Nanozyme-Engineered Hydrogels for Anti-Inflammation and Skin Regeneration
Corresponding Author: Hae‑Won Kim
Nano-Micro Letters,
Vol. 16 (2024), Article Number: 110
Abstract
Inflammatory skin disorders can cause chronic scarring and functional impairments, posing a significant burden on patients and the healthcare system. Conventional therapies, such as corticosteroids and nonsteroidal anti-inflammatory drugs, are limited in efficacy and associated with adverse effects. Recently, nanozyme (NZ)-based hydrogels have shown great promise in addressing these challenges. NZ-based hydrogels possess unique therapeutic abilities by combining the therapeutic benefits of redox nanomaterials with enzymatic activity and the water-retaining capacity of hydrogels. The multifaceted therapeutic effects of these hydrogels include scavenging reactive oxygen species and other inflammatory mediators modulating immune responses toward a pro-regenerative environment and enhancing regenerative potential by triggering cell migration and differentiation. This review highlights the current state of the art in NZ-engineered hydrogels (NZ@hydrogels) for anti-inflammatory and skin regeneration applications. It also discusses the underlying chemo-mechano-biological mechanisms behind their effectiveness. Additionally, the challenges and future directions in this ground, particularly their clinical translation, are addressed. The insights provided in this review can aid in the design and engineering of novel NZ-based hydrogels, offering new possibilities for targeted and personalized skin-care therapies.
Highlights:
1 Nanozyme-based approaches to produce therapeutic hydrogels.
2 Enzymatic mechanisms and multifunctional roles of nanozyme-engineered hydrogels for skin therapy.
3 Therapeutic actions of nanozyme-engineered hydrogels in inflamed skin tissues.
4 Mechanical and immunological aspects of skin therapy guided by nanozyme-engineered hydrogels.
5 Promising directions and challenges of nanozyme-inspired hydrogel platforms.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- C. Blanpain, Skin regeneration and repair. Nature 464, 686–687 (2010). https://doi.org/10.1038/464686a
- M. Takeo, W. Lee, M. Ito, Wound healing and skin regeneration. Cold Spring Harb. Perspect. Med. 5, a023267 (2015). https://doi.org/10.1101/cshperspect.a023267
- P. Martin, Wound healing: aiming for perfect skin regeneration. Science 276, 75–81 (1997). https://doi.org/10.1126/science.276.5309.75
- H.N. Wilkinson, M.J. Hardman, Wound healing: cellular mechanisms and pathological outcomes. Open Biol. 10, 200223 (2020). https://doi.org/10.1098/rsob.200223
- T.J. Koh, L.A. DiPietro, Inflammation and wound healing: the role of the macrophage. Expert Rev. Mol. Med. 13, e23 (2011). https://doi.org/10.1017/S1462399411001943
- H. Sorg, D.J. Tilkorn, S. Hager, J. Hauser, U. Mirastschijski, Skin wound healing: an update on the current knowledge and concepts. Eur. Surg. Res. 58, 81–94 (2017). https://doi.org/10.1159/000454919
- L.E. Tracy, R.A. Minasian, E.J. Caterson, Extracellular matrix and dermal fibroblast function in the healing wound. Adv. Wound Care 5, 119–136 (2016). https://doi.org/10.1089/wound.2014.0561
- N.X. Landén, D. Li, M. Ståhle, Transition from inflammation to proliferation: a critical step during wound healing. Cell. Mol. Life Sci. 73, 3861–3885 (2016). https://doi.org/10.1007/s00018-016-2268-0
- J. Wang, Y. Zhou, H. Zhang, L. Hu, J. Liu et al., Pathogenesis of allergic diseases and implications for therapeutic interventions. Signal Transduct. Target. Ther. 8, 138 (2023). https://doi.org/10.1038/s41392-023-01344-4
- A.Q. Khan, M.V. Agha, K.S.A.M. Sheikhan, S.M. Younis, M.A. Tamimi et al., Targeting deregulated oxidative stress in skin inflammatory diseases: an update on clinical importance. Biomed. Pharmacother. 154, 113601 (2022). https://doi.org/10.1016/j.biopha.2022.113601
- D. Chouhan, N. Dey, N. Bhardwaj, B.B. Mandal, Emerging and innovative approaches for wound healing and skin regeneration: current status and advances. Biomaterials 216, 119267 (2019). https://doi.org/10.1016/j.biomaterials.2019.119267
- S.G. Priya, H. Jungvid, A. Kumar, Skin tissue engineering for tissue repair and regeneration. Tissue Eng. Part B Rev. 14, 105–118 (2008). https://doi.org/10.1089/teb.2007.0318
- J. Chen, Y. Fan, G. Dong, H. Zhou, R. Du et al., Designing biomimetic scaffolds for skin tissue engineering. Biomater. Sci. 11, 3051–3076 (2023). https://doi.org/10.1039/d3bm00046j
- C. Yang, C. Yang, Y. Chen, J. Liu, Z. Liu et al., The trends in wound management: sensing, therapeutic treatment, and “theranostics.” J. Sci. Adv. Mater. Devices 8, 100619 (2023). https://doi.org/10.1016/j.jsamd.2023.100619
- G. Kaur, G. Narayanan, D. Garg, A. Sachdev, I. Matai, Biomaterials-based regenerative strategies for skin tissue wound healing. ACS Appl. Bio Mater. 5, 2069–2106 (2022). https://doi.org/10.1021/acsabm.2c00035
- M. Rahmati, J.J. Blaker, S.P. Lyngstadaas, J.F. Mano, H.J. Haugen, Designing multigradient biomaterials for skin regeneration. Mater. Today Adv. 5, 100051 (2020). https://doi.org/10.1016/j.mtadv.2019.100051
- F. Groeber, M. Holeiter, M. Hampel, S. Hinderer, K. Schenke-Layland, Skin tissue engineering—In vivo and in vitro applications. Adv. Drug Deliv. Rev. 63, 352–366 (2011). https://doi.org/10.1016/j.addr.2011.01.005
- Y. Ikada, Challenges in tissue engineering. J. R. Soc. Interface. 3, 589–601 (2006). https://doi.org/10.1098/rsif.2006.0124
- A. Sinha, F.Z. Simnani, D. Singh, A. Nandi, A. Choudhury et al., The translational paradigm of nanobiomaterials: biological chemistry to modern applications. Mater. Today Bio 17, 100463 (2022). https://doi.org/10.1016/j.mtbio.2022.100463
- Y. Huang, J. Ren, X. Qu, Nanozymes: classification, catalytic mechanisms, activity regulation, and applications. Chem. Rev. 119, 4357–4412 (2019). https://doi.org/10.1021/acs.chemrev.8b00672
- H. Wei, E. Wang, Nanomaterials with enzyme-like characteristics (nanozymes): Next-generation artificial enzymes. Chem. Soc. Rev. 42, 6060–6093 (2013). https://doi.org/10.1039/C3CS35486E
- M. Liang, X. Yan, Nanozymes: from new concepts, mechanisms, and standards to applications. Acc. Chem. Res. 52, 2190–2200 (2019). https://doi.org/10.1021/acs.accounts.9b00140
- L. Gao, J. Zhuang, L. Nie, J. Zhang, Y. Zhang et al., Intrinsic peroxidase-like activity of ferromagnetic nanops. Nat. Nanotechnol. 2, 577–583 (2007). https://doi.org/10.1038/nnano.2007.260
- H. Sun, Y. Zhou, J. Ren, X. Qu, Carbon nanozymes: enzymatic properties, catalytic mechanism, and applications. Angew. Chem. Int. Ed. 57, 9224–9237 (2018). https://doi.org/10.1002/anie.201712469
- Q. Liu, A. Zhang, R. Wang, Q. Zhang, D. Cui, A review on metal- and metal oxide-based nanozymes: properties, mechanisms, and applications. Nano-Micro Lett. 13, 154 (2021). https://doi.org/10.1007/s40820-021-00674-8
- Y. Ai, Z.-N. Hu, X. Liang, H.-B. Sun, H. Xin et al., Recent advances in nanozymes: from matters to bioapplications. Adv. Funct. Mater. 32, 2110432 (2022). https://doi.org/10.1002/adfm.202110432
- O. Bayaraa, K. Dashnyam, R.K. Singh, N. Mandakhbayar, J.H. Lee et al., Nanoceria-GO-intercalated multicellular spheroids revascularize and salvage critical ischemic limbs through anti-apoptotic and pro-angiogenic functions. Biomaterials 292, 121914 (2023). https://doi.org/10.1016/j.biomaterials.2022.121914
- Patel, K.D., Patel, A.K., Kurian, A.G., Singh, R.K., Kim, H.-W.. Tuning the properties of inorganic nanomaterials for theranostic applications in infectious diseases: Carbon nanotubes, quantum dots, graphene, and mesoporous carbon nanops. Nanotheranostics Treatment Diagn Infectious Dis, pp. 319–352 (2022). https://doi.org/10.1016/b978-0-323-91201-3.00011-6
- C.-S. Lee, R.K. Singh, H.S. Hwang, N.-H. Lee, A.G. Kurian et al., Materials-based nanotherapeutics for injured and diseased bone. Prog. Mater. Sci. 135, 101087 (2023). https://doi.org/10.1016/j.pmatsci.2023.101087
- W. Yang, X. Yang, L. Zhu, H. Chu, X. Li et al., Nanozymes: activity origin, catalytic mechanism, and biological application. Coord. Chem. Rev. 448, 214170 (2021). https://doi.org/10.1016/j.ccr.2021.214170
- C. Cao, N. Yang, X. Wang, J. Shao, X. Song et al., Biomedicine meets nanozyme catalytic chemistry. Coord. Chem. Rev. 491, 215245 (2023). https://doi.org/10.1016/j.ccr.2023.215245
- X. Mou, Q. Wu, Z. Zhang, Y. Liu, J. Zhang et al., Nanozymes for regenerative medicine. Small. Methods 6, e2200997 (2022). https://doi.org/10.1002/smtd.202200997
- Zhang, Y.S., Khademhosseini, A. Advances in engineering hydrogels. Science 356, eaaf3627 (2017). https://doi.org/10.1126/science.aaf3627
- L. Qi, C. Zhang, B. Wang, J. Yin, S. Yan, Progress in hydrogels for skin wound repair. Macromol. Biosci. 22, e2100475 (2022). https://doi.org/10.1002/mabi.202100475
- A.S. Hoffman, Hydrogels for biomedical applications. Adv. Drug Deliv. Rev. 54, 3–12 (2002). https://doi.org/10.1016/s0169-409x(01)00239-3
- F. Kong, N. Mehwish, X. Niu, M. Lin, X. Rong et al., Personalized hydrogels for individual health care: preparation, features, and applications in tissue engineering. Mater. Today Chem. 22, 100612 (2021). https://doi.org/10.1016/j.mtchem.2021.100612
- Khan, M.U.A., Aslam, M.A., Bin Abdullah, M.F., Hasan, A., Shah S.A. et al., Recent perspective of polymeric biomaterial in tissue engineering–a review. Mater. Today Chem. 34, 101818 (2023). https://doi.org/10.1016/j.mtchem.2023.101818
- H. Wang, K. Wan, X. Shi, Recent advances in nanozyme research. Adv. Mater. 31, e1805368 (2019). https://doi.org/10.1002/adma.201805368
- H. Wu, H. Liao, F. Li, J. Lee, P. Hu et al., Bioactive ROS-scavenging nanozymes for regenerative medicine: reestablishing the antioxidant firewall. Nano Sel. 1, 285–297 (2020). https://doi.org/10.1002/nano.202000021
- Q. Wang, Y. Zhang, Y. Ma, M. Wang, G. Pan, Nano-crosslinked dynamic hydrogels for biomedical applications. Mater. Today Bio 20, 100640 (2023). https://doi.org/10.1016/j.mtbio.2023.100640
- S. Wang, H. Zheng, L. Zhou, F. Cheng, Z. Liu et al., Nanoenzyme-reinforced injectable hydrogel for healing diabetic wounds infected with multidrug resistant bacteria. Nano Lett. 20, 5149–5158 (2020). https://doi.org/10.1021/acs.nanolett.0c01371
- W. Li, Y. Bei, X. Pan, J. Zhu, Z. Zhang et al., Selenide-linked polydopamine-reinforced hybrid hydrogels with on-demand degradation and light-triggered nanozyme release for diabetic wound healing. Biomater. Res. 27, 49 (2023). https://doi.org/10.1186/s40824-023-00367-w
- Y. Zhao, S. Song, D. Wang, H. Liu, J. Zhang et al., Nanozyme-reinforced hydrogel as a H2O2-driven oxygenerator for enhancing prosthetic interface osseointegration in rheumatoid arthritis therapy. Nat. Commun. 13, 6758 (2022). https://doi.org/10.1038/s41467-022-34481-5
- R. Baretta, V. Gabrielli, M. Frasconi, Nanozyme–cellulose hydrogel composites enabling cade catalysis for the colorimetric detection of glucose. ACS Appl. Nano Mater. 5, 13845–13853 (2022). https://doi.org/10.1021/acsanm.2c01609
- H. Wu, F. Li, W. Shao, J. Gao, D. Ling, Promoting angiogenesis in oxidative diabetic wound microenvironment using a nanozyme-reinforced self-protecting hydrogel. ACS Cent. Sci. 5, 477–485 (2019). https://doi.org/10.1021/acscentsci.8b00850
- J. Zhuang, X. Zhang, Q. Liu, M. Zhu, X. Huang, Targeted delivery of nanomedicines for promoting vascular regeneration in ischemic diseases. Theranostics 12, 6223–6241 (2022). https://doi.org/10.7150/thno.73421
- Y. Ju, X. Liu, X. Ye, M. Dai, B. Fang et al., Nanozyme-based remodeling of disease microenvironments for disease prevention and treatment: a review. ACS Appl. Nano Mater. 6, 13792–13823 (2023). https://doi.org/10.1021/acsanm.3c02097
- A.G. Kurian, R.K. Singh, K.D. Patel, J.H. Lee, H.W. Kim, Multifunctional GelMA platforms with nanomaterials for advanced tissue therapeutics. Bioact. Mater. 8, 267–295 (2021). https://doi.org/10.1016/j.bioactmat.2021.06.027
- Y.E. Kim, S.W. Choi, M.K. Kim, T.L. Nguyen, J. Kim, Therapeutic hydrogel patch to treat atopic dermatitis by regulating oxidative stress. Nano Lett. 22, 2038–2047 (2022). https://doi.org/10.1021/acs.nanolett.1c04899
- Y. Li, R. Fu, Z. Duan, C. Zhu, D. Fan, Construction of multifunctional hydrogel based on the tannic acid-metal coating decorated MoS2 dual nanozyme for bacteria-infected wound healing. Bioact. Mater. 9, 461–474 (2022). https://doi.org/10.1016/j.bioactmat.2021.07.023
- X. Jin, W. Zhang, J. Shan, J. He, H. Qian et al., Thermosensitive hydrogel loaded with nickel-copper bimetallic hollow nanospheres with SOD and CAT enzymatic-like activity promotes acute wound healing. ACS Appl. Mater. Interfaces 14, 50677–50691 (2022). https://doi.org/10.1021/acsami.2c17242
- X. Wang, H. Wang, S. Zhou, Progress and perspective on carbon-based nanozymes for peroxidase-like applications. J. Phys. Chem. Lett. 12, 11751–11760 (2021). https://doi.org/10.1021/acs.jpclett.1c03219
- L. Wang, F. Gao, A. Wang, X. Chen, H. Li et al., Defect-rich adhesive molybdenum disulfide/rGO vertical heterostructures with enhanced nanozyme activity for smart bacterial killing application. Adv. Mater. 32, e2005423 (2020). https://doi.org/10.1002/adma.202005423
- Y. Liang, X. Zhao, T. Hu, Y. Han, B. Guo, Mussel-inspired, antibacterial, conductive, antioxidant, injectable composite hydrogel wound dressing to promote the regeneration of infected skin. J. Colloid Interface Sci. 556, 514–528 (2019). https://doi.org/10.1016/j.jcis.2019.08.083
- H. He, Z. Fei, T. Guo, Y. Hou, D. Li et al., Bioadhesive injectable hydrogel with phenolic carbon quantum dot supported Pd single atom nanozymes as a localized immunomodulation niche for cancer catalytic immunotherapy. Biomaterials 280, 121272 (2022). https://doi.org/10.1016/j.biomaterials.2021.121272
- Y. Li, R. Fu, Z. Duan, C. Zhu, D. Fan, Mussel-inspired adhesive bilayer hydrogels for bacteria-infected wound healing via NIR-enhanced nanozyme therapy. Colloids Surf. B 210, 112230 (2022). https://doi.org/10.1016/j.colsurfb.2021.112230
- X. Wang, Q. Shi, Z. Zha, D. Zhu, L. Zheng et al., Copper single-atom catalysts with photothermal performance and enhanced nanozyme activity for bacteria-infected wound therapy. Bioact. Mater. 6, 4389–4401 (2021). https://doi.org/10.1016/j.bioactmat.2021.04.024
- X. Wang, X. Sun, T. Bu, Q. Wang, P. Jia et al., In situ fabrication of metal-organic framework derived hybrid nanozymes for enhanced nanozyme-photothermal therapy of bacteria-infected wounds. Compos. B Eng. 229, 109465 (2022). https://doi.org/10.1016/j.compositesb.2021.109465
- A. Maleki, J. He, S. Bochani, V. Nosrati, M.-A. Shahbazi et al., Multifunctional photoactive hydrogels for wound healing acceleration. ACS Nano 15, 18895–18930 (2021). https://doi.org/10.1021/acsnano.1c08334
- Q. Han, J.W. Lau, T.C. Do, Z. Zhang, B. Xing, Near-infrared light brightens bacterial disinfection: recent progress and perspectives. ACS Appl. Bio Mater. 4, 3937–3961 (2021). https://doi.org/10.1021/acsabm.0c01341
- Y. He, X. Chen, Y. Zhang, Y. Wang, M. Cui et al., Magnetoresponsive nanozyme: magnetic stimulation on the nanozyme activity of iron oxide nanops. Sci. China Life Sci. 65, 184–192 (2022). https://doi.org/10.1007/s11427-020-1907-6
- Shamsabadi A., Haghighi, T., Carvalho, S., Frenette, L.C., Stevens, M.M.. The nanozyme revolution: Enhancing the performance of medical biosensing platforms. Adv. Mater., e2300184 (2023). https://doi.org/10.1002/adma.202300184
- K. Li, X. Yan, Y. Du, S. Chen, Y. You et al., Silk fibroin nanozyme hydrogel with self-supplied H2O2 for enhanced antibacterial therapy. ACS Appl. Nano Mater. 6, 9175–9185 (2023). https://doi.org/10.1021/acsanm.3c00528
- Z.-Y. Liao, W.-W. Gao, N.-N. Shao, J.-M. Zuo, T. Wang et al., Iron phosphate nanozyme-hydrogel with multienzyme-like activity for efficient bacterial sterilization. ACS Appl. Mater. Interfaces 14, 18170–18181 (2022). https://doi.org/10.1021/acsami.2c02102
- Z. Jia, X. Lv, Y. Hou, K. Wang, F. Ren et al., Mussel-inspired nanozyme catalyzed conductive and self-setting hydrogel for adhesive and antibacterial bioelectronics. Bioact. Mater. 6, 2676–2687 (2021). https://doi.org/10.1016/j.bioactmat.2021.01.033
