Laser-Induced and MOF-Derived Metal Oxide/Carbon Composite for Synergistically Improved Ethanol Sensing at Room temperature
Corresponding Author: Hyuk‑Jun Kwon
Nano-Micro Letters,
Vol. 16 (2024), Article Number: 113
Abstract
Advancements in sensor technology have significantly enhanced atmospheric monitoring. Notably, metal oxide and carbon (MOx/C) hybrids have gained attention for their exceptional sensitivity and room-temperature sensing performance. However, previous methods of synthesizing MOx/C composites suffer from problems, including inhomogeneity, aggregation, and challenges in micropatterning. Herein, we introduce a refined method that employs a metal–organic framework (MOF) as a precursor combined with direct laser writing. The inherent structure of MOFs ensures a uniform distribution of metal ions and organic linkers, yielding homogeneous MOx/C structures. The laser processing facilitates precise micropatterning (< 2 μm, comparable to typical photolithography) of the MOx/C crystals. The optimized MOF-derived MOx/C sensor rapidly detected ethanol gas even at room temperature (105 and 18 s for response and recovery, respectively), with a broad range of sensing performance from 170 to 3,400 ppm and a high response value of up to 3,500%. Additionally, this sensor exhibited enhanced stability and thermal resilience compared to previous MOF-based counterparts. This research opens up promising avenues for practical applications in MOF-derived sensing devices.
Highlights:
1 Metal oxide and carbon hybrids (MOx/C) were micropatterned very rapidly and energy efficiently by direct laser writing.
2 Metal-organic framework was the ideal precursor for fabricating homogeneous MOx/C hybrids due to regularly spaced metal ions and organic ligands.
3 The fabricated sensor not only demonstrated broad-range gas sensing capability for ethanol gas (170-3,400 ppm) but also exhibited exceptional sensitivity, rapid response and recovery, selectivity, linearity, and thermal stability.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- K. Zhang, S. Qin, P. Tang, Y. Feng, D. Li, Ultra-sensitive ethanol gas sensors based on nanosheet-assembled hierarchical ZnO-In2O3 heterostructures. J. Hazard. Mater. 391, 122191 (2020). https://doi.org/10.1016/j.jhazmat.2020.122191
- Y.M. Jo, Y.K. Jo, J.H. Lee, H.W. Jang, I.S. Hwang et al., MOF-based chemiresistive gas sensors: toward new functionalities. Adv. Mater. 35, e2206842 (2023). https://doi.org/10.1002/adma.202206842
- R. Ghosh, M. Aslam, H. Kalita, Graphene derivatives for chemiresistive gas sensors: a review. Mater. Today Commun. 30, 103182 (2022). https://doi.org/10.1016/j.mtcomm.2022.103182
- D. Zhang, C. Jiang, J. Liu, Y. Cao, Carbon monoxide gas sensing at room temperature using copper oxide-decorated graphene hybrid nanocomposite prepared by layer-by-layer self-assembly. Sens. Actuat. B Chem. 247, 875–882 (2017). https://doi.org/10.1016/j.snb.2017.03.108
- O. Ogbeide, G. Bae, W. Yu, E. Morrin, Y. Song et al., Inkjet-printed rGO/binary metal oxide sensor for predictive gas sensing in a mixed environment. Adv. Funct. Mater. 32, 2113348 (2022). https://doi.org/10.1002/adfm.202113348
- L.-Y. Gai, R.-P. Lai, X.-H. Dong, X. Wu, Q.-T. Luan et al., Recent advances in ethanol gas sensors based on metal oxide semiconductor heterojunctions. Rare Met. 41, 1818–1842 (2022). https://doi.org/10.1007/s12598-021-01937-4
- X. Liu, J. Liu, Q. Liu, R. Chen, H. Zhang et al., Template-free synthesis of rGO decorated hollow Co3O4 nano/microspheres for ethanol gas sensor. Ceram. Int. 44, 21091–21098 (2018). https://doi.org/10.1016/j.ceramint.2018.08.146
