeng, H. He, X. Liu et al., Directional freezing assisted 3D printing to solve a flexible battery dilemma: ultrahigh energy/power density and uncompromised mechanical compliance. Adv. Energy Mater. 12, 2200233 (2022). https://doi.org/10.1002/aenm.202200233
- J. Ruan, D. Ma, K. Ouyang, S. Shen, M. Yang et al., 3D artificial array interface engineering enabling dendrite-free stable Zn metal anode. Nano-Micro Lett. 15, 37 (2023). https://doi.org/10.1007/s40820-022-01007-z
- G. Hyun, M. Park, G. Bae, J.-W. Chung, Y. Ham et al., Unraveling the significance of Li+/e–/O2 phase boundaries with a 3D-patterned Cu electrode for Li–O2 batteries. Adv. Funct. Mater. 33, 2303059 (2023). https://doi.org/10.1002/adfm.202303059
- T. Zhang, F. Ran, Design strategies of 3D carbon-based electrodes for charge/ion transport in lithium ion battery and sodium ion battery. Adv. Funct. Mater. 31, 2010041 (2021). https://doi.org/10.1002/adfm.202010041
- B. Bounor, B. Asbani, C. Douard, F. Favier, T. Brousse et al., On chip MnO2-based 3D micro-supercapacitors with ultra-high areal energy density. Energy Storage Mater. 38, 520–527 (2021). https://doi.org/10.1016/j.ensm.2021.03.034
- S.J. Yeo, M.J. Oh, P.J. Yoo, Structurally controlled cellular architectures for high-performance ultra-lightweight materials. Adv. Mater. 31, e1803670 (2019). https://doi.org/10.1002/adma.201803670
- W. Li, X. Guo, P. Geng, M. Du, Q. Jing et al., Rational design and general synthesis of multimetallic metal-organic framework nano-octahedra for enhanced Li–S battery. Adv. Mater. 33, e2105163 (2021). https://doi.org/10.1002/adma.202105163
- Y. Liu, Y. Zhu, Y. Cui, Challenges and opportunities towards fast-charging battery materials. Nat. Energy 4, 540–550 (2019). https://doi.org/10.1038/s41560-019-0405-3
- H. Hamed, S. Yari, J. D’Haen, F.U. Renner, N. Reddy et al., Demystifying charge transport limitations in the porous electrodes of lithium-ion batteries. Adv. Energy Mater. 10, 2002492 (2020). https://doi.org/10.1002/aenm.202002492
- S. Li, D. Liu, G. Wang, P. Ma, X. Wang et al., Vertical 3D nanostructures boost efficient hydrogen production coupled with glycerol oxidation under alkaline conditions. Nano-Micro Lett. 15, 189 (2023). https://doi.org/10.1007/s40820-023-01150-1
- D. Nepal, S. Kang, K.M. tedt, K. Kanhaiya, M.R. Bockstaller et al., Hierarchically structured bioinspired nanocomposites. Nat. Mater. 22, 18–35 (2023). https://doi.org/10.1038/s41563-022-01384-1
- C. Qi, F. Jiang, S. Yang, Advanced honeycomb designs for improving mechanical properties: a review. Compos. Part B Eng. 227, 109393 (2021). https://doi.org/10.1016/j.compositesb.2021.109393
- C. Chen, Y. Kuang, S. Zhu, I. Burgert, T. Keplinger et al., Structure–property–function relationships of natural and engineered wood. Nat. Rev. Mater. 5, 642–666 (2020). https://doi.org/10.1038/s41578-020-0195-z
- Z. Niu, W. Zhao, B. Wu, H. Wang, W.-F. Lin et al., π learning: a performance-informed framework for microstructural electrode design. Adv. Energy Mater. 13, 2370067 (2023). https://doi.org/10.1002/aenm.202370067
- Z. Yao, Y. Lum, A. Johnston, L.M. Mejia-Mendoza, X. Zhou et al., Machine learning for a sustainable energy future. Nat. Rev. Mater. 8, 202–215 (2022). https://doi.org/10.1038/s41578-022-00490-5
- Z. Chen, D.L. Danilov, R.-A. Eichel, P.H.L. Notten, Porous electrode modeling and its applications to Li-ion batteries. Adv. Energy Mater. 12, 2201506 (2022). https://doi.org/10.1002/aenm.202201506
- D.P. Finegan, I. Squires, A. Dahari, S. Kench, K.L. Jungjohann et al., Machine-learning-driven advanced characterization of battery electrodes. ACS Energy Lett. 7, 4368–4378 (2022). https://doi.org/10.1021/acsenergylett.2c01996
- L. Snarski, I. Biran, T. Bendikov, I. Pinkas, M.A. Iron et al., Highly conductive robust carbon nanotube networks for strong buckypapers and transparent electrodes. Adv. Funct. Mater. (2023). https://doi.org/10.1002/adfm.202309742
- Y. Chao, R. Jalili, Y. Ge, C. Wang, T. Zheng et al., Self-assembly of flexible free-standing 3D porous MoS2-reduced graphene oxide structure for high-performance lithium-ion batteries. Adv. Funct. Mater. 27, 1700234 (2017). https://doi.org/10.1002/adfm.201700234
- K. Lu, Z. Hu, J. Ma, H. Ma, L. Dai et al., A rechargeable iodine-carbon battery that exploits ion intercalation and iodine redox chemistry. Nat. Commun. 8, 527 (2017). https://doi.org/10.1038/s41467-017-00649-7
- A. Ferris, S. Garbarino, D. Guay, D. Pech, 3D RuO2 microsupercapacitors with remarkable areal energy. Adv. Mater. 27, 6625–6629 (2015). https://doi.org/10.1002/adma.201503054
- G.V. Alexander, C. Shi, J. O’Neill, E.D. Wachsman, Extreme lithium-metal cycling enabled by a mixed ion- and electron-conducting garnet three-dimensional architecture. Nat. Mater. 22, 1136–1143 (2023). https://doi.org/10.1038/s41563-023-01627-9
- H. Bian, R. Dong, Q. Shao, S. Wang, M.-F. Yuen et al., Water-enabled crystallization of mesoporous SnO2 as a binder-free electrode for enhanced sodium storage. J. Mater. Chem. A 5, 23967–23975 (2017). https://doi.org/10.1039/C7TA08228B
- Y. Katsuyama, N. Haba, H. Kobayashi, K. Iwase, A. Kudo et al., Macro- and nano-porous 3D-hierarchical carbon lattices for extraordinarily high capacitance supercapacitors. Adv. Funct. Mater. 32, 2201544 (2022). https://doi.org/10.1002/adfm.202201544
- J. Tao, F. Yang, T. Wu, J. Shi, H.-B. Zhao et al., Thermal insulation, flame retardancy, smoke suppression, and reinforcement of rigid polyurethane foam enabled by incorporating a P/Cu-hybrid silica aerogel. Chem. Eng. J. 461, 142061 (2023). https://doi.org/10.1016/j.cej.2023.142061
- C. Yan, Y.-J. Luo, W.-G. Zhang, Z.-F. Zhu, P.-Y. Li et al., Preparation of a novel melamine foam structure and properties. J. Appl. Polym. Sci. 139, e51992 (2022). https://doi.org/10.1002/app.51992
- X. Li, F. Chen, B. Zhao, S. Zhang, X. Zheng et al., Ultrafast synthesis of metal-layered hydroxides in a dozen seconds for high-performance aqueous Zn (micro-) battery. Nano-Micro Lett. 15, 32 (2023). https://doi.org/10.1007/s40820-022-01004-2
- Y. Ma, L. Wei, Y. Gu, J. Hu, Y. Chen et al., High-performance Li–O2 batteries based on all-graphene backbone. Adv. Funct. Mater. 30, 2007218 (2020). https://doi.org/10.1002/adfm.202007218
- X. Yao, Y. Zhao, Three-dimensional porous graphene networks and hybrids for lithium-ion batteries and supercapacitors. Chem 2, 171–200 (2017). https://doi.org/10.1016/j.chempr.2017.01.010
- P. Sun, X. Li, J. Shao, P.V. Braun, High-performance packaged 3D lithium-ion microbatteries fabricated using imprint lithography. Adv. Mater. 33, e2006229 (2021). https://doi.org/10.1002/adma.202006229
- Z. Cai, F. Tang, Y. Yang, S. Xu, C. Xu et al., A multifunctional super-sodiophilic coating on aluminum current collector for high-performance anode-free Na-metal batteries. Nano Energy 116, 108814 (2023). https://doi.org/10.1016/j.nanoen.2023.108814
- L. Ren, Y. Li, N. Zhang, Z. Li, X. Lin et al., Nanostructuring of Mg-based hydrogen storage materials: recent advances for promoting key applications. Nano-Micro Lett. 15, 93 (2023). https://doi.org/10.1007/s40820-023-01041-5
- I. Hussain, C. Lamiel, S. Sahoo, M.S. Javed, M. Ahmad et al., Animal- and human-inspired nanostructures as supercapacitor electrode materials: a review. Nano-Micro Lett. 14, 199 (2022). https://doi.org/10.1007/s40820-022-00944-z
- Z. Pan, Y. Qian, Y. Li, X. Xie, N. Lin et al., Novel bilayer-shelled N, O-doped hollow porous carbon microspheres as high performance anode for potassium-ion hybrid capacitors. Nano-Micro Lett. 15, 151 (2023). https://doi.org/10.1007/s40820-023-01113-6
- Y. Wang, S. Sun, X. Wu, H. Liang, W. Zhang, Status and opportunities of zinc ion hybrid capacitors: focus on carbon materials, current collectors, and separators. Nano-Micro Lett. 15, 78 (2023). https://doi.org/10.1007/s40820-023-01065-x
- H.D. Abruña, Y. Kiya, J.C. Henderson, Batteries and electrochemical capacitors. Phys. Today 61, 43–47 (2008). https://doi.org/10.1063/1.3047681
- J. Liu, J. Wang, C. Xu, H. Jiang, C. Li et al., Advanced energy storage devices: basic principles, analytical methods, and rational materials design. Adv. Sci. 5, 1700322 (2017). https://doi.org/10.1002/advs.201700322
- S. Seenivasan, K.I. Shim, C. Lim, T. Kavinkumar, A.T. Sivagurunathan et al., Boosting pseudocapacitive behavior of supercapattery electrodes by incorporating a Schottky junction for ultrahigh energy density. Nano-Micro Lett. 15, 62 (2023). https://doi.org/10.1007/s40820-023-01016-6
- C. Choi, D.S. Ashby, D.M. Butts, R.H. DeBlock, Q. Wei et al., Achieving high energy density and high power density with pseudocapacitive materials. Nat. Rev. Mater. 5, 5–19 (2020). https://doi.org/10.1038/s41578-019-0142-z
- J. Qiu, H. Zhao, Y. Lei, Emerging smart design of electrodes for micro-supercapacitors: a review. SmartMat 3, 447–473 (2022). https://doi.org/10.1002/smm2.1094
- X. Chen, W. Li, G. Zhang, F. Sun, Q. Jing et al., Highly stable and activated Cerium-based MOFs superstructures for ultrahigh selective uranium (VI) capture from simulated seawater. Mater. Today Chem. 23, 100705 (2022). https://doi.org/10.1016/j.mtchem.2021.100705
- F. Wang, J.Y. Cheong, J. Lee, J. Ahn, G. Duan et al., Pyrolysis of enzymolysis-treated wood: hierarchically assembled porous carbon electrode for advanced energy storage devices. Adv. Funct. Mater. 31, 2101077 (2021). https://doi.org/10.1002/adfm.202101077
- K. Liu, R. Mo, W. Dong, W. Zhao, F. Huang, Nature-derived, structure and function integrated ultra-thick carbon electrode for high-performance supercapacitors. J. Mater. Chem. A 8, 20072–20081 (2020). https://doi.org/10.1039/D0TA06108E
- J. Xu, J. Lei, N. Ming, C. Zhang, K. Huo, Rational design of wood-structured thick electrode for electrochemical energy storage. Adv. Funct. Mater. 32, 2204426 (2022). https://doi.org/10.1002/adfm.202204426
- C. Guan, J. Liu, Y. Wang, L. Mao, Z. Fan et al., Iron oxide-decorated carbon for supercapacitor anodes with ultrahigh energy density and outstanding cycling stability. ACS Nano 9, 5198–5207 (2015). https://doi.org/10.1021/acsnano.5b00582
