Proton-Prompted Ligand Exchange to Achieve High-Efficiency CsPbI3 Quantum Dot Light-Emitting Diodes
Corresponding Author: Chaoyu Xiang
Nano-Micro Letters,
Vol. 16 (2024), Article Number: 105
Abstract
CsPbI3 perovskite quantum dots (QDs) are ideal materials for the next generation of red light-emitting diodes. However, the low phase stability of CsPbI3 QDs and long-chain insulating capping ligands hinder the improvement of device performance. Traditional in-situ ligand replacement and ligand exchange after synthesis were often difficult to control. Here, we proposed a new ligand exchange strategy using a proton-prompted in-situ exchange of short 5-aminopentanoic acid ligands with long-chain oleic acid and oleylamine ligands to obtain stable small-size CsPbI3 QDs. This exchange strategy maintained the size and morphology of CsPbI3 QDs and improved the optical properties and the conductivity of CsPbI3 QDs films. As a result, high-efficiency red QD-based light-emitting diodes with an emission wavelength of 645 nm demonstrated a record maximum external quantum efficiency of 24.45% and an operational half-life of 10.79 h.
Highlights:
1 A new proton-promoted in situ ligand exchange strategy based on CsPbI3 quantum dots.
2 The ligand exchange strategy maintains the quantum confinement effect of quantum dots and significantly improves the stability and photophysical properties of CsPbI3 quantum dots.
3 The performance of light-emitting diodes based on CsPbI3 quantum dots is significantly improved, the external quantum efficiency is increased from 18.63% to 24.45%, and the half-operational lifetime is increased by 70 times.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- P. Fu, Q. Shan, Y. Shang, J. Song, H. Zeng et al., Perovskite nanocrystals: synthesis, properties and applications. Sci. Bull. 62(5), 369–380 (2017). https://doi.org/10.1016/j.scib.2017.01.006
- J. Shamsi, A.S. Urban, M. Imran, L. De Trizio, L. Manna, Metal halide perovskite nanocrystals: synthesis, post-synthesis modifications, and their optical properties. Chem. Rev. 119(5), 3296–3348 (2019). https://doi.org/10.1021/acs.chemrev.8b00644
- X.-K. Liu, W. Xu, S. Bai, Y. Jin, J. Wang et al., Metal halide perovskites for light-emitting diodes. Nat. Mater. 20, 10–21 (2021). https://doi.org/10.1038/s41563-020-0784-7
- J.S. Kim, J.M. Heo, G.S. Park, S.J. Woo, C. Cho et al., Ultra-bright, efficient and stable perovskite light-emitting diodes. Nature 611, 688–694 (2022). https://doi.org/10.1038/s41586-022-05304-w
- Y.-K. Wang, K. Singh, J.-Y. Li, Y. Dong, X.-Q. Wang et al., In situ inorganic ligand replenishment enables bandgap stability in mixed-halide perovskite quantum dot solids. Adv. Mater. 34(21), e2200854 (2022). https://doi.org/10.1002/adma.202200854
- Y. Wang, C. Duan, X. Zhang, J. Sun, X. Ling et al., Electroluminescent solar cells based on CsPbI3 perovskite quantum dots. Adv. Funct. Mater. 32(6), 2108615 (2022). https://doi.org/10.1002/adfm.202108615
- A. Swarnkar, A.R. Marshall, E.M. Sanehira, B.D. Chernomordik, D.T. Moore et al., Quantum dot-induced phase stabilization of α-CsPbI3 perovskite for high-efficiency photovoltaics. Science 354(6308), 92–95 (2016). https://doi.org/10.1126/science.aag2700
- W. Zhou, F. Sui, G. Zhong, G. Cheng, M. Pan et al., Lattice dynamics and thermal stability of cubic-phase CsPbI3 quantum dots. J. Phys. Chem. Lett. 9(17), 4915–4920 (2018). https://doi.org/10.1021/acs.jpclett.8b02036