- F. Meng, Y. Chang, W. Qin, Z. Yuan, J. Zhao et al., ZnO-reduced graphene oxide composites sensitized with graphitic carbon nitride nanosheets for ethanol sensing. ACS Appl. Nano Mater. 2, 2734–2742 (2019). https://doi.org/10.1021/acsanm.9b00257
- C. Qin, Y. Wang, Y. Gong, Z. Zhang, J. Cao, CuO-ZnO hetero-junctions decorated graphitic carbon nitride hybrid nanocomposite: Hydrothermal synthesis and ethanol gas sensing application. J. Alloys Compd. 770, 972–980 (2019). https://doi.org/10.1016/j.jallcom.2018.08.205
- H. Jiang, L. Tong, H. Liu, J. Xu, S. Jin et al., Graphene-metal-metastructure monolith via laser shock-induced thermochemical stitching of MOF crystals. Matter 2, 1535–1549 (2020). https://doi.org/10.1016/j.matt.2020.03.003
- J. Zhou, Y. Dou, A. Zhou, L. Shu, Y. Chen et al., Layered metal–organic framework-derived metal oxide/carbon nanosheet arrays for catalyzing the oxygen evolution reaction. ACS Energy Lett. 3, 1655–1661 (2018). https://doi.org/10.1021/acsenergylett.8b00809
- Y.-J. Tang, H. Zheng, Y. Wang, W. Zhang, K. Zhou, Laser-induced annealing of metal–organic frameworks on conductive substrates for electrochemical water splitting. Adv. Funct. Mater. 31, 2102648 (2021). https://doi.org/10.1002/adfm.202102648
- R.R. Salunkhe, Y.V. Kaneti, Y. Yamauchi, Metal-organic framework-derived nanoporous metal oxides toward supercapacitor applications: progress and prospects. ACS Nano 11, 5293–5308 (2017). https://doi.org/10.1021/acsnano.7b02796
- Q. Mi, D. Zhang, X. Zhang, D. Wang, Highly sensitive ammonia gas sensor based on metal-organic frameworks-derived CoSe2@nitrogen-doped amorphous carbon decorated with multi-walled carbon nanotubes. J. Alloys Compd. 860, 158252 (2021). https://doi.org/10.1016/j.jallcom.2020.158252
- D. Wang, D. Zhang, Q. Pan, T. Wang, F. Chen, Gas sensing performance of carbon monoxide sensor based on rod-shaped tin diselenide/MOFs derived zinc oxide polyhedron at room temperature. Sens. Actuat. B Chem. 371, 132481 (2022). https://doi.org/10.1016/j.snb.2022.132481
- X. Cui, X. Tian, X. Xiao, T. Chen, Y. Wang, Au modified hollow cube Sn-MOF derivatives for highly sensitive, great selective, and stable detection of n-butanol at room temperature. Adv. Mater. Technol. 8, 2300572 (2023). https://doi.org/10.1002/admt.202300572
- H. Yuan, S.A.A.A. Aljneibi, J. Yuan, Y. Wang, H. Liu et al., ZnO nanosheets abundant in oxygen vacancies derived from metal-organic frameworks for ppb-level gas sensing. Adv. Mater. 31, e1807161 (2019). https://doi.org/10.1002/adma.201807161
- J. Bang, Y. Jung, H. Kim, D. Kim, M. Cho et al., Multi-bandgap monolithic metal nanowire percolation network sensor integration by reversible selective laser-induced redox. Nano-Micro Lett. 14, 49 (2022). https://doi.org/10.1007/s40820-021-00786-1
- M.-S. Yao, X.-J. Lv, Z.-H. Fu, W.-H. Li, W.-H. Deng et al., Layer-by-layer assembled conductive metal-organic framework nanofilms for room-temperature chemiresistive sensing. Angew. Chem. Int. Ed. 56, 16510–16514 (2017). https://doi.org/10.1002/anie.201709558
- X. Song, X. Wang, Y. Li, C. Zheng, B. Zhang et al., 2D semiconducting metal-organic framework thin films for organic spin valves. Angew. Chem. Int. Ed. 59, 1118–1123 (2020). https://doi.org/10.1002/anie.201911543
- J. Liu, C. Wöll, Surface-supported metal–organic framework thin films: fabrication methods, applications, and challenges. Chem. Soc. Rev. 46, 5730–5770 (2017). https://doi.org/10.1039/C7CS00315C