- K. Haraguchi, Nanocomposite hydrogels. Curr. Opin. Solid State Mater. Sci. 11, 47–54 (2007). https://doi.org/10.1016/j.cossms.2008.05.001
- Z. Chen, S. Song, H. Zeng, Z. Ge, B. Liu et al., 3D printing MOF nanozyme hydrogel with dual enzymatic activities and visualized glucose monitoring for diabetic wound healing. Chem. Eng. J. 471, 144649 (2023). https://doi.org/10.1016/j.cej.2023.144649
- I.M. El-Sherbiny, M.H. Yacoub, Hydrogel scaffolds for tissue engineering: progress and challenges. Glob. Cardiol. Sci. Pract. 2013, 316–342 (2013). https://doi.org/10.5339/gcsp.2013.38
- X. Zhu, X. Mao, Z. Wang, C. Feng, G. Chen et al., Fabrication of nanozyme@DNA hydrogel and its application in biomedical analysis. Nano Res. 10, 959–970 (2017). https://doi.org/10.1007/s12274-016-1354-9
- P. Dam, M. Celik, M. Ustun, S. Saha, C. Saha et al., Wound healing strategies based on nanops incorporated in hydrogel wound patches. RSC Adv. 13, 21345–21364 (2023). https://doi.org/10.1039/D3RA03477A
- D. Solanki, P. Vinchhi, M.M. Patel, Design considerations, formulation approaches, and strategic advances of hydrogel dressings for chronic wound management. ACS Omega 8, 8172–8189 (2023). https://doi.org/10.1021/acsomega.2c06806
- Y.E. Kim, J. Kim, ROS-scavenging therapeutic hydrogels for modulation of the inflammatory response. ACS Appl. Mater. Interfaces 14(20), 23002–23021 (2021). https://doi.org/10.1021/acsami.1c18261
- S. Li, S. Dong, W. Xu, S. Tu, L. Yan et al., Antibacterial hydrogels. Adv. Sci. 5(5), 1700527 (2018). https://doi.org/10.1002/advs.201700527
- H. Zhao, J. Huang, Y. Li, X. Lv, H. Zhou et al., ROS-scavenging hydrogel to promote healing of bacteria infected diabetic wounds. Biomaterials 258, 120286 (2020). https://doi.org/10.1016/j.biomaterials.2020.120286
- D. Chao, Q. Dong, Z. Yu, D. Qi, M. Li et al., Specific nanodrug for diabetic chronic wounds based on antioxidase-mimicking MOF-818 nanozymes. J. Am. Chem. Soc. 144, 23438–23447 (2022). https://doi.org/10.1021/jacs.2c09663
- A. Gupta, M. Kowalczuk, W. Heaselgrave, S.T. Britland, C. Martin et al., The production and application of hydrogels for wound management: a review. Eur. Polym. J. 111, 134–151 (2019). https://doi.org/10.1016/j.eurpolymj.2018.12.019
- H. Cheng, Z. Shi, K. Yue, X. Huang, Y. Xu et al., Sprayable hydrogel dressing accelerates wound healing with combined reactive oxygen species-scavenging and antibacterial abilities. Acta Biomater. 124, 219–232 (2021). https://doi.org/10.1016/j.actbio.2021.02.002
- Y. Yang, M. Li, G. Pan, J. Chen, B. Guo, Multiple stimuli-responsive nanozyme-based cryogels with controlled NO release as self-adaptive wound dressing for infected wound healing. Adv. Funct. Mater. 33, 2214089 (2023). https://doi.org/10.1002/adfm.202214089
- E. Piantanida, G. Alonci, A. Bertucci, L. De Cola, Design of nanocomposite injectable hydrogels for minimally invasive surgery. Acc. Chem. Res. 52, 2101–2112 (2019). https://doi.org/10.1021/acs.accounts.9b00114
- H. Bai, Z. Ding, J. Qian, M. Jiang, D. Yao, AuPt nanop-based injectable hydrogel as cade nanozyme for accelerating bacteria-infected wound healing. ACS Appl. Nano Mater. 6, 17531–17538 (2023). https://doi.org/10.1021/acsanm.3c02693
- M.H. Norahan, S.C. Pedroza-González, M.G. Sánchez-Salazar, M.M. Álvarez, G. Trujillo de Santiago, Structural and biological engineering of 3D hydrogels for wound healing. Bioact. Mater. 24, 197–235 (2022). https://doi.org/10.1016/j.bioactmat.2022.11.019
- X. Xie, Y. Lei, Y. Li, M. Zhang, J. Sun et al., Dual-crosslinked bioadhesive hydrogel as NIR/pH stimulus-responsiveness platform for effectively accelerating wound healing. J. Colloid Interface Sci. 637, 20–32 (2023). https://doi.org/10.1016/j.jcis.2023.01.081
- Y. Li, R. Fu, Z. Duan, C. Zhu, D. Fan, Adaptive hydrogels based on nanozyme with dual-enhanced triple enzyme-like activities for wound disinfection and mimicking antioxidant defense system. Adv. Healthcare Mater. 11, e2101849 (2022). https://doi.org/10.1002/adhm.202101849
- R. Pugliese, B. Beltrami, S. Regondi, C. Lunetta, Polymeric biomaterials for 3D printing in medicine: An overview. Ann. 3D Print. Med. 2, 100011 (2021). https://doi.org/10.1016/j.stlm.2021.100011
- M. Alizadehgiashi, C.R. Nemr, M. Chekini, D. Pinto Ramos, N. Mittal et al., Multifunctional 3D-printed wound dressings. ACS Nano 15, 12375–12387 (2021). https://doi.org/10.1021/acsnano.1c04499
- X. Ding, Y. Yu, W. Li, Y. Zhao, In situ 3D-bioprinting MoS2 accelerated gelling hydrogel scaffold for promoting chronic diabetic wound healing. Matter 6, 1000–1014 (2023). https://doi.org/10.1016/j.matt.2023.01.001
- P. Pleguezuelos-Beltrán, P. Gálvez-Martín, D. Nieto-García, J.A. Marchal, E. López-Ruiz, Advances in spray products for skin regeneration. Bioact. Mater. 16, 187–203 (2022). https://doi.org/10.1016/j.bioactmat.2022.02.023
- L. Shang, Y. Yu, Y. Jiang, X. Liu, N. Sui et al., Ultrasound-augmented multienzyme-like nanozyme hydrogel spray for promoting diabetic wound healing. ACS Nano 17, 15962–15977 (2023). https://doi.org/10.1021/acsnano.3c04134
- W. Zhang, X. Dai, X. Jin, M. Huang, J. Shan et al., Promotion of wound healing by a thermosensitive and sprayable hydrogel with nanozyme activity and anti-inflammatory properties. Smart Mater. Med. 4, 134–145 (2023). https://doi.org/10.1016/j.smaim.2022.08.004
- M. Xiao, Y. Lin, L. Mei, J. Liu, F. Wang, Ag/MoS2 nanozyme hydrogel dressing with adhesion and self-healing properties for antibacterial applications. ACS Appl. Nano Mater. 6, 14563–14573 (2023). https://doi.org/10.1021/acsanm.3c02816
- A.G. Kurian, R.K. Singh, J.H. Lee, H.W. Kim, Surface-engineered hybrid gelatin methacryloyl with nanoceria as reactive oxygen species responsive matrixes for bone therapeutics. ACS Appl. Bio Mater. 5, 1130–1138 (2022). https://doi.org/10.1021/acsabm.1c01189
- R.K. Singh, D.S. Yoon, N. Mandakhbayar, C. Li, A.G. Kurian et al., Diabetic bone regeneration with nanoceria-tailored scaffolds by recapitulating cellular microenvironment: activating integrin/TGF-β co-signaling of MSCs while relieving oxidative stress. Biomaterials 288, 121732 (2022). https://doi.org/10.1016/j.biomaterials.2022.121732
- A.G. Kurian, N. Mandakhbayar, R.K. Singh, J.H. Lee, G. Jin et al., Multifunctional dendrimer@nanoceria engineered GelMA hydrogel accelerates bone regeneration through orchestrated cellular responses. Mater. Today Bio 20, 100664 (2023). https://doi.org/10.1016/j.mtbio.2023.100664
- M. Zandieh, J. Liu, Nanozymes: Definition, activity, and mechanisms. Adv. Mater., e2211041 (2023). https://doi.org/10.1002/adma.202211041
- Z. Wang, R. Zhang, X. Yan, K. Fan, Structure and activity of nanozymes: Inspirations for de novo design of nanozymes. Mater. Today 41, 81–119 (2020). https://doi.org/10.1016/j.mattod.2020.08.020
- A.M. Villalba-Rodríguez, L.Y. Martínez-Zamudio, S.A.H. Martínez, J.A. Rodríguez-Hernández, E.M. Melchor-Martínez et al., Nanomaterial constructs for catalytic applications in biomedicine: nanobiocatalysts and nanozymes. Top. Catal. 66, 707–722 (2023). https://doi.org/10.1007/s11244-022-01766-4
- R. Qiao, Y. Cong, M. Ovais, R. Cai, C. Chen et al., Performance modulation and analysis for catalytic biomedical nanomaterials in biological systems. Cell Rep. Phys. Sci. 4, 101453 (2023). https://doi.org/10.1016/j.xcrp.2023.101453
- L. Mei, S. Zhu, Y. Liu, W. Yin, Z. Gu et al., An overview of the use of nanozymes in antibacterial applications. Chem. Eng. J. 418, 129431 (2021). https://doi.org/10.1016/j.cej.2021.129431
- M. Zhang, W. Tong, Stimuli-responsive nanozymes for biomedical applications. Biomater. Sci. 11, 5769–5780 (2023). https://doi.org/10.1039/d3bm00884c
- D. Jiang, D. Ni, Z.T. Rosenkrans, P. Huang, X. Yan et al., Nanozyme: New horizons for responsive biomedical applications. Chem. Soc. Rev. 48, 3683–3704 (2019). https://doi.org/10.1039/c8cs00718g
- R.G. Mahmudunnabi, F.Z. Farhana, N. Kashaninejad, S.H. Firoz, Y.-B. Shim et al., Nanozyme-based electrochemical biosensors for disease biomarker detection. Analyst 145, 4398–4420 (2020). https://doi.org/10.1039/d0an00558d
- M. Chen, H. Zhou, X. Liu, T. Yuan, W. Wang et al., Single iron site nanozyme for ultrasensitive glucose detection. Small 16, e2002343 (2020). https://doi.org/10.1002/smll.202002343
- Y. Wang, X. Jia, S. An, W. Yin, J. Huang et al., Nanozyme-based regulation of cellular metabolism and their applications. Adv. Mater., 2301810 (2023). https://doi.org/10.1002/adma.202301810
- H. Wei, L. Gao, K. Fan, J. Liu, J. He et al., Nanozymes: a clear definition with fuzzy edges. Nano Today 40, 101269 (2021). https://doi.org/10.1016/j.nantod.2021.101269
- P. Mishra, J. Lee, D. Kumar, R.O. Louro, N. Costa et al., Engineered nanoenzymes with multifunctional properties for next-generation biological and environmental applications. Adv. Funct. Mater. 32, 2108650 (2022). https://doi.org/10.1002/adfm.202108650
- D. Karthiga, S. Choudhury, N. Chandrasekaran, A. Mukherjee, Effect of surface charge on peroxidase mimetic activity of gold nanorods (GNRs). Mater. Chem. Phys. 227, 242–249 (2019). https://doi.org/10.1016/j.matchemphys.2019.02.015
- J. Zhao, X. Cai, W. Gao, L. Zhang, D. Zou et al., Prussian blue nanozyme with multienzyme activity reduces colitis in mice. ACS Appl. Mater. Interfaces 10, 26108–26117 (2018). https://doi.org/10.1021/acsami.8b10345
- J. Sheng, Y. Wu, H. Ding, K. Feng, Y. Shen et al., Multienzyme-like nanozymes: Regulation, rational design, and application. Adv. Mater., 2211210 (2023). https://doi.org/10.1002/adma.202211210
- N.C. Veitch, Horseradish peroxidase: a modern view of a classic enzyme. Phytochemistry 65, 249–259 (2004). https://doi.org/10.1016/j.phytochem.2003.10.022
- F. Attar, M.G. Shahpar, B. Rasti, M. Sharifi, A.A. Saboury et al., Nanozymes with intrinsic peroxidase-like activities. J. Mol. Liq. 278, 130–144 (2019). https://doi.org/10.1016/j.molliq.2018.12.011
- Z. Lyu, S. Ding, D. Du, K. Qiu, J. Liu et al., Recent advances in biomedical applications of 2D nanomaterials with peroxidase-like properties. Adv. Drug Deliv. Rev. 185, 114269 (2022). https://doi.org/10.1016/j.addr.2022.114269
- S. Ding, J.A. Barr, Z. Lyu, F. Zhang, M. Wang et al., Effect of phosphorus modulation in iron single-atom catalysts for peroxidase mimicking. Adv. Mater., e2209633 (2023). https://doi.org/10.1002/adma.202209633
- L. Tonoyan, D. Montagner, R. Friel, V. O’Flaherty, Antimicrobials offered from nature: Peroxidase-catalyzed systems and their mimics. Biochem. Pharmacol. 182, 114281 (2020). https://doi.org/10.1016/j.bcp.2020.114281
- S. Zhang, Z. Yang, J. Hao, F. Ding, Z. Li et al., Hollow nanosphere-doped bacterial cellulose and polypropylene wound dressings: Biomimetic nanocatalyst mediated antibacterial therapy. Chem. Eng. J. 432, 134309 (2022). https://doi.org/10.1016/j.cej.2021.134309
- X. Ren, L. Chang, Y. Hu, X. Zhao, S. Xu et al., Au@MOFs used as peroxidase-like catalytic nanozyme for bacterial infected wound healing through bacterial membranes disruption and protein leakage promotion. Mater. Des. 229, 111890 (2023). https://doi.org/10.1016/j.matdes.2023.111890
- H. Aebi, Catalase. Methods of Enzymatic Analysis (1974), pp. 673–684. https://doi.org/10.1016/b978-0-12-091302-2.50032-3
- A. Nandi, L.J. Yan, C.K. Jana, N. Das, Role of catalase in oxidative stress- and age-associated degenerative diseases. Oxid. Med. Cell. Longev. 2019, 9613090 (2019). https://doi.org/10.1155/2019/9613090
- B.J. Day, Catalase and glutathione peroxidase mimics. Biochem. Pharmacol. 77, 285–296 (2009). https://doi.org/10.1016/j.bcp.2008.09.029
- J. Zhu, Q. Han, Q. Li, F. Wang, M. Dong et al., A multi-enzyme-like activity exhibiting mussel-inspired nanozyme hydrogel for bacteria-infected wound healing. Biomater. Sci. 11, 2711–2725 (2023). https://doi.org/10.1039/d2bm02004a
- A.S. Sethulekshmi, A. Saritha, K. Joseph, A.S. Aprem, S.B. Sisupal, MoS2 based nanomaterials: advanced antibacterial agents for future. J. Control. Release 348, 158–185 (2022). https://doi.org/10.1016/j.jconrel.2022.05.047
- W. Luo, C. Zhu, S. Su, D. Li, Y. He et al., Self-catalyzed, self-limiting growth of glucose oxidase-mimicking gold nanops. ACS Nano 4, 7451–7458 (2010). https://doi.org/10.1021/nn102592h
- J. Li, W. Liu, X. Wu, X. Gao, Mechanism of pH-switchable peroxidase and catalase-like activities of gold, silver, platinum and palladium. Biomaterials 48, 37–44 (2015). https://doi.org/10.1016/j.biomaterials.2015.01.012
- B. Zhang, Y. Lv, C. Yu, W. Zhang, S. Song et al., Au-Pt nanozyme-based multifunctional hydrogel dressing for diabetic wound healing. Biomater. Adv. 137, 212869 (2022). https://doi.org/10.1016/j.bioadv.2022.212869
- Y. Chong, Q. Liu, C. Ge, Advances in oxidase-mimicking nanozymes: classification, activity regulation and biomedical applications. Nano Today 37, 101076 (2021). https://doi.org/10.1016/j.nantod.2021.101076
- Q. Wang, H. Wei, Z. Zhang, E. Wang, S. Dong, Nanozyme: an emerging alternative to natural enzyme for biosensing and immunoassay. Trac Trends Anal. Chem. 105, 218–224 (2018). https://doi.org/10.1016/j.trac.2018.05.012
- J. Chen, S. Zhang, X. Chen, L. Wang, W. Yang, A self-assembled fmoc-diphenylalanine hydrogel-encapsulated Pt nanozyme as oxidase- and peroxidase-like breaking pH limitation for potential antimicrobial application. Chemistry 28, e202104247 (2022). https://doi.org/10.1002/chem.202104247
- Z. Zhou, X. Mei, K. Hu, M. Ma, Y. Zhang, Nanohybrid double network hydrogels based on a platinum nanozyme composite for antimicrobial and diabetic wound healing. ACS Appl. Mater. Interfaces 15, 17612–17626 (2023). https://doi.org/10.1021/acsami.3c00459
- Y. Zhang, X. Hu, J. Shang, W. Shao, L. Jin et al., Emerging nanozyme-based multimodal synergistic therapies in combating bacterial infections. Theranostics 12, 5995–6020 (2022). https://doi.org/10.7150/thno.73681
- I. Fridovich, Superoxide dismutases. Annu. Rev. Biochem. 44, 147–159 (1975). https://doi.org/10.1146/annurev.bi.44.070175.001051
- H. Zhao, R. Zhang, X. Yan, K. Fan, Superoxide dismutase nanozymes: an emerging star for anti-oxidation. J. Mater. Chem. B 9, 6939–6957 (2021). https://doi.org/10.1039/d1tb00720c
- C. Xu, X. Qu, Cerium oxide nanop: a remarkably versatile rare earth nanomaterial for biological applications. NPG Asia Mater. 6, e90 (2014). https://doi.org/10.1038/am.2013.88
- V. Baldim, F. Bedioui, N. Mignet, I. Margaill, J.-F. Berret, The enzyme-like catalytic activity of cerium oxide nanops and its dependency on Ce3+ surface area concentration. Nanoscale 10, 6971–6980 (2018). https://doi.org/10.1039/c8nr00325d
- Y. Li, R. Fu, Z. Duan, C. Zhu, D. Fan, Injectable hydrogel based on defect-rich multi-nanozymes for diabetic wound healing via an oxygen self-supplying cade reaction. Small 18, e2200165 (2022). https://doi.org/10.1002/smll.202200165
- H. Zhang, X.F. Lu, Z.P. Wu, X.W.D. Lou, Emerging multifunctional single-atom catalysts/nanozymes. ACS Cent. Sci. 6, 1288–1301 (2020). https://doi.org/10.1021/acscentsci.0c00512
- R. Tian, J. Xu, Q. Luo, C. Hou, J. Liu, Rational design and biological application of antioxidant nanozymes. Front. Chem. 8, 831 (2021). https://doi.org/10.3389/fchem.2020.00831
- C. Korsvik, S. Patil, S. Seal, W.T. Self, Superoxide dismutase mimetic properties exhibited by vacancy engineered ceria nanops. Chem. Commun. 2007(10), 1056–1058 (2007). https://doi.org/10.1039/b615134e
- N. Singh, M.A. Savanur, S. Srivastava, P. D’Silva, G. Mugesh, A redox modulatory Mn3 O4 nanozyme with multi-enzyme activity provides efficient cytoprotection to human cells in a Parkinson’s disease model. Angew. Chem. Int. Ed. 56, 14267–14271 (2017). https://doi.org/10.1002/anie.201708573
- S. Ghosh, P. Roy, N. Karmodak, E.D. Jemmis, G. Mugesh, Nanoisozymes: crystal-facet-dependent enzyme-mimetic activity of V2O5 nanomaterials. Angew. Chem. Int. Ed. 57, 4510–4515 (2018). https://doi.org/10.1002/anie.201800681
- S.V. Somerville, Q. Li, J. Wordsworth, S. Jamali, M.R. Eskandarian et al., Approaches to improving the selectivity of nanozymes. Adv. Mater., e2211288 (2023). https://doi.org/10.1002/adma.202211288
- K. Fan, H. Wang, J. Xi, Q. Liu, X. Meng et al., Optimization of Fe3O4 nanozyme activity via single amino acid modification mimicking an enzyme active site. Chem. Commun. 53, 424–427 (2017). https://doi.org/10.1039/C6CC08542C