- Z. Liang, Y. Wang, B. Pei, S.-B. Son, M. Nguyen et al., 3D-integrated, multi-functional carbon fibers for stable, high-areal-capacity batteries. Adv. Energy Mater. 13, 2301295 (2023). https://doi.org/10.1002/aenm.202301295
- X. Wan, T. Mu, G. Yin, Intrinsic self-healing chemistry for next-generation flexible energy storage devices. Nano-Micro Lett. 15, 99 (2023). https://doi.org/10.1007/s40820-023-01075-9
- H. He, J. Lian, C. Chen, Q. Xiong, C.C. Li et al., Enabling multi-chemisorption sites on carbon nanofibers cathodes by an In-situ exfoliation strategy for high-performance Zn-ion hybrid capacitors. Nano-Micro Lett. 14, 106 (2022). https://doi.org/10.1007/s40820-022-00839-z
- J. Ahn, H. Han, J.-H. Ha, Y. Jeong, Y. Jung et al., Micro-/nanohierarchical structures physically engineered on surfaces: analysis and perspective. Adv. Mater. (2023). https://doi.org/10.1002/adma.202300871
- M. Li, S. Zhou, L. Cheng, F. Mo, L. Chen et al., 3D printed supercapacitor: techniques, materials, designs, and applications. Adv. Funct. Mater. 33, 2208034 (2023). https://doi.org/10.1002/adfm.202208034
- D. Lin, S. Chandrasekaran, J.-B. Forien, X. Xue, A. Pinongcos et al., 3D-printed graded electrode with ultrahigh MnO2 loading for non-aqueous electrochemical energy storage. Adv. Energy Mater. 13, 2300408 (2023). https://doi.org/10.1002/aenm.202300408
- M. Sha, H. Zhao, Y. Lei, Updated insights into 3D architecture electrodes for micropower sources. Adv. Mater. 33, e2103304 (2021). https://doi.org/10.1002/adma.202103304
- A. Varzi, L. Mattarozzi, S. Cattarin, P. Guerriero, S. Passerini, 3D porous Cu–Zn alloys as alternative anode materials for Li-ion batteries with superior low T performance. Adv. Energy Mater. 8, 1701706 (2018). https://doi.org/10.1002/aenm.201701706
- T. Wang, X. Tian, L. Li, L. Lu, S. Hou et al., 3D printing-based cellular microelectrodes for high-performance asymmetric quasi-solid-state micro-pseudocapacitors. J. Mater. Chem. A 8, 1749–1756 (2020). https://doi.org/10.1039/C9TA11386J
- Z. Qi, J. Ye, W. Chen, J. Biener, E.B. Duoss et al., Compressible electrodes: 3D-printed, superelastic polypyrrole–graphene electrodes with ultrahigh areal capacitance for electrochemical energy storage. Adv. Mater. Technol. 3, 1800053 (2018). https://doi.org/10.1002/admt.201870026
- X. Tang, H. Zhou, Z. Cai, D. Cheng, P. He et al., Generalized 3D printing of graphene-based mixed-dimensional hybrid aerogels. ACS Nano 12, 3502–3511 (2018). https://doi.org/10.1021/acsnano.8b00304
- Y. Gao, Y. Lin, J. Chen, Q. Lin, Y. Wu et al., Three-dimensional nanotube electrode arrays for hierarchical tubular structured high-performance pseudocapacitors. Nanoscale 8, 13280–13287 (2016). https://doi.org/10.1039/c6nr03337g
- Y. Gao, Y. Lin, Z. Peng, Q. Zhou, Z. Fan, Accelerating ion diffusion with unique three-dimensionally interconnected nanopores for self-membrane high-performance pseudocapacitors. Nanoscale 9, 18311–18317 (2017). https://doi.org/10.1039/c7nr06234f
- Y. Jiang, Z. Zhang, D. Chen, J. Du, Y. Yang et al., Vertical growth of 2D covalent organic framework nanoplatelets on a macroporous scaffold for high-performance electrodes. Adv. Mater. 34, e2204250 (2022). https://doi.org/10.1002/adma.202204250
- B. Zhang, X. Li, J. Zou, F. Kim, MnCO3 on graphene porous framework via diffusion-driven layer-by-layer assembly for high-performance pseudocapacitor. ACS Appl. Mater. Interfaces 12, 47695–47703 (2020). https://doi.org/10.1021/acsami.0c15511
- M.F. El-Kady, M. Ihns, M. Li, J.Y. Hwang, M.F. Mousavi et al., Engineering three-dimensional hybrid supercapacitors and microsupercapacitors for high-performance integrated energy storage. Proc. Natl. Acad. Sci. U.S.A. 112, 4233–4238 (2015). https://doi.org/10.1073/pnas.1420398112
- J. Du, Q. Cao, X. Tang, X. Xu, X. Long et al., 3D printing-assisted gyroidal graphite foam for advanced supercapacitors. Chem. Eng. J. 416, 127885 (2021). https://doi.org/10.1016/j.cej.2020.127885
- X. Chang, M.F. El-Kady, A. Huang, C.-W. Lin, S. Aguilar et al., 3D graphene network with covalently grafted aniline tetramer for ultralong-life supercapacitors. Adv. Funct. Mater. 31, 2102397 (2021). https://doi.org/10.1002/adfm.202102397
- J. Li, M. Zhu, Z. An, Z. Wang, M. Toda et al., Constructing in-chip micro-supercapacitors of 3D graphene nanowall/ruthenium oxides electrode through silicon-based microfabrication technique. J. Power. Sources 401, 204–212 (2018). https://doi.org/10.1016/j.jpowsour.2018.08.099
- Y.-Q. Li, X.-M. Shi, X.-Y. Lang, Z. Wen, J.-C. Li et al., Remarkable improvements in volumetric energy and power of 3D MnO2 microsupercapacitors by tuning crystallographic structures. Adv. Funct. Mater. 26, 1830–1839 (2016). https://doi.org/10.1002/adfm.201504886
- F. Grote, Y. Lei, A complete three-dimensionally nanostructured asymmetric supercapacitor with high operating voltage window based on PPy and MnO2. Nano Energy 10, 63–70 (2014). https://doi.org/10.1016/j.nanoen.2014.08.019
- L. Li, J. Meng, X. Bao, Y. Huang, X.-P. Yan et al., Direct-ink-write 3D printing of programmable micro-supercapacitors from MXene-regulating conducting polymer inks. Adv. Energy Mater. 13, 2203683 (2023). https://doi.org/10.1002/aenm.202203683
- M.-Y. Zhang, Y. Song, D. Guo, D. Yang, X. Sun et al., Strongly coupled polypyrrole/molybdenum oxide hybrid films via electrochemical layer-by-layer assembly for pseudocapacitors. J. Mater. Chem. A 7, 9815–9821 (2019). https://doi.org/10.1039/C9TA00705A
- J. Gong, J.-C. Li, J. Yang, S. Zhao, Z. Yang et al., High-performance flexible in-plane micro-supercapacitors based on vertically aligned CuSe@Ni(OH)2 hybrid nanosheet films. ACS Appl. Mater. Interfaces 10, 38341–38349 (2018). https://doi.org/10.1021/acsami.8b12543
- T.M. Dinh, A. Achour, S. Vizireanu, G. Dinescu, L. Nistor et al., Hydrous RuO2/carbon nanowalls hierarchical structures for all-solid-state ultrahigh-energy-density micro-supercapacitors. Nano Energy 10, 288–294 (2014). https://doi.org/10.1016/j.nanoen.2014.10.003
- J. Li, M. Zhu, Z. Wang, T. Ono, Engineering micro-supercapacitors of graphene nanowalls/ni heterostructure based on microfabrication technology. Appl. Phys. Lett. 109, 153901 (2016). https://doi.org/10.1063/1.4964787
- C. Kim, J. Sul, J.H. Moon, Semiconductor process fabrication of multiscale porous carbon thin films for energy storage devices. Energy Storage Mater. 57, 308–315 (2023). https://doi.org/10.1016/j.ensm.2023.02.026
- X. Yu, N. Li, S. Zhang, C. Liu, L. Chen et al., Ultra-thick 3D graphene frameworks with hierarchical pores for high-performance flexible micro-supercapacitors. J. Power. Sources 478, 229075 (2020). https://doi.org/10.1016/j.jpowsour.2020.229075
- S. Sollami Delekta, M.M. Laurila, M. Mäntysalo, J. Li, Drying-mediated self-assembly of graphene for inkjet printing of high-rate micro-supercapacitors. Nano-Micro Lett. 12, 40 (2020). https://doi.org/10.1007/s40820-020-0368-8
- B. Yao, S. Chandrasekaran, J. Zhang, W. Xiao, F. Qian et al., Efficient 3D printed pseudocapacitive electrodes with ultrahigh MnO2 loading. Joule 3, 459–470 (2019). https://doi.org/10.1016/j.joule.2018.09.020
- T. Lv, G. Zhu, S. Dong, Q. Kong, Y. Peng et al., Co-intercalation of dual charge carriers in metal-ion-confining layered vanadium oxide nanobelts for aqueous zinc-ion batteries. Angew. Chem. Int. Ed. 62, e202216089 (2023). https://doi.org/10.1002/anie.202216089
- Y. Su, J. Hu, G. Yuan, G. Zhang, W. Wei et al., Regulating intramolecular electron transfer of nickel-based coordinations through ligand engineering for aqueous batteries. Adv. Mater. 35, e2307003 (2023). https://doi.org/10.1002/adma.202307003
- S. Shi, Y. Li, B.-N. Ngo-Dinh, J. Markmann, J. Weissmüller, Scaling behavior of stiffness and strength of hierarchical network nanomaterials. Science 371, 1026–1033 (2021). https://doi.org/10.1126/science.abd9391
- Y. Kuang, C. Chen, G. Pastel, Y. Li, J. Song et al., Conductive cellulose nanofiber enabled thick electrode for compact and flexible energy storage devices. Adv. Energy Mater. 8, 1802398 (2018). https://doi.org/10.1002/aenm.201802398
- Y.-Q. Li, H. Shi, S.-B. Wang, Y.-T. Zhou, Z. Wen et al., Dual-phase nanostructuring of layered metal oxides for high-performance aqueous rechargeable potassium ion microbatteries. Nat. Commun. 10, 4292 (2019). https://doi.org/10.1038/s41467-019-12274-7
- D. Feng, H. Yang, X. Guo, 3-dimensional hierarchically porous ZnFe2O4/C composites with stable performance as anode materials for Li-ion batteries. Chem. Eng. J. 355, 687–696 (2019). https://doi.org/10.1016/j.cej.2018.08.202
- Y. Wang, S. Luo, M. Chen, L. Wu, Uniformly confined germanium quantum dots in 3D ordered porous carbon framework for high-performance Li-ion battery. Adv. Funct. Mater. 30, 2000373 (2020). https://doi.org/10.1002/adfm.202000373
- T. Jiang, F. Bu, X. Feng, I. Shakir, G. Hao et al., Porous Fe2O3 nanoframeworks encapsulated within three-dimensional graphene as high-performance flexible anode for lithium-ion battery. ACS Nano 11, 5140–5147 (2017). https://doi.org/10.1021/acsnano.7b02198
- H. Zhang, P. Chen, H. Xia, G. Xu, Y. Wang et al., An integrated self-healing anode assembled via dynamic encapsulation of liquid metal with a 3D Ti3C2Tx network for enhanced lithium storage. Energy Environ. Sci. 15, 5240–5250 (2022). https://doi.org/10.1039/D2EE02147A
- X. Cheng, R. Shao, D. Li, H. Yang, Y. Wu et al., A self-healing volume variation three-dimensional continuous bulk porous bismuth for ultrafast sodium storage. Adv. Funct. Mater. 31, 2011264 (2021). https://doi.org/10.1002/adfm.202011264
- H. Dai, X. Zhao, H. Xu, J. Yang, J. Zhou et al., Design of vertically aligned two-dimensional heterostructures of rigid Ti3C2TX MXene and pliable vanadium pentoxide for efficient lithium ion storage. ACS Nano 16, 5556–5565 (2022). https://doi.org/10.1021/acsnano.1c10212