- J.-S. Yao, J. Ge, K.-H. Wang, G. Zhang, B.-S. Zhu et al., Few-nanometer-sized α-CsPbI3 quantum dots enabled by strontium substitution and iodide passivation for efficient red-light emitting diodes. J. Am. Chem. Soc. 141(5), 2069–2079 (2019). https://doi.org/10.1021/jacs.8b11447
- L. Martínez-Sarti, S.H. Jo, Y.H. Kim, M. Sessolo, F. Palazon et al., Low-dimensional iodide perovskite nanocrystals enable efficient red emission. Nanoscale 11(27), 12793–12797 (2019). https://doi.org/10.1039/c9nr04520a
- Y.-F. Lan, J.-S. Yao, J.-N. Yang, Y.-H. Song, X.-C. Ru et al., Spectrally stable and efficient pure red CsPbI3 quantum dot light-emitting diodes enabled by sequential ligand post-treatment strategy. Nano Lett. 21(20), 8756–8763 (2021). https://doi.org/10.1021/acs.nanolett.1c03011
- S. ten Brinck, F. Zaccaria, I. Infante, Defects in lead halide perovskite nanocrystals: analogies and (many) differences with the bulk. ACS Energy Lett. 4(11), 2739–2747 (2019). https://doi.org/10.1021/acsenergylett.9b01945
- Y. Dong, Y.-K. Wang, F. Yuan, A. Johnston, Y. Liu et al., Bipolar-shell resurfacing for blue LEDs based on strongly confined perovskite quantum dots. Nat. Nanotechnol. 15, 668–674 (2020). https://doi.org/10.1038/s41565-020-0714-5
- J. Pan, L.N. Quan, Y. Zhao, W. Peng, B. Murali et al., Highly efficient perovskite-quantum-dot light-emitting diodes by surface engineering. Adv. Mater. 28(39), 8718–8725 (2016). https://doi.org/10.1002/adma.201600784
- G. Li, J. Huang, H. Zhu, Y. Li, J.-X. Tang et al., Surface ligand engineering for near-unity quantum yield inorganic halide perovskite QDs and high-performance QLEDs. Chem. Mater. 30(17), 6099–6107 (2018). https://doi.org/10.1021/acs.chemmater.8b02544
- Y.-K. Wang, F. Yuan, Y. Dong, J.-Y. Li, A. Johnston et al., All-inorganic quantum-dot LEDs based on a phase-stabilized α-CsPbI3 perovskite. Angew. Chem. Int. Ed. 60(29), 16164–16170 (2021). https://doi.org/10.1002/anie.202104812
- H. Zhao, H. Chen, S. Bai, C. Kuang, X. Luo et al., High-brightness perovskite light-emitting diodes based on FAPbBr3 nanocrystals with rationally designed aromatic ligands. ACS Energy Lett. 6(7), 2395–2403 (2021). https://doi.org/10.1021/acsenergylett.1c00812
- A. Pan, B. He, X. Fan, Z. Liu, J.J. Urban et al., Insight into the ligand-mediated synthesis of colloidal CsPbBr3 perovskite nanocrystals: the role of organic acid, base, and cesium precursors. ACS Nano 10(8), 7943–7954 (2016). https://doi.org/10.1021/acsnano.6b03863
- J. Shamsi, Z. Dang, P. Bianchini, C. Canale, F. Di Stasio et al., Colloidal synthesis of quantum confined single crystal CsPbBr3 nanosheets with lateral size control up to the micrometer range. J. Am. Chem. Soc. 138(23), 7240–7243 (2016). https://doi.org/10.1021/jacs.6b03166
- F. Haydous, J.M. Gardner, U.B. Cappel, The impact of ligands on the synthesis and application of metal halide perovskite nanocrystals. J. Mater. Chem. A 9(41), 23419–23443 (2021). https://doi.org/10.1039/d1ta05242j
- S. Cho, J. Kim, S.M. Jeong, M.J. Ko, J.-S. Lee et al., High-voltage and green-emitting perovskite quantum dot solar cells via solvent miscibility-induced solid-state ligand exchange. Chem. Mater. 32(20), 8808–8818 (2020). https://doi.org/10.1021/acs.chemmater.0c02102
- D. Jia, J. Chen, J. Qiu, H. Ma, M. Yu et al., Tailoring solvent-mediated ligand exchange for CsPbI3 perovskite quantum dot solar cells with efficiency exceeding 16.5%. Joule 6(7), 1632–1653 (2022). https://doi.org/10.1016/j.joule.2022.05.007
