Enhanced High-Temperature Cycling Stability of Garnet-Based All Solid-State Lithium Battery Using a Multi-Functional Catholyte Buffer Layer
Corresponding Author: Zongping Shao
Nano-Micro Letters,
Vol. 16 (2024), Article Number: 124
Abstract
The pursuit of safer and high-performance lithium-ion batteries (LIBs) has triggered extensive research activities on solid-state batteries, while challenges related to the unstable electrode–electrolyte interface hinder their practical implementation. Polymer has been used extensively to improve the cathode-electrolyte interface in garnet-based all-solid-state LIBs (ASSLBs), while it introduces new concerns about thermal stability. In this study, we propose the incorporation of a multi-functional flame-retardant triphenyl phosphate additive into poly(ethylene oxide), acting as a thin buffer layer between LiNi0.8Co0.1Mn0.1O2 (NCM811) cathode and garnet electrolyte. Through electrochemical stability tests, cycling performance evaluations, interfacial thermal stability analysis and flammability tests, improved thermal stability (capacity retention of 98.5% after 100 cycles at 60 °C, and 89.6% after 50 cycles at 80 °C) and safety characteristics (safe and stable cycling up to 100 °C) are demonstrated. Based on various materials characterizations, the mechanism for the improved thermal stability of the interface is proposed. The results highlight the potential of multi-functional flame-retardant additives to address the challenges associated with the electrode–electrolyte interface in ASSLBs at high temperature. Efficient thermal modification in ASSLBs operating at elevated temperatures is also essential for enabling large-scale energy storage with safety being the primary concern.
Highlights:
1 Thermally stable catholyte buffer layer was fabricated via incorporating a multi-functional flame-retardant triphenyl phosphate additive into poly(ethylene oxide).
2 The optimized catholyte buffer layer enabled thermal and electrochemical stability at interface level, delivering comparable cycling stability of garnet-based all solid-state lithium battery, i.e., capacity retention of 98.5% after 100 cycles at 60 °C, and 89.6% after 50 cycles at 80 °C.
3 Exceptional safety performances were demonstrated, i.e., safely cycling behavior at temperature up to 100 °C and spontaneous fire-extinguishing ability.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J.B. Goodenough, P. Singh, Review—solid electrolytes in rechargeable electrochemical cells. J. Electrochem. Soc. 162, A2387–A2392 (2015). https://doi.org/10.1149/2.0021514jes
- A. Banerjee, X. Wang, C. Fang, E. Wu, Y.S. Meng, Interfaces and interphases in all-solid-state batteries with inorganic solid electrolytes. Chem. Rev. 120, 6878–6933 (2020). https://doi.org/10.1021/acs.chemrev.0c00101
- L. Xu, S. Tang, Y. Cheng, K. Wang, J. Liang et al., Interfaces in solid-state lithium batteries. Joule 2, 1991–2015 (2018). https://doi.org/10.1016/j.joule.2018.07.009
- C. Wang, K. Fu, S.P. Kammampata, D.W. McOwen, A.J. Samson et al., Garnet-type solid-state electrolytes: materials, interfaces, and batteries. Chem. Rev. 120, 4257–4300 (2020). https://doi.org/10.1021/acs.chemrev.9b00427
- J.C. Bachman, S. Muy, A. Grimaud, H.H. Chang, N. Pour et al., Inorganic solid-state electrolytes for lithium batteries: mechanisms and properties governing ion conduction. Chem. Rev. 116, 140–162 (2016). https://doi.org/10.1021/acs.chemrev.5b00563
- X. Yu, A. Manthiram, Electrode–electrolyte interfaces in lithium-based batteries. Energy Environ. Sci. 11, 527–543 (2018). https://doi.org/10.1039/c7ee02555f
- M.S. Indu, G.V. Alexander, O.V. Sreejith, S.E. Abraham, R. Murugan, Lithium garnet-cathode interfacial chemistry: inclusive insights and outlook towardpractical solid-state lithium metal batteries. Mater. Today Energy 21, 100804 (2021). https://doi.org/10.1016/j.mtener.2021.100804
- C. Sun, Y. Ruan, W. Zha, W. Li, M. Cai et al., Recent advances in anodic interface engineering for solid-state lithium-metal batteries. Mater. Horiz. 7, 1667–1696 (2020). https://doi.org/10.1039/D0MH00050G
- Z. Zhao, Z. Wen, X. Liu, H. Yang, S. Chen et al., Tuning a compatible interface with LLZTO integrated on cathode material for improving NCM811/LLZTO solid-state battery. Chem. Eng. J. 405, 127031 (2021). https://doi.org/10.1016/J.CEJ.2020.127031
- C. Roitzheim, Y.J. Sohn, L.-Y. Kuo, G. Häuschen, M. Mann et al., All-solid-state Li batteries with NCM—garnet-based composite cathodes: the impact of NCM composition on material compatibility. ACS Appl. Energy Mater. 5, 6913–6926 (2022). https://doi.org/10.1021/acsaem.2c00533