- N. Cheng, W. Zhou, J. Liu, Z. Liu, B. Lu, Reversible oxygen-rich functional groups grafted 3D honeycomb-like carbon anode for super-long potassium ion batteries. Nano-Micro Lett. 14, 146 (2022). https://doi.org/10.1007/s40820-022-00892-8
- Z. Lv, M. Yue, M. Ling, H. Zhang, J. Yan et al., Controllable design coupled with finite element analysis of low-tortuosity electrode architecture for advanced sodium-ion batteries with ultra-high mass loading. Adv. Energy Mater. 11, 2003725 (2021). https://doi.org/10.1002/aenm.202003725
- S. Tu, Z. Lu, M. Zheng, Z. Chen, X. Wang et al., Single-layer-p electrode design for practical fast-charging lithium-ion batteries. Adv. Mater. 34, e2202892 (2022). https://doi.org/10.1002/adma.202202892
- Y. Ham, N.J. Fritz, G. Hyun, Y.B. Lee, J.S. Nam et al., 3D periodic polyimide nano-networks for ultrahigh-rate and sustainable energy storage. Energy Environ. Sci. 14, 5894–5902 (2021). https://doi.org/10.1039/d1ee01739j
- J.H. Pikul, H. Gang Zhang, J. Cho, P.V. Braun, W.P. King, High-power lithium ion microbatteries from interdigitated three-dimensional bicontinuous nanoporous electrodes. Nat. Commun. 4, 1732 (2013). https://doi.org/10.1038/ncomms2747
- Z. Hao, L. Xu, Q. Liu, W. Yang, X. Liao et al., On-chip Ni–Zn microbattery based on hierarchical ordered porous Ni@Ni(OH)2 microelectrode with ultrafast ion and electron transport kinetics. Adv. Funct. Mater. 29, 1808470 (2019). https://doi.org/10.1002/adfm.201808470
- W.C. Records, S. Wei, A.M. Belcher, Virus-templated nickel phosphide nanofoams as additive-free, thin-film Li-ion microbattery anodes. Small 15, e1903166 (2019). https://doi.org/10.1002/smll.201903166
- J.H. Pikul, J. Liu, P.V. Braun, W.P. King, Integration of high capacity materials into interdigitated mesostructured electrodes for high energy and high power density primary microbatteries. J. Power. Sources 315, 308–315 (2016). https://doi.org/10.1016/j.jpowsour.2016.03.034
- W. Yang, L. Xu, W. Luo, M. Huang, K. Fu et al., Rechargeable zinc-ammonium hybrid microbattery with ultrahigh energy and power density. Matter 6, 3006–3020 (2023). https://doi.org/10.1016/j.matt.2023.06.041
- M. Jiang, C. Fu, P. Meng, J. Ren, J. Wang et al., Challenges and strategies of low-cost aluminum anodes for high-performance Al-based batteries. Adv. Mater. 34, e2102026 (2022). https://doi.org/10.1002/adma.202102026
- Y. Wang, T. Guo, J. Yin, Z. Tian, Y. Ma et al., Controlled deposition of zinc-metal anodes via selectively polarized ferroelectric polymers. Adv. Mater. 34, e2106937 (2022). https://doi.org/10.1002/adma.202106937
- Y. Zhang, S. Liu, Y. Ji, J. Ma, H. Yu, Emerging nonaqueous aluminum-ion batteries: challenges, status, and perspectives. Adv. Mater. 30, e1706310 (2018). https://doi.org/10.1002/adma.201706310
- H. Song, J. Su, C. Wang, Hybrid solid electrolyte interphases enabled ultralong life Ca-metal batteries working at room temperature. Adv. Mater. 33, e2006141 (2021). https://doi.org/10.1002/adma.202006141
- K. Zhang, X. Han, Z. Hu, X. Zhang, Z. Tao et al., Nanostructured Mn-based oxides for electrochemical energy storage and conversion. Chem. Soc. Rev. 44, 699–728 (2015). https://doi.org/10.1039/C4CS00218K
- J. Noh, J. Tan, D.R. Yadav, P. Wu, K.Y. Xie et al., Understanding of lithium insertion into 3D porous carbon scaffolds with hybridized lithiophobic and lithiophilic surfaces by In-operando study. Nano Lett. 20, 3681–3687 (2020). https://doi.org/10.1021/acs.nanolett.0c00618
- C. Bao, B. Wang, P. Liu, H. Wu, Y. Zhou et al., Solid electrolyte interphases on sodium metal anodes. Adv. Funct. Mater. 30, 2004891 (2020). https://doi.org/10.1002/adfm.202004891
- P. Liu, D. Mitlin, Emerging potassium metal anodes: perspectives on control of the electrochemical interfaces. Acc. Chem. Res. 53, 1161–1175 (2020). https://doi.org/10.1021/acs.accounts.0c00099
- H. Wang, J. Dong, Q. Guo, W. Xu, H. Zhang et al., Highly stable potassium metal batteries enabled by regulating surface chemistry in ether electrolyte. Energy Storage Mater. 42, 526–532 (2021). https://doi.org/10.1016/j.ensm.2021.08.013
- D.-H. Liu, Z. Bai, M. Li, A. Yu, D. Luo et al., Developing high safety Li-metal anodes for future high-energy Li-metal batteries: strategies and perspectives. Chem. Soc. Rev. 49, 5407–5445 (2020). https://doi.org/10.1039/c9cs00636b
- X. Zhang, Q. Xiang, S. Tang, A. Wang, X. Liu et al., Long cycling life solid-state Li metal batteries with stress self-adapted Li/garnet interface. Nano Lett. 20, 2871–2878 (2020). https://doi.org/10.1021/acs.nanolett.0c00693
- X. Wang, R. Kerr, F. Chen, N. Goujon, J.M. Pringle et al., Toward high-energy-density lithium metal batteries: opportunities and challenges for solid organic electrolytes. Adv. Mater. 32, e1905219 (2020). https://doi.org/10.1002/adma.201905219
- J. Chen, X. Xu, Q. He, Y. Ma, Advanced current collectors for alkali metal anodes. Chem. Res. Chin. Univ. 36, 386–401 (2020). https://doi.org/10.1007/s40242-020-0098-y
- C. Xu, J. Qiu, Y. Dong, Y. Li, Y. Shen et al., Dual-functional electrode promoting dendrite-free and CO2 utilization enabled high-reversible symmetric Na-CO2 batteries. Energy Environ. Mater. (2023). https://doi.org/10.1002/eem2.12626
- J. Chang, J. Shang, Y. Sun, L.K. Ono, D. Wang et al., Flexible and stable high-energy lithium-sulfur full batteries with only 100% oversized lithium. Nat. Commun. 9, 4480 (2018). https://doi.org/10.1038/s41467-018-06879-7
- L.-L. Lu, Y. Zhang, Z. Pan, H.-B. Yao, F. Zhou et al., Lithiophilic Cu–Ni core–shell nanowire network as a stable host for improving lithium anode performance. Energy Storage Mater. 9, 31–38 (2017). https://doi.org/10.1016/j.ensm.2017.06.004
- X. Zhu, H. Cheng, S. Lyu, J. Huang, J. Gu et al., High-energy-heavy-ion engineering low-tortuosity and high-porosity 3D metallic electrodes for long-life lithium anodes. Adv. Energy Mater. 13, 2300129 (2023). https://doi.org/10.1002/aenm.202300129
- S.-S. Chi, Q. Wang, B. Han, C. Luo, Y. Jiang et al., Lithiophilic Zn sites in porous CuZn alloy induced uniform Li nucleation and dendrite-free Li metal deposition. Nano Lett. 20, 2724–2732 (2020). https://doi.org/10.1021/acs.nanolett.0c00352
- G.J.H. Lim, Z. Lyu, X. Zhang, J.J. Koh, Y. Zhang et al., Robust pure copper framework by extrusion 3D printing for advanced lithium metal anodes. J. Mater. Chem. A 8, 9058–9067 (2020). https://doi.org/10.1039/D0TA00209G
- J. He, L. Ai, T. Yao, Z. Xu, D. Chen et al., In situ reaction fabrication of a mixed-ion/electron-conducting skeleton toward stable lithium metal anodes. Energy Environ. Mater. 6, 12614 (2023). https://doi.org/10.1002/eem2.12614
- Y. An, Y. Tian, S. Xiong, J. Feng, Y. Qian, Scalable and controllable synthesis of interface-engineered nanoporous host for dendrite-free and high rate zinc metal batteries. ACS Nano 15, 11828–11842 (2021). https://doi.org/10.1021/acsnano.1c02928
- H. Lu, J. Hu, Y. Zhang, K. Zhang, X. Yan et al., 3D cold-trap environment printing for long-cycle aqueous Zn-ion batteries. Adv. Mater. 35, e2209886 (2023). https://doi.org/10.1002/adma.202209886
- M. Zhu, S. Li, B. Li, Y. Gong, Z. Du et al., Homogeneous guiding deposition of sodium through main group II metals toward dendrite-free sodium anodes. Sci. Adv. 5, eaau6264 (2019). https://doi.org/10.1126/sciadv.aau6264
- L.-K. Zhao, X.-W. Gao, J. Mu, W.-B. Luo, Z. Liu et al., Durable integrated K-metal anode with enhanced mass transport through potassiphilic porous interconnected mediator. Adv. Funct. Mater. 33, 2304292 (2023). https://doi.org/10.1002/adfm.202304292
- P. Zhai, Y. Wei, J. Xiao, W. Liu, J. Zuo et al., In situ generation of artificial solid-electrolyte interphases on 3D conducting scaffolds for high-performance lithium-metal anodes. Adv. Energy Mater. 10, 1903339 (2020). https://doi.org/10.1002/aenm.201903339
- G. Huang, S. Chen, P. Guo, R. Tao, K. Jie et al., In situ constructing lithiophilic NiFx nanosheets on Ni foam current collector for stable lithium metal anode via a succinct fluorination strategy. Chem. Eng. J. 395, 125122 (2020). https://doi.org/10.1016/j.cej.2020.125122
- H. Zheng, Q. Zhang, Q. Chen, W. Xu, Q. Xie et al., 3D lithiophilic–lithiophobic–lithiophilic dual-gradient porous skeleton for highly stable lithium metal anode. J. Mater. Chem. A 8, 313–322 (2020). https://doi.org/10.1039/c9ta09505e
- Y. Li, M. Xiao, C. Shen, L. Cui, W. Yang et al., Three-dimensional SEI framework induced by ion regulation in toroidal magnetic field for lithium metal battery. Cell Rep. Phys. Sci. 3, 101080 (2022). https://doi.org/10.1016/j.xcrp.2022.101080
- H.-F. Wang, Q. Xu, Materials design for rechargeable metal-air batteries. Matter 1, 565–595 (2019). https://doi.org/10.1016/j.matt.2019.05.008
- P. Zhang, Y. Zhao, X. Zhang, Functional and stability orientation synthesis of materials and structures in aprotic Li–O2 batteries. Chem. Soc. Rev. 47, 2921–3004 (2018). https://doi.org/10.1039/C8CS00009C
- H.-F. Wang, C. Tang, Q. Zhang, A review of precious-metal-free bifunctional oxygen electrocatalysts: rational design and applications in Zn–air batteries. Adv. Funct. Mater. 28, 1803329 (2018). https://doi.org/10.1002/adfm.201803329
- N. Mahne, O. Fontaine, M.O. Thotiyl, M. Wilkening, S.A. Freunberger, Mechanism and performance of lithium-oxygen batteries: a perspective. Chem. Sci. 8, 6716–6729 (2017). https://doi.org/10.1039/c7sc02519j
- H.-S. Lim, W.-J. Kwak, D.T. Nguyen, W. Wang, W. Xu et al., Three-dimensionally semi-ordered macroporous air electrodes for metal–oxygen batteries. J. Mater. Chem. A 11, 5746–5753 (2023). https://doi.org/10.1039/d2ta09442h
- J.-J. Xu, Z.-L. Wang, D. Xu, F.-Z. Meng, X.-B. Zhang, 3D ordered macroporous LaFeO3 as efficient electrocatalyst for Li–O2 batteries with enhanced rate capability and cyclic performance. Energy Environ. Sci. 7, 2213–2219 (2014). https://doi.org/10.1039/C3EE42934B
- C. Li, Z. Guo, Y. Pang, Y. Sun, X. Su et al., Three-dimensional ordered macroporous FePO4 as high-efficiency catalyst for rechargeable Li–O2 batteries. ACS Appl. Mater. Interfaces 8, 31638–31645 (2016). https://doi.org/10.1021/acsami.6b10115