- D. Zhang, N. Shen, J. Zhang, J. Zhu, Y. Guo et al., A novel nanozyme based on selenopeptide-modified gold nanops with a tunable glutathione peroxidase activity. RSC Adv. 10, 8685–8691 (2020). https://doi.org/10.1039/c9ra10262k
- X. Liu, W. Wei, Q. Yuan, X. Zhang, N. Li et al., Apoferritin–CeO2 nano-truffle that has excellent artificial redox enzyme activity. Chem. Commun. 48, 3155–3157 (2012). https://doi.org/10.1039/C1CC15815E
- C. Hao, A. Qu, L. Xu, M. Sun, H. Zhang et al., Chiral molecule-mediated porous CuxO nanop clusters with antioxidation activity for ameliorating Parkinson’s disease. J. Am. Chem. Soc. 141, 1091–1099 (2019). https://doi.org/10.1021/jacs.8b11856
- W. Wu, L. Huang, E. Wang, S. Dong, Atomic engineering of single-atom nanozymes for enzyme-like catalysis. Chem. Sci. 11, 9741–9756 (2020). https://doi.org/10.1039/d0sc03522j
- R. Yan, S. Sun, J. Yang, W. Long, J. Wang et al., Nanozyme-based bandage with single-atom catalysis for brain trauma. ACS Nano 13, 11552–11560 (2019). https://doi.org/10.1021/acsnano.9b05075
- D. Wang, H. Wu, S.Z.F. Phua, G. Yang, W.Q. Lim et al., Self-assembled single-atom nanozyme for enhanced photodynamic therapy treatment of tumor. Nat. Commun. 11, 357 (2020). https://doi.org/10.1038/s41467-019-14199-7
- X. Ren, D. Chen, Y. Wang, H. Li, Y. Zhang et al., Nanozymes-recent development and biomedical applications. J. Nanobiotechnology 20, 92 (2022). https://doi.org/10.1186/s12951-022-01295-y
- A. Li, Y. Chen, L. Zhang, Nanozymology: connecting biology and nanotechnology. Springer, Singapore (2020), pp. 367–391. https://doi.org/10.1007/978-981-15-1490-6_11
- X. Cai, L. Jiao, H. Yan, Y. Wu, W. Gu et al., Nanozyme-involved biomimetic cade catalysis for biomedical applications. Mater. Today 44, 211–228 (2021). https://doi.org/10.1016/j.mattod.2020.12.005
- S. Maddheshiya, S. Nara, Recent trends in composite nanozymes and their pro-oxidative role in therapeutics. Front. Bioeng. Biotechnol. 10, 880214 (2022). https://doi.org/10.3389/fbioe.2022.880214
- J. Xi, G. Wei, L. An, Z. Xu, Z. Xu et al., Copper/carbon hybrid nanozyme: tuning catalytic activity by the copper state for antibacterial therapy. Nano Lett. 19, 7645–7654 (2019). https://doi.org/10.1021/acs.nanolett.9b02242
- Y. Huang, Z. Liu, C. Liu, E. Ju, Y. Zhang et al., Self-assembly of multi-nanozymes to mimic an intracellular antioxidant defense system. Angew. Chem. Int. Ed. 55, 6646–6650 (2016). https://doi.org/10.1002/anie.201600868
- X.-Q. Zhang, S.-W. Gong, Y. Zhang, T. Yang, C.-Y. Wang et al., Prussian blue modified iron oxide magnetic nanops and their high peroxidase-like activity. J. Mater. Chem. 20, 5110–5116 (2010). https://doi.org/10.1039/C0JM00174K
- J. Zhuang, A.C. Midgley, Y. Wei, Q. Liu, D. Kong et al., Machine-learning-assisted nanozyme design: lessons from materials and engineered enzymes. Adv. Mater., e2210848 (2023). https://doi.org/10.1002/adma.202210848
- Y. Wei, J. Wu, Y. Wu, H. Liu, F. Meng et al., Prediction and design of nanozymes using explainable machine learning. Adv. Mater. 34, e2201736 (2022). https://doi.org/10.1002/adma.202201736
- C. Zhang, Y. Yu, S. Shi, M. Liang, D. Yang et al., Machine learning guided discovery of superoxide dismutase nanozymes for androgenetic alopecia. Nano Lett. 22, 8592–8600 (2022). https://doi.org/10.1021/acs.nanolett.2c03119
- S. Li, Z. Zhou, Z. Tie, B. Wang, M. Ye et al., Data-informed discovery of hydrolytic nanozymes. Nat. Commun. 13, 827 (2022). https://doi.org/10.1038/s41467-022-28344-2
- C. Tu, H. Lu, T. Zhou, W. Zhang, L. Deng et al., Promoting the healing of infected diabetic wound by an anti-bacterial and nano-enzyme-containing hydrogel with inflammation-suppressing, ROS-scavenging, oxygen and nitric oxide-generating properties. Biomaterials 286, 121597 (2022). https://doi.org/10.1016/j.biomaterials.2022.121597
- Z. Li, Y. Zhao, H. Huang, C. Zhang, H. Liu et al., A nanozyme-immobilized hydrogel with endogenous ROS-scavenging and oxygen generation abilities for significantly promoting oxidative diabetic wound healing. Adv. Healthcare Mater. 11, e2201524 (2022). https://doi.org/10.1002/adhm.202201524
- X. Han, S. Chen, Z. Cai, Y. Zhu, W. Yi et al., A diagnostic and therapeutic hydrogel to promote vascularization via blood sugar reduction for wound healing (adv. funct. mater. 14/2023). Adv. Funct. Mater. 33, 2370085 (2023). https://doi.org/10.1002/adfm.202370085
- W. Zhu, J. Mei, X. Zhang, J. Zhou, D. Xu et al., Photothermal nanozyme-based microneedle patch against refractory bacterial biofilm infection via iron-actuated Janus ion therapy. Adv. Mater. 34, e2207961 (2022). https://doi.org/10.1002/adma.202207961
- Y. Li, D. Wang, J. Wen, P. Yu, J. Liu et al., Chemically grafted nanozyme composite cryogels to enhance antibacterial and biocompatible performance for bioliquid regulation and adaptive bacteria trapping. ACS Nano 15, 19672–19683 (2021). https://doi.org/10.1021/acsnano.1c06983
- S. Wang, Y. Zhang, F. Sun, K. Xi, Z. Sun et al., Catalase-like nanozymes combined with hydrogel to facilitate wound healing by improving the microenvironment of diabetic ulcers. Mater. Des. 225, 111557 (2023). https://doi.org/10.1016/j.matdes.2022.111557
- M. Deng, M. Zhang, R. Huang, H. Li, W. Lv et al., Diabetes immunity-modulated multifunctional hydrogel with cade enzyme catalytic activity for bacterial wound treatment. Biomaterials 289, 121790 (2022). https://doi.org/10.1016/j.biomaterials.2022.121790
- Y. Sang, W. Li, H. Liu, L. Zhang, H. Wang et al., Construction of nanozyme-hydrogel for enhanced capture and elimination of bacteria. Adv. Funct. Mater. 29, 1900518 (2019). https://doi.org/10.1002/adfm.201900518
- Y. Li, P. Yu, J. Wen, H. Sun, D. Wang et al., Nanozyme-based stretchable hydrogel of low hysteresis with antibacterial and antioxidant dual functions for closely fitting and wound healing in movable parts. Adv. Funct. Mater. 32, 2110720 (2022). https://doi.org/10.1002/adfm.202110720
- Y. Lu, C. Jia, C. Gong, H. Wang, Q. Xiao et al., A hydrogel system containing molybdenum-based nanomaterials for wound healing. Nano Res. 16, 5368–5375 (2023). https://doi.org/10.1007/s12274-022-5255-9
- M. Tian, L. Zhou, C. Fan, L. Wang, X. Lin et al., Bimetal-organic framework/GOx-based hydrogel dressings with antibacterial and inflammatory modulation for wound healing. Acta Biomater. 158, 252–265 (2023). https://doi.org/10.1016/j.actbio.2022.12.049
- X. Wang, X. Sun, T. Bu, Q. Wang, H. Zhang et al., Construction of a photothermal hydrogel platform with two-dimensional PEG@zirconium-ferrocene MOF nanozymes for rapid tissue repair of bacteria-infected wounds. Acta Biomater. 135, 342–355 (2021). https://doi.org/10.1016/j.actbio.2021.08.022
- Y. Peng, D. He, X. Ge, Y. Lu, Y. Chai et al., Construction of heparin-based hydrogel incorporated with Cu5.4O ultrasmall nanozymes for wound healing and inflammation inhibition. Bioact. Mater. 6, 3109–3124 (2021). https://doi.org/10.1016/j.bioactmat.2021.02.006
- D. Dong, Z. Cheng, T. Wang, X. Wu, C. Ding et al., Acid-degradable nanocomposite hydrogel and glucose oxidase combination for killing bacterial with photothermal augmented chemodynamic therapy. Int. J. Biol. Macromol. 234, 123745 (2023). https://doi.org/10.1016/j.ijbiomac.2023.123745
- X. Wang, Q. Song, B. Sun, W. Xu, S. Shi et al., Bacteria-targeting nanozyme with NIR-II photothermal enhanced catalytic effect for antibacterial therapy and promoting burn healing. Colloids Surf. A Physicochem. Eng. Aspects 674, 131902 (2023). https://doi.org/10.1016/j.colsurfa.2023.131902
- X. Liu, Y. Gao, R. Chandrawati, L. Hosta-Rigau, Therapeutic applications of multifunctional nanozymes. Nanoscale 11, 21046–21060 (2019). https://doi.org/10.1039/c9nr06596b
- Z. Wang, Z. Wang, W.W. Lu, W. Zhen, D. Yang et al., Novel biomaterial strategies for controlled growth factor delivery for biomedical applications. NPG Asia Mater. 9, e435 (2017). https://doi.org/10.1038/am.2017.171
- S.J. Buwalda, T. Vermonden, W.E. Hennink, Hydrogels for therapeutic delivery: current developments and future directions. Biomacromol 18, 316–330 (2017). https://doi.org/10.1021/acs.biomac.6b01604
- Y. Feng, F. Chen, J.M. Rosenholm, L. Liu, H. Zhang, Efficient nanozyme engineering for antibacterial therapy. Mater. Futures 1, 023502 (2022). https://doi.org/10.1088/2752-5724/ac7068
- G. Storz, J.A. Imlay, Oxidative stress. Curr. Opin. Microbiol. 2, 188–194 (1999). https://doi.org/10.1016/s1369-5274(99)80033-2
- M. Ghorbani, H. Derakhshankhah, S. Jafari, S. Salatin, M. Dehghanian et al., Nanozyme antioxidants as emerging alternatives for natural antioxidants: achievements and challenges in perspective. Nano Today 29, 100775 (2019). https://doi.org/10.1016/j.nantod.2019.100775
- G. Wang, F. Yang, W. Zhou, N. Xiao, M. Luo et al., The initiation of oxidative stress and therapeutic strategies in wound healing. Biomed. Pharmacother. 157, 114004 (2023). https://doi.org/10.1016/j.biopha.2022.114004
- E. Proksch, J.M. Brandner, J.-M. Jensen, The skin: an indispensable barrier. Exp. Dermatol. 17, 1063–1072 (2008). https://doi.org/10.1111/j.1600-0625.2008.00786.x
- L. Cañedo-Dorantes, M. Cañedo-Ayala, Skin acute wound healing: a comprehensive review. Int. J. Inflam. 2019, 3706315 (2019). https://doi.org/10.1155/2019/3706315
- G. Zhu, Q. Wang, S. Lu, Y. Niu, Hydrogen peroxide: a potential wound therapeutic target? Med. Princ. Pract. 26, 301–308 (2017). https://doi.org/10.1159/000475501
- M. Pasparakis, I. Haase, F.O. Nestle, Mechanisms regulating skin immunity and inflammation. Nat. Rev. Immunol. 14, 289–301 (2014). https://doi.org/10.1038/nri3646
- L. Chen, H. Deng, H. Cui, J. Fang, Z. Zuo et al., Inflammatory responses and inflammation-associated diseases in organs. Oncotarget 9, 7204–7218 (2017). https://doi.org/10.18632/oncotarget.23208
- D. Laveti, M. Kumar, R. Hemalatha, R. Sistla, V.G.M. Naidu et al., Anti-inflammatory treatments for chronic diseases: a review. Inflamm. Allergy Drug Targets 12, 349–361 (2013). https://doi.org/10.2174/18715281113129990053
- W. Badri, K. Miladi, Q.A. Nazari, H. Greige-Gerges, H. Fessi et al., Encapsulation of NSAIDs for inflammation management: overview, progress, challenges and prospects. Int. J. Pharm. 515, 757–773 (2016). https://doi.org/10.1016/j.ijpharm.2016.11.002
- Y. Liu, Y. Cheng, H. Zhang, M. Zhou, Y. Yu et al., Integrated cade nanozyme catalyzes in vivo ROS scavenging for anti-inflammatory therapy. Sci. Adv. 6, eabb2695 (2020). https://doi.org/10.1126/sciadv.abb2695
- Z. Tu, Y. Zhong, H. Hu, D. Shao, R. Haag et al., Design of therapeutic biomaterials to control inflammation. Nat. Rev. Mater. 7, 557–574 (2022). https://doi.org/10.1038/s41578-022-00426-z
- L. Su, Y. Jia, L. Fu, K. Guo, S. Xie, The emerging progress on wound dressings and their application in clinic wound management. Heliyon 9, e22520 (2023). https://doi.org/10.1016/j.heliyon.2023.e22520
- S. Zhu, B. Zhao, M. Li, H. Wang, J. Zhu et al., Microenvironment responsive nanocomposite hydrogel with NIR photothermal therapy, vascularization and anti-inflammation for diabetic infected wound healing. Bioact. Mater. 26, 306–320 (2023). https://doi.org/10.1016/j.bioactmat.2023.03.005
- J.E. Park, A. Barbul, Understanding the role of immune regulation in wound healing. Am. J. Surg. 187, 11S-16S (2004). https://doi.org/10.1016/S0002-9610(03)00296-4
- J. Larouche, S. Sheoran, K. Maruyama, M.M. Martino, Immune regulation of skin wound healing: mechanisms and novel therapeutic targets. Adv. Wound Care 7, 209–231 (2018). https://doi.org/10.1089/wound.2017.0761
- N. Fujiwara, K. Kobayashi, Macrophages in inflammation. Curr. Drug Target Inflamm. Allergy 4, 281–286 (2005). https://doi.org/10.2174/1568010054022024
- C.J. Ferrante, S.J. Leibovich, Regulation of macrophage polarization and wound healing. Adv. Wound Care 1, 10–16 (2012). https://doi.org/10.1089/wound.2011.0307
- D. Zhi, T. Yang, J. O’Hagan, S. Zhang, R.F. Donnelly, Photothermal therapy. J. Control. Release 325, 52–71 (2020). https://doi.org/10.1016/j.jconrel.2020.06.032
- Y. Chen, Y. Gao, Y. Chen, L. Liu, A. Mo et al., Nanomaterials-based photothermal therapy and its potentials in antibacterial treatment. J. Control. Release 328, 251–262 (2020). https://doi.org/10.1016/j.jconrel.2020.08.055
- M. Liu, D. He, T. Yang, W. Liu, L. Mao et al., An efficient antimicrobial depot for infectious site-targeted chemo-photothermal therapy. J. Nanobiotechnology 16, 23 (2018). https://doi.org/10.1186/s12951-018-0348-z
- Z. Ahmadian, H. Gheybi, M. Adeli, Efficient wound healing by antibacterial property: advances and trends of hydrogels, hydrogel-metal NP composites and photothermal therapy platforms. J. Drug Deliv. Sci. Technol. 73, 103458 (2022). https://doi.org/10.1016/j.jddst.2022.103458
- M.H. Kang, H.Y. Yu, G.-T. Kim, J.E. Lim, S. Jang et al., Near-infrared-emitting nanops activate collagen synthesis via TGFβ signaling. Sci. Rep. 10, 13309 (2020). https://doi.org/10.1038/s41598-020-70415-1
- P. Li, B. Li, C. Wang, X. Zhao, Y. Zheng et al., In situ fabrication of co-coordinated TCPP-Cur donor-acceptor-type covalent organic framework-like photocatalytic hydrogel for rapid therapy of bacteria-infected wounds. Compos. Part B Eng. 252, 110506 (2023). https://doi.org/10.1016/j.compositesb.2023.110506
- Q. Tian, F. Xue, Y. Wang, Y. Cheng, L. An et al., Recent advances in enhanced chemodynamic therapy strategies. Nano Today 39, 101162 (2021). https://doi.org/10.1016/j.nantod.2021.101162
- H. Zhu, J. Zheng, X.Y. Oh, C.Y. Chan, B.Q.L. Low et al., Nanoarchitecture-integrated hydrogel systems toward therapeutic applications. ACS Nano 17, 7953–7978 (2023). https://doi.org/10.1021/acsnano.2c12448
- C. Dunnill, T. Patton, J. Brennan, J. Barrett, M. Dryden et al., Reactive oxygen species (ROS) and wound healing: The functional role of ROS and emerging ROS-modulating technologies for augmentation of the healing process. Int. Wound J. 14, 89–96 (2017). https://doi.org/10.1111/iwj.12557
- C. Jia, Y. Guo, F.-G. Wu, Chemodynamic therapy via Fenton and Fenton-like nanomaterials: strategies and recent advances. Small 18, e2103868 (2022). https://doi.org/10.1002/smll.202103868
- M. Xu, F. Tan, W. Luo, Y. Jia, Y. Deng et al., In situ fabrication of silver peroxide hybrid ultrathin co-based metal-organic frameworks for enhanced chemodynamic antibacterial therapy. ACS Appl. Mater. Interfaces 15, 22985–22998 (2023). https://doi.org/10.1021/acsami.3c03863
- T. Wang, D. Dong, T. Chen, J. Zhu, S. Wang et al., Acidity-responsive cade nanoreactor based on metal-nanozyme and glucose oxidase combination for starving and photothermal-enhanced chemodynamic antibacterial therapy. Chem. Eng. J. 446, 137172 (2022). https://doi.org/10.1016/j.cej.2022.137172
- Y. Zheng, W. Wang, Y. Gao, W. Wang, R. Zhang et al., Nanosonosensitizers-engineered injectable thermogel for augmented chemo-sonodynamic therapy of melanoma and infected wound healing. Mater. Today Bio 20, 100621 (2023). https://doi.org/10.1016/j.mtbio.2023.100621
- H. Huang, Y. Su, C. Wang, B. Lei, X. Song et al., Injectable tissue-adhesive hydrogel for photothermal/chemodynamic synergistic antibacterial and wound healing promotion. ACS Appl. Mater. Interfaces 15, 2714–2724 (2023). https://doi.org/10.1021/acsami.2c19566
- W. Zhu, Y.-Q. Liu, P. Liu, J. Cao, A.-G. Shen et al., Blood-glucose-depleting hydrogel dressing as an activatable photothermal/chemodynamic antibacterial agent for healing diabetic wounds. ACS Appl. Mater. Interfaces 15, 24162–24174 (2023). https://doi.org/10.1021/acsami.3c03786
- H. Sun, M. Sun, Y. You, J. Xie, X. Xu et al., Recent progress of intelligent antibacterial nanoplatforms for treating bacterial infection. Chem. Eng. J. 471, 144597 (2023). https://doi.org/10.1016/j.cej.2023.144597
- Y. Qi, S. Ren, J. Ye, Y. Tian, G. Wang et al., Infection microenvironment-activated core-shell nanoassemblies for photothermal/chemodynamic synergistic wound therapy and multimodal imaging. Acta Biomater. 143, 445–458 (2022). https://doi.org/10.1016/j.actbio.2022.02.034