- Y. Zhang, F. Chen, D. Yang, W. Zha, J. Li et al., High capacity all-solid-state lithium battery using cathodes with three-dimensional Li+ conductive network. J. Electrochem. Soc. 164, A1695–A1702 (2017). https://doi.org/10.1149/2.1501707jes
- L. Li, Y. Deng, H. Duan, Y. Qian, G. Chen, LiF and LiNO3 as synergistic additives for PEO-PVDF/LLZTO-based composite electrolyte towards high-voltage lithium batteries with dual-interfaces stability. J. Energy Chem. 65, 319–328 (2022). https://doi.org/10.1016/j.jechem.2021.05.055
- H. Wang, T. Hou, H. Cheng, B. Jiang, H. Xu et al., Bifunctional LiI additive for poly(ethylene oxide) electrolyte with high ionic conductivity and stable interfacial chemistry. J. Energy Chem. 71, 218–224 (2022). https://doi.org/10.1016/j.jechem.2022.02.041
- W. Zha, F. Chen, D. Yang, Q. Shen, L. Zhang, High-performance Li6.4La3Zr1.4Ta0.6O12/poly(ethylene oxide)/succinonitrile composite electrolyte for solid-state lithium batteries. J. Power. Sources 397, 87–94 (2018). https://doi.org/10.1016/j.jpowsour.2018.07.005
- H. Liang, L. Wang, A. Wang, Y. Song, Y. Wu et al., Tailoring practically accessible polymer/inorganic composite electrolytes for all-solid-state lithium metal batteries: a review. Nano-Micro Lett. 15, 42 (2023). https://doi.org/10.1007/s40820-022-00996-1
- M. Shen, Z. Wang, D. Cheng, H. Cheng, H. Xu et al., Molecular regulated polymer electrolytes for solid-state lithium metal batteries: mechanisms and future prospects. eTransportation 18, 100264 (2023). https://doi.org/10.1016/j.etran.2023.100264
- S.-S. Chi, Y. Liu, N. Zhao, X. Guo, C.-W. Nan et al., Solid polymer electrolyte soft interface layer with 3D lithium anode for all-solid-state lithium batteries. Energy Storage Mater. 17, 309–316 (2019). https://doi.org/10.1016/j.ensm.2018.07.004
- Y. Zhong, C. Cao, M.O. Tadé, Z. Shao, Ionically and electronically conductive phases in a composite anode for high-rate and stable lithium stripping and plating for solid-state lithium batteries. ACS Appl. Mater. Interfaces 14, 38786–38794 (2022). https://doi.org/10.1021/acsami.2c09801
- Y. Su, F. Xu, X. Zhang, Y. Qiu, H. Wang, Rational design of high-performance PEO/ceramic composite solid electrolytes for lithium metal batteries. Nano-Micro Lett. 15, 82 (2023). https://doi.org/10.1007/s40820-023-01055-z
- H. Yang, D. Mu, B. Wu, J. Bi, L. Zhang et al., Improving cathode/Li6.4La3Zr1.4Ta0.6O12 electrolyte interface with a hybrid PVDF-HFP-based buffer layer for solid lithium battery. J. Mater. Sci. 55, 11451–11461 (2020). https://doi.org/10.1007/s10853-020-04701-8
- J. Huang, Y. Huang, Z. Zhang, H. Gao, C. Li, Li6.7La3Zr1.7Ta0.3O12 reinforced PEO/PVDF-HFP based composite solid electrolyte for all solid-state lithium metal battery. Energy Fuels 34, 15011–15018 (2020). https://doi.org/10.1021/acs.energyfuels.0c03124
- X. Gao, Y.-N. Zhou, D. Han, J. Zhou, D. Zhou et al., Thermodynamic understanding of Li-dendrite formation. Joule 4, 1864–1879 (2020). https://doi.org/10.1016/j.joule.2020.06.016
- J. Sang, B. Tang, K. Pan, Y.-B. He, Z. Zhou, Current status and enhancement strategies for all-solid-state lithium batteries. Acc. Mater. Res. 4, 472–483 (2023). https://doi.org/10.1021/accountsmr.2c00229
- K. Jung, S.H. Oh, T. Yim, Triphenyl phosphate as an efficient electrolyte additive for Ni-rich NCM cathode materials. J. Electrochem. Sci. Technol. 12, 67–73 (2021). https://doi.org/10.33961/jecst.2020.00850
- C. Cao, Y. Zhong, K. Chandula Wasalathilake, M.O. Tadé, X. Xu et al., A low resistance and stable lithium-garnet electrolyte interface enabled by a multifunctional anode additive for solid-state lithium batteries. J. Mater. Chem. A 10, 2519–2527 (2022). https://doi.org/10.1039/D1TA07804F
- P. Bruce, Conductivity and transference number measurements on polymer electrolytes. Solid State Ion. 28–30, 918–922 (1988). https://doi.org/10.1016/0167-2738(88)90304-9
- J. Evans, C.A. Vincent, P.G. Bruce, Electrochemical measurement of transference numbers in polymer electrolytes. Polymer 28, 2324–2328 (1987). https://doi.org/10.1016/0032-3861(87)90394-6
- H. Chen, M. Zheng, S. Qian, H.Y. Ling, Z. Wu et al., Functional additives for solid polymer electrolytes in flexible and high-energy-density solid-state lithium-ion batteries. Carbon Energy 3, 929–956 (2021). https://doi.org/10.1002/cey2.146
- T. Kim, A facile treatment to improve safety and interfacial stability by an organophosphorus composite for lithium metal batteries. Mater. Lett. 338, 134023 (2023). https://doi.org/10.1016/j.matlet.2023.134023
- L. Chen, Q. Nian, D. Ruan, J. Fan, Y. Li et al., High-safety and high-efficiency electrolyte design for 4.6 V-class lithium-ion batteries with a non-solvating flame-retardant. Chem. Sci. 14, 1184–1193 (2022). https://doi.org/10.1039/d2sc05723a