- W. Yao, Y. Yuan, G. Tan, C. Liu, M. Cheng et al., Tuning Li2O2 formation routes by facet engineering of MnO2 cathode catalysts. J. Am. Chem. Soc. 141, 12832–12838 (2019). https://doi.org/10.1021/jacs.9b05992
- R.R. Mitchell, B.M. Gallant, Y. Shao-Horn, C.V. Thompson, Mechanisms of morphological evolution of Li2O2 ps during electrochemical growth. J. Phys. Chem. Lett. 4, 1060–1064 (2013). https://doi.org/10.1021/jz4003586
- H. Wang, X. Wang, M. Li, L. Zheng, D. Guan et al., Porous materials applied in nonaqueous Li–O2 batteries: status and perspectives. Adv. Mater. 32, e2002559 (2020). https://doi.org/10.1002/adma.202002559
- J. Wu, B. Liu, X. Fan, J. Ding, X. Han et al., Carbon-based cathode materials for rechargeable zinc-air batteries: from current collectors to bifunctional integrated air electrodes. Carbon Energy 2, 370–386 (2020). https://doi.org/10.1002/cey2.60
- Z. Lyu, G.J.H. Lim, R. Guo, Z. Kou, T. Wang et al., 3D-printed MOF-derived hierarchically porous frameworks for practical high-energy density Li–O2 batteries. Adv. Funct. Mater. 29, 1806658 (2019). https://doi.org/10.1002/adfm.201806658
- C. Chen, S. Xu, Y. Kuang, W. Gan, J. Song et al., Nature-inspired tri-pathway design enabling high-performance flexible Li–O2 batteries. Adv. Energy Mater. 9, 1802964 (2019). https://doi.org/10.1002/aenm.201802964
- N. Luo, G.-J. Ji, H.-F. Wang, F. Li, Q.-C. Liu et al., Process for a free-standing and stable all-metal structure for symmetrical lithium–oxygen batteries. ACS Nano 14, 3281–3289 (2020). https://doi.org/10.1021/acsnano.9b08844
- G. Liu, L. Zhang, S. Wang, L.-X. Ding, H. Wang, Hierarchical NiCo2O4 nanosheets on carbon nanofiber films for high energy density and long-life Li–O2 batteries. J. Mater. Chem. A 5, 14530–14536 (2017). https://doi.org/10.1039/C7TA03703A
- F. Yang, X. Liu, H. Zhang, J. Zhou, J. Jiang et al., Boosting oxygen catalytic kinetics of carbon nanotubes by oxygen-induced electron density modulation for advanced Zn-air batteries. Energy Storage Mater. 30, 138–145 (2020). https://doi.org/10.1016/j.ensm.2020.05.005
- T. Jin, J. Nie, M. Dong, B. Chen, J. Nie et al., 3D interconnected honeycomb-like multifunctional catalyst for Zn–air batteries. Nano-Micro Lett. 15, 26 (2022). https://doi.org/10.1007/s40820-022-00959-6
- T. Van Tam, S.G. Kang, M.H. Kim, S.G. Lee, S.H. Hur et al., Novel graphene hydrogel/B-doped graphene quantum dots composites as trifunctional electrocatalysts for Zn–air batteries and overall water splitting. Adv. Energy Mater. 9, 1900945 (2019). https://doi.org/10.1002/aenm.201900945
- J. Wu, H. Zhou, Q. Li, M. Chen, J. Wan et al., Densely populated isolated single Co-N site for efficient oxygen electrocatalysis. Adv. Energy Mater. 9, 1900149 (2019). https://doi.org/10.1002/aenm.201900149
- K. Hu, T. Yu, Y. Zhang, X. Lin, Y. Zhao et al., Inhibiting surface diffusion to synthesize 3D bicontinuous nanoporous N-doped carbon for boosting oxygen reduction reaction in flexible all-solid-state Al-air batteries. Adv. Funct. Mater. 31, 2170284 (2021). https://doi.org/10.1002/adfm.202170284
- M. Jiang, C. Fu, J. Yang, Q. Liu, J. Zhang et al., Defect-engineered MnO2 enhancing oxygen reduction reaction for high performance Al–air batteries. Energy Storage Mater. 18, 34–42 (2019). https://doi.org/10.1016/j.ensm.2018.09.026
- Q. Huang, Y. Xu, Y. Guo, L. Zhang, Y. Hu et al., Highly graphitized N-doped carbon nanosheets from 2-dimensional coordination polymers for efficient metal-air batteries. Carbon 188, 135–145 (2022). https://doi.org/10.1016/j.carbon.2021.11.062
- Q. Liao, G. Li, R. Ding, Z. He, M. Jiang et al., Facile synthesis of CO/N-doped carbon nanotubes and the application in alkaline and neutral metal-air batteries. Int. J. Hydrog. Energy 46, 31253–31261 (2021). https://doi.org/10.1016/j.ijhydene.2021.07.019
- Z. Zhang, Z. Li, C. Sun, T. Zhang, S. Wang, Preparation and properties of an amorphous MnO2/CNTs-OH catalyst with high dispersion and durability for magnesium-air fuel cells. Catal. Today 298, 241–249 (2017). https://doi.org/10.1016/j.cattod.2017.04.001
- B. Guo, R. Ma, Z. Li, S. Guo, J. Luo et al., Hierarchical N-doped porous carbons for Zn–air batteries and supercapacitors. Nano-Micro Lett. 12, 20 (2020). https://doi.org/10.1007/s40820-019-0364-z
- C. Li, X. Li, Q. Yang, P. Sun, L. Wu et al., Tuning the mechanical and electrical properties of porous electrodes for architecting 3D microsupercapacitors with batteries-level energy. Adv. Sci. 8, 2004957 (2021). https://doi.org/10.1002/advs.202004957
- A.Y.S. Eng, C.B. Soni, Y. Lum, E. Khoo, Z. Yao et al., Theory-guided experimental design in battery materials research. Sci. Adv. 8, eabm2422 (2022). https://doi.org/10.1126/sciadv.abm2422
- Y.S. Meng, V. Srinivasan, K. Xu, Designing better electrolytes. Science 378, eabq3750 (2022). https://doi.org/10.1126/science.abq3750
- C. Zhu, R.E. Usiskin, Y. Yu, J. Maier, The nanoscale circuitry of battery electrodes. Science 358, eaao2808 (2017). https://doi.org/10.1126/science.aao2808
- K. Liu, Y. Liu, D. Lin, A. Pei, Y. Cui, Materials for lithium-ion battery safety. Sci. Adv. 4, eaas9820 (2018). https://doi.org/10.1126/sciadv.aas9820
- S. Rana, R. Kumar, R.S. Bharj, Current trends, challenges, and prospects in material advances for improving the overall safety of lithium-ion battery pack. Chem. Eng. J. 463, 142336 (2023). https://doi.org/10.1016/j.cej.2023.142336
- Y. Zhao, Y. Kang, J. Wozny, J. Lu, H. Du et al., Recycling of sodium-ion batteries. Nat. Rev. Mater. 8, 623–634 (2023). https://doi.org/10.1038/s41578-023-00574-w
References
S. Chu, A. Majumdar, Opportunities and challenges for a sustainable energy future. Nature 488, 294–303 (2012). https://doi.org/10.1038/nature11475
P. Meng, J. Huang, Z. Yang, M. Jiang, Y. Wang et al., Air-stable binary hydrated eutectic electrolytes with unique solvation structure for rechargeable aluminum-ion batteries. Nano-Micro Lett. 15, 188 (2023). https://doi.org/10.1007/s40820-023-01160-z
B. Shi, L. Li, A. Chen, T.-C. Jen, X. Liu et al., Continuous fabrication of Ti3C2Tx MXene-based braided coaxial zinc-ion hybrid supercapacitors with improved performance. Nano-Micro Lett. 14, 34 (2021). https://doi.org/10.1007/s40820-021-00757-6
R. Xu, L. Du, D. Adekoya, G. Zhang, S. Zhang et al., Well-defined nanostructures for electrochemical energy conversion and storage. Adv. Energy Mater. 11, 2001537 (2021). https://doi.org/10.1002/aenm.202001537
M.R. Begley, D.S. Gianola, T.R. Ray, Bridging functional nanocomposites to robust macroscale devices. Science 364, eaav4299 (2019). https://doi.org/10.1126/science.aav4299
C. Huang, X. Chen, Z. Xue, T. Wang, Effect of structure: a new insight into nanop assemblies from inanimate to animate. Sci. Adv. 6, eaba1321 (2020). https://doi.org/10.1126/sciadv.aba1321
E. Pomerantseva, F. Bonaccorso, X. Feng, Y. Cui, Y. Gogotsi, Energy storage: the future enabled by nanomaterials. Science 366, eaan8285 (2019). https://doi.org/10.1126/science.aan8285
Y. Lu, G. Zhang, H. Zhou, S. Cao, Y. Zhang et al., Enhanced active sites and stability in nano-MOFs for electrochemical energy storage through dual regulation by tannic acid. Angew. Chem. Int. Ed. 62, e202311075 (2023). https://doi.org/10.1002/anie.202311075
Y. Kuang, C. Chen, D. Kirsch, L. Hu, Thick electrode batteries: principles, opportunities, and challenges. Adv. Energy Mater. 9, 1901457 (2019). https://doi.org/10.1002/aenm.201901457
Editorials, Nanotechnology for electrochemical energy storage. Nat. Nanotechnol. 18, 1117 (2023). https://doi.org/10.1038/s41565-023-01529-6
E. Pameté, L. Köps, F.A. Kreth, S. Pohlmann, A. Varzi et al., The many deaths of supercapacitors: degradation, aging, and performance fading. Adv. Energy Mater. 13, 2370125 (2023). https://doi.org/10.1002/aenm.202370125
W. Zhang, Y. Liu, Z. Guo, Approaching high-performance potassium-ion batteries via advanced design strategies and engineering. Sci. Adv. 5, eaav7412 (2019). https://doi.org/10.1126/sciadv.aav7412
W. Chen, K. Yang, M. Luo, D. Zhang, Z. Li et al., Carbonization-free wood electrode with MXene-reconstructed porous structure for all-wood eco-supercapacitors. EcoMat 5, e12271 (2023). https://doi.org/10.1002/eom2.12271
X.R. Li, H.P. Li, X.Q. Fan, X.L. Shi, J.J. Liang, 3D-printed stretchable micro-supercapacitor with remarkable areal performance. Adv. Energy Mater. 10(14), 1903794 (2020). https://doi.org/10.1002/aenm.201903794
D. Li, X. Ren, Q. Ai, Q. Sun, L. Zhu et al., Facile fabrication of nitrogen-doped porous carbon as superior anode material for potassium-ion batteries. Adv. Energy Mater. 8, 1802386 (2018). https://doi.org/10.1002/aenm.201802386
J. Xue, L. Gao, X. Hu, K. Cao, W. Zhou et al., Stereolithographic 3D printing-based hierarchically cellular lattices for high-performance quasi-solid supercapacitor. Nano-Micro Lett. 11, 46 (2019). https://doi.org/10.1007/s40820-019-0280-2
J. Yang, Q. Cao, X. Tang, J. Du, T. Yu et al., 3D-printed highly stretchable conducting polymer electrodes for flexible supercapacitors. J. Mater. Chem. A 9, 19649–19658 (2021). https://doi.org/10.1039/D1TA02617H
Z. Lei, L. Liu, H. Zhao, F. Liang, S. Chang et al., Nanoelectrode design from microminiaturized honeycomb monolith with ultrathin and stiff nanoscaffold for high-energy micro-supercapacitors. Nat. Commun. 11, 299 (2020). https://doi.org/10.1038/s41467-019-14170-6
B. Asbani, G. Buvat, J. Freixas, M. Huvé, D. Troadec et al., Ultra-high areal capacitance and high rate capability RuO2 thin film electrodes for 3D micro-supercapacitors. Energy Storage Mater. 42, 259–267 (2021). https://doi.org/10.1016/j.ensm.2021.07.038
S. Ni, M. Zhang, C. Li, R. Gao, J. Sheng et al., A 3D framework with Li3N–Li2S solid electrolyte interphase and fast ion transfer channels for a stabilized lithium-metal anode. Adv. Mater. 35, 2209028 (2023). https://doi.org/10.1002/adma.202209028
S.D. Lacey, D.J. Kirsch, Y. Li, J.T. Morgenstern, B.C. Zarket et al., Extrusion-based 3D printing of hierarchically porous advanced battery electrodes. Adv. Mater. 30, e1705651 (2018). https://doi.org/10.1002/adma.201705651