- S. Suvarnapathaki, X. Wu, D. Lantigua, M.A. Nguyen, G. Camci-Unal, Breathing life into engineered tissues using oxygen-releasing biomaterials. NPG Asia Mater. 11, 65 (2019). https://doi.org/10.1038/s41427-019-0166-2
- V. Falanga, Wound healing and its impairment in the diabetic foot. Lancet 366, 1736–1743 (2005). https://doi.org/10.1016/S0140-6736(05)67700-8
- H. Brem, M. Tomic-Canic, Cellular and molecular basis of wound healing in diabetes. J. Clin. Invest. 117, 1219–1222 (2007). https://doi.org/10.1172/JCI32169
- Z. Tahergorabi, M. Khazaei, Imbalance of angiogenesis in diabetic complications: the mechanisms. Int. J. Prev. Med. 3, 827–838 (2012). https://doi.org/10.4103/2008-7802.104853
- M.A. Weigelt, H.A. Lev-Tov, M. Tomic-Canic, W.D. Lee, R. Williams et al., Advanced wound diagnostics: toward transforming wound care into precision medicine. Adv. Wound Care 11, 330–359 (2022). https://doi.org/10.1089/wound.2020.1319
- J.R. Nakkala, Z. Li, W. Ahmad, K. Wang, C. Gao, Immunomodulatory biomaterials and their application in therapies for chronic inflammation-related diseases. Acta Biomater. 123, 1–30 (2021). https://doi.org/10.1016/j.actbio.2021.01.025
- X. Huang, S. Zhang, Y. Tang, X. Zhang, Y. Bai et al., Advances in metal–organic framework-based nanozymes and their applications. Coord. Chem. Rev. 449, 214216 (2021). https://doi.org/10.1016/j.ccr.2021.214216
- R. Edwards, K.G. Harding, Bacteria and wound healing. Curr. Opin. Infect. Dis. 17, 91–96 (2004). https://doi.org/10.1097/00001432-200404000-00004
- M.C. Robson, Wound infection. Surg. Clin. North Am. 77, 637–650 (1997). https://doi.org/10.1016/S0039-6109(05)70572-7
- R.F. Pereira, P.J. Bártolo, Traditional therapies for skin wound healing. Adv. Wound Care 5, 208–229 (2016). https://doi.org/10.1089/wound.2013.0506
- D. Fan, X. Liu, Y. Ren, S. Bai, Y. Li et al., Functional insights to the development of bioactive material for combating bacterial infections. Front. Bioeng. Biotechnol. 11, 1186637 (2023). https://doi.org/10.3389/fbioe.2023.1186637
- X. Zhang, M. Qin, M. Xu, F. Miao, C. Merzougui et al., The fabrication of antibacterial hydrogels for wound healing. Eur. Polym. J. 146, 110268 (2021). https://doi.org/10.1016/j.eurpolymj.2021.110268
- Á. Serrano-Aroca, A. Cano-Vicent, R. Sabater I Serra, M. El-Tanani, A. Aljabali et al., Scaffolds in the microbial resistant era: Fabrication, materials, properties and tissue engineering applications. Mater. Today Bio 16, 100412 (2022). https://doi.org/10.1016/j.mtbio.2022.100412
- P.V. Baptista, M.P. McCusker, A. Carvalho, D.A. Ferreira, N.M. Mohan et al., Nano-strategies to fight multidrug resistant bacteria—“a battle of the titans.” Front. Microbiol. 9, 1441 (2018). https://doi.org/10.3389/fmicb.2018.01441
- C. Xu, O.U. Akakuru, X. Ma, J. Zheng, J. Zheng et al., Nanop-based wound dressing: recent progress in the detection and therapy of bacterial infections. Bioconjug. Chem. 31, 1708–1723 (2020). https://doi.org/10.1021/acs.bioconjchem.0c00297
- J. Xu, R. Cai, Y. Zhang, X. Mu, Molybdenum disulfide-based materials with enzyme-like characteristics for biological applications. Colloids Surf. B 200, 111575 (2021). https://doi.org/10.1016/j.colsurfb.2021.111575
- N. Bag, S. Bardhan, S. Roy, J. Roy, D. Mondal et al., Nanop-mediated stimulus-responsive antibacterial therapy. Biomater. Sci. 11, 1994–2019 (2023). https://doi.org/10.1039/d2bm01941h
- J. queiro, J. queiro, C. Alves, Infections in patients with diabetes mellitus: a review of pathogenesis. Indian J. Endocrinol. Metab. 16(Suppl 1), S27–S36 (2012). https://doi.org/10.4103/2230-8210.94253
- C. Cai, H. Zhu, Y. Chen, Y. Guo, Z. Yang et al., Mechanoactive nanocomposite hydrogel to accelerate wound repair in movable parts. ACS Nano 16, 20044–20056 (2022). https://doi.org/10.1021/acsnano.2c07483
- J. Shan, X. Zhang, B. Kong, Y. Zhu, Z. Gu et al., Coordination polymer nanozymes-integrated colorimetric microneedle patches for intelligent wound infection management. Chem. Eng. J. 444, 136640 (2022). https://doi.org/10.1016/j.cej.2022.136640
- D.Y.M. Leung, M. Boguniewicz, M.D. Howell, I. Nomura, Q.A. Hamid, New insights into atopic dermatitis. J. Clin. Invest. 113, 651–657 (2004). https://doi.org/10.1172/JCI21060
- V. Wang, J. Boguniewicz, M. Boguniewicz, P.Y. Ong, The infectious complications of atopic dermatitis. Ann. Allergy Asthma Immunol. 126, 3–12 (2021). https://doi.org/10.1016/j.anai.2020.08.002
- L.F. Eichenfield, W.L. Tom, T.G. Berger, A. Krol, A.S. Paller et al., Guidelines of care for the management of atopic dermatitis: Section 2. Management and treatment of atopic dermatitis with topical therapies. J. Am. Acad. Dermatol. 71, 116–132 (2014). https://doi.org/10.1016/j.jaad.2014.03.023
- E.V. Ramos Campos, P.L.F. Proença, L. Doretto-Silva, V. Andrade-Oliveira, L.F. Fraceto et al., Trends in nanoformulations for atopic dermatitis treatment. Expert Opin. Drug Deliv. 17, 1615–1630 (2020). https://doi.org/10.1080/17425247.2020.1813107
- H. Ji, X.-K. Li, Oxidative stress in atopic dermatitis. Oxid. Med. Cell. Longev. 2016, 2721469 (2016). https://doi.org/10.1155/2016/2721469
- G. Damiani, R. Eggenhöffner, P.D.M. Pigatto, N.L. Bragazzi, Nanotechnology meets atopic dermatitis: Current solutions, challenges and future prospects. Insights and implications from a systematic review of the literature. Bioact. Mater. 4, 380–386 (2019). https://doi.org/10.1016/j.bioactmat.2019.11.003
- Y. Jia, J. Hu, K. An, Q. Zhao, Y. Dang et al., Hydrogel dressing integrating FAK inhibition and ROS scavenging for mechano-chemical treatment of atopic dermatitis. Nat. Commun. 14, 2478 (2023). https://doi.org/10.1038/s41467-023-38209-x
- L. Qiu, C. Ouyang, W. Zhang, J. Liu, L. Yu et al., Zn-MOF hydrogel: regulation of ROS-mediated inflammatory microenvironment for treatment of atopic dermatitis. J. Nanobiotechnol 21, 163 (2023). https://doi.org/10.1186/s12951-023-01924-0
- J.H. Kim, A.J. Kolozsvary, K.A. Jenrow, S.L. Brown, Mechanisms of radiation-induced skin injury and implications for future clinical trials. Int. J. Radiat. Biol. 89, 311–318 (2013). https://doi.org/10.3109/09553002.2013.765055
- J. Wei, L. Meng, X. Hou, C. Qu, B. Wang et al., Radiation-induced skin reactions: mechanism and treatment. Cancer Manag. Res. 11, 167–177 (2018). https://doi.org/10.2147/CMAR.S188655
- X. Yang, H. Ren, X. Guo, C. Hu, J. Fu, Radiation-induced skin injury: pathogenesis, treatment, and management. Aging 12, 23379–23393 (2020). https://doi.org/10.18632/aging.103932
- K.R. Brown, E. Rzucidlo, Acute and chronic radiation injury. J. Vasc. Surg. 53, 15S-21S (2011). https://doi.org/10.1016/j.jvs.2010.06.175
- C.N. Coleman, H.B. Stone, J.E. Moulder, T.C. Pellmar, Modulation of radiation injury. Science 304, 693–694 (2004). https://doi.org/10.1126/science.1095956
- D. Zhou, M. Du, H. Luo, F. Ran, X. Zhao et al., Multifunctional mesoporous silica-cerium oxide nanozymes facilitate miR129 delivery for high-quality healing of radiation-induced skin injury. J. Nanobiotechnol 20, 409 (2022). https://doi.org/10.1186/s12951-022-01620-5
- D. Schadendorf, A.C.J. van Akkooi, C. Berking, K.G. Griewank, R. Gutzmer et al., Melanoma. Lancet 392, 971–984 (2018). https://doi.org/10.1016/S0140-6736(18)31559-9
- E. Erdei, S.M. Torres, A new understanding in the epidemiology of melanoma. Expert Rev. Anticancer Ther. 10, 1811–1823 (2010). https://doi.org/10.1586/era.10.170
- S.Q. Wang, R. Setlow, M. Berwick, D. Polsky, A.A. Marghoob et al., Ultraviolet A and melanoma: a review. J. Am. Acad. Dermatol. 44, 837–846 (2001). https://doi.org/10.1067/mjd.2001.114594
- D. Bei, J. Meng, B.-B C. Youan, Engineering nanomedicines for improved melanoma therapy. Progress and promises. Nanomedicine 5, 1385–1399 (2010). https://doi.org/10.2217/nnm.10.117
- V. Gray-Schopfer, C. Wellbrock, R. Marais, Melanoma biology and new targeted therapy. Nature 445, 851–857 (2007). https://doi.org/10.1038/nature05661
- M. Marzi, M. Rostami Chijan, E. Zarenezhad, Hydrogels as promising therapeutic strategy for the treatment of skin cancer. J. Mol. Struct. 1262, 133014 (2022). https://doi.org/10.1016/j.molstruc.2022.133014
- Z. Wu, H. Zhuang, B. Ma, Y. Xiao, B. Koc et al., Manganese-doped calcium silicate nanowire composite hydrogels for melanoma treatment and wound healing. Research 2021, 9780943 (2021). https://doi.org/10.34133/2021/9780943
- E.I. Azzam, J.-P. Jay-Gerin, D. Pain, Ionizing radiation-induced metabolic oxidative stress and prolonged cell injury. Cancer Lett. 327, 48–60 (2012). https://doi.org/10.1016/j.canlet.2011.12.012
- P.A. Riley, Free radicals in biology: oxidative stress and the effects of ionizing radiation. Int. J. Radiat. Biol. 65, 27–33 (1994). https://doi.org/10.1080/09553009414550041
- W. Zhao, M.E.C. Robbins, Inflammation and chronic oxidative stress in radiation-induced late normal tissue injury: Therapeutic implications. Curr. Med. Chem. 16, 130–143 (2009). https://doi.org/10.2174/092986709787002790
- M.I. Koukourakis, Radiation damage and radioprotectants: new concepts in the era of molecular medicine. Br. J. Radiol. 85, 313–330 (2012). https://doi.org/10.1259/bjr/16386034
- B. Babu, S. Pawar, A. Mittal, E. Kolanthai, C.J. Neal et al., Nanotechnology enabled radioprotectants to reduce space radiation-induced reactive oxidative species. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 15, e1896 (2023). https://doi.org/10.1002/wnan.1896
- J. Xie, M. Zhao, C. Wang, S. Zhu, W. Niu et al., External use of Nano-graphdiyne hydrogel for skin radioprotection via both physically shielding of Low-energy X-ray and chemically scavenging of Broad-spectrum free radicals. Chem. Eng. J. 430, 132866 (2022). https://doi.org/10.1016/j.cej.2021.132866
- J. Hao, M. Sun, D. Li, T. Zhang, J. Li et al., An IFI6-based hydrogel promotes the healing of radiation-induced skin injury through regulation of the HSF1 activity. J. Nanobiotechnology 20, 288 (2022). https://doi.org/10.1186/s12951-022-01466-x
- N.D. Evans, R.O. Oreffo, E. Healy, P.J. Thurner, Y.H. Man, Epithelial mechanobiology, skin wound healing, and the stem cell niche. J. Mech. Behav. Biomed. Mater. 28, 397–409 (2013). https://doi.org/10.1016/j.jmbbm.2013.04.023
- S.H. Kwon, J. Padmanabhan, G.C. Gurtner, Mechanobiology of skin diseases and wound healing. Mechanobiol Health Dis, pp. 415–448 (2018). https://doi.org/10.1016/b978-0-12-812952-4.00014-3
- F.H. Silver, L.M. Siperko, G.P. Seehra, Mechanobiology of force transduction in dermal tissue. Skin Res. Technol. 9, 3–23 (2003). https://doi.org/10.1034/j.1600-0846.2003.00358.x
- Z. Wang, F. Qi, H. Luo, G. Xu, D. Wang, Inflammatory microenvironment of skin wounds. Front. Immunol. 13, 789274 (2022). https://doi.org/10.3389/fimmu.2022.789274
- M.G. Fernandes, L.P. da Silva, A.P. Marques, “Skin mechanobiology and biomechanics: From homeostasis to wound healing.” Advances in Biomechanics and Tissue Regeneration, (Elsevier, Amsterdam, 2019), pp. 343–360. https://doi.org/10.1016/b978-0-12-816390-0.00017-0
- R. Ogawa, C.-K. Hsu, Mechanobiological dysregulation of the epidermis and dermis in skin disorders and in degeneration. J. Cell. Mol. Med. 17, 817–822 (2013). https://doi.org/10.1111/jcmm.12060
- L.S. Malakou, A.N. Gargalionis, C. Piperi, E. Papadavid, A.G. Papavassiliou et al., Molecular mechanisms of mechanotransduction in psoriasis. Ann. Transl. Med. 6, 245 (2018). https://doi.org/10.21037/atm.2018.04.09
- M.S. Shutova, W.-H. Boehncke, Mechanotransduction in skin inflammation. Cells 11, 2026 (2022). https://doi.org/10.3390/cells11132026
- J.V. Small, The actin cytoskeleton. Electron Microsc. Rev. 1, 155–174 (1988). https://doi.org/10.1016/S0892-0354(98)90010-7
- M.A. Wozniak, K. Modzelewska, L. Kwong, P.J. Keely, Focal adhesion regulation of cell behavior. Biochim. Biophys. Acta 1692, 103–119 (2004). https://doi.org/10.1016/j.bbamcr.2004.04.007
- A. van der Flier, A. Sonnenberg, Function and interactions of integrins. Cell Tissue Res. 305, 285–298 (2001). https://doi.org/10.1007/s004410100417
- V.W. Wong, K.C. Rustad, S. Akaishi, M. Sorkin, J.P. Glotzbach et al., Focal adhesion kinase links mechanical force to skin fibrosis via inflammatory signaling. Nat. Med. 18, 148–152 (2011). https://doi.org/10.1038/nm.2574
- C.S. Nowell, P.D. Odermatt, L. Azzolin, S. Hohnel, E.F. Wagner et al., Chronic inflammation imposes aberrant cell fate in regenerating epithelia through mechanotransduction. Nat. Cell Biol. 18, 168–180 (2016). https://doi.org/10.1038/ncb3290
- J.M. Murphy, K. Jeong, D.L. Cioffi, P.M. Campbell, H. Jo et al., Focal adhesion kinase activity and localization is critical for TNF-α-induced nuclear factor-κB activation. Inflammation 44, 1130–1144 (2021). https://doi.org/10.1007/s10753-020-01408-5
- Y. Dai, Y. Ding, L. Li, Nanozymes for regulation of reactive oxygen species and disease therapy. Chin. Chem. Lett. 32, 2715–2728 (2021). https://doi.org/10.1016/j.cclet.2021.03.036
- F. Yanagawa, S. Sugiura, T. Kanamori, Hydrogel microfabrication technology toward three dimensional tissue engineering. Regen. Ther. 3, 45–57 (2016). https://doi.org/10.1016/j.reth.2016.02.007
- L. Pontiggia, I.A. Van Hengel, A. Klar, D. Rütsche, M. Nanni et al., Bioprinting and plastic compression of large pigmented and vascularized human dermo-epidermal skin substitutes by means of a new robotic platform. J. Tissue Eng. 13, 20417314221088510 (2022). https://doi.org/10.1177/20417314221088513
- Y. Cai, S.Y. Chang, S.W. Gan, S. Ma, W.F. Lu et al., Nanocomposite bioinks for 3D bioprinting. Acta Biomater. 151, 45–69 (2022). https://doi.org/10.1016/j.actbio.2022.08.014
- R.F. Pereira, A. Sousa, C.C. Barrias, A. Bayat, P.L. Granja et al., Advances in bioprinted cell-laden hydrogels for skin tissue engineering. Biomanuf. Rev. 2, 1 (2017). https://doi.org/10.1007/s40898-017-0003-8
- T. Weng, W. Zhang, Y. Xia, P. Wu, M. Yang et al., 3D bioprinting for skin tissue engineering: Current status and perspectives. J. Tissue Eng. 12, 20417314211028576 (2021). https://doi.org/10.1177/20417314211028574
- P. Chang, S. Li, Q. Sun, K. Guo, H. Wang et al., Large full-thickness wounded skin regeneration using 3D-printed elastic scaffold with minimal functional unit of skin. J. Tissue Eng. 13, 20417314211063024 (2022). https://doi.org/10.1177/20417314211063022
- R. Augustine, Skin bioprinting: A novel approach for creating artificial skin from synthetic and natural building blocks. Prog. Biomater. 7, 77–92 (2018). https://doi.org/10.1007/s40204-018-0087-0
- A. Khademhosseini, R. Langer, J. Borenstein, J.P. Vacanti, Microscale technologies for tissue engineering and biology. Proc. Natl. Acad. Sci. U.S.A. 103, 2480–2487 (2006). https://doi.org/10.1073/pnas.0507681102
- L. Zhang, H. Wang, X. Qu, Biosystem-inspired engineering of nanozymes for biomedical applications. Adv. Mater., e2211147 (2023). https://doi.org/10.1002/adma.202211147
- Q. Wang, J. Jiang, L. Gao, Nanozyme-based medicine for enzymatic therapy: Progress and challenges. Biomed. Mater. 16, 042002 (2021). https://doi.org/10.1088/1748-605X/abe7b4
- X. Huang, D. He, Z. Pan, G. Luo, J. Deng, Reactive-oxygen-species-scavenging nanomaterials for resolving inflammation. Mater. Today Bio 11, 100124 (2021). https://doi.org/10.1016/j.mtbio.2021.100124
- N. Song, M. Scholtemeijer, K. Shah, Mesenchymal stem cell immunomodulation: Mechanisms and therapeutic potential. Trends Pharmacol. Sci. 41, 653–664 (2020). https://doi.org/10.1016/j.tips.2020.06.009
- G.F. Goya, A. Mayoral, E. Winkler, R.D. Zysler, C. Bagnato et al., Next generation of nanozymes: a perspective of the challenges to match biological performance. J. Appl. Phys. 131(3), 190903 (2022). https://doi.org/10.1063/5.0084228
- X. Wang, X. Zhong, J. Li, Z. Liu, L. Cheng, Inorganic nanomaterials with rapid clearance for biomedical applications. Chem. Soc. Rev. 50, 8669–8742 (2021). https://doi.org/10.1039/d0cs00461h
- S. Sindhwani, W.C.W. Chan, Nanotechnology for modern medicine: next step towards clinical translation. J. Intern. Med. 290, 486–498 (2021). https://doi.org/10.1111/joim.13254
- X. Ding, Z. Zhao, Y. Zhang, M. Duan, C. Liu et al., Activity regulating strategies of nanozymes for biomedical applications. Small 19, e2207142 (2023). https://doi.org/10.1002/smll.202207142