- X. Wang, W. He, H. Xue, D. Zhang, J. Wang et al., A nonflammable phosphate-based localized high-concentration electrolyte for safe and high-voltage lithium metal batteries. Sustain. Energy Fuels 6, 1281–1288 (2022). https://doi.org/10.1039/D1SE01919H
- X. Feng, Z. Zhang, R. Li, W. Xiong, B. Yu et al., New nonflammable tributyl phosphate based localized high concentration electrolytes for lithium metal batteries. Sustain. Energy Fuels 6, 2198–2206 (2022). https://doi.org/10.1039/D2SE00231K
- F. Wu, J. Dong, L. Chen, L. Bao, N. Li et al., High-voltage and high-safety nickel-rich layered cathode enabled by a self-reconstructive cathode/electrolyte interphase layer. Energy Storage Mater. 41, 495–504 (2021). https://doi.org/10.1016/j.ensm.2021.06.018
- M. Chen, C. Ma, Z. Ding, L. Zhou, L. Chen et al., Upgrading electrode/electrolyte interphases via polyamide-based quasi-solid electrolyte for long-life nickel-rich lithium metal batteries. ACS Energy Lett. (2021). https://doi.org/10.1021/acsenergylett.1c00265
- X. Zou, Q. Lu, X. Zhang, R. Ran, W. Zhou et al., Achieving safe and dendrite-suppressed solid-state Li batteries via a novel self-extinguished trimethyl phosphate-based wetting agent. Energy Fuels 34, 11547–11556 (2020). https://doi.org/10.1021/acs.energyfuels.0c02222
- Z. Zeng, X. Liu, X. Jiang, Z. Liu, Z. Peng et al., Enabling an intrinsically safe and high-energy-density 4.5 V-class Li-ion battery with nonflammable electrolyte. InfoMat 2, 984–992 (2020). https://doi.org/10.1002/inf2.12089
- N. von Aspern, S. Röser, B. Rezaei Rad, P. Murmann, B. Streipert et al., Phosphorus additives for improving high voltage stability and safety of lithium ion batteries. J. Fluor. Chem. 198, 24–33 (2017). https://doi.org/10.1016/j.jfluchem.2017.02.005
- J. Yang, M. Zhang, Z. Chen, X. Du, S. Huang et al., Flame-retardant quasi-solid polymer electrolyte enabling sodium metal batteries with highly safe characteristic and superior cycling stability. Nano Res. 12, 2230–2237 (2019). https://doi.org/10.1007/s12274-019-2369-9
- K. Liu, W. Liu, Y. Qiu, B. Kong, Y. Sun et al., Electrospun core-shell microfiber separator with thermal-triggered flame-retardant properties for lithium-ion batteries. Sci. Adv. 3, e1601978 (2017). https://doi.org/10.1126/sciadv.1601978
- Y. Ye, L.-Y. Chou, Y. Liu, H. Wang, H.K. Lee et al., Ultralight and fire-extinguishing current collectors for high-energy and high-safety lithium-ion batteries. Nat. Energy 5, 786–793 (2020). https://doi.org/10.1038/s41560-020-00702-8
- E.-G. Shim, T.-H. Nam, J.-G. Kim, H.-S. Kim, S.-I. Moon, Electrochemical performance of lithium-ion batteries with triphenylphosphate as a flame-retardant additive. J. Power. Sources 172, 919–924 (2007). https://doi.org/10.1016/j.jpowsour.2007.04.088
- A. Granzow, Flame retardation by phosphorus compounds. Acc. Chem. Res. 11, 177–183 (1978). https://doi.org/10.1021/ar50125a001
- H. Tae Kim, M. Hee Kim, B. Kim, C. Min Koo, K. Kahb Koo et al., Effect of plasticization on physical and optical properties of triacetyl cellulose films for LCD application. Mol. Cryst. Liq. Cryst. 512, 188–198 (2009). https://doi.org/10.1080/15421400903050905
- K. Lee, J. Kim, J. Bae, J. Yang, S. Hong et al., Studies on the thermal stabilization enhancement of ABS; synergistic effect by triphenyl phosphate and epoxy resin mixtures. Polymer 43, 2249–2253 (2002). https://doi.org/10.1016/s0032-3861(02)00024-1
- B. Schartel, Phosphorus-based flame retardancy mechanisms-old hat or a starting point for future development? Materials 3, 4710–4745 (2010). https://doi.org/10.3390/ma3104710
- S. Zugmann, M. Fleischmann, M. Amereller, R.M. Gschwind, H.D. Wiemhöfer et al., Measurement of transference numbers for lithium ion electrolytes via four different methods, a comparative study. Electrochim. Acta 56, 3926–3933 (2011). https://doi.org/10.1016/j.electacta.2011.02.025
- K. Pożyczka, M. Marzantowicz, J.R. Dygas, F. Krok, Ionic conductivity and lithium transference number of poly(ethylene oxide): litfsi system. Electrochim. Acta 227, 127–135 (2017). https://doi.org/10.1016/j.electacta.2016.12.172
- H. Maleki Kheimeh Sari, X. Li, Controllable cathode–electrolyte interface of Li[Ni0.8Co0.1Mn0.1]O2 for lithium ion batteries: a review. Adv. Energy Mater. 9, 1901597 (2019). https://doi.org/10.1002/aenm.201901597
- J. Li, Y. Ji, H. Song, S. Chen, S. Ding et al., Insights into the interfacial degradation of high-voltage all-solid-state lithium batteries. Nano-Micro Lett. 14, 191 (2022). https://doi.org/10.1007/s40820-022-00936-z
- S.S. Zhang, Understanding of performance degradation of LiNi0.80Co0.10Mn0.10O2 cathode material operating at high potentials. J. Energy Chem. 41, 135–141 (2020). https://doi.org/10.1016/j.jechem.2019.05.013