- Y. Sun, H. Zhang, K. Zhu, W. Ye, L. She et al., Research on the influence of polar solvents on CsPbBr3 perovskite QDs. RSC Adv. 11(44), 27333–27337 (2021). https://doi.org/10.1039/d1ra04485k
- D. Liu, Z. Shao, C. Li, S. Pang, Y. Yan et al., Structural properties and stability of inorganic CsPbI3 perovskites. Small Struct. 2(3), 2000089 (2021). https://doi.org/10.1002/sstr.202000089
- S. Kajal, J. Kim, Y.S. Shin, A.N. Singh, C.W. Myung et al., Unfolding the influence of metal doping on properties of CsPbI3 perovskite. Small Methods 4(9), 2000296 (2020). https://doi.org/10.1002/smtd.202000296
- S.R. Smock, Y. Chen, A.J. Rossini, R.L. Brutchey, The surface chemistry and structure of colloidal lead halide perovskite nanocrystals. Acc. Chem. Res. 54(3), 707–718 (2021). https://doi.org/10.1021/acs.accounts.0c00741
- F. Krieg, S.T. Ochsenbein, S. Yakunin, S. Ten Brinck, P. Aellen et al., Colloidal CsPbX3 (X = Cl, Br, I) nanocrystals 2.0: Zwitterionic capping ligands for improved durability and stability. ACS Energy Lett. 3(3), 641–646 (2018). https://doi.org/10.1021/acsenergylett.8b00035
- J. De Roo, M. Ibáñez, P. Geiregat, G. Nedelcu, W. Walravens et al., Highly dynamic ligand binding and light absorption coefficient of cesium lead bromide perovskite nanocrystals. ACS Nano 10(2), 2071–2081 (2016). https://doi.org/10.1021/acsnano.5b06295
- Y. Dong, T. Qiao, D. Kim, D. Parobek, D. Rossi et al., Precise control of quantum confinement in cesium lead halide perovskite quantum dots via thermodynamic equilibrium. Nano Lett. 18(6), 3716–3722 (2018). https://doi.org/10.1021/acs.nanolett.8b00861
- S. Akhil, V.G.V. Dutt, N. Mishra, Completely amine-free open-atmospheric synthesis of high-quality cesium lead bromide (CsPbBr3) perovskite nanocrystals. Chem. Eur. J. 26(71), 17195–17202 (2020). https://doi.org/10.1002/chem.202003891
- L.C. s, M. Malicki, E.A. Weiss, The chemical environments of oleate species within samples of oleate-coated PbS quantum dots. Anal. Chem. 85(14), 6974–6979 (2013). https://doi.org/10.1021/ac401623a
- L. Wu, Q. Zhong, D. Yang, M. Chen, H. Hu et al., Improving the stability and size tunability of cesium lead halide perovskite nanocrystals using trioctylphosphine oxide as the capping ligand. Langmuir 33(44), 12689–12696 (2017). https://doi.org/10.1021/acs.langmuir.7b02963
- W. Zheng, Z. Li, C. Zhang, B. Wang, Q. Zhang et al., Stabilizing perovskite nanocrystals by controlling protective surface ligands density. Nano Res. 12, 1461–1465 (2019). https://doi.org/10.1007/s12274-019-2407-7
References
P. Fu, Q. Shan, Y. Shang, J. Song, H. Zeng et al., Perovskite nanocrystals: synthesis, properties and applications. Sci. Bull. 62(5), 369–380 (2017). https://doi.org/10.1016/j.scib.2017.01.006
J. Shamsi, A.S. Urban, M. Imran, L. De Trizio, L. Manna, Metal halide perovskite nanocrystals: synthesis, post-synthesis modifications, and their optical properties. Chem. Rev. 119(5), 3296–3348 (2019). https://doi.org/10.1021/acs.chemrev.8b00644
X.-K. Liu, W. Xu, S. Bai, Y. Jin, J. Wang et al., Metal halide perovskites for light-emitting diodes. Nat. Mater. 20, 10–21 (2021). https://doi.org/10.1038/s41563-020-0784-7
J.S. Kim, J.M. Heo, G.S. Park, S.J. Woo, C. Cho et al., Ultra-bright, efficient and stable perovskite light-emitting diodes. Nature 611, 688–694 (2022). https://doi.org/10.1038/s41586-022-05304-w