- H. Palneedi, J.H. Park, D. Maurya, M. Peddigari, G.T. Hwang et al., Laser irradiation of metal oxide films and nanostructures: applications and advances. Adv. Mater. 30, e1705148 (2018). https://doi.org/10.1002/adma.201705148
- M.G. Campbell, S.F. Liu, T.M. Swager, M. Dincă, Chemiresistive sensor arrays from conductive 2D metal-organic frameworks. J. Am. Chem. Soc. 137, 13780–13783 (2015). https://doi.org/10.1021/jacs.5b09600
- S.-Y. Jeong, J.-S. Kim, J.-H. Lee, Rational design of semiconductor-based chemiresistors and their libraries for next-generation artificial olfaction. Adv. Mater. 32, e2002075 (2020). https://doi.org/10.1002/adma.202002075
- X. Chen, T. Wang, J. Shi, W. Lv, Y. Han et al., A novel artificial neuron-like gas sensor constructed from CuS quantum dots/Bi2S3 nanosheets. Nano-Micro Lett. 14, 8 (2021). https://doi.org/10.1007/s40820-021-00740-1
- K.W. Nam, S.S. Park, R. Dos Reis, V.P. Dravid, H. Kim et al., Conductive 2D metal-organic framework for high-performance cathodes in aqueous rechargeable zinc batteries. Nat. Commun. 10, 4948 (2019). https://doi.org/10.1038/s41467-019-12857-4
- H. Lim, H. Kwon, H. Kang, J.E. Jang, H.J. Kwon, Semiconducting MOFs on ultraviolet laser-induced graphene with a hierarchical pore architecture for NO2 monitoring. Nat. Commun. 14, 3114 (2023). https://doi.org/10.1038/s41467-023-38918-3
- D. Su, X. Xie, S. Dou, G. Wang, CuO single crystal with exposed{001}facets: a highly efficient material for gas sensing and Li-ion battery applications. Sci. Rep. 4, 5753 (2014). https://doi.org/10.1038/srep05753
- A.C. Ferrari, D.M. Basko, Raman spectroscopy as a versatile tool for studying the properties of graphene. Nat. Nanotechnol. 8, 235–246 (2013). https://doi.org/10.1038/nnano.2013.46
- H. Jiang, S. Jin, C. Wang, R. Ma, Y. Song et al., Nanoscale laser metallurgy and patterning in air using MOFs. J. Am. Chem. Soc. 141, 5481–5489 (2019). https://doi.org/10.1021/jacs.9b00355
- S. Guo, Y. Zhao, H. Yuan, C. Wang, H. Jiang et al., Ultrafast laser manufacture of stable, efficient ultrafine noble metal catalysts mediated with MOF derived high density defective metal oxides. Small 16, e2000749 (2020). https://doi.org/10.1002/smll.202000749
- H. Kwon, J. Kim, K. Ko, M.J. Matthews, J. Suh et al., Laser-induced digital oxidation for copper-based flexible photodetectors. Appl. Surf. Sci. 540, 148333 (2021). https://doi.org/10.1016/j.apsusc.2020.148333
- J. Kim, K. Ko, H. Kwon, J. Suh, H.-J. Kwon et al., Channel scaling dependent photoresponse of copper-based flexible photodetectors fabricated using laser-induced oxidation. ACS Appl. Mater. Interfaces 14, 6977–6984 (2022). https://doi.org/10.1021/acsami.1c21296
- W.-T. Koo, J.-S. Jang, I.-D. Kim, Metal-organic frameworks for chemiresistive sensors. Chem 5, 1938–1963 (2019). https://doi.org/10.1016/j.chempr.2019.04.013
- Y. Kim, T. Kim, J. Lee, Y.S. Choi, J. Moon et al., Tailored graphene micropatterns by wafer-scale direct transfer for flexible chemical sensor platform. Adv. Mater. 33, e2004827 (2021). https://doi.org/10.1002/adma.202004827
- J. Wu, J. Chen, C. Wang, Y. Zhou, K. Ba et al., Metal-organic framework for transparent electronics. Adv. Sci. 7, 1903003 (2020). https://doi.org/10.1002/advs.201903003
- H.-H. Lin, C.-Y. Wang, H.C. Shih, J.-M. Chen, C.-T. Hsieh, Characterizing well-ordered CuO nanofibrils synthesized through gas-solid reactions. J. Appl. Phys. 95, 5889–5895 (2004). https://doi.org/10.1063/1.1690114
- M. Yin, F. Wang, H. Fan, L. Xu, S. Liu, Heterojunction CuO@ZnO microcubes for superior p-type gas sensor application. J. Alloys Compd. 672, 374–379 (2016). https://doi.org/10.1016/j.jallcom.2016.02.197