- H. Kim, J. Park, I. Park, K. Jin, S.E. Jerng et al., Coordination tuning of cobalt phosphates towards efficient water oxidation catalyst. Nat. Commun. 6, 8253 (2015). https://doi.org/10.1038/ncomms9253
- Q. Zheng, Y. Yamada, R. Shang, S. Ko, Y.-Y. Lee et al., A cyclic phosphate-based battery electrolyte for high voltage and safe operation. Nat. Energy 5, 291–298 (2020). https://doi.org/10.1038/s41560-020-0567-z
- S.M. Bak, E. Hu, Y. Zhou, X. Yu, S.D. Senanayake et al., Structural changes and thermal stability of charged LiNixMnyCozO2 cathode materials studied by combined in situ time-resolved XRD and mass spectroscopy. ACS Appl. Mater. Interfaces 6, 22594–22601 (2014). https://doi.org/10.1021/am506712c
- A.O. Kondrakov, H. Geßwein, K. Galdina, L. de Biasi, V. Meded et al., Charge-transfer-induced lattice collapse in Ni-rich NCM cathode materials during delithiation. J. Phys. Chem. C 121, 24381–24388 (2017). https://doi.org/10.1021/acs.jpcc.7b06598
- Y. Zhai, G. Yang, Z. Zeng, S. Song, S. Li et al., Composite hybrid quasi-solid electrolyte for high-energy lithium metal batteries. ACS Appl. Energy Mater. 4, 7973–7982 (2021). https://doi.org/10.1021/acsaem.1c01281
- L. Gao, B. Tang, H. Jiang, Z. Xie, J. Wei et al., Fiber-reinforced composite polymer electrolytes for solid-state lithium batteries. Adv. Sustain. Syst. 6, 2100389 (2022). https://doi.org/10.1002/adsu.202100389
- F. Wei, S. Wu, J. Zhang, H. Fan, L. Wang et al., Molecular reconfigurations enabling active liquid–solid interfaces for ultrafast Li diffusion kinetics in the 3D framework of a garnet solid-state electrolyte. J. Mater. Chem. A 9, 17039–17047 (2021). https://doi.org/10.1039/D1TA03569J
- L. Chen, X. Qiu, Z. Bai, L.-Z. Fan, Enhancing interfacial stability in solid-state lithium batteries with polymer/garnet solid electrolyte and composite cathode framework. J. Energy Chem. 52, 210–217 (2021). https://doi.org/10.1016/j.jechem.2020.03.052
- S. Wang, Q. Sun, W. Peng, Y. Ma, Y. Zhou et al., Ameliorating the interfacial issues of all-solid-state lithium metal batteries by constructing polymer/inorganic composite electrolyte. J. Energy Chem. 58, 85 (2021). https://doi.org/10.1016/j.jechem.2020.09.033
- K. Liu, X. Li, J. Cai, Z. Yang, Z. Chen et al., Design of high-voltage stable hybrid electrolyte with an ultrahigh Li transference number. ACS Energy Lett. 6, 1315 (2021). https://doi.org/10.1021/acsenergylett.0c02559
- L. Li, H. Duan, L. Zhang, Y. Deng, G. Chen, Optimized functional additive enabled stable cathode and anode interfaces for high-voltage all-solid-state lithium batteries with significantly improved cycling performance. J. Mater. Chem. A 10, 20331–20342 (2022). https://doi.org/10.1039/D2TA03982F
- S.L. Beshahwured, Y.-S. Wu, S.-H. Wu, W.-C. Chien, R. Jose et al., Flexible hybrid solid electrolyte incorporating ligament-shaped Li6.25Al0.25La3Zr2O12 filler for all-solid-state lithium-metal batteries. Electrochim. Acta 366, 137348 (2021). https://doi.org/10.1016/j.electacta.2020.137348
- S.H.-S. Cheng, C. Liu, F. Zhu, L. Zhao, R. Fan et al., (Oxalato)borate: the key ingredient for polyethylene oxide based composite electrolyte to achieve ultra-stable performance of high voltage solid-state LiNi0.8Co0.1Mn0.1O2/lithium metal battery. Nano Energy 80, 105562 (2021). https://doi.org/10.1016/j.nanoen.2020.105562
- X. Yu, Y. Liu, J.B. Goodenough, A. Manthiram, Rationally designed PEGDA-LLZTO composite electrolyte for solid-state lithium batteries. ACS Appl. Mater. Interfaces 13, 30703–30711 (2021). https://doi.org/10.1021/acsami.1c07547
- K.Z. Walle, L. Musuvadhi Babulal, S.H. Wu, W.C. Chien, R. Jose et al., Electrochemical characteristics of a polymer/garnet trilayer composite electrolyte for solid-state lithium-metal batteries. ACS Appl. Mater. Interfaces 13, 2507–2520 (2021). https://doi.org/10.1021/acsami.0c17422
- L. Li, Y. Hu, H. Duan, Y. Deng, G. Chen, A thin composite polymer electrolyte functionalized by a novel antihydrolysis additive to enable all-solid-state lithium battery with excellent rate and cycle performance. Small Methods 7, e2300314 (2023). https://doi.org/10.1002/smtd.202300314
- T. Waldmann, M. Wilka, M. Kasper, M. Fleischhammer, M. Wohlfahrt-Mehrens, Temperature dependent ageing mechanisms in Lithium-ion batteries–A Post-Mortem study. J. Power. Sources 262, 129–135 (2014). https://doi.org/10.1016/j.jpowsour.2014.03.112
- A. Düvel, A. Kuhn, L. Robben, M. Wilkening, P. Heitjans, Mechanosynthesis of solid electrolytes: preparation, characterization, and Li ion transport properties of garnet-type Al-doped Li7La3Zr2O12 crystallizing with cubic symmetry. J. Phys. Chem. C 116, 15192–15202 (2012). https://doi.org/10.1021/jp301193r