- S. Correa, A.K. Grosskopf, H. Lopez Hernandez, D. Chan, A.C. Yu et al., Translational applications of hydrogels. Chem. Rev. 121, 11385–11457 (2021). https://doi.org/10.1021/acs.chemrev.0c01177
- M.A. Bhutkar, R.O. Sonawane. Translating nanomaterials from laboratory to clinic: Barriers ahead. In: Pardeshi, C.V. (eds) Nanomaterial-based drug delivery systems, (Springer, Cham, 2023), pp. 381–405. https://doi.org/10.1007/978-3-031-30529-0_13
- M. Ghorbani, Z. Izadi, S. Jafari, E. als, F. Rezaei et al., Preclinical studies conducted on nanozyme antioxidants: shortcomings and challenges based on US FDA regulations. Nanomedicine 16, 1133–1151 (2021). https://doi.org/10.2217/nnm-2021-0030
- B. Liu, J. Liu, Surface modification of nanozymes. Nano Res. 10, 1125–1148 (2017). https://doi.org/10.1007/s12274-017-1426-5
- L. Huang, J. Chen, L. Gan, J. Wang, S. Dong, Single-atom nanozymes. Sci. Adv. 5, eaav5490 (2019). https://doi.org/10.1126/sciadv.aav5490
- J. Pei, R. Zhao, X. Mu, J. Wang, C. Liu et al., Single-atom nanozymes for biological applications. Biomater. Sci. 8, 6428–6441 (2020). https://doi.org/10.1039/d0bm01447h
- R. Kumari, D.S. Dkhar, S. Mahapatra, R. Kumar, P. Chandra, Nano-bioengineered sensing technologies for real-time monitoring of reactive oxygen species in in vitro and in vivo models. Microchem. J. 180, 107615 (2022). https://doi.org/10.1016/j.microc.2022.107615
References
C. Blanpain, Skin regeneration and repair. Nature 464, 686–687 (2010). https://doi.org/10.1038/464686a
M. Takeo, W. Lee, M. Ito, Wound healing and skin regeneration. Cold Spring Harb. Perspect. Med. 5, a023267 (2015). https://doi.org/10.1101/cshperspect.a023267
P. Martin, Wound healing: aiming for perfect skin regeneration. Science 276, 75–81 (1997). https://doi.org/10.1126/science.276.5309.75
H.N. Wilkinson, M.J. Hardman, Wound healing: cellular mechanisms and pathological outcomes. Open Biol. 10, 200223 (2020). https://doi.org/10.1098/rsob.200223
T.J. Koh, L.A. DiPietro, Inflammation and wound healing: the role of the macrophage. Expert Rev. Mol. Med. 13, e23 (2011). https://doi.org/10.1017/S1462399411001943
H. Sorg, D.J. Tilkorn, S. Hager, J. Hauser, U. Mirastschijski, Skin wound healing: an update on the current knowledge and concepts. Eur. Surg. Res. 58, 81–94 (2017). https://doi.org/10.1159/000454919
L.E. Tracy, R.A. Minasian, E.J. Caterson, Extracellular matrix and dermal fibroblast function in the healing wound. Adv. Wound Care 5, 119–136 (2016). https://doi.org/10.1089/wound.2014.0561
N.X. Landén, D. Li, M. Ståhle, Transition from inflammation to proliferation: a critical step during wound healing. Cell. Mol. Life Sci. 73, 3861–3885 (2016). https://doi.org/10.1007/s00018-016-2268-0
J. Wang, Y. Zhou, H. Zhang, L. Hu, J. Liu et al., Pathogenesis of allergic diseases and implications for therapeutic interventions. Signal Transduct. Target. Ther. 8, 138 (2023). https://doi.org/10.1038/s41392-023-01344-4
A.Q. Khan, M.V. Agha, K.S.A.M. Sheikhan, S.M. Younis, M.A. Tamimi et al., Targeting deregulated oxidative stress in skin inflammatory diseases: an update on clinical importance. Biomed. Pharmacother. 154, 113601 (2022). https://doi.org/10.1016/j.biopha.2022.113601
D. Chouhan, N. Dey, N. Bhardwaj, B.B. Mandal, Emerging and innovative approaches for wound healing and skin regeneration: current status and advances. Biomaterials 216, 119267 (2019). https://doi.org/10.1016/j.biomaterials.2019.119267
S.G. Priya, H. Jungvid, A. Kumar, Skin tissue engineering for tissue repair and regeneration. Tissue Eng. Part B Rev. 14, 105–118 (2008). https://doi.org/10.1089/teb.2007.0318
J. Chen, Y. Fan, G. Dong, H. Zhou, R. Du et al., Designing biomimetic scaffolds for skin tissue engineering. Biomater. Sci. 11, 3051–3076 (2023). https://doi.org/10.1039/d3bm00046j
C. Yang, C. Yang, Y. Chen, J. Liu, Z. Liu et al., The trends in wound management: sensing, therapeutic treatment, and “theranostics.” J. Sci. Adv. Mater. Devices 8, 100619 (2023). https://doi.org/10.1016/j.jsamd.2023.100619
G. Kaur, G. Narayanan, D. Garg, A. Sachdev, I. Matai, Biomaterials-based regenerative strategies for skin tissue wound healing. ACS Appl. Bio Mater. 5, 2069–2106 (2022). https://doi.org/10.1021/acsabm.2c00035
M. Rahmati, J.J. Blaker, S.P. Lyngstadaas, J.F. Mano, H.J. Haugen, Designing multigradient biomaterials for skin regeneration. Mater. Today Adv. 5, 100051 (2020). https://doi.org/10.1016/j.mtadv.2019.100051
F. Groeber, M. Holeiter, M. Hampel, S. Hinderer, K. Schenke-Layland, Skin tissue engineering—In vivo and in vitro applications. Adv. Drug Deliv. Rev. 63, 352–366 (2011). https://doi.org/10.1016/j.addr.2011.01.005
Y. Ikada, Challenges in tissue engineering. J. R. Soc. Interface. 3, 589–601 (2006). https://doi.org/10.1098/rsif.2006.0124
A. Sinha, F.Z. Simnani, D. Singh, A. Nandi, A. Choudhury et al., The translational paradigm of nanobiomaterials: biological chemistry to modern applications. Mater. Today Bio 17, 100463 (2022). https://doi.org/10.1016/j.mtbio.2022.100463
Y. Huang, J. Ren, X. Qu, Nanozymes: classification, catalytic mechanisms, activity regulation, and applications. Chem. Rev. 119, 4357–4412 (2019). https://doi.org/10.1021/acs.chemrev.8b00672
H. Wei, E. Wang, Nanomaterials with enzyme-like characteristics (nanozymes): Next-generation artificial enzymes. Chem. Soc. Rev. 42, 6060–6093 (2013). https://doi.org/10.1039/C3CS35486E
M. Liang, X. Yan, Nanozymes: from new concepts, mechanisms, and standards to applications. Acc. Chem. Res. 52, 2190–2200 (2019). https://doi.org/10.1021/acs.accounts.9b00140
L. Gao, J. Zhuang, L. Nie, J. Zhang, Y. Zhang et al., Intrinsic peroxidase-like activity of ferromagnetic nanops. Nat. Nanotechnol. 2, 577–583 (2007). https://doi.org/10.1038/nnano.2007.260
H. Sun, Y. Zhou, J. Ren, X. Qu, Carbon nanozymes: enzymatic properties, catalytic mechanism, and applications. Angew. Chem. Int. Ed. 57, 9224–9237 (2018). https://doi.org/10.1002/anie.201712469
Q. Liu, A. Zhang, R. Wang, Q. Zhang, D. Cui, A review on metal- and metal oxide-based nanozymes: properties, mechanisms, and applications. Nano-Micro Lett. 13, 154 (2021). https://doi.org/10.1007/s40820-021-00674-8
Y. Ai, Z.-N. Hu, X. Liang, H.-B. Sun, H. Xin et al., Recent advances in nanozymes: from matters to bioapplications. Adv. Funct. Mater. 32, 2110432 (2022). https://doi.org/10.1002/adfm.202110432
O. Bayaraa, K. Dashnyam, R.K. Singh, N. Mandakhbayar, J.H. Lee et al., Nanoceria-GO-intercalated multicellular spheroids revascularize and salvage critical ischemic limbs through anti-apoptotic and pro-angiogenic functions. Biomaterials 292, 121914 (2023). https://doi.org/10.1016/j.biomaterials.2022.121914
Patel, K.D., Patel, A.K., Kurian, A.G., Singh, R.K., Kim, H.-W.. Tuning the properties of inorganic nanomaterials for theranostic applications in infectious diseases: Carbon nanotubes, quantum dots, graphene, and mesoporous carbon nanops. Nanotheranostics Treatment Diagn Infectious Dis, pp. 319–352 (2022). https://doi.org/10.1016/b978-0-323-91201-3.00011-6
C.-S. Lee, R.K. Singh, H.S. Hwang, N.-H. Lee, A.G. Kurian et al., Materials-based nanotherapeutics for injured and diseased bone. Prog. Mater. Sci. 135, 101087 (2023). https://doi.org/10.1016/j.pmatsci.2023.101087
W. Yang, X. Yang, L. Zhu, H. Chu, X. Li et al., Nanozymes: activity origin, catalytic mechanism, and biological application. Coord. Chem. Rev. 448, 214170 (2021). https://doi.org/10.1016/j.ccr.2021.214170
C. Cao, N. Yang, X. Wang, J. Shao, X. Song et al., Biomedicine meets nanozyme catalytic chemistry. Coord. Chem. Rev. 491, 215245 (2023). https://doi.org/10.1016/j.ccr.2023.215245
X. Mou, Q. Wu, Z. Zhang, Y. Liu, J. Zhang et al., Nanozymes for regenerative medicine. Small. Methods 6, e2200997 (2022). https://doi.org/10.1002/smtd.202200997
Zhang, Y.S., Khademhosseini, A. Advances in engineering hydrogels. Science 356, eaaf3627 (2017). https://doi.org/10.1126/science.aaf3627
L. Qi, C. Zhang, B. Wang, J. Yin, S. Yan, Progress in hydrogels for skin wound repair. Macromol. Biosci. 22, e2100475 (2022). https://doi.org/10.1002/mabi.202100475
A.S. Hoffman, Hydrogels for biomedical applications. Adv. Drug Deliv. Rev. 54, 3–12 (2002). https://doi.org/10.1016/s0169-409x(01)00239-3
F. Kong, N. Mehwish, X. Niu, M. Lin, X. Rong et al., Personalized hydrogels for individual health care: preparation, features, and applications in tissue engineering. Mater. Today Chem. 22, 100612 (2021). https://doi.org/10.1016/j.mtchem.2021.100612
Khan, M.U.A., Aslam, M.A., Bin Abdullah, M.F., Hasan, A., Shah S.A. et al., Recent perspective of polymeric biomaterial in tissue engineering–a review. Mater. Today Chem. 34, 101818 (2023). https://doi.org/10.1016/j.mtchem.2023.101818
H. Wang, K. Wan, X. Shi, Recent advances in nanozyme research. Adv. Mater. 31, e1805368 (2019). https://doi.org/10.1002/adma.201805368
H. Wu, H. Liao, F. Li, J. Lee, P. Hu et al., Bioactive ROS-scavenging nanozymes for regenerative medicine: reestablishing the antioxidant firewall. Nano Sel. 1, 285–297 (2020). https://doi.org/10.1002/nano.202000021
Q. Wang, Y. Zhang, Y. Ma, M. Wang, G. Pan, Nano-crosslinked dynamic hydrogels for biomedical applications. Mater. Today Bio 20, 100640 (2023). https://doi.org/10.1016/j.mtbio.2023.100640
S. Wang, H. Zheng, L. Zhou, F. Cheng, Z. Liu et al., Nanoenzyme-reinforced injectable hydrogel for healing diabetic wounds infected with multidrug resistant bacteria. Nano Lett. 20, 5149–5158 (2020). https://doi.org/10.1021/acs.nanolett.0c01371
W. Li, Y. Bei, X. Pan, J. Zhu, Z. Zhang et al., Selenide-linked polydopamine-reinforced hybrid hydrogels with on-demand degradation and light-triggered nanozyme release for diabetic wound healing. Biomater. Res. 27, 49 (2023). https://doi.org/10.1186/s40824-023-00367-w
Y. Zhao, S. Song, D. Wang, H. Liu, J. Zhang et al., Nanozyme-reinforced hydrogel as a H2O2-driven oxygenerator for enhancing prosthetic interface osseointegration in rheumatoid arthritis therapy. Nat. Commun. 13, 6758 (2022). https://doi.org/10.1038/s41467-022-34481-5
R. Baretta, V. Gabrielli, M. Frasconi, Nanozyme–cellulose hydrogel composites enabling cade catalysis for the colorimetric detection of glucose. ACS Appl. Nano Mater. 5, 13845–13853 (2022). https://doi.org/10.1021/acsanm.2c01609
H. Wu, F. Li, W. Shao, J. Gao, D. Ling, Promoting angiogenesis in oxidative diabetic wound microenvironment using a nanozyme-reinforced self-protecting hydrogel. ACS Cent. Sci. 5, 477–485 (2019). https://doi.org/10.1021/acscentsci.8b00850
J. Zhuang, X. Zhang, Q. Liu, M. Zhu, X. Huang, Targeted delivery of nanomedicines for promoting vascular regeneration in ischemic diseases. Theranostics 12, 6223–6241 (2022). https://doi.org/10.7150/thno.73421
Y. Ju, X. Liu, X. Ye, M. Dai, B. Fang et al., Nanozyme-based remodeling of disease microenvironments for disease prevention and treatment: a review. ACS Appl. Nano Mater. 6, 13792–13823 (2023). https://doi.org/10.1021/acsanm.3c02097
A.G. Kurian, R.K. Singh, K.D. Patel, J.H. Lee, H.W. Kim, Multifunctional GelMA platforms with nanomaterials for advanced tissue therapeutics. Bioact. Mater. 8, 267–295 (2021). https://doi.org/10.1016/j.bioactmat.2021.06.027
Y.E. Kim, S.W. Choi, M.K. Kim, T.L. Nguyen, J. Kim, Therapeutic hydrogel patch to treat atopic dermatitis by regulating oxidative stress. Nano Lett. 22, 2038–2047 (2022). https://doi.org/10.1021/acs.nanolett.1c04899
Y. Li, R. Fu, Z. Duan, C. Zhu, D. Fan, Construction of multifunctional hydrogel based on the tannic acid-metal coating decorated MoS2 dual nanozyme for bacteria-infected wound healing. Bioact. Mater. 9, 461–474 (2022). https://doi.org/10.1016/j.bioactmat.2021.07.023
X. Jin, W. Zhang, J. Shan, J. He, H. Qian et al., Thermosensitive hydrogel loaded with nickel-copper bimetallic hollow nanospheres with SOD and CAT enzymatic-like activity promotes acute wound healing. ACS Appl. Mater. Interfaces 14, 50677–50691 (2022). https://doi.org/10.1021/acsami.2c17242
X. Wang, H. Wang, S. Zhou, Progress and perspective on carbon-based nanozymes for peroxidase-like applications. J. Phys. Chem. Lett. 12, 11751–11760 (2021). https://doi.org/10.1021/acs.jpclett.1c03219
L. Wang, F. Gao, A. Wang, X. Chen, H. Li et al., Defect-rich adhesive molybdenum disulfide/rGO vertical heterostructures with enhanced nanozyme activity for smart bacterial killing application. Adv. Mater. 32, e2005423 (2020). https://doi.org/10.1002/adma.202005423
Y. Liang, X. Zhao, T. Hu, Y. Han, B. Guo, Mussel-inspired, antibacterial, conductive, antioxidant, injectable composite hydrogel wound dressing to promote the regeneration of infected skin. J. Colloid Interface Sci. 556, 514–528 (2019). https://doi.org/10.1016/j.jcis.2019.08.083
H. He, Z. Fei, T. Guo, Y. Hou, D. Li et al., Bioadhesive injectable hydrogel with phenolic carbon quantum dot supported Pd single atom nanozymes as a localized immunomodulation niche for cancer catalytic immunotherapy. Biomaterials 280, 121272 (2022). https://doi.org/10.1016/j.biomaterials.2021.121272
Y. Li, R. Fu, Z. Duan, C. Zhu, D. Fan, Mussel-inspired adhesive bilayer hydrogels for bacteria-infected wound healing via NIR-enhanced nanozyme therapy. Colloids Surf. B 210, 112230 (2022). https://doi.org/10.1016/j.colsurfb.2021.112230
X. Wang, Q. Shi, Z. Zha, D. Zhu, L. Zheng et al., Copper single-atom catalysts with photothermal performance and enhanced nanozyme activity for bacteria-infected wound therapy. Bioact. Mater. 6, 4389–4401 (2021). https://doi.org/10.1016/j.bioactmat.2021.04.024
X. Wang, X. Sun, T. Bu, Q. Wang, P. Jia et al., In situ fabrication of metal-organic framework derived hybrid nanozymes for enhanced nanozyme-photothermal therapy of bacteria-infected wounds. Compos. B Eng. 229, 109465 (2022). https://doi.org/10.1016/j.compositesb.2021.109465
A. Maleki, J. He, S. Bochani, V. Nosrati, M.-A. Shahbazi et al., Multifunctional photoactive hydrogels for wound healing acceleration. ACS Nano 15, 18895–18930 (2021). https://doi.org/10.1021/acsnano.1c08334
Q. Han, J.W. Lau, T.C. Do, Z. Zhang, B. Xing, Near-infrared light brightens bacterial disinfection: recent progress and perspectives. ACS Appl. Bio Mater. 4, 3937–3961 (2021). https://doi.org/10.1021/acsabm.0c01341
Y. He, X. Chen, Y. Zhang, Y. Wang, M. Cui et al., Magnetoresponsive nanozyme: magnetic stimulation on the nanozyme activity of iron oxide nanops. Sci. China Life Sci. 65, 184–192 (2022). https://doi.org/10.1007/s11427-020-1907-6
Shamsabadi A., Haghighi, T., Carvalho, S., Frenette, L.C., Stevens, M.M.. The nanozyme revolution: Enhancing the performance of medical biosensing platforms. Adv. Mater., e2300184 (2023). https://doi.org/10.1002/adma.202300184
K. Li, X. Yan, Y. Du, S. Chen, Y. You et al., Silk fibroin nanozyme hydrogel with self-supplied H2O2 for enhanced antibacterial therapy. ACS Appl. Nano Mater. 6, 9175–9185 (2023). https://doi.org/10.1021/acsanm.3c00528
Z.-Y. Liao, W.-W. Gao, N.-N. Shao, J.-M. Zuo, T. Wang et al., Iron phosphate nanozyme-hydrogel with multienzyme-like activity for efficient bacterial sterilization. ACS Appl. Mater. Interfaces 14, 18170–18181 (2022). https://doi.org/10.1021/acsami.2c02102
Z. Jia, X. Lv, Y. Hou, K. Wang, F. Ren et al., Mussel-inspired nanozyme catalyzed conductive and self-setting hydrogel for adhesive and antibacterial bioelectronics. Bioact. Mater. 6, 2676–2687 (2021). https://doi.org/10.1016/j.bioactmat.2021.01.033
K. Haraguchi, Nanocomposite hydrogels. Curr. Opin. Solid State Mater. Sci. 11, 47–54 (2007). https://doi.org/10.1016/j.cossms.2008.05.001
Z. Chen, S. Song, H. Zeng, Z. Ge, B. Liu et al., 3D printing MOF nanozyme hydrogel with dual enzymatic activities and visualized glucose monitoring for diabetic wound healing. Chem. Eng. J. 471, 144649 (2023). https://doi.org/10.1016/j.cej.2023.144649
I.M. El-Sherbiny, M.H. Yacoub, Hydrogel scaffolds for tissue engineering: progress and challenges. Glob. Cardiol. Sci. Pract. 2013, 316–342 (2013). https://doi.org/10.5339/gcsp.2013.38
X. Zhu, X. Mao, Z. Wang, C. Feng, G. Chen et al., Fabrication of nanozyme@DNA hydrogel and its application in biomedical analysis. Nano Res. 10, 959–970 (2017). https://doi.org/10.1007/s12274-016-1354-9
P. Dam, M. Celik, M. Ustun, S. Saha, C. Saha et al., Wound healing strategies based on nanops incorporated in hydrogel wound patches. RSC Adv. 13, 21345–21364 (2023). https://doi.org/10.1039/D3RA03477A