- H. Yang, J. Li, D. Yu, L. Li, Seed/catalyst free growth and self-powered photoresponse of vertically aligned ZnO nanorods on reduced graphene oxide nanosheets. Cryst. Growth Des. 16, 4831–4838 (2016). https://doi.org/10.1021/acs.cgd.6b00034
- D. Zhang, H. Chang, P. Li, R. Liu, Characterization of nickel oxide decorated-reduced graphene oxide nanocomposite and its sensing properties toward methane gas detection. J. Mater. Sci. Mater. Electron. 27, 3723–3730 (2016). https://doi.org/10.1007/s10854-015-4214-6
- P. Tiwary, S.G. Chatterjee, S.S. Singha, R. Mahapatra, A.K. Chakraborty, Room temperature ethanol sensing by chemically reduced graphene oxide film. FlatChem 30, 100317 (2021). https://doi.org/10.1016/j.flatc.2021.100317
- C.-F. Cao, B. Yu, Z.-Y. Chen, Y.-X. Qu, Y.-T. Li et al., Fire intumescent, high-temperature resistant, mechanically flexible graphene oxide network for exceptional fire shielding and ultra-fast fire warning. Nano-Micro Lett. 14, 92 (2022). https://doi.org/10.1007/s40820-022-00837-1
References
K. Zhang, S. Qin, P. Tang, Y. Feng, D. Li, Ultra-sensitive ethanol gas sensors based on nanosheet-assembled hierarchical ZnO-In2O3 heterostructures. J. Hazard. Mater. 391, 122191 (2020). https://doi.org/10.1016/j.jhazmat.2020.122191
Y.M. Jo, Y.K. Jo, J.H. Lee, H.W. Jang, I.S. Hwang et al., MOF-based chemiresistive gas sensors: toward new functionalities. Adv. Mater. 35, e2206842 (2023). https://doi.org/10.1002/adma.202206842
R. Ghosh, M. Aslam, H. Kalita, Graphene derivatives for chemiresistive gas sensors: a review. Mater. Today Commun. 30, 103182 (2022). https://doi.org/10.1016/j.mtcomm.2022.103182
D. Zhang, C. Jiang, J. Liu, Y. Cao, Carbon monoxide gas sensing at room temperature using copper oxide-decorated graphene hybrid nanocomposite prepared by layer-by-layer self-assembly. Sens. Actuat. B Chem. 247, 875–882 (2017). https://doi.org/10.1016/j.snb.2017.03.108
O. Ogbeide, G. Bae, W. Yu, E. Morrin, Y. Song et al., Inkjet-printed rGO/binary metal oxide sensor for predictive gas sensing in a mixed environment. Adv. Funct. Mater. 32, 2113348 (2022). https://doi.org/10.1002/adfm.202113348
L.-Y. Gai, R.-P. Lai, X.-H. Dong, X. Wu, Q.-T. Luan et al., Recent advances in ethanol gas sensors based on metal oxide semiconductor heterojunctions. Rare Met. 41, 1818–1842 (2022). https://doi.org/10.1007/s12598-021-01937-4
X. Liu, J. Liu, Q. Liu, R. Chen, H. Zhang et al., Template-free synthesis of rGO decorated hollow Co3O4 nano/microspheres for ethanol gas sensor. Ceram. Int. 44, 21091–21098 (2018). https://doi.org/10.1016/j.ceramint.2018.08.146
F. Meng, Y. Chang, W. Qin, Z. Yuan, J. Zhao et al., ZnO-reduced graphene oxide composites sensitized with graphitic carbon nitride nanosheets for ethanol sensing. ACS Appl. Nano Mater. 2, 2734–2742 (2019). https://doi.org/10.1021/acsanm.9b00257
C. Qin, Y. Wang, Y. Gong, Z. Zhang, J. Cao, CuO-ZnO hetero-junctions decorated graphitic carbon nitride hybrid nanocomposite: Hydrothermal synthesis and ethanol gas sensing application. J. Alloys Compd. 770, 972–980 (2019). https://doi.org/10.1016/j.jallcom.2018.08.205
H. Jiang, L. Tong, H. Liu, J. Xu, S. Jin et al., Graphene-metal-metastructure monolith via laser shock-induced thermochemical stitching of MOF crystals. Matter 2, 1535–1549 (2020). https://doi.org/10.1016/j.matt.2020.03.003
J. Zhou, Y. Dou, A. Zhou, L. Shu, Y. Chen et al., Layered metal–organic framework-derived metal oxide/carbon nanosheet arrays for catalyzing the oxygen evolution reaction. ACS Energy Lett. 3, 1655–1661 (2018). https://doi.org/10.1021/acsenergylett.8b00809