- L. Suo, O. Borodin, T. Gao, M. Olguin, J. Ho et al., “Water-in-salt” electrolyte enables high-voltage aqueous lithium-ion chemistries. Science 350, 938–943 (2015). https://doi.org/10.1126/science.aab1595
- J. Xie, Z. Liang, Y.-C. Lu, Molecular crowding electrolytes for high-voltage aqueous batteries. Nat. Mater. 19, 1006–1011 (2020). https://doi.org/10.1038/s41563-020-0667-y
- C. Xin, K. Wen, S. Guan, C. Xue, X. Wu et al., A cross-linked poly(ethylene oxide)-based electrolyte for all-solid-state lithium metal batteries with long cycling stability. Front. Mater. 9, 864478 (2022). https://doi.org/10.3389/fmats.2022.864478
- Z. Xue, D. He, X. Xie, Poly(ethylene oxide)-based electrolytes for lithium-ion batteries. J. Mater. Chem. A 3, 19218–19253 (2015). https://doi.org/10.1039/C5TA03471J
- A.R. Polu, H.-W. Rhee, The effects of LiTDI salt and POSS-PEG (n = 4) hybrid nanops on crystallinity and ionic conductivity of PEO based solid polymer electrolytes. Sci. Adv. Mater. 8, 931–940 (2016). https://doi.org/10.1166/sam.2016.2657
- X. Qian, N. Gu, Z. Cheng, X. Yang, E. Wang et al., Plasticizer effect on the ionic conductivity of PEO-based polymer electrolyte. Mater. Chem. Phys. 74, 98–103 (2002). https://doi.org/10.1016/s0254-0584(01)00408-4
References
J.B. Goodenough, P. Singh, Review—solid electrolytes in rechargeable electrochemical cells. J. Electrochem. Soc. 162, A2387–A2392 (2015). https://doi.org/10.1149/2.0021514jes
A. Banerjee, X. Wang, C. Fang, E. Wu, Y.S. Meng, Interfaces and interphases in all-solid-state batteries with inorganic solid electrolytes. Chem. Rev. 120, 6878–6933 (2020). https://doi.org/10.1021/acs.chemrev.0c00101
L. Xu, S. Tang, Y. Cheng, K. Wang, J. Liang et al., Interfaces in solid-state lithium batteries. Joule 2, 1991–2015 (2018). https://doi.org/10.1016/j.joule.2018.07.009
C. Wang, K. Fu, S.P. Kammampata, D.W. McOwen, A.J. Samson et al., Garnet-type solid-state electrolytes: materials, interfaces, and batteries. Chem. Rev. 120, 4257–4300 (2020). https://doi.org/10.1021/acs.chemrev.9b00427
J.C. Bachman, S. Muy, A. Grimaud, H.H. Chang, N. Pour et al., Inorganic solid-state electrolytes for lithium batteries: mechanisms and properties governing ion conduction. Chem. Rev. 116, 140–162 (2016). https://doi.org/10.1021/acs.chemrev.5b00563
X. Yu, A. Manthiram, Electrode–electrolyte interfaces in lithium-based batteries. Energy Environ. Sci. 11, 527–543 (2018). https://doi.org/10.1039/c7ee02555f
M.S. Indu, G.V. Alexander, O.V. Sreejith, S.E. Abraham, R. Murugan, Lithium garnet-cathode interfacial chemistry: inclusive insights and outlook towardpractical solid-state lithium metal batteries. Mater. Today Energy 21, 100804 (2021). https://doi.org/10.1016/j.mtener.2021.100804
C. Sun, Y. Ruan, W. Zha, W. Li, M. Cai et al., Recent advances in anodic interface engineering for solid-state lithium-metal batteries. Mater. Horiz. 7, 1667–1696 (2020). https://doi.org/10.1039/D0MH00050G
Z. Zhao, Z. Wen, X. Liu, H. Yang, S. Chen et al., Tuning a compatible interface with LLZTO integrated on cathode material for improving NCM811/LLZTO solid-state battery. Chem. Eng. J. 405, 127031 (2021). https://doi.org/10.1016/J.CEJ.2020.127031
C. Roitzheim, Y.J. Sohn, L.-Y. Kuo, G. Häuschen, M. Mann et al., All-solid-state Li batteries with NCM—garnet-based composite cathodes: the impact of NCM composition on material compatibility. ACS Appl. Energy Mater. 5, 6913–6926 (2022). https://doi.org/10.1021/acsaem.2c00533
Y. Zhang, F. Chen, D. Yang, W. Zha, J. Li et al., High capacity all-solid-state lithium battery using cathodes with three-dimensional Li+ conductive network. J. Electrochem. Soc. 164, A1695–A1702 (2017). https://doi.org/10.1149/2.1501707jes
L. Li, Y. Deng, H. Duan, Y. Qian, G. Chen, LiF and LiNO3 as synergistic additives for PEO-PVDF/LLZTO-based composite electrolyte towards high-voltage lithium batteries with dual-interfaces stability. J. Energy Chem. 65, 319–328 (2022). https://doi.org/10.1016/j.jechem.2021.05.055
H. Wang, T. Hou, H. Cheng, B. Jiang, H. Xu et al., Bifunctional LiI additive for poly(ethylene oxide) electrolyte with high ionic conductivity and stable interfacial chemistry. J. Energy Chem. 71, 218–224 (2022). https://doi.org/10.1016/j.jechem.2022.02.041
W. Zha, F. Chen, D. Yang, Q. Shen, L. Zhang, High-performance Li6.4La3Zr1.4Ta0.6O12/poly(ethylene oxide)/succinonitrile composite electrolyte for solid-state lithium batteries. J. Power. Sources 397, 87–94 (2018). https://doi.org/10.1016/j.jpowsour.2018.07.005
H. Liang, L. Wang, A. Wang, Y. Song, Y. Wu et al., Tailoring practically accessible polymer/inorganic composite electrolytes for all-solid-state lithium metal batteries: a review. Nano-Micro Lett. 15, 42 (2023). https://doi.org/10.1007/s40820-022-00996-1