D. Solanki, P. Vinchhi, M.M. Patel, Design considerations, formulation approaches, and strategic advances of hydrogel dressings for chronic wound management. ACS Omega 8, 8172–8189 (2023). https://doi.org/10.1021/acsomega.2c06806
Y.E. Kim, J. Kim, ROS-scavenging therapeutic hydrogels for modulation of the inflammatory response. ACS Appl. Mater. Interfaces 14(20), 23002–23021 (2021). https://doi.org/10.1021/acsami.1c18261
S. Li, S. Dong, W. Xu, S. Tu, L. Yan et al., Antibacterial hydrogels. Adv. Sci. 5(5), 1700527 (2018). https://doi.org/10.1002/advs.201700527
H. Zhao, J. Huang, Y. Li, X. Lv, H. Zhou et al., ROS-scavenging hydrogel to promote healing of bacteria infected diabetic wounds. Biomaterials 258, 120286 (2020). https://doi.org/10.1016/j.biomaterials.2020.120286
D. Chao, Q. Dong, Z. Yu, D. Qi, M. Li et al., Specific nanodrug for diabetic chronic wounds based on antioxidase-mimicking MOF-818 nanozymes. J. Am. Chem. Soc. 144, 23438–23447 (2022). https://doi.org/10.1021/jacs.2c09663
A. Gupta, M. Kowalczuk, W. Heaselgrave, S.T. Britland, C. Martin et al., The production and application of hydrogels for wound management: a review. Eur. Polym. J. 111, 134–151 (2019). https://doi.org/10.1016/j.eurpolymj.2018.12.019
H. Cheng, Z. Shi, K. Yue, X. Huang, Y. Xu et al., Sprayable hydrogel dressing accelerates wound healing with combined reactive oxygen species-scavenging and antibacterial abilities. Acta Biomater. 124, 219–232 (2021). https://doi.org/10.1016/j.actbio.2021.02.002
Y. Yang, M. Li, G. Pan, J. Chen, B. Guo, Multiple stimuli-responsive nanozyme-based cryogels with controlled NO release as self-adaptive wound dressing for infected wound healing. Adv. Funct. Mater. 33, 2214089 (2023). https://doi.org/10.1002/adfm.202214089
E. Piantanida, G. Alonci, A. Bertucci, L. De Cola, Design of nanocomposite injectable hydrogels for minimally invasive surgery. Acc. Chem. Res. 52, 2101–2112 (2019). https://doi.org/10.1021/acs.accounts.9b00114
H. Bai, Z. Ding, J. Qian, M. Jiang, D. Yao, AuPt nanop-based injectable hydrogel as cade nanozyme for accelerating bacteria-infected wound healing. ACS Appl. Nano Mater. 6, 17531–17538 (2023). https://doi.org/10.1021/acsanm.3c02693
M.H. Norahan, S.C. Pedroza-González, M.G. Sánchez-Salazar, M.M. Álvarez, G. Trujillo de Santiago, Structural and biological engineering of 3D hydrogels for wound healing. Bioact. Mater. 24, 197–235 (2022). https://doi.org/10.1016/j.bioactmat.2022.11.019
X. Xie, Y. Lei, Y. Li, M. Zhang, J. Sun et al., Dual-crosslinked bioadhesive hydrogel as NIR/pH stimulus-responsiveness platform for effectively accelerating wound healing. J. Colloid Interface Sci. 637, 20–32 (2023). https://doi.org/10.1016/j.jcis.2023.01.081
Y. Li, R. Fu, Z. Duan, C. Zhu, D. Fan, Adaptive hydrogels based on nanozyme with dual-enhanced triple enzyme-like activities for wound disinfection and mimicking antioxidant defense system. Adv. Healthcare Mater. 11, e2101849 (2022). https://doi.org/10.1002/adhm.202101849
R. Pugliese, B. Beltrami, S. Regondi, C. Lunetta, Polymeric biomaterials for 3D printing in medicine: An overview. Ann. 3D Print. Med. 2, 100011 (2021). https://doi.org/10.1016/j.stlm.2021.100011
M. Alizadehgiashi, C.R. Nemr, M. Chekini, D. Pinto Ramos, N. Mittal et al., Multifunctional 3D-printed wound dressings. ACS Nano 15, 12375–12387 (2021). https://doi.org/10.1021/acsnano.1c04499
X. Ding, Y. Yu, W. Li, Y. Zhao, In situ 3D-bioprinting MoS2 accelerated gelling hydrogel scaffold for promoting chronic diabetic wound healing. Matter 6, 1000–1014 (2023). https://doi.org/10.1016/j.matt.2023.01.001
P. Pleguezuelos-Beltrán, P. Gálvez-Martín, D. Nieto-García, J.A. Marchal, E. López-Ruiz, Advances in spray products for skin regeneration. Bioact. Mater. 16, 187–203 (2022). https://doi.org/10.1016/j.bioactmat.2022.02.023
L. Shang, Y. Yu, Y. Jiang, X. Liu, N. Sui et al., Ultrasound-augmented multienzyme-like nanozyme hydrogel spray for promoting diabetic wound healing. ACS Nano 17, 15962–15977 (2023). https://doi.org/10.1021/acsnano.3c04134
W. Zhang, X. Dai, X. Jin, M. Huang, J. Shan et al., Promotion of wound healing by a thermosensitive and sprayable hydrogel with nanozyme activity and anti-inflammatory properties. Smart Mater. Med. 4, 134–145 (2023). https://doi.org/10.1016/j.smaim.2022.08.004
M. Xiao, Y. Lin, L. Mei, J. Liu, F. Wang, Ag/MoS2 nanozyme hydrogel dressing with adhesion and self-healing properties for antibacterial applications. ACS Appl. Nano Mater. 6, 14563–14573 (2023). https://doi.org/10.1021/acsanm.3c02816
A.G. Kurian, R.K. Singh, J.H. Lee, H.W. Kim, Surface-engineered hybrid gelatin methacryloyl with nanoceria as reactive oxygen species responsive matrixes for bone therapeutics. ACS Appl. Bio Mater. 5, 1130–1138 (2022). https://doi.org/10.1021/acsabm.1c01189
R.K. Singh, D.S. Yoon, N. Mandakhbayar, C. Li, A.G. Kurian et al., Diabetic bone regeneration with nanoceria-tailored scaffolds by recapitulating cellular microenvironment: activating integrin/TGF-β co-signaling of MSCs while relieving oxidative stress. Biomaterials 288, 121732 (2022). https://doi.org/10.1016/j.biomaterials.2022.121732
A.G. Kurian, N. Mandakhbayar, R.K. Singh, J.H. Lee, G. Jin et al., Multifunctional dendrimer@nanoceria engineered GelMA hydrogel accelerates bone regeneration through orchestrated cellular responses. Mater. Today Bio 20, 100664 (2023). https://doi.org/10.1016/j.mtbio.2023.100664
M. Zandieh, J. Liu, Nanozymes: Definition, activity, and mechanisms. Adv. Mater., e2211041 (2023). https://doi.org/10.1002/adma.202211041
Z. Wang, R. Zhang, X. Yan, K. Fan, Structure and activity of nanozymes: Inspirations for de novo design of nanozymes. Mater. Today 41, 81–119 (2020). https://doi.org/10.1016/j.mattod.2020.08.020
A.M. Villalba-Rodríguez, L.Y. Martínez-Zamudio, S.A.H. Martínez, J.A. Rodríguez-Hernández, E.M. Melchor-Martínez et al., Nanomaterial constructs for catalytic applications in biomedicine: nanobiocatalysts and nanozymes. Top. Catal. 66, 707–722 (2023). https://doi.org/10.1007/s11244-022-01766-4
R. Qiao, Y. Cong, M. Ovais, R. Cai, C. Chen et al., Performance modulation and analysis for catalytic biomedical nanomaterials in biological systems. Cell Rep. Phys. Sci. 4, 101453 (2023). https://doi.org/10.1016/j.xcrp.2023.101453
L. Mei, S. Zhu, Y. Liu, W. Yin, Z. Gu et al., An overview of the use of nanozymes in antibacterial applications. Chem. Eng. J. 418, 129431 (2021). https://doi.org/10.1016/j.cej.2021.129431
M. Zhang, W. Tong, Stimuli-responsive nanozymes for biomedical applications. Biomater. Sci. 11, 5769–5780 (2023). https://doi.org/10.1039/d3bm00884c
D. Jiang, D. Ni, Z.T. Rosenkrans, P. Huang, X. Yan et al., Nanozyme: New horizons for responsive biomedical applications. Chem. Soc. Rev. 48, 3683–3704 (2019). https://doi.org/10.1039/c8cs00718g
R.G. Mahmudunnabi, F.Z. Farhana, N. Kashaninejad, S.H. Firoz, Y.-B. Shim et al., Nanozyme-based electrochemical biosensors for disease biomarker detection. Analyst 145, 4398–4420 (2020). https://doi.org/10.1039/d0an00558d
M. Chen, H. Zhou, X. Liu, T. Yuan, W. Wang et al., Single iron site nanozyme for ultrasensitive glucose detection. Small 16, e2002343 (2020). https://doi.org/10.1002/smll.202002343
Y. Wang, X. Jia, S. An, W. Yin, J. Huang et al., Nanozyme-based regulation of cellular metabolism and their applications. Adv. Mater., 2301810 (2023). https://doi.org/10.1002/adma.202301810
H. Wei, L. Gao, K. Fan, J. Liu, J. He et al., Nanozymes: a clear definition with fuzzy edges. Nano Today 40, 101269 (2021). https://doi.org/10.1016/j.nantod.2021.101269
P. Mishra, J. Lee, D. Kumar, R.O. Louro, N. Costa et al., Engineered nanoenzymes with multifunctional properties for next-generation biological and environmental applications. Adv. Funct. Mater. 32, 2108650 (2022). https://doi.org/10.1002/adfm.202108650
D. Karthiga, S. Choudhury, N. Chandrasekaran, A. Mukherjee, Effect of surface charge on peroxidase mimetic activity of gold nanorods (GNRs). Mater. Chem. Phys. 227, 242–249 (2019). https://doi.org/10.1016/j.matchemphys.2019.02.015
J. Zhao, X. Cai, W. Gao, L. Zhang, D. Zou et al., Prussian blue nanozyme with multienzyme activity reduces colitis in mice. ACS Appl. Mater. Interfaces 10, 26108–26117 (2018). https://doi.org/10.1021/acsami.8b10345
J. Sheng, Y. Wu, H. Ding, K. Feng, Y. Shen et al., Multienzyme-like nanozymes: Regulation, rational design, and application. Adv. Mater., 2211210 (2023). https://doi.org/10.1002/adma.202211210
N.C. Veitch, Horseradish peroxidase: a modern view of a classic enzyme. Phytochemistry 65, 249–259 (2004). https://doi.org/10.1016/j.phytochem.2003.10.022
F. Attar, M.G. Shahpar, B. Rasti, M. Sharifi, A.A. Saboury et al., Nanozymes with intrinsic peroxidase-like activities. J. Mol. Liq. 278, 130–144 (2019). https://doi.org/10.1016/j.molliq.2018.12.011
Z. Lyu, S. Ding, D. Du, K. Qiu, J. Liu et al., Recent advances in biomedical applications of 2D nanomaterials with peroxidase-like properties. Adv. Drug Deliv. Rev. 185, 114269 (2022). https://doi.org/10.1016/j.addr.2022.114269
S. Ding, J.A. Barr, Z. Lyu, F. Zhang, M. Wang et al., Effect of phosphorus modulation in iron single-atom catalysts for peroxidase mimicking. Adv. Mater., e2209633 (2023). https://doi.org/10.1002/adma.202209633
L. Tonoyan, D. Montagner, R. Friel, V. O’Flaherty, Antimicrobials offered from nature: Peroxidase-catalyzed systems and their mimics. Biochem. Pharmacol. 182, 114281 (2020). https://doi.org/10.1016/j.bcp.2020.114281
S. Zhang, Z. Yang, J. Hao, F. Ding, Z. Li et al., Hollow nanosphere-doped bacterial cellulose and polypropylene wound dressings: Biomimetic nanocatalyst mediated antibacterial therapy. Chem. Eng. J. 432, 134309 (2022). https://doi.org/10.1016/j.cej.2021.134309
X. Ren, L. Chang, Y. Hu, X. Zhao, S. Xu et al., Au@MOFs used as peroxidase-like catalytic nanozyme for bacterial infected wound healing through bacterial membranes disruption and protein leakage promotion. Mater. Des. 229, 111890 (2023). https://doi.org/10.1016/j.matdes.2023.111890
H. Aebi, Catalase. Methods of Enzymatic Analysis (1974), pp. 673–684. https://doi.org/10.1016/b978-0-12-091302-2.50032-3
A. Nandi, L.J. Yan, C.K. Jana, N. Das, Role of catalase in oxidative stress- and age-associated degenerative diseases. Oxid. Med. Cell. Longev. 2019, 9613090 (2019). https://doi.org/10.1155/2019/9613090
B.J. Day, Catalase and glutathione peroxidase mimics. Biochem. Pharmacol. 77, 285–296 (2009). https://doi.org/10.1016/j.bcp.2008.09.029
J. Zhu, Q. Han, Q. Li, F. Wang, M. Dong et al., A multi-enzyme-like activity exhibiting mussel-inspired nanozyme hydrogel for bacteria-infected wound healing. Biomater. Sci. 11, 2711–2725 (2023). https://doi.org/10.1039/d2bm02004a
A.S. Sethulekshmi, A. Saritha, K. Joseph, A.S. Aprem, S.B. Sisupal, MoS2 based nanomaterials: advanced antibacterial agents for future. J. Control. Release 348, 158–185 (2022). https://doi.org/10.1016/j.jconrel.2022.05.047
W. Luo, C. Zhu, S. Su, D. Li, Y. He et al., Self-catalyzed, self-limiting growth of glucose oxidase-mimicking gold nanops. ACS Nano 4, 7451–7458 (2010). https://doi.org/10.1021/nn102592h
J. Li, W. Liu, X. Wu, X. Gao, Mechanism of pH-switchable peroxidase and catalase-like activities of gold, silver, platinum and palladium. Biomaterials 48, 37–44 (2015). https://doi.org/10.1016/j.biomaterials.2015.01.012
B. Zhang, Y. Lv, C. Yu, W. Zhang, S. Song et al., Au-Pt nanozyme-based multifunctional hydrogel dressing for diabetic wound healing. Biomater. Adv. 137, 212869 (2022). https://doi.org/10.1016/j.bioadv.2022.212869
Y. Chong, Q. Liu, C. Ge, Advances in oxidase-mimicking nanozymes: classification, activity regulation and biomedical applications. Nano Today 37, 101076 (2021). https://doi.org/10.1016/j.nantod.2021.101076
Q. Wang, H. Wei, Z. Zhang, E. Wang, S. Dong, Nanozyme: an emerging alternative to natural enzyme for biosensing and immunoassay. Trac Trends Anal. Chem. 105, 218–224 (2018). https://doi.org/10.1016/j.trac.2018.05.012
J. Chen, S. Zhang, X. Chen, L. Wang, W. Yang, A self-assembled fmoc-diphenylalanine hydrogel-encapsulated Pt nanozyme as oxidase- and peroxidase-like breaking pH limitation for potential antimicrobial application. Chemistry 28, e202104247 (2022). https://doi.org/10.1002/chem.202104247
Z. Zhou, X. Mei, K. Hu, M. Ma, Y. Zhang, Nanohybrid double network hydrogels based on a platinum nanozyme composite for antimicrobial and diabetic wound healing. ACS Appl. Mater. Interfaces 15, 17612–17626 (2023). https://doi.org/10.1021/acsami.3c00459
Y. Zhang, X. Hu, J. Shang, W. Shao, L. Jin et al., Emerging nanozyme-based multimodal synergistic therapies in combating bacterial infections. Theranostics 12, 5995–6020 (2022). https://doi.org/10.7150/thno.73681
I. Fridovich, Superoxide dismutases. Annu. Rev. Biochem. 44, 147–159 (1975). https://doi.org/10.1146/annurev.bi.44.070175.001051
H. Zhao, R. Zhang, X. Yan, K. Fan, Superoxide dismutase nanozymes: an emerging star for anti-oxidation. J. Mater. Chem. B 9, 6939–6957 (2021). https://doi.org/10.1039/d1tb00720c
C. Xu, X. Qu, Cerium oxide nanop: a remarkably versatile rare earth nanomaterial for biological applications. NPG Asia Mater. 6, e90 (2014). https://doi.org/10.1038/am.2013.88
V. Baldim, F. Bedioui, N. Mignet, I. Margaill, J.-F. Berret, The enzyme-like catalytic activity of cerium oxide nanops and its dependency on Ce3+ surface area concentration. Nanoscale 10, 6971–6980 (2018). https://doi.org/10.1039/c8nr00325d
Y. Li, R. Fu, Z. Duan, C. Zhu, D. Fan, Injectable hydrogel based on defect-rich multi-nanozymes for diabetic wound healing via an oxygen self-supplying cade reaction. Small 18, e2200165 (2022). https://doi.org/10.1002/smll.202200165
H. Zhang, X.F. Lu, Z.P. Wu, X.W.D. Lou, Emerging multifunctional single-atom catalysts/nanozymes. ACS Cent. Sci. 6, 1288–1301 (2020). https://doi.org/10.1021/acscentsci.0c00512
R. Tian, J. Xu, Q. Luo, C. Hou, J. Liu, Rational design and biological application of antioxidant nanozymes. Front. Chem. 8, 831 (2021). https://doi.org/10.3389/fchem.2020.00831
C. Korsvik, S. Patil, S. Seal, W.T. Self, Superoxide dismutase mimetic properties exhibited by vacancy engineered ceria nanops. Chem. Commun. 2007(10), 1056–1058 (2007). https://doi.org/10.1039/b615134e
N. Singh, M.A. Savanur, S. Srivastava, P. D’Silva, G. Mugesh, A redox modulatory Mn3 O4 nanozyme with multi-enzyme activity provides efficient cytoprotection to human cells in a Parkinson’s disease model. Angew. Chem. Int. Ed. 56, 14267–14271 (2017). https://doi.org/10.1002/anie.201708573
S. Ghosh, P. Roy, N. Karmodak, E.D. Jemmis, G. Mugesh, Nanoisozymes: crystal-facet-dependent enzyme-mimetic activity of V2O5 nanomaterials. Angew. Chem. Int. Ed. 57, 4510–4515 (2018). https://doi.org/10.1002/anie.201800681
S.V. Somerville, Q. Li, J. Wordsworth, S. Jamali, M.R. Eskandarian et al., Approaches to improving the selectivity of nanozymes. Adv. Mater., e2211288 (2023). https://doi.org/10.1002/adma.202211288
K. Fan, H. Wang, J. Xi, Q. Liu, X. Meng et al., Optimization of Fe3O4 nanozyme activity via single amino acid modification mimicking an enzyme active site. Chem. Commun. 53, 424–427 (2017). https://doi.org/10.1039/C6CC08542C
D. Zhang, N. Shen, J. Zhang, J. Zhu, Y. Guo et al., A novel nanozyme based on selenopeptide-modified gold nanops with a tunable glutathione peroxidase activity. RSC Adv. 10, 8685–8691 (2020). https://doi.org/10.1039/c9ra10262k
X. Liu, W. Wei, Q. Yuan, X. Zhang, N. Li et al., Apoferritin–CeO2 nano-truffle that has excellent artificial redox enzyme activity. Chem. Commun. 48, 3155–3157 (2012). https://doi.org/10.1039/C1CC15815E
C. Hao, A. Qu, L. Xu, M. Sun, H. Zhang et al., Chiral molecule-mediated porous CuxO nanop clusters with antioxidation activity for ameliorating Parkinson’s disease. J. Am. Chem. Soc. 141, 1091–1099 (2019). https://doi.org/10.1021/jacs.8b11856
W. Wu, L. Huang, E. Wang, S. Dong, Atomic engineering of single-atom nanozymes for enzyme-like catalysis. Chem. Sci. 11, 9741–9756 (2020). https://doi.org/10.1039/d0sc03522j