Y.-J. Tang, H. Zheng, Y. Wang, W. Zhang, K. Zhou, Laser-induced annealing of metal–organic frameworks on conductive substrates for electrochemical water splitting. Adv. Funct. Mater. 31, 2102648 (2021). https://doi.org/10.1002/adfm.202102648
R.R. Salunkhe, Y.V. Kaneti, Y. Yamauchi, Metal-organic framework-derived nanoporous metal oxides toward supercapacitor applications: progress and prospects. ACS Nano 11, 5293–5308 (2017). https://doi.org/10.1021/acsnano.7b02796
Q. Mi, D. Zhang, X. Zhang, D. Wang, Highly sensitive ammonia gas sensor based on metal-organic frameworks-derived CoSe2@nitrogen-doped amorphous carbon decorated with multi-walled carbon nanotubes. J. Alloys Compd. 860, 158252 (2021). https://doi.org/10.1016/j.jallcom.2020.158252
D. Wang, D. Zhang, Q. Pan, T. Wang, F. Chen, Gas sensing performance of carbon monoxide sensor based on rod-shaped tin diselenide/MOFs derived zinc oxide polyhedron at room temperature. Sens. Actuat. B Chem. 371, 132481 (2022). https://doi.org/10.1016/j.snb.2022.132481
X. Cui, X. Tian, X. Xiao, T. Chen, Y. Wang, Au modified hollow cube Sn-MOF derivatives for highly sensitive, great selective, and stable detection of n-butanol at room temperature. Adv. Mater. Technol. 8, 2300572 (2023). https://doi.org/10.1002/admt.202300572
H. Yuan, S.A.A.A. Aljneibi, J. Yuan, Y. Wang, H. Liu et al., ZnO nanosheets abundant in oxygen vacancies derived from metal-organic frameworks for ppb-level gas sensing. Adv. Mater. 31, e1807161 (2019). https://doi.org/10.1002/adma.201807161
J. Bang, Y. Jung, H. Kim, D. Kim, M. Cho et al., Multi-bandgap monolithic metal nanowire percolation network sensor integration by reversible selective laser-induced redox. Nano-Micro Lett. 14, 49 (2022). https://doi.org/10.1007/s40820-021-00786-1
M.-S. Yao, X.-J. Lv, Z.-H. Fu, W.-H. Li, W.-H. Deng et al., Layer-by-layer assembled conductive metal-organic framework nanofilms for room-temperature chemiresistive sensing. Angew. Chem. Int. Ed. 56, 16510–16514 (2017). https://doi.org/10.1002/anie.201709558
X. Song, X. Wang, Y. Li, C. Zheng, B. Zhang et al., 2D semiconducting metal-organic framework thin films for organic spin valves. Angew. Chem. Int. Ed. 59, 1118–1123 (2020). https://doi.org/10.1002/anie.201911543
J. Liu, C. Wöll, Surface-supported metal–organic framework thin films: fabrication methods, applications, and challenges. Chem. Soc. Rev. 46, 5730–5770 (2017). https://doi.org/10.1039/C7CS00315C
H. Palneedi, J.H. Park, D. Maurya, M. Peddigari, G.T. Hwang et al., Laser irradiation of metal oxide films and nanostructures: applications and advances. Adv. Mater. 30, e1705148 (2018). https://doi.org/10.1002/adma.201705148
M.G. Campbell, S.F. Liu, T.M. Swager, M. Dincă, Chemiresistive sensor arrays from conductive 2D metal-organic frameworks. J. Am. Chem. Soc. 137, 13780–13783 (2015). https://doi.org/10.1021/jacs.5b09600
S.-Y. Jeong, J.-S. Kim, J.-H. Lee, Rational design of semiconductor-based chemiresistors and their libraries for next-generation artificial olfaction. Adv. Mater. 32, e2002075 (2020). https://doi.org/10.1002/adma.202002075
X. Chen, T. Wang, J. Shi, W. Lv, Y. Han et al., A novel artificial neuron-like gas sensor constructed from CuS quantum dots/Bi2S3 nanosheets. Nano-Micro Lett. 14, 8 (2021). https://doi.org/10.1007/s40820-021-00740-1
K.W. Nam, S.S. Park, R. Dos Reis, V.P. Dravid, H. Kim et al., Conductive 2D metal-organic framework for high-performance cathodes in aqueous rechargeable zinc batteries. Nat. Commun. 10, 4948 (2019). https://doi.org/10.1038/s41467-019-12857-4