X. Fu, Y. Zhou, J. Huang, L. Feng, P. Yu et al., Rethinking the electrode multiscale microstructures: a review on structuring strategies toward battery manufacturing genome. Adv. Energy Mater. 13, 2301385 (2023). https://doi.org/10.1002/aenm.202301385
G. Shao, D.A.H. Hanaor, X. Shen, A. Gurlo, Freeze ting: from low-dimensional building blocks to aligned porous structures-a review of novel materials, methods, and applications. Adv. Mater. 32, e1907176 (2020). https://doi.org/10.1002/adma.201907176
X. Fan, C. Deng, H. Gao, B. Jiao, Y. Liu et al., 3D printing of nanowrinkled architectures via laser direct assembly. Sci. Adv. 8, eabn9942 (2022). https://doi.org/10.1126/sciadv.abn9942
W. Ouyang, X. Xu, W. Lu, N. Zhao, F. Han et al., Ultrafast 3D nanofabrication via digital holography. Nat. Commun. 14, 1716 (2023). https://doi.org/10.1038/s41467-023-37163-y
M.A. Brown, K.M. Zappitelli, L. Singh, R.C. Yuan, M. Bemrose et al., Direct laser writing of 3D electrodes on flexible substrates. Nat. Commun. 14, 3610 (2023). https://doi.org/10.1038/s41467-023-39152-7
H. Zhao, C. Wang, R. Vellacheri, M. Zhou, Y. Xu et al., Self-supported metallic nanopore arrays with highly oriented nanoporous structures as ideally nanostructured electrodes for supercapacitor applications. Adv. Mater. 26, 7654–7659 (2014). https://doi.org/10.1002/adma.201402766
C. Liu, E.I. Gillette, X. Chen, A.J. Pearse, A.C. Kozen et al., An all-in-one nanopore battery array. Nat. Nanotechnol. 9, 1031–1039 (2014). https://doi.org/10.1038/nnano.2014.247
H. Ning, J.H. Pikul, R. Zhang, X. Li, S. Xu et al., Holographic patterning of high-performance on-chip 3D lithium-ion microbatteries. Proc. Natl. Acad. Sci. U.S.A. 112, 6573–6578 (2015). https://doi.org/10.1073/pnas.1423889112
X. Rui, W. Sun, C. Wu, Y. Yu, Q. Yan, An advanced sodium-ion battery composed of carbon coated Na3V2(PO4)3 in a porous graphene network. Adv. Mater. 27, 6670–6676 (2015). https://doi.org/10.1002/adma.201502864
K. Qin, E. Liu, J. Li, J. Kang, C. Shi et al., Supercapacitors: free-standing 3D nanoporous duct-like and hierarchical nanoporous graphene films for micron-level flexible solid-state asymmetric supercapacitors. Adv. Energy Mater. 6, 1670107 (2016). https://doi.org/10.1002/aenm.201670107
J. Chen, J. Xu, S. Zhou, N. Zhao, C.-P. Wong, Nitrogen-doped hierarchically porous carbon foam: a free-standing electrode and mechanical support for high-performance supercapacitors. Nano Energy 25, 193–202 (2016). https://doi.org/10.1016/j.nanoen.2016.04.037
C. Chen, Y. Zhang, Y. Li, J. Dai, J. Song et al., All-wood, low tortuosity, aqueous, biodegradable supercapacitors with ultra-high capacitance. Energy Environ. Sci. 10, 538–545 (2017). https://doi.org/10.1039/C6EE03716J
J. Kang, J. Kim, S. Lee, S. Wi, C. Kim et al., Breathable carbon-free electrode: black TiO2 with hierarchically ordered porous structure for stable Li–O2 battery. Adv. Energy Mater. 7, 1700814 (2017). https://doi.org/10.1002/aenm.201700814
X. Wang, W. Zeng, L. Hong, W. Xu, H. Yang et al., Stress-driven lithium dendrite growth mechanism and dendrite mitigation by electroplating on soft substrates. Nat. Energy 3, 227–235 (2018). https://doi.org/10.1038/s41560-018-0104-5
X. Peng, L. Zhang, Z. Chen, L. Zhong, D. Zhao et al., Hierarchically porous carbon plates derived from wood as bifunctional ORR/OER electrodes. Adv. Mater. 31, e1900341 (2019). https://doi.org/10.1002/adma.201900341
X. Lu, Y. Yin, L. Zhang, S. Huang, L. Xi et al., 3D Ag/NiO-Fe2O3/Ag nanomembranes as carbon-free cathode materials for Li–O2 batteries. Energy Storage Mater. 16, 155–162 (2019). https://doi.org/10.1016/j.ensm.2018.05.002
J. Shang, Q. Huang, L. Wang, Y. Yang, P. Li et al., Soft hybrid scaffold (SHS) strategy for realization of ultrahigh energy density of wearable aqueous supercapacitors. Adv. Mater. 32, e1907088 (2020). https://doi.org/10.1002/adma.201907088
S.G. Patnaik, J. Shamsudeen Seenath, D. Bourrier, S. Prabhudev, D. Guay et al., Porous RuOxNySz electrodes for microsupercapacitors and microbatteries with enhanced areal performance. ACS Energy Lett. 6, 131–139 (2021). https://doi.org/10.1021/acsenergylett.0c02017
P. Zhai, T. Wang, H. Jiang, J. Wan, Y. Wei et al., 3D artificial solid-electrolyte interphase for lithium metal anodes enabled by insulator-metal-insulator layered heterostructures. Adv. Mater. 33, e2006247 (2021). https://doi.org/10.1002/adma.202006247
Y. Zhuang, D. Deng, L. Lin, B. Liu, S. Qu et al., Ion-conductive gradient sodiophilic 3D scaffold induced homogeneous sodium deposition for highly stable sodium metal batteries. Nano Energy 97, 107202 (2022). https://doi.org/10.1016/j.nanoen.2022.107202
X. Li, S. Ling, L. Zeng, H. He, X. Liu et al., Directional freezing assisted 3D printing to solve a flexible battery dilemma: ultrahigh energy/power density and uncompromised mechanical compliance. Adv. Energy Mater. 12, 2200233 (2022). https://doi.org/10.1002/aenm.202200233
J. Ruan, D. Ma, K. Ouyang, S. Shen, M. Yang et al., 3D artificial array interface engineering enabling dendrite-free stable Zn metal anode. Nano-Micro Lett. 15, 37 (2023). https://doi.org/10.1007/s40820-022-01007-z
G. Hyun, M. Park, G. Bae, J.-W. Chung, Y. Ham et al., Unraveling the significance of Li+/e–/O2 phase boundaries with a 3D-patterned Cu electrode for Li–O2 batteries. Adv. Funct. Mater. 33, 2303059 (2023). https://doi.org/10.1002/adfm.202303059
T. Zhang, F. Ran, Design strategies of 3D carbon-based electrodes for charge/ion transport in lithium ion battery and sodium ion battery. Adv. Funct. Mater. 31, 2010041 (2021). https://doi.org/10.1002/adfm.202010041
B. Bounor, B. Asbani, C. Douard, F. Favier, T. Brousse et al., On chip MnO2-based 3D micro-supercapacitors with ultra-high areal energy density. Energy Storage Mater. 38, 520–527 (2021). https://doi.org/10.1016/j.ensm.2021.03.034
S.J. Yeo, M.J. Oh, P.J. Yoo, Structurally controlled cellular architectures for high-performance ultra-lightweight materials. Adv. Mater. 31, e1803670 (2019). https://doi.org/10.1002/adma.201803670
W. Li, X. Guo, P. Geng, M. Du, Q. Jing et al., Rational design and general synthesis of multimetallic metal-organic framework nano-octahedra for enhanced Li–S battery. Adv. Mater. 33, e2105163 (2021). https://doi.org/10.1002/adma.202105163
Y. Liu, Y. Zhu, Y. Cui, Challenges and opportunities towards fast-charging battery materials. Nat. Energy 4, 540–550 (2019). https://doi.org/10.1038/s41560-019-0405-3
H. Hamed, S. Yari, J. D’Haen, F.U. Renner, N. Reddy et al., Demystifying charge transport limitations in the porous electrodes of lithium-ion batteries. Adv. Energy Mater. 10, 2002492 (2020). https://doi.org/10.1002/aenm.202002492
S. Li, D. Liu, G. Wang, P. Ma, X. Wang et al., Vertical 3D nanostructures boost efficient hydrogen production coupled with glycerol oxidation under alkaline conditions. Nano-Micro Lett. 15, 189 (2023). https://doi.org/10.1007/s40820-023-01150-1
D. Nepal, S. Kang, K.M. tedt, K. Kanhaiya, M.R. Bockstaller et al., Hierarchically structured bioinspired nanocomposites. Nat. Mater. 22, 18–35 (2023). https://doi.org/10.1038/s41563-022-01384-1
C. Qi, F. Jiang, S. Yang, Advanced honeycomb designs for improving mechanical properties: a review. Compos. Part B Eng. 227, 109393 (2021). https://doi.org/10.1016/j.compositesb.2021.109393
C. Chen, Y. Kuang, S. Zhu, I. Burgert, T. Keplinger et al., Structure–property–function relationships of natural and engineered wood. Nat. Rev. Mater. 5, 642–666 (2020). https://doi.org/10.1038/s41578-020-0195-z
Z. Niu, W. Zhao, B. Wu, H. Wang, W.-F. Lin et al., π learning: a performance-informed framework for microstructural electrode design. Adv. Energy Mater. 13, 2370067 (2023). https://doi.org/10.1002/aenm.202370067
Z. Yao, Y. Lum, A. Johnston, L.M. Mejia-Mendoza, X. Zhou et al., Machine learning for a sustainable energy future. Nat. Rev. Mater. 8, 202–215 (2022). https://doi.org/10.1038/s41578-022-00490-5
Z. Chen, D.L. Danilov, R.-A. Eichel, P.H.L. Notten, Porous electrode modeling and its applications to Li-ion batteries. Adv. Energy Mater. 12, 2201506 (2022). https://doi.org/10.1002/aenm.202201506
D.P. Finegan, I. Squires, A. Dahari, S. Kench, K.L. Jungjohann et al., Machine-learning-driven advanced characterization of battery electrodes. ACS Energy Lett. 7, 4368–4378 (2022). https://doi.org/10.1021/acsenergylett.2c01996
L. Snarski, I. Biran, T. Bendikov, I. Pinkas, M.A. Iron et al., Highly conductive robust carbon nanotube networks for strong buckypapers and transparent electrodes. Adv. Funct. Mater. (2023). https://doi.org/10.1002/adfm.202309742
Y. Chao, R. Jalili, Y. Ge, C. Wang, T. Zheng et al., Self-assembly of flexible free-standing 3D porous MoS2-reduced graphene oxide structure for high-performance lithium-ion batteries. Adv. Funct. Mater. 27, 1700234 (2017). https://doi.org/10.1002/adfm.201700234
K. Lu, Z. Hu, J. Ma, H. Ma, L. Dai et al., A rechargeable iodine-carbon battery that exploits ion intercalation and iodine redox chemistry. Nat. Commun. 8, 527 (2017). https://doi.org/10.1038/s41467-017-00649-7
A. Ferris, S. Garbarino, D. Guay, D. Pech, 3D RuO2 microsupercapacitors with remarkable areal energy. Adv. Mater. 27, 6625–6629 (2015). https://doi.org/10.1002/adma.201503054
G.V. Alexander, C. Shi, J. O’Neill, E.D. Wachsman, Extreme lithium-metal cycling enabled by a mixed ion- and electron-conducting garnet three-dimensional architecture. Nat. Mater. 22, 1136–1143 (2023). https://doi.org/10.1038/s41563-023-01627-9
H. Bian, R. Dong, Q. Shao, S. Wang, M.-F. Yuen et al., Water-enabled crystallization of mesoporous SnO2 as a binder-free electrode for enhanced sodium storage. J. Mater. Chem. A 5, 23967–23975 (2017). https://doi.org/10.1039/C7TA08228B
Y. Katsuyama, N. Haba, H. Kobayashi, K. Iwase, A. Kudo et al., Macro- and nano-porous 3D-hierarchical carbon lattices for extraordinarily high capacitance supercapacitors. Adv. Funct. Mater. 32, 2201544 (2022). https://doi.org/10.1002/adfm.202201544