Y.-K. Wang, K. Singh, J.-Y. Li, Y. Dong, X.-Q. Wang et al., In situ inorganic ligand replenishment enables bandgap stability in mixed-halide perovskite quantum dot solids. Adv. Mater. 34(21), e2200854 (2022). https://doi.org/10.1002/adma.202200854
Y. Wang, C. Duan, X. Zhang, J. Sun, X. Ling et al., Electroluminescent solar cells based on CsPbI3 perovskite quantum dots. Adv. Funct. Mater. 32(6), 2108615 (2022). https://doi.org/10.1002/adfm.202108615
A. Swarnkar, A.R. Marshall, E.M. Sanehira, B.D. Chernomordik, D.T. Moore et al., Quantum dot-induced phase stabilization of α-CsPbI3 perovskite for high-efficiency photovoltaics. Science 354(6308), 92–95 (2016). https://doi.org/10.1126/science.aag2700
W. Zhou, F. Sui, G. Zhong, G. Cheng, M. Pan et al., Lattice dynamics and thermal stability of cubic-phase CsPbI3 quantum dots. J. Phys. Chem. Lett. 9(17), 4915–4920 (2018). https://doi.org/10.1021/acs.jpclett.8b02036
J.-S. Yao, J. Ge, K.-H. Wang, G. Zhang, B.-S. Zhu et al., Few-nanometer-sized α-CsPbI3 quantum dots enabled by strontium substitution and iodide passivation for efficient red-light emitting diodes. J. Am. Chem. Soc. 141(5), 2069–2079 (2019). https://doi.org/10.1021/jacs.8b11447
L. Martínez-Sarti, S.H. Jo, Y.H. Kim, M. Sessolo, F. Palazon et al., Low-dimensional iodide perovskite nanocrystals enable efficient red emission. Nanoscale 11(27), 12793–12797 (2019). https://doi.org/10.1039/c9nr04520a
Y.-F. Lan, J.-S. Yao, J.-N. Yang, Y.-H. Song, X.-C. Ru et al., Spectrally stable and efficient pure red CsPbI3 quantum dot light-emitting diodes enabled by sequential ligand post-treatment strategy. Nano Lett. 21(20), 8756–8763 (2021). https://doi.org/10.1021/acs.nanolett.1c03011
S. ten Brinck, F. Zaccaria, I. Infante, Defects in lead halide perovskite nanocrystals: analogies and (many) differences with the bulk. ACS Energy Lett. 4(11), 2739–2747 (2019). https://doi.org/10.1021/acsenergylett.9b01945
Y. Dong, Y.-K. Wang, F. Yuan, A. Johnston, Y. Liu et al., Bipolar-shell resurfacing for blue LEDs based on strongly confined perovskite quantum dots. Nat. Nanotechnol. 15, 668–674 (2020). https://doi.org/10.1038/s41565-020-0714-5
J. Pan, L.N. Quan, Y. Zhao, W. Peng, B. Murali et al., Highly efficient perovskite-quantum-dot light-emitting diodes by surface engineering. Adv. Mater. 28(39), 8718–8725 (2016). https://doi.org/10.1002/adma.201600784
G. Li, J. Huang, H. Zhu, Y. Li, J.-X. Tang et al., Surface ligand engineering for near-unity quantum yield inorganic halide perovskite QDs and high-performance QLEDs. Chem. Mater. 30(17), 6099–6107 (2018). https://doi.org/10.1021/acs.chemmater.8b02544
Y.-K. Wang, F. Yuan, Y. Dong, J.-Y. Li, A. Johnston et al., All-inorganic quantum-dot LEDs based on a phase-stabilized α-CsPbI3 perovskite. Angew. Chem. Int. Ed. 60(29), 16164–16170 (2021). https://doi.org/10.1002/anie.202104812
H. Zhao, H. Chen, S. Bai, C. Kuang, X. Luo et al., High-brightness perovskite light-emitting diodes based on FAPbBr3 nanocrystals with rationally designed aromatic ligands. ACS Energy Lett. 6(7), 2395–2403 (2021). https://doi.org/10.1021/acsenergylett.1c00812
A. Pan, B. He, X. Fan, Z. Liu, J.J. Urban et al., Insight into the ligand-mediated synthesis of colloidal CsPbBr3 perovskite nanocrystals: the role of organic acid, base, and cesium precursors. ACS Nano 10(8), 7943–7954 (2016). https://doi.org/10.1021/acsnano.6b03863