H. Lim, H. Kwon, H. Kang, J.E. Jang, H.J. Kwon, Semiconducting MOFs on ultraviolet laser-induced graphene with a hierarchical pore architecture for NO2 monitoring. Nat. Commun. 14, 3114 (2023). https://doi.org/10.1038/s41467-023-38918-3
D. Su, X. Xie, S. Dou, G. Wang, CuO single crystal with exposed{001}facets: a highly efficient material for gas sensing and Li-ion battery applications. Sci. Rep. 4, 5753 (2014). https://doi.org/10.1038/srep05753
A.C. Ferrari, D.M. Basko, Raman spectroscopy as a versatile tool for studying the properties of graphene. Nat. Nanotechnol. 8, 235–246 (2013). https://doi.org/10.1038/nnano.2013.46
H. Jiang, S. Jin, C. Wang, R. Ma, Y. Song et al., Nanoscale laser metallurgy and patterning in air using MOFs. J. Am. Chem. Soc. 141, 5481–5489 (2019). https://doi.org/10.1021/jacs.9b00355
S. Guo, Y. Zhao, H. Yuan, C. Wang, H. Jiang et al., Ultrafast laser manufacture of stable, efficient ultrafine noble metal catalysts mediated with MOF derived high density defective metal oxides. Small 16, e2000749 (2020). https://doi.org/10.1002/smll.202000749
H. Kwon, J. Kim, K. Ko, M.J. Matthews, J. Suh et al., Laser-induced digital oxidation for copper-based flexible photodetectors. Appl. Surf. Sci. 540, 148333 (2021). https://doi.org/10.1016/j.apsusc.2020.148333
J. Kim, K. Ko, H. Kwon, J. Suh, H.-J. Kwon et al., Channel scaling dependent photoresponse of copper-based flexible photodetectors fabricated using laser-induced oxidation. ACS Appl. Mater. Interfaces 14, 6977–6984 (2022). https://doi.org/10.1021/acsami.1c21296
W.-T. Koo, J.-S. Jang, I.-D. Kim, Metal-organic frameworks for chemiresistive sensors. Chem 5, 1938–1963 (2019). https://doi.org/10.1016/j.chempr.2019.04.013
Y. Kim, T. Kim, J. Lee, Y.S. Choi, J. Moon et al., Tailored graphene micropatterns by wafer-scale direct transfer for flexible chemical sensor platform. Adv. Mater. 33, e2004827 (2021). https://doi.org/10.1002/adma.202004827
J. Wu, J. Chen, C. Wang, Y. Zhou, K. Ba et al., Metal-organic framework for transparent electronics. Adv. Sci. 7, 1903003 (2020). https://doi.org/10.1002/advs.201903003
H.-H. Lin, C.-Y. Wang, H.C. Shih, J.-M. Chen, C.-T. Hsieh, Characterizing well-ordered CuO nanofibrils synthesized through gas-solid reactions. J. Appl. Phys. 95, 5889–5895 (2004). https://doi.org/10.1063/1.1690114
M. Yin, F. Wang, H. Fan, L. Xu, S. Liu, Heterojunction CuO@ZnO microcubes for superior p-type gas sensor application. J. Alloys Compd. 672, 374–379 (2016). https://doi.org/10.1016/j.jallcom.2016.02.197
H. Yang, J. Li, D. Yu, L. Li, Seed/catalyst free growth and self-powered photoresponse of vertically aligned ZnO nanorods on reduced graphene oxide nanosheets. Cryst. Growth Des. 16, 4831–4838 (2016). https://doi.org/10.1021/acs.cgd.6b00034
D. Zhang, H. Chang, P. Li, R. Liu, Characterization of nickel oxide decorated-reduced graphene oxide nanocomposite and its sensing properties toward methane gas detection. J. Mater. Sci. Mater. Electron. 27, 3723–3730 (2016). https://doi.org/10.1007/s10854-015-4214-6
P. Tiwary, S.G. Chatterjee, S.S. Singha, R. Mahapatra, A.K. Chakraborty, Room temperature ethanol sensing by chemically reduced graphene oxide film. FlatChem 30, 100317 (2021). https://doi.org/10.1016/j.flatc.2021.100317
C.-F. Cao, B. Yu, Z.-Y. Chen, Y.-X. Qu, Y.-T. Li et al., Fire intumescent, high-temperature resistant, mechanically flexible graphene oxide network for exceptional fire shielding and ultra-fast fire warning. Nano-Micro Lett. 14, 92 (2022). https://doi.org/10.1007/s40820-022-00837-1