J. Tao, F. Yang, T. Wu, J. Shi, H.-B. Zhao et al., Thermal insulation, flame retardancy, smoke suppression, and reinforcement of rigid polyurethane foam enabled by incorporating a P/Cu-hybrid silica aerogel. Chem. Eng. J. 461, 142061 (2023). https://doi.org/10.1016/j.cej.2023.142061
C. Yan, Y.-J. Luo, W.-G. Zhang, Z.-F. Zhu, P.-Y. Li et al., Preparation of a novel melamine foam structure and properties. J. Appl. Polym. Sci. 139, e51992 (2022). https://doi.org/10.1002/app.51992
X. Li, F. Chen, B. Zhao, S. Zhang, X. Zheng et al., Ultrafast synthesis of metal-layered hydroxides in a dozen seconds for high-performance aqueous Zn (micro-) battery. Nano-Micro Lett. 15, 32 (2023). https://doi.org/10.1007/s40820-022-01004-2
Y. Ma, L. Wei, Y. Gu, J. Hu, Y. Chen et al., High-performance Li–O2 batteries based on all-graphene backbone. Adv. Funct. Mater. 30, 2007218 (2020). https://doi.org/10.1002/adfm.202007218
X. Yao, Y. Zhao, Three-dimensional porous graphene networks and hybrids for lithium-ion batteries and supercapacitors. Chem 2, 171–200 (2017). https://doi.org/10.1016/j.chempr.2017.01.010
P. Sun, X. Li, J. Shao, P.V. Braun, High-performance packaged 3D lithium-ion microbatteries fabricated using imprint lithography. Adv. Mater. 33, e2006229 (2021). https://doi.org/10.1002/adma.202006229
Z. Cai, F. Tang, Y. Yang, S. Xu, C. Xu et al., A multifunctional super-sodiophilic coating on aluminum current collector for high-performance anode-free Na-metal batteries. Nano Energy 116, 108814 (2023). https://doi.org/10.1016/j.nanoen.2023.108814
L. Ren, Y. Li, N. Zhang, Z. Li, X. Lin et al., Nanostructuring of Mg-based hydrogen storage materials: recent advances for promoting key applications. Nano-Micro Lett. 15, 93 (2023). https://doi.org/10.1007/s40820-023-01041-5
I. Hussain, C. Lamiel, S. Sahoo, M.S. Javed, M. Ahmad et al., Animal- and human-inspired nanostructures as supercapacitor electrode materials: a review. Nano-Micro Lett. 14, 199 (2022). https://doi.org/10.1007/s40820-022-00944-z
Z. Pan, Y. Qian, Y. Li, X. Xie, N. Lin et al., Novel bilayer-shelled N, O-doped hollow porous carbon microspheres as high performance anode for potassium-ion hybrid capacitors. Nano-Micro Lett. 15, 151 (2023). https://doi.org/10.1007/s40820-023-01113-6
Y. Wang, S. Sun, X. Wu, H. Liang, W. Zhang, Status and opportunities of zinc ion hybrid capacitors: focus on carbon materials, current collectors, and separators. Nano-Micro Lett. 15, 78 (2023). https://doi.org/10.1007/s40820-023-01065-x
H.D. Abruña, Y. Kiya, J.C. Henderson, Batteries and electrochemical capacitors. Phys. Today 61, 43–47 (2008). https://doi.org/10.1063/1.3047681
J. Liu, J. Wang, C. Xu, H. Jiang, C. Li et al., Advanced energy storage devices: basic principles, analytical methods, and rational materials design. Adv. Sci. 5, 1700322 (2017). https://doi.org/10.1002/advs.201700322
S. Seenivasan, K.I. Shim, C. Lim, T. Kavinkumar, A.T. Sivagurunathan et al., Boosting pseudocapacitive behavior of supercapattery electrodes by incorporating a Schottky junction for ultrahigh energy density. Nano-Micro Lett. 15, 62 (2023). https://doi.org/10.1007/s40820-023-01016-6
C. Choi, D.S. Ashby, D.M. Butts, R.H. DeBlock, Q. Wei et al., Achieving high energy density and high power density with pseudocapacitive materials. Nat. Rev. Mater. 5, 5–19 (2020). https://doi.org/10.1038/s41578-019-0142-z
J. Qiu, H. Zhao, Y. Lei, Emerging smart design of electrodes for micro-supercapacitors: a review. SmartMat 3, 447–473 (2022). https://doi.org/10.1002/smm2.1094
X. Chen, W. Li, G. Zhang, F. Sun, Q. Jing et al., Highly stable and activated Cerium-based MOFs superstructures for ultrahigh selective uranium (VI) capture from simulated seawater. Mater. Today Chem. 23, 100705 (2022). https://doi.org/10.1016/j.mtchem.2021.100705
F. Wang, J.Y. Cheong, J. Lee, J. Ahn, G. Duan et al., Pyrolysis of enzymolysis-treated wood: hierarchically assembled porous carbon electrode for advanced energy storage devices. Adv. Funct. Mater. 31, 2101077 (2021). https://doi.org/10.1002/adfm.202101077
K. Liu, R. Mo, W. Dong, W. Zhao, F. Huang, Nature-derived, structure and function integrated ultra-thick carbon electrode for high-performance supercapacitors. J. Mater. Chem. A 8, 20072–20081 (2020). https://doi.org/10.1039/D0TA06108E
J. Xu, J. Lei, N. Ming, C. Zhang, K. Huo, Rational design of wood-structured thick electrode for electrochemical energy storage. Adv. Funct. Mater. 32, 2204426 (2022). https://doi.org/10.1002/adfm.202204426
C. Guan, J. Liu, Y. Wang, L. Mao, Z. Fan et al., Iron oxide-decorated carbon for supercapacitor anodes with ultrahigh energy density and outstanding cycling stability. ACS Nano 9, 5198–5207 (2015). https://doi.org/10.1021/acsnano.5b00582
Z. Liang, Y. Wang, B. Pei, S.-B. Son, M. Nguyen et al., 3D-integrated, multi-functional carbon fibers for stable, high-areal-capacity batteries. Adv. Energy Mater. 13, 2301295 (2023). https://doi.org/10.1002/aenm.202301295
X. Wan, T. Mu, G. Yin, Intrinsic self-healing chemistry for next-generation flexible energy storage devices. Nano-Micro Lett. 15, 99 (2023). https://doi.org/10.1007/s40820-023-01075-9
H. He, J. Lian, C. Chen, Q. Xiong, C.C. Li et al., Enabling multi-chemisorption sites on carbon nanofibers cathodes by an In-situ exfoliation strategy for high-performance Zn-ion hybrid capacitors. Nano-Micro Lett. 14, 106 (2022). https://doi.org/10.1007/s40820-022-00839-z
J. Ahn, H. Han, J.-H. Ha, Y. Jeong, Y. Jung et al., Micro-/nanohierarchical structures physically engineered on surfaces: analysis and perspective. Adv. Mater. (2023). https://doi.org/10.1002/adma.202300871
M. Li, S. Zhou, L. Cheng, F. Mo, L. Chen et al., 3D printed supercapacitor: techniques, materials, designs, and applications. Adv. Funct. Mater. 33, 2208034 (2023). https://doi.org/10.1002/adfm.202208034
D. Lin, S. Chandrasekaran, J.-B. Forien, X. Xue, A. Pinongcos et al., 3D-printed graded electrode with ultrahigh MnO2 loading for non-aqueous electrochemical energy storage. Adv. Energy Mater. 13, 2300408 (2023). https://doi.org/10.1002/aenm.202300408
M. Sha, H. Zhao, Y. Lei, Updated insights into 3D architecture electrodes for micropower sources. Adv. Mater. 33, e2103304 (2021). https://doi.org/10.1002/adma.202103304
A. Varzi, L. Mattarozzi, S. Cattarin, P. Guerriero, S. Passerini, 3D porous Cu–Zn alloys as alternative anode materials for Li-ion batteries with superior low T performance. Adv. Energy Mater. 8, 1701706 (2018). https://doi.org/10.1002/aenm.201701706
T. Wang, X. Tian, L. Li, L. Lu, S. Hou et al., 3D printing-based cellular microelectrodes for high-performance asymmetric quasi-solid-state micro-pseudocapacitors. J. Mater. Chem. A 8, 1749–1756 (2020). https://doi.org/10.1039/C9TA11386J
Z. Qi, J. Ye, W. Chen, J. Biener, E.B. Duoss et al., Compressible electrodes: 3D-printed, superelastic polypyrrole–graphene electrodes with ultrahigh areal capacitance for electrochemical energy storage. Adv. Mater. Technol. 3, 1800053 (2018). https://doi.org/10.1002/admt.201870026
X. Tang, H. Zhou, Z. Cai, D. Cheng, P. He et al., Generalized 3D printing of graphene-based mixed-dimensional hybrid aerogels. ACS Nano 12, 3502–3511 (2018). https://doi.org/10.1021/acsnano.8b00304
Y. Gao, Y. Lin, J. Chen, Q. Lin, Y. Wu et al., Three-dimensional nanotube electrode arrays for hierarchical tubular structured high-performance pseudocapacitors. Nanoscale 8, 13280–13287 (2016). https://doi.org/10.1039/c6nr03337g
Y. Gao, Y. Lin, Z. Peng, Q. Zhou, Z. Fan, Accelerating ion diffusion with unique three-dimensionally interconnected nanopores for self-membrane high-performance pseudocapacitors. Nanoscale 9, 18311–18317 (2017). https://doi.org/10.1039/c7nr06234f
Y. Jiang, Z. Zhang, D. Chen, J. Du, Y. Yang et al., Vertical growth of 2D covalent organic framework nanoplatelets on a macroporous scaffold for high-performance electrodes. Adv. Mater. 34, e2204250 (2022). https://doi.org/10.1002/adma.202204250
B. Zhang, X. Li, J. Zou, F. Kim, MnCO3 on graphene porous framework via diffusion-driven layer-by-layer assembly for high-performance pseudocapacitor. ACS Appl. Mater. Interfaces 12, 47695–47703 (2020). https://doi.org/10.1021/acsami.0c15511
M.F. El-Kady, M. Ihns, M. Li, J.Y. Hwang, M.F. Mousavi et al., Engineering three-dimensional hybrid supercapacitors and microsupercapacitors for high-performance integrated energy storage. Proc. Natl. Acad. Sci. U.S.A. 112, 4233–4238 (2015). https://doi.org/10.1073/pnas.1420398112
J. Du, Q. Cao, X. Tang, X. Xu, X. Long et al., 3D printing-assisted gyroidal graphite foam for advanced supercapacitors. Chem. Eng. J. 416, 127885 (2021). https://doi.org/10.1016/j.cej.2020.127885
X. Chang, M.F. El-Kady, A. Huang, C.-W. Lin, S. Aguilar et al., 3D graphene network with covalently grafted aniline tetramer for ultralong-life supercapacitors. Adv. Funct. Mater. 31, 2102397 (2021). https://doi.org/10.1002/adfm.202102397
J. Li, M. Zhu, Z. An, Z. Wang, M. Toda et al., Constructing in-chip micro-supercapacitors of 3D graphene nanowall/ruthenium oxides electrode through silicon-based microfabrication technique. J. Power. Sources 401, 204–212 (2018). https://doi.org/10.1016/j.jpowsour.2018.08.099
Y.-Q. Li, X.-M. Shi, X.-Y. Lang, Z. Wen, J.-C. Li et al., Remarkable improvements in volumetric energy and power of 3D MnO2 microsupercapacitors by tuning crystallographic structures. Adv. Funct. Mater. 26, 1830–1839 (2016). https://doi.org/10.1002/adfm.201504886
F. Grote, Y. Lei, A complete three-dimensionally nanostructured asymmetric supercapacitor with high operating voltage window based on PPy and MnO2. Nano Energy 10, 63–70 (2014). https://doi.org/10.1016/j.nanoen.2014.08.019
L. Li, J. Meng, X. Bao, Y. Huang, X.-P. Yan et al., Direct-ink-write 3D printing of programmable micro-supercapacitors from MXene-regulating conducting polymer inks. Adv. Energy Mater. 13, 2203683 (2023). https://doi.org/10.1002/aenm.202203683