R. Yan, S. Sun, J. Yang, W. Long, J. Wang et al., Nanozyme-based bandage with single-atom catalysis for brain trauma. ACS Nano 13, 11552–11560 (2019). https://doi.org/10.1021/acsnano.9b05075
D. Wang, H. Wu, S.Z.F. Phua, G. Yang, W.Q. Lim et al., Self-assembled single-atom nanozyme for enhanced photodynamic therapy treatment of tumor. Nat. Commun. 11, 357 (2020). https://doi.org/10.1038/s41467-019-14199-7
X. Ren, D. Chen, Y. Wang, H. Li, Y. Zhang et al., Nanozymes-recent development and biomedical applications. J. Nanobiotechnology 20, 92 (2022). https://doi.org/10.1186/s12951-022-01295-y
A. Li, Y. Chen, L. Zhang, Nanozymology: connecting biology and nanotechnology. Springer, Singapore (2020), pp. 367–391. https://doi.org/10.1007/978-981-15-1490-6_11
X. Cai, L. Jiao, H. Yan, Y. Wu, W. Gu et al., Nanozyme-involved biomimetic cade catalysis for biomedical applications. Mater. Today 44, 211–228 (2021). https://doi.org/10.1016/j.mattod.2020.12.005
S. Maddheshiya, S. Nara, Recent trends in composite nanozymes and their pro-oxidative role in therapeutics. Front. Bioeng. Biotechnol. 10, 880214 (2022). https://doi.org/10.3389/fbioe.2022.880214
J. Xi, G. Wei, L. An, Z. Xu, Z. Xu et al., Copper/carbon hybrid nanozyme: tuning catalytic activity by the copper state for antibacterial therapy. Nano Lett. 19, 7645–7654 (2019). https://doi.org/10.1021/acs.nanolett.9b02242
Y. Huang, Z. Liu, C. Liu, E. Ju, Y. Zhang et al., Self-assembly of multi-nanozymes to mimic an intracellular antioxidant defense system. Angew. Chem. Int. Ed. 55, 6646–6650 (2016). https://doi.org/10.1002/anie.201600868
X.-Q. Zhang, S.-W. Gong, Y. Zhang, T. Yang, C.-Y. Wang et al., Prussian blue modified iron oxide magnetic nanops and their high peroxidase-like activity. J. Mater. Chem. 20, 5110–5116 (2010). https://doi.org/10.1039/C0JM00174K
J. Zhuang, A.C. Midgley, Y. Wei, Q. Liu, D. Kong et al., Machine-learning-assisted nanozyme design: lessons from materials and engineered enzymes. Adv. Mater., e2210848 (2023). https://doi.org/10.1002/adma.202210848
Y. Wei, J. Wu, Y. Wu, H. Liu, F. Meng et al., Prediction and design of nanozymes using explainable machine learning. Adv. Mater. 34, e2201736 (2022). https://doi.org/10.1002/adma.202201736
C. Zhang, Y. Yu, S. Shi, M. Liang, D. Yang et al., Machine learning guided discovery of superoxide dismutase nanozymes for androgenetic alopecia. Nano Lett. 22, 8592–8600 (2022). https://doi.org/10.1021/acs.nanolett.2c03119
S. Li, Z. Zhou, Z. Tie, B. Wang, M. Ye et al., Data-informed discovery of hydrolytic nanozymes. Nat. Commun. 13, 827 (2022). https://doi.org/10.1038/s41467-022-28344-2
C. Tu, H. Lu, T. Zhou, W. Zhang, L. Deng et al., Promoting the healing of infected diabetic wound by an anti-bacterial and nano-enzyme-containing hydrogel with inflammation-suppressing, ROS-scavenging, oxygen and nitric oxide-generating properties. Biomaterials 286, 121597 (2022). https://doi.org/10.1016/j.biomaterials.2022.121597
Z. Li, Y. Zhao, H. Huang, C. Zhang, H. Liu et al., A nanozyme-immobilized hydrogel with endogenous ROS-scavenging and oxygen generation abilities for significantly promoting oxidative diabetic wound healing. Adv. Healthcare Mater. 11, e2201524 (2022). https://doi.org/10.1002/adhm.202201524
X. Han, S. Chen, Z. Cai, Y. Zhu, W. Yi et al., A diagnostic and therapeutic hydrogel to promote vascularization via blood sugar reduction for wound healing (adv. funct. mater. 14/2023). Adv. Funct. Mater. 33, 2370085 (2023). https://doi.org/10.1002/adfm.202370085
W. Zhu, J. Mei, X. Zhang, J. Zhou, D. Xu et al., Photothermal nanozyme-based microneedle patch against refractory bacterial biofilm infection via iron-actuated Janus ion therapy. Adv. Mater. 34, e2207961 (2022). https://doi.org/10.1002/adma.202207961
Y. Li, D. Wang, J. Wen, P. Yu, J. Liu et al., Chemically grafted nanozyme composite cryogels to enhance antibacterial and biocompatible performance for bioliquid regulation and adaptive bacteria trapping. ACS Nano 15, 19672–19683 (2021). https://doi.org/10.1021/acsnano.1c06983
S. Wang, Y. Zhang, F. Sun, K. Xi, Z. Sun et al., Catalase-like nanozymes combined with hydrogel to facilitate wound healing by improving the microenvironment of diabetic ulcers. Mater. Des. 225, 111557 (2023). https://doi.org/10.1016/j.matdes.2022.111557
M. Deng, M. Zhang, R. Huang, H. Li, W. Lv et al., Diabetes immunity-modulated multifunctional hydrogel with cade enzyme catalytic activity for bacterial wound treatment. Biomaterials 289, 121790 (2022). https://doi.org/10.1016/j.biomaterials.2022.121790
Y. Sang, W. Li, H. Liu, L. Zhang, H. Wang et al., Construction of nanozyme-hydrogel for enhanced capture and elimination of bacteria. Adv. Funct. Mater. 29, 1900518 (2019). https://doi.org/10.1002/adfm.201900518
Y. Li, P. Yu, J. Wen, H. Sun, D. Wang et al., Nanozyme-based stretchable hydrogel of low hysteresis with antibacterial and antioxidant dual functions for closely fitting and wound healing in movable parts. Adv. Funct. Mater. 32, 2110720 (2022). https://doi.org/10.1002/adfm.202110720
Y. Lu, C. Jia, C. Gong, H. Wang, Q. Xiao et al., A hydrogel system containing molybdenum-based nanomaterials for wound healing. Nano Res. 16, 5368–5375 (2023). https://doi.org/10.1007/s12274-022-5255-9
M. Tian, L. Zhou, C. Fan, L. Wang, X. Lin et al., Bimetal-organic framework/GOx-based hydrogel dressings with antibacterial and inflammatory modulation for wound healing. Acta Biomater. 158, 252–265 (2023). https://doi.org/10.1016/j.actbio.2022.12.049
X. Wang, X. Sun, T. Bu, Q. Wang, H. Zhang et al., Construction of a photothermal hydrogel platform with two-dimensional PEG@zirconium-ferrocene MOF nanozymes for rapid tissue repair of bacteria-infected wounds. Acta Biomater. 135, 342–355 (2021). https://doi.org/10.1016/j.actbio.2021.08.022
Y. Peng, D. He, X. Ge, Y. Lu, Y. Chai et al., Construction of heparin-based hydrogel incorporated with Cu5.4O ultrasmall nanozymes for wound healing and inflammation inhibition. Bioact. Mater. 6, 3109–3124 (2021). https://doi.org/10.1016/j.bioactmat.2021.02.006
D. Dong, Z. Cheng, T. Wang, X. Wu, C. Ding et al., Acid-degradable nanocomposite hydrogel and glucose oxidase combination for killing bacterial with photothermal augmented chemodynamic therapy. Int. J. Biol. Macromol. 234, 123745 (2023). https://doi.org/10.1016/j.ijbiomac.2023.123745
X. Wang, Q. Song, B. Sun, W. Xu, S. Shi et al., Bacteria-targeting nanozyme with NIR-II photothermal enhanced catalytic effect for antibacterial therapy and promoting burn healing. Colloids Surf. A Physicochem. Eng. Aspects 674, 131902 (2023). https://doi.org/10.1016/j.colsurfa.2023.131902
X. Liu, Y. Gao, R. Chandrawati, L. Hosta-Rigau, Therapeutic applications of multifunctional nanozymes. Nanoscale 11, 21046–21060 (2019). https://doi.org/10.1039/c9nr06596b
Z. Wang, Z. Wang, W.W. Lu, W. Zhen, D. Yang et al., Novel biomaterial strategies for controlled growth factor delivery for biomedical applications. NPG Asia Mater. 9, e435 (2017). https://doi.org/10.1038/am.2017.171
S.J. Buwalda, T. Vermonden, W.E. Hennink, Hydrogels for therapeutic delivery: current developments and future directions. Biomacromol 18, 316–330 (2017). https://doi.org/10.1021/acs.biomac.6b01604
Y. Feng, F. Chen, J.M. Rosenholm, L. Liu, H. Zhang, Efficient nanozyme engineering for antibacterial therapy. Mater. Futures 1, 023502 (2022). https://doi.org/10.1088/2752-5724/ac7068
G. Storz, J.A. Imlay, Oxidative stress. Curr. Opin. Microbiol. 2, 188–194 (1999). https://doi.org/10.1016/s1369-5274(99)80033-2
M. Ghorbani, H. Derakhshankhah, S. Jafari, S. Salatin, M. Dehghanian et al., Nanozyme antioxidants as emerging alternatives for natural antioxidants: achievements and challenges in perspective. Nano Today 29, 100775 (2019). https://doi.org/10.1016/j.nantod.2019.100775
G. Wang, F. Yang, W. Zhou, N. Xiao, M. Luo et al., The initiation of oxidative stress and therapeutic strategies in wound healing. Biomed. Pharmacother. 157, 114004 (2023). https://doi.org/10.1016/j.biopha.2022.114004
E. Proksch, J.M. Brandner, J.-M. Jensen, The skin: an indispensable barrier. Exp. Dermatol. 17, 1063–1072 (2008). https://doi.org/10.1111/j.1600-0625.2008.00786.x
L. Cañedo-Dorantes, M. Cañedo-Ayala, Skin acute wound healing: a comprehensive review. Int. J. Inflam. 2019, 3706315 (2019). https://doi.org/10.1155/2019/3706315
G. Zhu, Q. Wang, S. Lu, Y. Niu, Hydrogen peroxide: a potential wound therapeutic target? Med. Princ. Pract. 26, 301–308 (2017). https://doi.org/10.1159/000475501
M. Pasparakis, I. Haase, F.O. Nestle, Mechanisms regulating skin immunity and inflammation. Nat. Rev. Immunol. 14, 289–301 (2014). https://doi.org/10.1038/nri3646
L. Chen, H. Deng, H. Cui, J. Fang, Z. Zuo et al., Inflammatory responses and inflammation-associated diseases in organs. Oncotarget 9, 7204–7218 (2017). https://doi.org/10.18632/oncotarget.23208
D. Laveti, M. Kumar, R. Hemalatha, R. Sistla, V.G.M. Naidu et al., Anti-inflammatory treatments for chronic diseases: a review. Inflamm. Allergy Drug Targets 12, 349–361 (2013). https://doi.org/10.2174/18715281113129990053
W. Badri, K. Miladi, Q.A. Nazari, H. Greige-Gerges, H. Fessi et al., Encapsulation of NSAIDs for inflammation management: overview, progress, challenges and prospects. Int. J. Pharm. 515, 757–773 (2016). https://doi.org/10.1016/j.ijpharm.2016.11.002
Y. Liu, Y. Cheng, H. Zhang, M. Zhou, Y. Yu et al., Integrated cade nanozyme catalyzes in vivo ROS scavenging for anti-inflammatory therapy. Sci. Adv. 6, eabb2695 (2020). https://doi.org/10.1126/sciadv.abb2695
Z. Tu, Y. Zhong, H. Hu, D. Shao, R. Haag et al., Design of therapeutic biomaterials to control inflammation. Nat. Rev. Mater. 7, 557–574 (2022). https://doi.org/10.1038/s41578-022-00426-z
L. Su, Y. Jia, L. Fu, K. Guo, S. Xie, The emerging progress on wound dressings and their application in clinic wound management. Heliyon 9, e22520 (2023). https://doi.org/10.1016/j.heliyon.2023.e22520
S. Zhu, B. Zhao, M. Li, H. Wang, J. Zhu et al., Microenvironment responsive nanocomposite hydrogel with NIR photothermal therapy, vascularization and anti-inflammation for diabetic infected wound healing. Bioact. Mater. 26, 306–320 (2023). https://doi.org/10.1016/j.bioactmat.2023.03.005
J.E. Park, A. Barbul, Understanding the role of immune regulation in wound healing. Am. J. Surg. 187, 11S-16S (2004). https://doi.org/10.1016/S0002-9610(03)00296-4
J. Larouche, S. Sheoran, K. Maruyama, M.M. Martino, Immune regulation of skin wound healing: mechanisms and novel therapeutic targets. Adv. Wound Care 7, 209–231 (2018). https://doi.org/10.1089/wound.2017.0761
N. Fujiwara, K. Kobayashi, Macrophages in inflammation. Curr. Drug Target Inflamm. Allergy 4, 281–286 (2005). https://doi.org/10.2174/1568010054022024
C.J. Ferrante, S.J. Leibovich, Regulation of macrophage polarization and wound healing. Adv. Wound Care 1, 10–16 (2012). https://doi.org/10.1089/wound.2011.0307
D. Zhi, T. Yang, J. O’Hagan, S. Zhang, R.F. Donnelly, Photothermal therapy. J. Control. Release 325, 52–71 (2020). https://doi.org/10.1016/j.jconrel.2020.06.032
Y. Chen, Y. Gao, Y. Chen, L. Liu, A. Mo et al., Nanomaterials-based photothermal therapy and its potentials in antibacterial treatment. J. Control. Release 328, 251–262 (2020). https://doi.org/10.1016/j.jconrel.2020.08.055
M. Liu, D. He, T. Yang, W. Liu, L. Mao et al., An efficient antimicrobial depot for infectious site-targeted chemo-photothermal therapy. J. Nanobiotechnology 16, 23 (2018). https://doi.org/10.1186/s12951-018-0348-z
Z. Ahmadian, H. Gheybi, M. Adeli, Efficient wound healing by antibacterial property: advances and trends of hydrogels, hydrogel-metal NP composites and photothermal therapy platforms. J. Drug Deliv. Sci. Technol. 73, 103458 (2022). https://doi.org/10.1016/j.jddst.2022.103458
M.H. Kang, H.Y. Yu, G.-T. Kim, J.E. Lim, S. Jang et al., Near-infrared-emitting nanops activate collagen synthesis via TGFβ signaling. Sci. Rep. 10, 13309 (2020). https://doi.org/10.1038/s41598-020-70415-1
P. Li, B. Li, C. Wang, X. Zhao, Y. Zheng et al., In situ fabrication of co-coordinated TCPP-Cur donor-acceptor-type covalent organic framework-like photocatalytic hydrogel for rapid therapy of bacteria-infected wounds. Compos. Part B Eng. 252, 110506 (2023). https://doi.org/10.1016/j.compositesb.2023.110506
Q. Tian, F. Xue, Y. Wang, Y. Cheng, L. An et al., Recent advances in enhanced chemodynamic therapy strategies. Nano Today 39, 101162 (2021). https://doi.org/10.1016/j.nantod.2021.101162
H. Zhu, J. Zheng, X.Y. Oh, C.Y. Chan, B.Q.L. Low et al., Nanoarchitecture-integrated hydrogel systems toward therapeutic applications. ACS Nano 17, 7953–7978 (2023). https://doi.org/10.1021/acsnano.2c12448
C. Dunnill, T. Patton, J. Brennan, J. Barrett, M. Dryden et al., Reactive oxygen species (ROS) and wound healing: The functional role of ROS and emerging ROS-modulating technologies for augmentation of the healing process. Int. Wound J. 14, 89–96 (2017). https://doi.org/10.1111/iwj.12557
C. Jia, Y. Guo, F.-G. Wu, Chemodynamic therapy via Fenton and Fenton-like nanomaterials: strategies and recent advances. Small 18, e2103868 (2022). https://doi.org/10.1002/smll.202103868
M. Xu, F. Tan, W. Luo, Y. Jia, Y. Deng et al., In situ fabrication of silver peroxide hybrid ultrathin co-based metal-organic frameworks for enhanced chemodynamic antibacterial therapy. ACS Appl. Mater. Interfaces 15, 22985–22998 (2023). https://doi.org/10.1021/acsami.3c03863
T. Wang, D. Dong, T. Chen, J. Zhu, S. Wang et al., Acidity-responsive cade nanoreactor based on metal-nanozyme and glucose oxidase combination for starving and photothermal-enhanced chemodynamic antibacterial therapy. Chem. Eng. J. 446, 137172 (2022). https://doi.org/10.1016/j.cej.2022.137172
Y. Zheng, W. Wang, Y. Gao, W. Wang, R. Zhang et al., Nanosonosensitizers-engineered injectable thermogel for augmented chemo-sonodynamic therapy of melanoma and infected wound healing. Mater. Today Bio 20, 100621 (2023). https://doi.org/10.1016/j.mtbio.2023.100621
H. Huang, Y. Su, C. Wang, B. Lei, X. Song et al., Injectable tissue-adhesive hydrogel for photothermal/chemodynamic synergistic antibacterial and wound healing promotion. ACS Appl. Mater. Interfaces 15, 2714–2724 (2023). https://doi.org/10.1021/acsami.2c19566
W. Zhu, Y.-Q. Liu, P. Liu, J. Cao, A.-G. Shen et al., Blood-glucose-depleting hydrogel dressing as an activatable photothermal/chemodynamic antibacterial agent for healing diabetic wounds. ACS Appl. Mater. Interfaces 15, 24162–24174 (2023). https://doi.org/10.1021/acsami.3c03786
H. Sun, M. Sun, Y. You, J. Xie, X. Xu et al., Recent progress of intelligent antibacterial nanoplatforms for treating bacterial infection. Chem. Eng. J. 471, 144597 (2023). https://doi.org/10.1016/j.cej.2023.144597
Y. Qi, S. Ren, J. Ye, Y. Tian, G. Wang et al., Infection microenvironment-activated core-shell nanoassemblies for photothermal/chemodynamic synergistic wound therapy and multimodal imaging. Acta Biomater. 143, 445–458 (2022). https://doi.org/10.1016/j.actbio.2022.02.034
S. Suvarnapathaki, X. Wu, D. Lantigua, M.A. Nguyen, G. Camci-Unal, Breathing life into engineered tissues using oxygen-releasing biomaterials. NPG Asia Mater. 11, 65 (2019). https://doi.org/10.1038/s41427-019-0166-2
V. Falanga, Wound healing and its impairment in the diabetic foot. Lancet 366, 1736–1743 (2005). https://doi.org/10.1016/S0140-6736(05)67700-8
H. Brem, M. Tomic-Canic, Cellular and molecular basis of wound healing in diabetes. J. Clin. Invest. 117, 1219–1222 (2007). https://doi.org/10.1172/JCI32169
Z. Tahergorabi, M. Khazaei, Imbalance of angiogenesis in diabetic complications: the mechanisms. Int. J. Prev. Med. 3, 827–838 (2012). https://doi.org/10.4103/2008-7802.104853
M.A. Weigelt, H.A. Lev-Tov, M. Tomic-Canic, W.D. Lee, R. Williams et al., Advanced wound diagnostics: toward transforming wound care into precision medicine. Adv. Wound Care 11, 330–359 (2022). https://doi.org/10.1089/wound.2020.1319
J.R. Nakkala, Z. Li, W. Ahmad, K. Wang, C. Gao, Immunomodulatory biomaterials and their application in therapies for chronic inflammation-related diseases. Acta Biomater. 123, 1–30 (2021). https://doi.org/10.1016/j.actbio.2021.01.025