M. Shen, Z. Wang, D. Cheng, H. Cheng, H. Xu et al., Molecular regulated polymer electrolytes for solid-state lithium metal batteries: mechanisms and future prospects. eTransportation 18, 100264 (2023). https://doi.org/10.1016/j.etran.2023.100264
S.-S. Chi, Y. Liu, N. Zhao, X. Guo, C.-W. Nan et al., Solid polymer electrolyte soft interface layer with 3D lithium anode for all-solid-state lithium batteries. Energy Storage Mater. 17, 309–316 (2019). https://doi.org/10.1016/j.ensm.2018.07.004
Y. Zhong, C. Cao, M.O. Tadé, Z. Shao, Ionically and electronically conductive phases in a composite anode for high-rate and stable lithium stripping and plating for solid-state lithium batteries. ACS Appl. Mater. Interfaces 14, 38786–38794 (2022). https://doi.org/10.1021/acsami.2c09801
Y. Su, F. Xu, X. Zhang, Y. Qiu, H. Wang, Rational design of high-performance PEO/ceramic composite solid electrolytes for lithium metal batteries. Nano-Micro Lett. 15, 82 (2023). https://doi.org/10.1007/s40820-023-01055-z
H. Yang, D. Mu, B. Wu, J. Bi, L. Zhang et al., Improving cathode/Li6.4La3Zr1.4Ta0.6O12 electrolyte interface with a hybrid PVDF-HFP-based buffer layer for solid lithium battery. J. Mater. Sci. 55, 11451–11461 (2020). https://doi.org/10.1007/s10853-020-04701-8
J. Huang, Y. Huang, Z. Zhang, H. Gao, C. Li, Li6.7La3Zr1.7Ta0.3O12 reinforced PEO/PVDF-HFP based composite solid electrolyte for all solid-state lithium metal battery. Energy Fuels 34, 15011–15018 (2020). https://doi.org/10.1021/acs.energyfuels.0c03124
X. Gao, Y.-N. Zhou, D. Han, J. Zhou, D. Zhou et al., Thermodynamic understanding of Li-dendrite formation. Joule 4, 1864–1879 (2020). https://doi.org/10.1016/j.joule.2020.06.016
J. Sang, B. Tang, K. Pan, Y.-B. He, Z. Zhou, Current status and enhancement strategies for all-solid-state lithium batteries. Acc. Mater. Res. 4, 472–483 (2023). https://doi.org/10.1021/accountsmr.2c00229
K. Jung, S.H. Oh, T. Yim, Triphenyl phosphate as an efficient electrolyte additive for Ni-rich NCM cathode materials. J. Electrochem. Sci. Technol. 12, 67–73 (2021). https://doi.org/10.33961/jecst.2020.00850
C. Cao, Y. Zhong, K. Chandula Wasalathilake, M.O. Tadé, X. Xu et al., A low resistance and stable lithium-garnet electrolyte interface enabled by a multifunctional anode additive for solid-state lithium batteries. J. Mater. Chem. A 10, 2519–2527 (2022). https://doi.org/10.1039/D1TA07804F
P. Bruce, Conductivity and transference number measurements on polymer electrolytes. Solid State Ion. 28–30, 918–922 (1988). https://doi.org/10.1016/0167-2738(88)90304-9
J. Evans, C.A. Vincent, P.G. Bruce, Electrochemical measurement of transference numbers in polymer electrolytes. Polymer 28, 2324–2328 (1987). https://doi.org/10.1016/0032-3861(87)90394-6
H. Chen, M. Zheng, S. Qian, H.Y. Ling, Z. Wu et al., Functional additives for solid polymer electrolytes in flexible and high-energy-density solid-state lithium-ion batteries. Carbon Energy 3, 929–956 (2021). https://doi.org/10.1002/cey2.146
T. Kim, A facile treatment to improve safety and interfacial stability by an organophosphorus composite for lithium metal batteries. Mater. Lett. 338, 134023 (2023). https://doi.org/10.1016/j.matlet.2023.134023
L. Chen, Q. Nian, D. Ruan, J. Fan, Y. Li et al., High-safety and high-efficiency electrolyte design for 4.6 V-class lithium-ion batteries with a non-solvating flame-retardant. Chem. Sci. 14, 1184–1193 (2022). https://doi.org/10.1039/d2sc05723a
X. Wang, W. He, H. Xue, D. Zhang, J. Wang et al., A nonflammable phosphate-based localized high-concentration electrolyte for safe and high-voltage lithium metal batteries. Sustain. Energy Fuels 6, 1281–1288 (2022). https://doi.org/10.1039/D1SE01919H
X. Feng, Z. Zhang, R. Li, W. Xiong, B. Yu et al., New nonflammable tributyl phosphate based localized high concentration electrolytes for lithium metal batteries. Sustain. Energy Fuels 6, 2198–2206 (2022). https://doi.org/10.1039/D2SE00231K
F. Wu, J. Dong, L. Chen, L. Bao, N. Li et al., High-voltage and high-safety nickel-rich layered cathode enabled by a self-reconstructive cathode/electrolyte interphase layer. Energy Storage Mater. 41, 495–504 (2021). https://doi.org/10.1016/j.ensm.2021.06.018
M. Chen, C. Ma, Z. Ding, L. Zhou, L. Chen et al., Upgrading electrode/electrolyte interphases via polyamide-based quasi-solid electrolyte for long-life nickel-rich lithium metal batteries. ACS Energy Lett. (2021). https://doi.org/10.1021/acsenergylett.1c00265
X. Zou, Q. Lu, X. Zhang, R. Ran, W. Zhou et al., Achieving safe and dendrite-suppressed solid-state Li batteries via a novel self-extinguished trimethyl phosphate-based wetting agent. Energy Fuels 34, 11547–11556 (2020). https://doi.org/10.1021/acs.energyfuels.0c02222