J. Shamsi, Z. Dang, P. Bianchini, C. Canale, F. Di Stasio et al., Colloidal synthesis of quantum confined single crystal CsPbBr3 nanosheets with lateral size control up to the micrometer range. J. Am. Chem. Soc. 138(23), 7240–7243 (2016). https://doi.org/10.1021/jacs.6b03166
F. Haydous, J.M. Gardner, U.B. Cappel, The impact of ligands on the synthesis and application of metal halide perovskite nanocrystals. J. Mater. Chem. A 9(41), 23419–23443 (2021). https://doi.org/10.1039/d1ta05242j
S. Cho, J. Kim, S.M. Jeong, M.J. Ko, J.-S. Lee et al., High-voltage and green-emitting perovskite quantum dot solar cells via solvent miscibility-induced solid-state ligand exchange. Chem. Mater. 32(20), 8808–8818 (2020). https://doi.org/10.1021/acs.chemmater.0c02102
D. Jia, J. Chen, J. Qiu, H. Ma, M. Yu et al., Tailoring solvent-mediated ligand exchange for CsPbI3 perovskite quantum dot solar cells with efficiency exceeding 16.5%. Joule 6(7), 1632–1653 (2022). https://doi.org/10.1016/j.joule.2022.05.007
Y. Sun, H. Zhang, K. Zhu, W. Ye, L. She et al., Research on the influence of polar solvents on CsPbBr3 perovskite QDs. RSC Adv. 11(44), 27333–27337 (2021). https://doi.org/10.1039/d1ra04485k
D. Liu, Z. Shao, C. Li, S. Pang, Y. Yan et al., Structural properties and stability of inorganic CsPbI3 perovskites. Small Struct. 2(3), 2000089 (2021). https://doi.org/10.1002/sstr.202000089
S. Kajal, J. Kim, Y.S. Shin, A.N. Singh, C.W. Myung et al., Unfolding the influence of metal doping on properties of CsPbI3 perovskite. Small Methods 4(9), 2000296 (2020). https://doi.org/10.1002/smtd.202000296
S.R. Smock, Y. Chen, A.J. Rossini, R.L. Brutchey, The surface chemistry and structure of colloidal lead halide perovskite nanocrystals. Acc. Chem. Res. 54(3), 707–718 (2021). https://doi.org/10.1021/acs.accounts.0c00741
F. Krieg, S.T. Ochsenbein, S. Yakunin, S. Ten Brinck, P. Aellen et al., Colloidal CsPbX3 (X = Cl, Br, I) nanocrystals 2.0: Zwitterionic capping ligands for improved durability and stability. ACS Energy Lett. 3(3), 641–646 (2018). https://doi.org/10.1021/acsenergylett.8b00035
J. De Roo, M. Ibáñez, P. Geiregat, G. Nedelcu, W. Walravens et al., Highly dynamic ligand binding and light absorption coefficient of cesium lead bromide perovskite nanocrystals. ACS Nano 10(2), 2071–2081 (2016). https://doi.org/10.1021/acsnano.5b06295
Y. Dong, T. Qiao, D. Kim, D. Parobek, D. Rossi et al., Precise control of quantum confinement in cesium lead halide perovskite quantum dots via thermodynamic equilibrium. Nano Lett. 18(6), 3716–3722 (2018). https://doi.org/10.1021/acs.nanolett.8b00861
S. Akhil, V.G.V. Dutt, N. Mishra, Completely amine-free open-atmospheric synthesis of high-quality cesium lead bromide (CsPbBr3) perovskite nanocrystals. Chem. Eur. J. 26(71), 17195–17202 (2020). https://doi.org/10.1002/chem.202003891
L.C. s, M. Malicki, E.A. Weiss, The chemical environments of oleate species within samples of oleate-coated PbS quantum dots. Anal. Chem. 85(14), 6974–6979 (2013). https://doi.org/10.1021/ac401623a
L. Wu, Q. Zhong, D. Yang, M. Chen, H. Hu et al., Improving the stability and size tunability of cesium lead halide perovskite nanocrystals using trioctylphosphine oxide as the capping ligand. Langmuir 33(44), 12689–12696 (2017). https://doi.org/10.1021/acs.langmuir.7b02963
W. Zheng, Z. Li, C. Zhang, B. Wang, Q. Zhang et al., Stabilizing perovskite nanocrystals by controlling protective surface ligands density. Nano Res. 12, 1461–1465 (2019). https://doi.org/10.1007/s12274-019-2407-7