X. Huang, S. Zhang, Y. Tang, X. Zhang, Y. Bai et al., Advances in metal–organic framework-based nanozymes and their applications. Coord. Chem. Rev. 449, 214216 (2021). https://doi.org/10.1016/j.ccr.2021.214216
R. Edwards, K.G. Harding, Bacteria and wound healing. Curr. Opin. Infect. Dis. 17, 91–96 (2004). https://doi.org/10.1097/00001432-200404000-00004
M.C. Robson, Wound infection. Surg. Clin. North Am. 77, 637–650 (1997). https://doi.org/10.1016/S0039-6109(05)70572-7
R.F. Pereira, P.J. Bártolo, Traditional therapies for skin wound healing. Adv. Wound Care 5, 208–229 (2016). https://doi.org/10.1089/wound.2013.0506
D. Fan, X. Liu, Y. Ren, S. Bai, Y. Li et al., Functional insights to the development of bioactive material for combating bacterial infections. Front. Bioeng. Biotechnol. 11, 1186637 (2023). https://doi.org/10.3389/fbioe.2023.1186637
X. Zhang, M. Qin, M. Xu, F. Miao, C. Merzougui et al., The fabrication of antibacterial hydrogels for wound healing. Eur. Polym. J. 146, 110268 (2021). https://doi.org/10.1016/j.eurpolymj.2021.110268
Á. Serrano-Aroca, A. Cano-Vicent, R. Sabater I Serra, M. El-Tanani, A. Aljabali et al., Scaffolds in the microbial resistant era: Fabrication, materials, properties and tissue engineering applications. Mater. Today Bio 16, 100412 (2022). https://doi.org/10.1016/j.mtbio.2022.100412
P.V. Baptista, M.P. McCusker, A. Carvalho, D.A. Ferreira, N.M. Mohan et al., Nano-strategies to fight multidrug resistant bacteria—“a battle of the titans.” Front. Microbiol. 9, 1441 (2018). https://doi.org/10.3389/fmicb.2018.01441
C. Xu, O.U. Akakuru, X. Ma, J. Zheng, J. Zheng et al., Nanop-based wound dressing: recent progress in the detection and therapy of bacterial infections. Bioconjug. Chem. 31, 1708–1723 (2020). https://doi.org/10.1021/acs.bioconjchem.0c00297
J. Xu, R. Cai, Y. Zhang, X. Mu, Molybdenum disulfide-based materials with enzyme-like characteristics for biological applications. Colloids Surf. B 200, 111575 (2021). https://doi.org/10.1016/j.colsurfb.2021.111575
N. Bag, S. Bardhan, S. Roy, J. Roy, D. Mondal et al., Nanop-mediated stimulus-responsive antibacterial therapy. Biomater. Sci. 11, 1994–2019 (2023). https://doi.org/10.1039/d2bm01941h
J. queiro, J. queiro, C. Alves, Infections in patients with diabetes mellitus: a review of pathogenesis. Indian J. Endocrinol. Metab. 16(Suppl 1), S27–S36 (2012). https://doi.org/10.4103/2230-8210.94253
C. Cai, H. Zhu, Y. Chen, Y. Guo, Z. Yang et al., Mechanoactive nanocomposite hydrogel to accelerate wound repair in movable parts. ACS Nano 16, 20044–20056 (2022). https://doi.org/10.1021/acsnano.2c07483
J. Shan, X. Zhang, B. Kong, Y. Zhu, Z. Gu et al., Coordination polymer nanozymes-integrated colorimetric microneedle patches for intelligent wound infection management. Chem. Eng. J. 444, 136640 (2022). https://doi.org/10.1016/j.cej.2022.136640
D.Y.M. Leung, M. Boguniewicz, M.D. Howell, I. Nomura, Q.A. Hamid, New insights into atopic dermatitis. J. Clin. Invest. 113, 651–657 (2004). https://doi.org/10.1172/JCI21060
V. Wang, J. Boguniewicz, M. Boguniewicz, P.Y. Ong, The infectious complications of atopic dermatitis. Ann. Allergy Asthma Immunol. 126, 3–12 (2021). https://doi.org/10.1016/j.anai.2020.08.002
L.F. Eichenfield, W.L. Tom, T.G. Berger, A. Krol, A.S. Paller et al., Guidelines of care for the management of atopic dermatitis: Section 2. Management and treatment of atopic dermatitis with topical therapies. J. Am. Acad. Dermatol. 71, 116–132 (2014). https://doi.org/10.1016/j.jaad.2014.03.023
E.V. Ramos Campos, P.L.F. Proença, L. Doretto-Silva, V. Andrade-Oliveira, L.F. Fraceto et al., Trends in nanoformulations for atopic dermatitis treatment. Expert Opin. Drug Deliv. 17, 1615–1630 (2020). https://doi.org/10.1080/17425247.2020.1813107
H. Ji, X.-K. Li, Oxidative stress in atopic dermatitis. Oxid. Med. Cell. Longev. 2016, 2721469 (2016). https://doi.org/10.1155/2016/2721469
G. Damiani, R. Eggenhöffner, P.D.M. Pigatto, N.L. Bragazzi, Nanotechnology meets atopic dermatitis: Current solutions, challenges and future prospects. Insights and implications from a systematic review of the literature. Bioact. Mater. 4, 380–386 (2019). https://doi.org/10.1016/j.bioactmat.2019.11.003
Y. Jia, J. Hu, K. An, Q. Zhao, Y. Dang et al., Hydrogel dressing integrating FAK inhibition and ROS scavenging for mechano-chemical treatment of atopic dermatitis. Nat. Commun. 14, 2478 (2023). https://doi.org/10.1038/s41467-023-38209-x
L. Qiu, C. Ouyang, W. Zhang, J. Liu, L. Yu et al., Zn-MOF hydrogel: regulation of ROS-mediated inflammatory microenvironment for treatment of atopic dermatitis. J. Nanobiotechnol 21, 163 (2023). https://doi.org/10.1186/s12951-023-01924-0
J.H. Kim, A.J. Kolozsvary, K.A. Jenrow, S.L. Brown, Mechanisms of radiation-induced skin injury and implications for future clinical trials. Int. J. Radiat. Biol. 89, 311–318 (2013). https://doi.org/10.3109/09553002.2013.765055
J. Wei, L. Meng, X. Hou, C. Qu, B. Wang et al., Radiation-induced skin reactions: mechanism and treatment. Cancer Manag. Res. 11, 167–177 (2018). https://doi.org/10.2147/CMAR.S188655
X. Yang, H. Ren, X. Guo, C. Hu, J. Fu, Radiation-induced skin injury: pathogenesis, treatment, and management. Aging 12, 23379–23393 (2020). https://doi.org/10.18632/aging.103932
K.R. Brown, E. Rzucidlo, Acute and chronic radiation injury. J. Vasc. Surg. 53, 15S-21S (2011). https://doi.org/10.1016/j.jvs.2010.06.175
C.N. Coleman, H.B. Stone, J.E. Moulder, T.C. Pellmar, Modulation of radiation injury. Science 304, 693–694 (2004). https://doi.org/10.1126/science.1095956
D. Zhou, M. Du, H. Luo, F. Ran, X. Zhao et al., Multifunctional mesoporous silica-cerium oxide nanozymes facilitate miR129 delivery for high-quality healing of radiation-induced skin injury. J. Nanobiotechnol 20, 409 (2022). https://doi.org/10.1186/s12951-022-01620-5
D. Schadendorf, A.C.J. van Akkooi, C. Berking, K.G. Griewank, R. Gutzmer et al., Melanoma. Lancet 392, 971–984 (2018). https://doi.org/10.1016/S0140-6736(18)31559-9
E. Erdei, S.M. Torres, A new understanding in the epidemiology of melanoma. Expert Rev. Anticancer Ther. 10, 1811–1823 (2010). https://doi.org/10.1586/era.10.170
S.Q. Wang, R. Setlow, M. Berwick, D. Polsky, A.A. Marghoob et al., Ultraviolet A and melanoma: a review. J. Am. Acad. Dermatol. 44, 837–846 (2001). https://doi.org/10.1067/mjd.2001.114594
D. Bei, J. Meng, B.-B C. Youan, Engineering nanomedicines for improved melanoma therapy. Progress and promises. Nanomedicine 5, 1385–1399 (2010). https://doi.org/10.2217/nnm.10.117
V. Gray-Schopfer, C. Wellbrock, R. Marais, Melanoma biology and new targeted therapy. Nature 445, 851–857 (2007). https://doi.org/10.1038/nature05661
M. Marzi, M. Rostami Chijan, E. Zarenezhad, Hydrogels as promising therapeutic strategy for the treatment of skin cancer. J. Mol. Struct. 1262, 133014 (2022). https://doi.org/10.1016/j.molstruc.2022.133014
Z. Wu, H. Zhuang, B. Ma, Y. Xiao, B. Koc et al., Manganese-doped calcium silicate nanowire composite hydrogels for melanoma treatment and wound healing. Research 2021, 9780943 (2021). https://doi.org/10.34133/2021/9780943
E.I. Azzam, J.-P. Jay-Gerin, D. Pain, Ionizing radiation-induced metabolic oxidative stress and prolonged cell injury. Cancer Lett. 327, 48–60 (2012). https://doi.org/10.1016/j.canlet.2011.12.012
P.A. Riley, Free radicals in biology: oxidative stress and the effects of ionizing radiation. Int. J. Radiat. Biol. 65, 27–33 (1994). https://doi.org/10.1080/09553009414550041
W. Zhao, M.E.C. Robbins, Inflammation and chronic oxidative stress in radiation-induced late normal tissue injury: Therapeutic implications. Curr. Med. Chem. 16, 130–143 (2009). https://doi.org/10.2174/092986709787002790
M.I. Koukourakis, Radiation damage and radioprotectants: new concepts in the era of molecular medicine. Br. J. Radiol. 85, 313–330 (2012). https://doi.org/10.1259/bjr/16386034
B. Babu, S. Pawar, A. Mittal, E. Kolanthai, C.J. Neal et al., Nanotechnology enabled radioprotectants to reduce space radiation-induced reactive oxidative species. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 15, e1896 (2023). https://doi.org/10.1002/wnan.1896
J. Xie, M. Zhao, C. Wang, S. Zhu, W. Niu et al., External use of Nano-graphdiyne hydrogel for skin radioprotection via both physically shielding of Low-energy X-ray and chemically scavenging of Broad-spectrum free radicals. Chem. Eng. J. 430, 132866 (2022). https://doi.org/10.1016/j.cej.2021.132866
J. Hao, M. Sun, D. Li, T. Zhang, J. Li et al., An IFI6-based hydrogel promotes the healing of radiation-induced skin injury through regulation of the HSF1 activity. J. Nanobiotechnology 20, 288 (2022). https://doi.org/10.1186/s12951-022-01466-x
N.D. Evans, R.O. Oreffo, E. Healy, P.J. Thurner, Y.H. Man, Epithelial mechanobiology, skin wound healing, and the stem cell niche. J. Mech. Behav. Biomed. Mater. 28, 397–409 (2013). https://doi.org/10.1016/j.jmbbm.2013.04.023
S.H. Kwon, J. Padmanabhan, G.C. Gurtner, Mechanobiology of skin diseases and wound healing. Mechanobiol Health Dis, pp. 415–448 (2018). https://doi.org/10.1016/b978-0-12-812952-4.00014-3
F.H. Silver, L.M. Siperko, G.P. Seehra, Mechanobiology of force transduction in dermal tissue. Skin Res. Technol. 9, 3–23 (2003). https://doi.org/10.1034/j.1600-0846.2003.00358.x
Z. Wang, F. Qi, H. Luo, G. Xu, D. Wang, Inflammatory microenvironment of skin wounds. Front. Immunol. 13, 789274 (2022). https://doi.org/10.3389/fimmu.2022.789274
M.G. Fernandes, L.P. da Silva, A.P. Marques, “Skin mechanobiology and biomechanics: From homeostasis to wound healing.” Advances in Biomechanics and Tissue Regeneration, (Elsevier, Amsterdam, 2019), pp. 343–360. https://doi.org/10.1016/b978-0-12-816390-0.00017-0
R. Ogawa, C.-K. Hsu, Mechanobiological dysregulation of the epidermis and dermis in skin disorders and in degeneration. J. Cell. Mol. Med. 17, 817–822 (2013). https://doi.org/10.1111/jcmm.12060
L.S. Malakou, A.N. Gargalionis, C. Piperi, E. Papadavid, A.G. Papavassiliou et al., Molecular mechanisms of mechanotransduction in psoriasis. Ann. Transl. Med. 6, 245 (2018). https://doi.org/10.21037/atm.2018.04.09
M.S. Shutova, W.-H. Boehncke, Mechanotransduction in skin inflammation. Cells 11, 2026 (2022). https://doi.org/10.3390/cells11132026
J.V. Small, The actin cytoskeleton. Electron Microsc. Rev. 1, 155–174 (1988). https://doi.org/10.1016/S0892-0354(98)90010-7
M.A. Wozniak, K. Modzelewska, L. Kwong, P.J. Keely, Focal adhesion regulation of cell behavior. Biochim. Biophys. Acta 1692, 103–119 (2004). https://doi.org/10.1016/j.bbamcr.2004.04.007
A. van der Flier, A. Sonnenberg, Function and interactions of integrins. Cell Tissue Res. 305, 285–298 (2001). https://doi.org/10.1007/s004410100417
V.W. Wong, K.C. Rustad, S. Akaishi, M. Sorkin, J.P. Glotzbach et al., Focal adhesion kinase links mechanical force to skin fibrosis via inflammatory signaling. Nat. Med. 18, 148–152 (2011). https://doi.org/10.1038/nm.2574
C.S. Nowell, P.D. Odermatt, L. Azzolin, S. Hohnel, E.F. Wagner et al., Chronic inflammation imposes aberrant cell fate in regenerating epithelia through mechanotransduction. Nat. Cell Biol. 18, 168–180 (2016). https://doi.org/10.1038/ncb3290
J.M. Murphy, K. Jeong, D.L. Cioffi, P.M. Campbell, H. Jo et al., Focal adhesion kinase activity and localization is critical for TNF-α-induced nuclear factor-κB activation. Inflammation 44, 1130–1144 (2021). https://doi.org/10.1007/s10753-020-01408-5
Y. Dai, Y. Ding, L. Li, Nanozymes for regulation of reactive oxygen species and disease therapy. Chin. Chem. Lett. 32, 2715–2728 (2021). https://doi.org/10.1016/j.cclet.2021.03.036
F. Yanagawa, S. Sugiura, T. Kanamori, Hydrogel microfabrication technology toward three dimensional tissue engineering. Regen. Ther. 3, 45–57 (2016). https://doi.org/10.1016/j.reth.2016.02.007
L. Pontiggia, I.A. Van Hengel, A. Klar, D. Rütsche, M. Nanni et al., Bioprinting and plastic compression of large pigmented and vascularized human dermo-epidermal skin substitutes by means of a new robotic platform. J. Tissue Eng. 13, 20417314221088510 (2022). https://doi.org/10.1177/20417314221088513
Y. Cai, S.Y. Chang, S.W. Gan, S. Ma, W.F. Lu et al., Nanocomposite bioinks for 3D bioprinting. Acta Biomater. 151, 45–69 (2022). https://doi.org/10.1016/j.actbio.2022.08.014
R.F. Pereira, A. Sousa, C.C. Barrias, A. Bayat, P.L. Granja et al., Advances in bioprinted cell-laden hydrogels for skin tissue engineering. Biomanuf. Rev. 2, 1 (2017). https://doi.org/10.1007/s40898-017-0003-8
T. Weng, W. Zhang, Y. Xia, P. Wu, M. Yang et al., 3D bioprinting for skin tissue engineering: Current status and perspectives. J. Tissue Eng. 12, 20417314211028576 (2021). https://doi.org/10.1177/20417314211028574
P. Chang, S. Li, Q. Sun, K. Guo, H. Wang et al., Large full-thickness wounded skin regeneration using 3D-printed elastic scaffold with minimal functional unit of skin. J. Tissue Eng. 13, 20417314211063024 (2022). https://doi.org/10.1177/20417314211063022
R. Augustine, Skin bioprinting: A novel approach for creating artificial skin from synthetic and natural building blocks. Prog. Biomater. 7, 77–92 (2018). https://doi.org/10.1007/s40204-018-0087-0
A. Khademhosseini, R. Langer, J. Borenstein, J.P. Vacanti, Microscale technologies for tissue engineering and biology. Proc. Natl. Acad. Sci. U.S.A. 103, 2480–2487 (2006). https://doi.org/10.1073/pnas.0507681102
L. Zhang, H. Wang, X. Qu, Biosystem-inspired engineering of nanozymes for biomedical applications. Adv. Mater., e2211147 (2023). https://doi.org/10.1002/adma.202211147
Q. Wang, J. Jiang, L. Gao, Nanozyme-based medicine for enzymatic therapy: Progress and challenges. Biomed. Mater. 16, 042002 (2021). https://doi.org/10.1088/1748-605X/abe7b4
X. Huang, D. He, Z. Pan, G. Luo, J. Deng, Reactive-oxygen-species-scavenging nanomaterials for resolving inflammation. Mater. Today Bio 11, 100124 (2021). https://doi.org/10.1016/j.mtbio.2021.100124
N. Song, M. Scholtemeijer, K. Shah, Mesenchymal stem cell immunomodulation: Mechanisms and therapeutic potential. Trends Pharmacol. Sci. 41, 653–664 (2020). https://doi.org/10.1016/j.tips.2020.06.009
G.F. Goya, A. Mayoral, E. Winkler, R.D. Zysler, C. Bagnato et al., Next generation of nanozymes: a perspective of the challenges to match biological performance. J. Appl. Phys. 131(3), 190903 (2022). https://doi.org/10.1063/5.0084228
X. Wang, X. Zhong, J. Li, Z. Liu, L. Cheng, Inorganic nanomaterials with rapid clearance for biomedical applications. Chem. Soc. Rev. 50, 8669–8742 (2021). https://doi.org/10.1039/d0cs00461h
S. Sindhwani, W.C.W. Chan, Nanotechnology for modern medicine: next step towards clinical translation. J. Intern. Med. 290, 486–498 (2021). https://doi.org/10.1111/joim.13254
X. Ding, Z. Zhao, Y. Zhang, M. Duan, C. Liu et al., Activity regulating strategies of nanozymes for biomedical applications. Small 19, e2207142 (2023). https://doi.org/10.1002/smll.202207142
S. Correa, A.K. Grosskopf, H. Lopez Hernandez, D. Chan, A.C. Yu et al., Translational applications of hydrogels. Chem. Rev. 121, 11385–11457 (2021). https://doi.org/10.1021/acs.chemrev.0c01177
M.A. Bhutkar, R.O. Sonawane. Translating nanomaterials from laboratory to clinic: Barriers ahead. In: Pardeshi, C.V. (eds) Nanomaterial-based drug delivery systems, (Springer, Cham, 2023), pp. 381–405. https://doi.org/10.1007/978-3-031-30529-0_13
M. Ghorbani, Z. Izadi, S. Jafari, E. als, F. Rezaei et al., Preclinical studies conducted on nanozyme antioxidants: shortcomings and challenges based on US FDA regulations. Nanomedicine 16, 1133–1151 (2021). https://doi.org/10.2217/nnm-2021-0030
B. Liu, J. Liu, Surface modification of nanozymes. Nano Res. 10, 1125–1148 (2017). https://doi.org/10.1007/s12274-017-1426-5
L. Huang, J. Chen, L. Gan, J. Wang, S. Dong, Single-atom nanozymes. Sci. Adv. 5, eaav5490 (2019). https://doi.org/10.1126/sciadv.aav5490
J. Pei, R. Zhao, X. Mu, J. Wang, C. Liu et al., Single-atom nanozymes for biological applications. Biomater. Sci. 8, 6428–6441 (2020). https://doi.org/10.1039/d0bm01447h
R. Kumari, D.S. Dkhar, S. Mahapatra, R. Kumar, P. Chandra, Nano-bioengineered sensing technologies for real-time monitoring of reactive oxygen species in in vitro and in vivo models. Microchem. J. 180, 107615 (2022). https://doi.org/10.1016/j.microc.2022.107615