Z. Zeng, X. Liu, X. Jiang, Z. Liu, Z. Peng et al., Enabling an intrinsically safe and high-energy-density 4.5 V-class Li-ion battery with nonflammable electrolyte. InfoMat 2, 984–992 (2020). https://doi.org/10.1002/inf2.12089
N. von Aspern, S. Röser, B. Rezaei Rad, P. Murmann, B. Streipert et al., Phosphorus additives for improving high voltage stability and safety of lithium ion batteries. J. Fluor. Chem. 198, 24–33 (2017). https://doi.org/10.1016/j.jfluchem.2017.02.005
J. Yang, M. Zhang, Z. Chen, X. Du, S. Huang et al., Flame-retardant quasi-solid polymer electrolyte enabling sodium metal batteries with highly safe characteristic and superior cycling stability. Nano Res. 12, 2230–2237 (2019). https://doi.org/10.1007/s12274-019-2369-9
K. Liu, W. Liu, Y. Qiu, B. Kong, Y. Sun et al., Electrospun core-shell microfiber separator with thermal-triggered flame-retardant properties for lithium-ion batteries. Sci. Adv. 3, e1601978 (2017). https://doi.org/10.1126/sciadv.1601978
Y. Ye, L.-Y. Chou, Y. Liu, H. Wang, H.K. Lee et al., Ultralight and fire-extinguishing current collectors for high-energy and high-safety lithium-ion batteries. Nat. Energy 5, 786–793 (2020). https://doi.org/10.1038/s41560-020-00702-8
E.-G. Shim, T.-H. Nam, J.-G. Kim, H.-S. Kim, S.-I. Moon, Electrochemical performance of lithium-ion batteries with triphenylphosphate as a flame-retardant additive. J. Power. Sources 172, 919–924 (2007). https://doi.org/10.1016/j.jpowsour.2007.04.088
A. Granzow, Flame retardation by phosphorus compounds. Acc. Chem. Res. 11, 177–183 (1978). https://doi.org/10.1021/ar50125a001
H. Tae Kim, M. Hee Kim, B. Kim, C. Min Koo, K. Kahb Koo et al., Effect of plasticization on physical and optical properties of triacetyl cellulose films for LCD application. Mol. Cryst. Liq. Cryst. 512, 188–198 (2009). https://doi.org/10.1080/15421400903050905
K. Lee, J. Kim, J. Bae, J. Yang, S. Hong et al., Studies on the thermal stabilization enhancement of ABS; synergistic effect by triphenyl phosphate and epoxy resin mixtures. Polymer 43, 2249–2253 (2002). https://doi.org/10.1016/s0032-3861(02)00024-1
B. Schartel, Phosphorus-based flame retardancy mechanisms-old hat or a starting point for future development? Materials 3, 4710–4745 (2010). https://doi.org/10.3390/ma3104710
S. Zugmann, M. Fleischmann, M. Amereller, R.M. Gschwind, H.D. Wiemhöfer et al., Measurement of transference numbers for lithium ion electrolytes via four different methods, a comparative study. Electrochim. Acta 56, 3926–3933 (2011). https://doi.org/10.1016/j.electacta.2011.02.025
K. Pożyczka, M. Marzantowicz, J.R. Dygas, F. Krok, Ionic conductivity and lithium transference number of poly(ethylene oxide): litfsi system. Electrochim. Acta 227, 127–135 (2017). https://doi.org/10.1016/j.electacta.2016.12.172
H. Maleki Kheimeh Sari, X. Li, Controllable cathode–electrolyte interface of Li[Ni0.8Co0.1Mn0.1]O2 for lithium ion batteries: a review. Adv. Energy Mater. 9, 1901597 (2019). https://doi.org/10.1002/aenm.201901597
J. Li, Y. Ji, H. Song, S. Chen, S. Ding et al., Insights into the interfacial degradation of high-voltage all-solid-state lithium batteries. Nano-Micro Lett. 14, 191 (2022). https://doi.org/10.1007/s40820-022-00936-z
S.S. Zhang, Understanding of performance degradation of LiNi0.80Co0.10Mn0.10O2 cathode material operating at high potentials. J. Energy Chem. 41, 135–141 (2020). https://doi.org/10.1016/j.jechem.2019.05.013
H. Kim, J. Park, I. Park, K. Jin, S.E. Jerng et al., Coordination tuning of cobalt phosphates towards efficient water oxidation catalyst. Nat. Commun. 6, 8253 (2015). https://doi.org/10.1038/ncomms9253
Q. Zheng, Y. Yamada, R. Shang, S. Ko, Y.-Y. Lee et al., A cyclic phosphate-based battery electrolyte for high voltage and safe operation. Nat. Energy 5, 291–298 (2020). https://doi.org/10.1038/s41560-020-0567-z
S.M. Bak, E. Hu, Y. Zhou, X. Yu, S.D. Senanayake et al., Structural changes and thermal stability of charged LiNixMnyCozO2 cathode materials studied by combined in situ time-resolved XRD and mass spectroscopy. ACS Appl. Mater. Interfaces 6, 22594–22601 (2014). https://doi.org/10.1021/am506712c
A.O. Kondrakov, H. Geßwein, K. Galdina, L. de Biasi, V. Meded et al., Charge-transfer-induced lattice collapse in Ni-rich NCM cathode materials during delithiation. J. Phys. Chem. C 121, 24381–24388 (2017). https://doi.org/10.1021/acs.jpcc.7b06598
Y. Zhai, G. Yang, Z. Zeng, S. Song, S. Li et al., Composite hybrid quasi-solid electrolyte for high-energy lithium metal batteries. ACS Appl. Energy Mater. 4, 7973–7982 (2021). https://doi.org/10.1021/acsaem.1c01281