M.-Y. Zhang, Y. Song, D. Guo, D. Yang, X. Sun et al., Strongly coupled polypyrrole/molybdenum oxide hybrid films via electrochemical layer-by-layer assembly for pseudocapacitors. J. Mater. Chem. A 7, 9815–9821 (2019). https://doi.org/10.1039/C9TA00705A
J. Gong, J.-C. Li, J. Yang, S. Zhao, Z. Yang et al., High-performance flexible in-plane micro-supercapacitors based on vertically aligned CuSe@Ni(OH)2 hybrid nanosheet films. ACS Appl. Mater. Interfaces 10, 38341–38349 (2018). https://doi.org/10.1021/acsami.8b12543
T.M. Dinh, A. Achour, S. Vizireanu, G. Dinescu, L. Nistor et al., Hydrous RuO2/carbon nanowalls hierarchical structures for all-solid-state ultrahigh-energy-density micro-supercapacitors. Nano Energy 10, 288–294 (2014). https://doi.org/10.1016/j.nanoen.2014.10.003
J. Li, M. Zhu, Z. Wang, T. Ono, Engineering micro-supercapacitors of graphene nanowalls/ni heterostructure based on microfabrication technology. Appl. Phys. Lett. 109, 153901 (2016). https://doi.org/10.1063/1.4964787
C. Kim, J. Sul, J.H. Moon, Semiconductor process fabrication of multiscale porous carbon thin films for energy storage devices. Energy Storage Mater. 57, 308–315 (2023). https://doi.org/10.1016/j.ensm.2023.02.026
X. Yu, N. Li, S. Zhang, C. Liu, L. Chen et al., Ultra-thick 3D graphene frameworks with hierarchical pores for high-performance flexible micro-supercapacitors. J. Power. Sources 478, 229075 (2020). https://doi.org/10.1016/j.jpowsour.2020.229075
S. Sollami Delekta, M.M. Laurila, M. Mäntysalo, J. Li, Drying-mediated self-assembly of graphene for inkjet printing of high-rate micro-supercapacitors. Nano-Micro Lett. 12, 40 (2020). https://doi.org/10.1007/s40820-020-0368-8
B. Yao, S. Chandrasekaran, J. Zhang, W. Xiao, F. Qian et al., Efficient 3D printed pseudocapacitive electrodes with ultrahigh MnO2 loading. Joule 3, 459–470 (2019). https://doi.org/10.1016/j.joule.2018.09.020
T. Lv, G. Zhu, S. Dong, Q. Kong, Y. Peng et al., Co-intercalation of dual charge carriers in metal-ion-confining layered vanadium oxide nanobelts for aqueous zinc-ion batteries. Angew. Chem. Int. Ed. 62, e202216089 (2023). https://doi.org/10.1002/anie.202216089
Y. Su, J. Hu, G. Yuan, G. Zhang, W. Wei et al., Regulating intramolecular electron transfer of nickel-based coordinations through ligand engineering for aqueous batteries. Adv. Mater. 35, e2307003 (2023). https://doi.org/10.1002/adma.202307003
S. Shi, Y. Li, B.-N. Ngo-Dinh, J. Markmann, J. Weissmüller, Scaling behavior of stiffness and strength of hierarchical network nanomaterials. Science 371, 1026–1033 (2021). https://doi.org/10.1126/science.abd9391
Y. Kuang, C. Chen, G. Pastel, Y. Li, J. Song et al., Conductive cellulose nanofiber enabled thick electrode for compact and flexible energy storage devices. Adv. Energy Mater. 8, 1802398 (2018). https://doi.org/10.1002/aenm.201802398
Y.-Q. Li, H. Shi, S.-B. Wang, Y.-T. Zhou, Z. Wen et al., Dual-phase nanostructuring of layered metal oxides for high-performance aqueous rechargeable potassium ion microbatteries. Nat. Commun. 10, 4292 (2019). https://doi.org/10.1038/s41467-019-12274-7
D. Feng, H. Yang, X. Guo, 3-dimensional hierarchically porous ZnFe2O4/C composites with stable performance as anode materials for Li-ion batteries. Chem. Eng. J. 355, 687–696 (2019). https://doi.org/10.1016/j.cej.2018.08.202
Y. Wang, S. Luo, M. Chen, L. Wu, Uniformly confined germanium quantum dots in 3D ordered porous carbon framework for high-performance Li-ion battery. Adv. Funct. Mater. 30, 2000373 (2020). https://doi.org/10.1002/adfm.202000373
T. Jiang, F. Bu, X. Feng, I. Shakir, G. Hao et al., Porous Fe2O3 nanoframeworks encapsulated within three-dimensional graphene as high-performance flexible anode for lithium-ion battery. ACS Nano 11, 5140–5147 (2017). https://doi.org/10.1021/acsnano.7b02198
H. Zhang, P. Chen, H. Xia, G. Xu, Y. Wang et al., An integrated self-healing anode assembled via dynamic encapsulation of liquid metal with a 3D Ti3C2Tx network for enhanced lithium storage. Energy Environ. Sci. 15, 5240–5250 (2022). https://doi.org/10.1039/D2EE02147A
X. Cheng, R. Shao, D. Li, H. Yang, Y. Wu et al., A self-healing volume variation three-dimensional continuous bulk porous bismuth for ultrafast sodium storage. Adv. Funct. Mater. 31, 2011264 (2021). https://doi.org/10.1002/adfm.202011264
H. Dai, X. Zhao, H. Xu, J. Yang, J. Zhou et al., Design of vertically aligned two-dimensional heterostructures of rigid Ti3C2TX MXene and pliable vanadium pentoxide for efficient lithium ion storage. ACS Nano 16, 5556–5565 (2022). https://doi.org/10.1021/acsnano.1c10212
N. Cheng, W. Zhou, J. Liu, Z. Liu, B. Lu, Reversible oxygen-rich functional groups grafted 3D honeycomb-like carbon anode for super-long potassium ion batteries. Nano-Micro Lett. 14, 146 (2022). https://doi.org/10.1007/s40820-022-00892-8
Z. Lv, M. Yue, M. Ling, H. Zhang, J. Yan et al., Controllable design coupled with finite element analysis of low-tortuosity electrode architecture for advanced sodium-ion batteries with ultra-high mass loading. Adv. Energy Mater. 11, 2003725 (2021). https://doi.org/10.1002/aenm.202003725
S. Tu, Z. Lu, M. Zheng, Z. Chen, X. Wang et al., Single-layer-p electrode design for practical fast-charging lithium-ion batteries. Adv. Mater. 34, e2202892 (2022). https://doi.org/10.1002/adma.202202892
Y. Ham, N.J. Fritz, G. Hyun, Y.B. Lee, J.S. Nam et al., 3D periodic polyimide nano-networks for ultrahigh-rate and sustainable energy storage. Energy Environ. Sci. 14, 5894–5902 (2021). https://doi.org/10.1039/d1ee01739j
J.H. Pikul, H. Gang Zhang, J. Cho, P.V. Braun, W.P. King, High-power lithium ion microbatteries from interdigitated three-dimensional bicontinuous nanoporous electrodes. Nat. Commun. 4, 1732 (2013). https://doi.org/10.1038/ncomms2747
Z. Hao, L. Xu, Q. Liu, W. Yang, X. Liao et al., On-chip Ni–Zn microbattery based on hierarchical ordered porous Ni@Ni(OH)2 microelectrode with ultrafast ion and electron transport kinetics. Adv. Funct. Mater. 29, 1808470 (2019). https://doi.org/10.1002/adfm.201808470
W.C. Records, S. Wei, A.M. Belcher, Virus-templated nickel phosphide nanofoams as additive-free, thin-film Li-ion microbattery anodes. Small 15, e1903166 (2019). https://doi.org/10.1002/smll.201903166
J.H. Pikul, J. Liu, P.V. Braun, W.P. King, Integration of high capacity materials into interdigitated mesostructured electrodes for high energy and high power density primary microbatteries. J. Power. Sources 315, 308–315 (2016). https://doi.org/10.1016/j.jpowsour.2016.03.034
W. Yang, L. Xu, W. Luo, M. Huang, K. Fu et al., Rechargeable zinc-ammonium hybrid microbattery with ultrahigh energy and power density. Matter 6, 3006–3020 (2023). https://doi.org/10.1016/j.matt.2023.06.041
M. Jiang, C. Fu, P. Meng, J. Ren, J. Wang et al., Challenges and strategies of low-cost aluminum anodes for high-performance Al-based batteries. Adv. Mater. 34, e2102026 (2022). https://doi.org/10.1002/adma.202102026
Y. Wang, T. Guo, J. Yin, Z. Tian, Y. Ma et al., Controlled deposition of zinc-metal anodes via selectively polarized ferroelectric polymers. Adv. Mater. 34, e2106937 (2022). https://doi.org/10.1002/adma.202106937
Y. Zhang, S. Liu, Y. Ji, J. Ma, H. Yu, Emerging nonaqueous aluminum-ion batteries: challenges, status, and perspectives. Adv. Mater. 30, e1706310 (2018). https://doi.org/10.1002/adma.201706310
H. Song, J. Su, C. Wang, Hybrid solid electrolyte interphases enabled ultralong life Ca-metal batteries working at room temperature. Adv. Mater. 33, e2006141 (2021). https://doi.org/10.1002/adma.202006141
K. Zhang, X. Han, Z. Hu, X. Zhang, Z. Tao et al., Nanostructured Mn-based oxides for electrochemical energy storage and conversion. Chem. Soc. Rev. 44, 699–728 (2015). https://doi.org/10.1039/C4CS00218K
J. Noh, J. Tan, D.R. Yadav, P. Wu, K.Y. Xie et al., Understanding of lithium insertion into 3D porous carbon scaffolds with hybridized lithiophobic and lithiophilic surfaces by In-operando study. Nano Lett. 20, 3681–3687 (2020). https://doi.org/10.1021/acs.nanolett.0c00618
C. Bao, B. Wang, P. Liu, H. Wu, Y. Zhou et al., Solid electrolyte interphases on sodium metal anodes. Adv. Funct. Mater. 30, 2004891 (2020). https://doi.org/10.1002/adfm.202004891
P. Liu, D. Mitlin, Emerging potassium metal anodes: perspectives on control of the electrochemical interfaces. Acc. Chem. Res. 53, 1161–1175 (2020). https://doi.org/10.1021/acs.accounts.0c00099
H. Wang, J. Dong, Q. Guo, W. Xu, H. Zhang et al., Highly stable potassium metal batteries enabled by regulating surface chemistry in ether electrolyte. Energy Storage Mater. 42, 526–532 (2021). https://doi.org/10.1016/j.ensm.2021.08.013
D.-H. Liu, Z. Bai, M. Li, A. Yu, D. Luo et al., Developing high safety Li-metal anodes for future high-energy Li-metal batteries: strategies and perspectives. Chem. Soc. Rev. 49, 5407–5445 (2020). https://doi.org/10.1039/c9cs00636b
X. Zhang, Q. Xiang, S. Tang, A. Wang, X. Liu et al., Long cycling life solid-state Li metal batteries with stress self-adapted Li/garnet interface. Nano Lett. 20, 2871–2878 (2020). https://doi.org/10.1021/acs.nanolett.0c00693
X. Wang, R. Kerr, F. Chen, N. Goujon, J.M. Pringle et al., Toward high-energy-density lithium metal batteries: opportunities and challenges for solid organic electrolytes. Adv. Mater. 32, e1905219 (2020). https://doi.org/10.1002/adma.201905219
J. Chen, X. Xu, Q. He, Y. Ma, Advanced current collectors for alkali metal anodes. Chem. Res. Chin. Univ. 36, 386–401 (2020). https://doi.org/10.1007/s40242-020-0098-y
C. Xu, J. Qiu, Y. Dong, Y. Li, Y. Shen et al., Dual-functional electrode promoting dendrite-free and CO2 utilization enabled high-reversible symmetric Na-CO2 batteries. Energy Environ. Mater. (2023). https://doi.org/10.1002/eem2.12626
J. Chang, J. Shang, Y. Sun, L.K. Ono, D. Wang et al., Flexible and stable high-energy lithium-sulfur full batteries with only 100% oversized lithium. Nat. Commun. 9, 4480 (2018). https://doi.org/10.1038/s41467-018-06879-7
L.-L. Lu, Y. Zhang, Z. Pan, H.-B. Yao, F. Zhou et al., Lithiophilic Cu–Ni core–shell nanowire network as a stable host for improving lithium anode performance. Energy Storage Mater. 9, 31–38 (2017). https://doi.org/10.1016/j.ensm.2017.06.004
X. Zhu, H. Cheng, S. Lyu, J. Huang, J. Gu et al., High-energy-heavy-ion engineering low-tortuosity and high-porosity 3D metallic electrodes for long-life lithium anodes. Adv. Energy Mater. 13, 2300129 (2023). https://doi.org/10.1002/aenm.202300129
S.-S. Chi, Q. Wang, B. Han, C. Luo, Y. Jiang et al., Lithiophilic Zn sites in porous CuZn alloy induced uniform Li nucleation and dendrite-free Li metal deposition. Nano Lett. 20, 2724–2732 (2020). https://doi.org/10.1021/acs.nanolett.0c00352
G.J.H. Lim, Z. Lyu, X. Zhang, J.J. Koh, Y. Zhang et al., Robust pure copper framework by extrusion 3D printing for advanced lithium metal anodes. J. Mater. Chem. A 8, 9058–9067 (2020). https://doi.org/10.1039/D0TA00209G
J. He, L. Ai, T. Yao, Z. Xu, D. Chen et al., In situ reaction fabrication of a mixed-ion/electron-conducting skeleton toward stable lithium metal anodes. Energy Environ. Mater. 6, 12614 (2023). https://doi.org/10.1002/eem2.12614
Y. An, Y. Tian, S. Xiong, J. Feng, Y. Qian, Scalable and controllable synthesis of interface-engineered nanoporous host for dendrite-free and high rate zinc metal batteries. ACS Nano 15, 11828–11842 (2021). https://doi.org/10.1021/acsnano.1c02928
H. Lu, J. Hu, Y. Zhang, K. Zhang, X. Yan et al., 3D cold-trap environment printing for long-cycle aqueous Zn-ion batteries. Adv. Mater. 35, e2209886 (2023). https://doi.org/10.1002/adma.202209886
M. Zhu, S. Li, B. Li, Y. Gong, Z. Du et al., Homogeneous guiding deposition of sodium through main group II metals toward dendrite-free sodium anodes. Sci. Adv. 5, eaau6264 (2019). https://doi.org/10.1126/sciadv.aau6264
L.-K. Zhao, X.-W. Gao, J. Mu, W.-B. Luo, Z. Liu et al., Durable integrated K-metal anode with enhanced mass transport through potassiphilic porous interconnected mediator. Adv. Funct. Mater. 33, 2304292 (2023). https://doi.org/10.1002/adfm.202304292
P. Zhai, Y. Wei, J. Xiao, W. Liu, J. Zuo et al., In situ generation of artificial solid-electrolyte interphases on 3D conducting scaffolds for high-performance lithium-metal anodes. Adv. Energy Mater. 10, 1903339 (2020). https://doi.org/10.1002/aenm.201903339
G. Huang, S. Chen, P. Guo, R. Tao, K. Jie et al., In situ constructing lithiophilic NiFx nanosheets on Ni foam current collector for stable lithium metal anode via a succinct fluorination strategy. Chem. Eng. J. 395, 125122 (2020). https://doi.org/10.1016/j.cej.2020.125122
H. Zheng, Q. Zhang, Q. Chen, W. Xu, Q. Xie et al., 3D lithiophilic–lithiophobic–lithiophilic dual-gradient porous skeleton for highly stable lithium metal anode. J. Mater. Chem. A 8, 313–322 (2020). https://doi.org/10.1039/c9ta09505e
Y. Li, M. Xiao, C. Shen, L. Cui, W. Yang et al., Three-dimensional SEI framework induced by ion regulation in toroidal magnetic field for lithium metal battery. Cell Rep. Phys. Sci. 3, 101080 (2022). https://doi.org/10.1016/j.xcrp.2022.101080
H.-F. Wang, Q. Xu, Materials design for rechargeable metal-air batteries. Matter 1, 565–595 (2019). https://doi.org/10.1016/j.matt.2019.05.008
P. Zhang, Y. Zhao, X. Zhang, Functional and stability orientation synthesis of materials and structures in aprotic Li–O2 batteries. Chem. Soc. Rev. 47, 2921–3004 (2018). https://doi.org/10.1039/C8CS00009C
H.-F. Wang, C. Tang, Q. Zhang, A review of precious-metal-free bifunctional oxygen electrocatalysts: rational design and applications in Zn–air batteries. Adv. Funct. Mater. 28, 1803329 (2018). https://doi.org/10.1002/adfm.201803329
N. Mahne, O. Fontaine, M.O. Thotiyl, M. Wilkening, S.A. Freunberger, Mechanism and performance of lithium-oxygen batteries: a perspective. Chem. Sci. 8, 6716–6729 (2017). https://doi.org/10.1039/c7sc02519j
H.-S. Lim, W.-J. Kwak, D.T. Nguyen, W. Wang, W. Xu et al., Three-dimensionally semi-ordered macroporous air electrodes for metal–oxygen batteries. J. Mater. Chem. A 11, 5746–5753 (2023). https://doi.org/10.1039/d2ta09442h
J.-J. Xu, Z.-L. Wang, D. Xu, F.-Z. Meng, X.-B. Zhang, 3D ordered macroporous LaFeO3 as efficient electrocatalyst for Li–O2 batteries with enhanced rate capability and cyclic performance. Energy Environ. Sci. 7, 2213–2219 (2014). https://doi.org/10.1039/C3EE42934B
C. Li, Z. Guo, Y. Pang, Y. Sun, X. Su et al., Three-dimensional ordered macroporous FePO4 as high-efficiency catalyst for rechargeable Li–O2 batteries. ACS Appl. Mater. Interfaces 8, 31638–31645 (2016). https://doi.org/10.1021/acsami.6b10115
W. Yao, Y. Yuan, G. Tan, C. Liu, M. Cheng et al., Tuning Li2O2 formation routes by facet engineering of MnO2 cathode catalysts. J. Am. Chem. Soc. 141, 12832–12838 (2019). https://doi.org/10.1021/jacs.9b05992
R.R. Mitchell, B.M. Gallant, Y. Shao-Horn, C.V. Thompson, Mechanisms of morphological evolution of Li2O2 ps during electrochemical growth. J. Phys. Chem. Lett. 4, 1060–1064 (2013). https://doi.org/10.1021/jz4003586
H. Wang, X. Wang, M. Li, L. Zheng, D. Guan et al., Porous materials applied in nonaqueous Li–O2 batteries: status and perspectives. Adv. Mater. 32, e2002559 (2020). https://doi.org/10.1002/adma.202002559
J. Wu, B. Liu, X. Fan, J. Ding, X. Han et al., Carbon-based cathode materials for rechargeable zinc-air batteries: from current collectors to bifunctional integrated air electrodes. Carbon Energy 2, 370–386 (2020). https://doi.org/10.1002/cey2.60
Z. Lyu, G.J.H. Lim, R. Guo, Z. Kou, T. Wang et al., 3D-printed MOF-derived hierarchically porous frameworks for practical high-energy density Li–O2 batteries. Adv. Funct. Mater. 29, 1806658 (2019). https://doi.org/10.1002/adfm.201806658
C. Chen, S. Xu, Y. Kuang, W. Gan, J. Song et al., Nature-inspired tri-pathway design enabling high-performance flexible Li–O2 batteries. Adv. Energy Mater. 9, 1802964 (2019). https://doi.org/10.1002/aenm.201802964
N. Luo, G.-J. Ji, H.-F. Wang, F. Li, Q.-C. Liu et al., Process for a free-standing and stable all-metal structure for symmetrical lithium–oxygen batteries. ACS Nano 14, 3281–3289 (2020). https://doi.org/10.1021/acsnano.9b08844
G. Liu, L. Zhang, S. Wang, L.-X. Ding, H. Wang, Hierarchical NiCo2O4 nanosheets on carbon nanofiber films for high energy density and long-life Li–O2 batteries. J. Mater. Chem. A 5, 14530–14536 (2017). https://doi.org/10.1039/C7TA03703A
F. Yang, X. Liu, H. Zhang, J. Zhou, J. Jiang et al., Boosting oxygen catalytic kinetics of carbon nanotubes by oxygen-induced electron density modulation for advanced Zn-air batteries. Energy Storage Mater. 30, 138–145 (2020). https://doi.org/10.1016/j.ensm.2020.05.005
T. Jin, J. Nie, M. Dong, B. Chen, J. Nie et al., 3D interconnected honeycomb-like multifunctional catalyst for Zn–air batteries. Nano-Micro Lett. 15, 26 (2022). https://doi.org/10.1007/s40820-022-00959-6
T. Van Tam, S.G. Kang, M.H. Kim, S.G. Lee, S.H. Hur et al., Novel graphene hydrogel/B-doped graphene quantum dots composites as trifunctional electrocatalysts for Zn–air batteries and overall water splitting. Adv. Energy Mater. 9, 1900945 (2019). https://doi.org/10.1002/aenm.201900945
J. Wu, H. Zhou, Q. Li, M. Chen, J. Wan et al., Densely populated isolated single Co-N site for efficient oxygen electrocatalysis. Adv. Energy Mater. 9, 1900149 (2019). https://doi.org/10.1002/aenm.201900149
K. Hu, T. Yu, Y. Zhang, X. Lin, Y. Zhao et al., Inhibiting surface diffusion to synthesize 3D bicontinuous nanoporous N-doped carbon for boosting oxygen reduction reaction in flexible all-solid-state Al-air batteries. Adv. Funct. Mater. 31, 2170284 (2021). https://doi.org/10.1002/adfm.202170284
M. Jiang, C. Fu, J. Yang, Q. Liu, J. Zhang et al., Defect-engineered MnO2 enhancing oxygen reduction reaction for high performance Al–air batteries. Energy Storage Mater. 18, 34–42 (2019). https://doi.org/10.1016/j.ensm.2018.09.026
Q. Huang, Y. Xu, Y. Guo, L. Zhang, Y. Hu et al., Highly graphitized N-doped carbon nanosheets from 2-dimensional coordination polymers for efficient metal-air batteries. Carbon 188, 135–145 (2022). https://doi.org/10.1016/j.carbon.2021.11.062
Q. Liao, G. Li, R. Ding, Z. He, M. Jiang et al., Facile synthesis of CO/N-doped carbon nanotubes and the application in alkaline and neutral metal-air batteries. Int. J. Hydrog. Energy 46, 31253–31261 (2021). https://doi.org/10.1016/j.ijhydene.2021.07.019
Z. Zhang, Z. Li, C. Sun, T. Zhang, S. Wang, Preparation and properties of an amorphous MnO2/CNTs-OH catalyst with high dispersion and durability for magnesium-air fuel cells. Catal. Today 298, 241–249 (2017). https://doi.org/10.1016/j.cattod.2017.04.001
B. Guo, R. Ma, Z. Li, S. Guo, J. Luo et al., Hierarchical N-doped porous carbons for Zn–air batteries and supercapacitors. Nano-Micro Lett. 12, 20 (2020). https://doi.org/10.1007/s40820-019-0364-z
C. Li, X. Li, Q. Yang, P. Sun, L. Wu et al., Tuning the mechanical and electrical properties of porous electrodes for architecting 3D microsupercapacitors with batteries-level energy. Adv. Sci. 8, 2004957 (2021). https://doi.org/10.1002/advs.202004957
A.Y.S. Eng, C.B. Soni, Y. Lum, E. Khoo, Z. Yao et al., Theory-guided experimental design in battery materials research. Sci. Adv. 8, eabm2422 (2022). https://doi.org/10.1126/sciadv.abm2422
Y.S. Meng, V. Srinivasan, K. Xu, Designing better electrolytes. Science 378, eabq3750 (2022). https://doi.org/10.1126/science.abq3750
C. Zhu, R.E. Usiskin, Y. Yu, J. Maier, The nanoscale circuitry of battery electrodes. Science 358, eaao2808 (2017). https://doi.org/10.1126/science.aao2808
K. Liu, Y. Liu, D. Lin, A. Pei, Y. Cui, Materials for lithium-ion battery safety. Sci. Adv. 4, eaas9820 (2018). https://doi.org/10.1126/sciadv.aas9820
S. Rana, R. Kumar, R.S. Bharj, Current trends, challenges, and prospects in material advances for improving the overall safety of lithium-ion battery pack. Chem. Eng. J. 463, 142336 (2023). https://doi.org/10.1016/j.cej.2023.142336
Y. Zhao, Y. Kang, J. Wozny, J. Lu, H. Du et al., Recycling of sodium-ion batteries. Nat. Rev. Mater. 8, 623–634 (2023). https://doi.org/10.1038/s41578-023-00574-w