L. Gao, B. Tang, H. Jiang, Z. Xie, J. Wei et al., Fiber-reinforced composite polymer electrolytes for solid-state lithium batteries. Adv. Sustain. Syst. 6, 2100389 (2022). https://doi.org/10.1002/adsu.202100389
F. Wei, S. Wu, J. Zhang, H. Fan, L. Wang et al., Molecular reconfigurations enabling active liquid–solid interfaces for ultrafast Li diffusion kinetics in the 3D framework of a garnet solid-state electrolyte. J. Mater. Chem. A 9, 17039–17047 (2021). https://doi.org/10.1039/D1TA03569J
L. Chen, X. Qiu, Z. Bai, L.-Z. Fan, Enhancing interfacial stability in solid-state lithium batteries with polymer/garnet solid electrolyte and composite cathode framework. J. Energy Chem. 52, 210–217 (2021). https://doi.org/10.1016/j.jechem.2020.03.052
S. Wang, Q. Sun, W. Peng, Y. Ma, Y. Zhou et al., Ameliorating the interfacial issues of all-solid-state lithium metal batteries by constructing polymer/inorganic composite electrolyte. J. Energy Chem. 58, 85 (2021). https://doi.org/10.1016/j.jechem.2020.09.033
K. Liu, X. Li, J. Cai, Z. Yang, Z. Chen et al., Design of high-voltage stable hybrid electrolyte with an ultrahigh Li transference number. ACS Energy Lett. 6, 1315 (2021). https://doi.org/10.1021/acsenergylett.0c02559
L. Li, H. Duan, L. Zhang, Y. Deng, G. Chen, Optimized functional additive enabled stable cathode and anode interfaces for high-voltage all-solid-state lithium batteries with significantly improved cycling performance. J. Mater. Chem. A 10, 20331–20342 (2022). https://doi.org/10.1039/D2TA03982F
S.L. Beshahwured, Y.-S. Wu, S.-H. Wu, W.-C. Chien, R. Jose et al., Flexible hybrid solid electrolyte incorporating ligament-shaped Li6.25Al0.25La3Zr2O12 filler for all-solid-state lithium-metal batteries. Electrochim. Acta 366, 137348 (2021). https://doi.org/10.1016/j.electacta.2020.137348
S.H.-S. Cheng, C. Liu, F. Zhu, L. Zhao, R. Fan et al., (Oxalato)borate: the key ingredient for polyethylene oxide based composite electrolyte to achieve ultra-stable performance of high voltage solid-state LiNi0.8Co0.1Mn0.1O2/lithium metal battery. Nano Energy 80, 105562 (2021). https://doi.org/10.1016/j.nanoen.2020.105562
X. Yu, Y. Liu, J.B. Goodenough, A. Manthiram, Rationally designed PEGDA-LLZTO composite electrolyte for solid-state lithium batteries. ACS Appl. Mater. Interfaces 13, 30703–30711 (2021). https://doi.org/10.1021/acsami.1c07547
K.Z. Walle, L. Musuvadhi Babulal, S.H. Wu, W.C. Chien, R. Jose et al., Electrochemical characteristics of a polymer/garnet trilayer composite electrolyte for solid-state lithium-metal batteries. ACS Appl. Mater. Interfaces 13, 2507–2520 (2021). https://doi.org/10.1021/acsami.0c17422
L. Li, Y. Hu, H. Duan, Y. Deng, G. Chen, A thin composite polymer electrolyte functionalized by a novel antihydrolysis additive to enable all-solid-state lithium battery with excellent rate and cycle performance. Small Methods 7, e2300314 (2023). https://doi.org/10.1002/smtd.202300314
T. Waldmann, M. Wilka, M. Kasper, M. Fleischhammer, M. Wohlfahrt-Mehrens, Temperature dependent ageing mechanisms in Lithium-ion batteries–A Post-Mortem study. J. Power. Sources 262, 129–135 (2014). https://doi.org/10.1016/j.jpowsour.2014.03.112
A. Düvel, A. Kuhn, L. Robben, M. Wilkening, P. Heitjans, Mechanosynthesis of solid electrolytes: preparation, characterization, and Li ion transport properties of garnet-type Al-doped Li7La3Zr2O12 crystallizing with cubic symmetry. J. Phys. Chem. C 116, 15192–15202 (2012). https://doi.org/10.1021/jp301193r
L. Suo, O. Borodin, T. Gao, M. Olguin, J. Ho et al., “Water-in-salt” electrolyte enables high-voltage aqueous lithium-ion chemistries. Science 350, 938–943 (2015). https://doi.org/10.1126/science.aab1595
J. Xie, Z. Liang, Y.-C. Lu, Molecular crowding electrolytes for high-voltage aqueous batteries. Nat. Mater. 19, 1006–1011 (2020). https://doi.org/10.1038/s41563-020-0667-y
C. Xin, K. Wen, S. Guan, C. Xue, X. Wu et al., A cross-linked poly(ethylene oxide)-based electrolyte for all-solid-state lithium metal batteries with long cycling stability. Front. Mater. 9, 864478 (2022). https://doi.org/10.3389/fmats.2022.864478
Z. Xue, D. He, X. Xie, Poly(ethylene oxide)-based electrolytes for lithium-ion batteries. J. Mater. Chem. A 3, 19218–19253 (2015). https://doi.org/10.1039/C5TA03471J
A.R. Polu, H.-W. Rhee, The effects of LiTDI salt and POSS-PEG (n = 4) hybrid nanops on crystallinity and ionic conductivity of PEO based solid polymer electrolytes. Sci. Adv. Mater. 8, 931–940 (2016). https://doi.org/10.1166/sam.2016.2657
X. Qian, N. Gu, Z. Cheng, X. Yang, E. Wang et al., Plasticizer effect on the ionic conductivity of PEO-based polymer electrolyte. Mater. Chem. Phys. 74, 98–103 (2002). https://doi.org/10.1016/s0254-0584(01)00408-4